
Bicriteria Approximation Tradeoff for the
Node-Cost Budget Problem

Yuval Rabani1,? and Gabriel Scalosub2,??

1 Computer Science Dept., Technion - Israel Institute of Technology, Haifa 32000, Israel.
rabani@cs.technion.ac.il

2 School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel.
gabriels@eng.tau.ac.il

Abstract. We consider an optimization problem consisting of an undirected graph,
with cost and profit functions defined on all vertices. The goal is to find a con-
nected subset of vertices with maximum total profit, whose total cost does not
exceed a given budget. The best result known prior to this work guaranteed a
(2, O(logn)) bicriteria approximation, i.e. the solution’s profit is at least a frac-
tion of 1

O(log n)
of an optimum solution respecting the budget, while its cost

is at most twice the given budget. We improve these results and present a bi-
criteria tradeoff that, given any ε ∈ (0, 1], guarantees a (1 + ε,O(1

ε
logn))-

approximation.

1 Introduction

We consider the following problem: Given an undirected graph G = (V,E),
a non negative cost function c defined on V , a non negative profit function π
defined on V , and a budget B, our aim is to find a connected set of vertices
T ⊆ V such that their overall cost does not exceed B, while maximizing the
overall profit obtained from T . We refer to this problem as the Node-Cost Budget
Problem (or the Budget Problem (BP) for short). This problem can also be cast
as a rooted problem, where we specify a special vertex r ∈ V as a root, and
impose the restriction that r ∈ T . An algorithm for solving the rooted problem
can easily be transformed into one which solves the unrooted problem by simply
enumerating over all vertices in V as candidates for r, and picking the best
among the various solutions. We shall hereafter focus on the rooted version of
the problem. In what follows we denote the size of V by n. We note that previous
results for this problem all give bicriteria approximation guarantees, where an
(α, β)-approximate solution [1] is one which guarantees at least a β fraction
of the optimal profit possible using a given budget, while violating the budget
restriction by a factor of at most α.

? Work at the Technion supported by BSF grant number 99-00217, by ISF grant number 386/99,
by IST contract number 32007 (APPOL), and by the Fund for the Promotion of Research at
the Technion.

?? Supported in part by BSF grant number 99-00217. This work was done while the author was
with the Computer Science Dept. at the Technion, Israel.

1.1 Our Results

We present, for every ε ∈ (0, 1], a (1 + ε,O(1
ε log n)) bicriteria approximation

algorithm for BP. This improves upon previous results discussed below. Our
algorithm consists of meticulously defining a collection of instances, and find-
ing approximate solutions to these instances using extensions of the methods
described in [2]. Upon finding a collection of approximate solutions to these
instances, we show that these can be used to find a collection of feasible solu-
tions to our initial problem. We prove that all these solutions violate the budget
restriction by a factor of at most 1 + ε, while at least one has sufficient profit.

1.2 Related Work

The budget problem was introduced by Guha, Moss, Naor, and Schieber [3].
They motivated the problem by its application to power-outage recovery. Guha
et al. presented a (2, O(log2 n)) bicriteria approximation algorithm for the prob-
lem. Their algorithm is based on an O(log n)-approximation algorithm for the
node weighted Steiner tree problem, devised by Klein and Ravi [4]. The node
weighted Steiner tree problem consists of an undirected graph with costs as-
signed to vertices, where given a subset T of V , one seeks a connected subset
of V which contains all the nodes in T such that its overall cost is minimal.

Moss and Rabani [2] improved these results by presenting a (2, O(log n))
bicriteria approximation. Their algorithm is based on a tree packing devised by
using a primal-dual algorithm for approximating the prize collecting problem.
This problem consists of an undirected graph with costs and profits defined over
its set of vertices. The aim is to find a connected subset S of V so as to min-
imize the sum of the costs of the vertices in S (the cost) and the profits of the
vertices not in S (the penalty). Given the tree packing, an averaging argument
then enables them to pick out a tree from the packing with good features.

A closely related problem to BP is the node-cost quota problem. In this prob-
lem we are given a graph with costs and profits defined over its set of vertices,
and a quota Q. The aim is to find a connected subset S of V whose profit is at
leastQ, and whose cost is minimal. The best upper bound for this problem guar-
antees an O(log n)-approximation (see [2]). Furthermore, assuming P 6= NP
this result is tight, up to a constant factor because the problem is at least as hard
as set cover [5].

There has also been a considerable amount of work concerning edge-costs
versions of similar problems, such as variants of the prize-collecting Steiner tree
problem [6–8] , the k-MST problem [9], and the constrained minimum spanning
tree problem [10].

The best approximation lower bound for BP is based on the tight lower
bound for the budgeted maximum coverage problem, where due to an approx-

imation preserving reduction from this problem to BP, one can obtain a lower
bound of 1− 1

e on the approximation ratio of BP [11, 5].

2 Notation and Preliminaries

Given a connected set of vertices T ⊆ V , we will speak in terms of any spanning
tree induced by T . We may assume without loss of generality that the cost and
the profit of the root of an instance is 0. Otherwise, we may solve an altered
instance where we assign cost 0 to the root, and strengthen the budget restriction
to be at most the original budget from which we subtract the cost of the root in
the original problem. Any solution to the altered problem induces a solution with
the same value to the original problem and vice-versa, up to re-adding the profit
of the root. Let us begin by introducing the concept of distance and reachability
among vertices.

Given a graph G = (V,E) and a non-negative cost function c defined on V ,
we define the cost-distance d(u, v) between vertices u and v to be the minimum
total cost of the inner vertices on any path connecting u and v, with respect to
the cost function c. Formally:

d(u, v) = min

{
`−1∑
i=2

c(vi)
∣∣∣∣{vi}`i=1 is a u−v path
such that v1 =u and v`=v

}
.

If u = v or (u, v) ∈ E we define d(u, v) = 0. If there is no path connecting u
and v we define d(u, v) = ∞. We further denote by path(u, v) the set of inner
vertices of a path achieving minimal cost. Formally:

path(u, v) = arg min

{
`−1∑
i=2

c(vi)
∣∣∣∣{vi}`i=1 is a u−v path
such that v1 =u and v`=v

}
\ {u, v}.

In addition, we say that a vertex v is reachable with cost at most p from u 6= v
if d(u, v) + c(v) ≤ p, and any vertex v is reachable from itself with cost 0.

By the above definitions, for any instance of BP, we may assume without
loss of generality that all vertices in G are reachable from the root r with cost at
most B, since any vertex not reachable from r with cost at most B will not be
part of any feasible solution. In particular we may assume G is connected.

For any S ⊆ V we let c(S) =
∑

v∈S c(v) denote the cost of S and π(S) =∑
v∈S π(v) denote the profit obtained by S. We further denote the density of S

by γ(S) = π(S)
c(S) . For any subtree T of G and any v ∈ T , denote by CHT (v)

the set of children of v in T . We further denote by Tu the subtree of T rooted at
vertex u ∈ T , i.e. Tu consists of all vertices in T such that the path connecting
them to the root r, contains u.

3 Finding Good Candidate Solutions

In finding a good approximate solution we make use of the notion of tree pack-
ing. This enables us to find a connected set of vertices with good properties.

Definition 1 (Tree Packing). Given a graph G = (V,E), a tree packing in G
relative to a function d : V 7→ Q+ is an assignment of weights λ to a set T of
trees in G, which satisfies

∑
T∈T |v∈T λT ≤ d(v), where λT is the weight of tree

T in the packing.

In what follows, for every S ⊆ V we let ∂S = {v ∈ V |∃u ∈ S s.t. (u, v) ∈ E}.
Consider the integer program for BP, denoted IP :

maximize
∑

i∈V π(i)di
subject to∑

i∈V c(i)di ≤ B (1)
di ≤

∑
j∈∂S dj ∀S ⊆ V \ {r}, ∀i ∈ S (2)

dr = 1 (3)
di ∈ {0, 1} ∀i ∈ V \ {r}. (4)

In the above program, vertex i is part of the solution if and only if its associated
variable di satisfies di = 1. Constraint (2) ensures the connectivity of the output,
i.e. that the vertices for which di = 1 make up one connected component. Notice
that assumingG is not trivial (i.e. n > 1), considering constraint (2) for the case
where S = V \{r}we have ∂S = {r} which implies di ≤ 1 for all i ∈ V \{r}.
Let us denote by OPTB the value of an optimal solution for IP . If we replace
constraints (4) by

di ≥ 0 ∀i ∈ V \ {r} (5)

we obtain a linear programming relaxation for BP which we denote by LP . This
linear program can be solved in polynomial time using the ellipsoid algorithm
[12]. Let d denote an optimal solution to LP . As shown in the following theo-
rem, we can use such a solution to find a tree packing such that every vertex is
covered sufficiently by the packing:

Theorem 1 ([2]). Let G = (V,E) be an undirected graph with non-negative
node weights d : V 7→ Q+, considered rooted at r ∈ V . Assume d satisfies
inequalities (2) and (3). Then, there exists a polynomial time algorithm that
computes a tree packing in G of trees containing r such that for every node
v ∈ V

d(v)
c log n

≤
∑

T∈T |v∈T

λT ≤ d(v)

for some constant c independent of n.

Let T be the support of the tree packing guaranteed by Theorem 1, let L =
{T ∈ T |c(T) ≤ B} and H = {T ∈ T |c(T) > B}. The following lemma will
serve as a starting point in our quest for finding a good approximate solution.

Lemma 1 (A good tree exists in the packing [2]). Given the support T of
the packing guaranteed by Theorem 1, at least one of the following conditions
holds:

1. ∃T ∈ L such that π(T) ≥ 1
2c lognOPTB;

2. ∃T ∈ H such that γ(T) = π(T)
c(T) ≥

1
2c logn

OPTB
B .

Furthermore a tree T satisfying one of the above conditions can be found in
time polynomial in the size of the original input.

In what follows we focus our attention on the case where we have a tree T which
satisfies condition 2 in Lemma 1. Note that the cost of such a tree may very well
exceed the available budget. In the following section we presents a trimming
process, which under some conditions on the underlying instance, enables us to
give a good upper bound on the cost of the resulting tree.

3.1 Candidate Solutions with High Density

Consider an instance of BP with graph G = (V,E) such that all vertices are
reachable from the root r ∈ V with cost at most d, and a budget restriction B,
where d ≤ B. In what follows we show that for any α > 0 and any subtree T
of G rooted at r such that γ(T) ≥ α · OPTB

B and c(T) > B, T can be trimmed
into a tree TH satisfying π(TH) ≥ α

4 ·OPTB and c(TH) ≤ B + d.
Let T be any subtree ofG rooted at r such that γ(T) ≥ α·OPTB

B and c(T) >
B. In order to obtain TH , we will accumulate subtrees of T , while making sure
the overall cost remains within a certain range. The following lemma, whose
proof is omitted due to space constraints, gives a sufficient condition for the
resulting tree having sufficient profit:

Lemma 2. Let T ⊆ G be a tree such that γ(T) ≥ α · OPTB
B and c(T) > B.

For any set of vertices U ⊆ T such that for every u ∈ U , γ(Tu) ≥ γ(T), if∑
u∈U c(Tu) ≥

B
2 then

∑
u∈U π(Tu) ≥ α

2 ·OPTB .

The following corollary is an immediate consequence of Lemma 2:

Corollary 1. Let T ⊆ G be a tree such that γ(T) ≥ α · OPTB
B and c(T) > B.

For any v ∈ T , and any set of vertices U ⊆ CHT (v), if U satisfies B
2 ≤∑

u∈U c(Tu) ≤ B and for every u ∈ U , γ(Tu) ≥ γ(T), then the set TH =⋃
u∈U Tu∪{v}∪path(r, v)∪{r} is a tree which satisfies π(TH) ≥ α

2 ·OPTB
and c(TH) ≤ B + d.

Proof. Note that by the assumption that U ⊆ CHT (v) for some v ∈ T , we are
guaranteed to have for every u 6= u′ in U , Tu∩Tu′ = ∅. It therefore follows that
c(
⋃
u∈U Tu) =

∑
u∈U c(Tu) and π(

⋃
u∈U Tu) =

∑
u∈U π(Tu). Furthermore,

since U ⊆ CHT (v), then clearly TH is a tree. Since
⋃
u∈U Tu ⊆ TH then by

Lemma 2 we are guaranteed to have π(TH) ≥ α
2 · OPTB . On the other hand,

since every node is reachable from the root r ∈ V with cost at most d, the cost
of the path {r} ∪ path(r, v) ∪ {v} is at most d. It therefore follows that the
overall cost of TH is at most B + d, as required. ut

The following lemma, whose proof is omitted due to space constraints, guaran-
tees we can trim a high density tree such that the resulting tree carries a suffi-
ciently large profit, while having a limited cost.

Lemma 3. If T = arg max {γ(T ′)|T ′ ∈ T \ L} satisfies γ(T) ≥ 1
2c logn

OPTB
B

for some constant c, then there exists a polynomial trimming algorithm TRIM,
such that TH = TRIM(T) satisfies π(TH) = Ω

(
1

logn

)
OPTB and c(TH) ≤

B + d.

3.2 An Algorithm for Finding a Good Candidate

Clearly any tree T satisfying condition 1 in Lemma 1, would suffice for our
purpose, since such a tree does not violate the budget constraint, while carry-
ing at least an Ω

(
1

logn

)
fraction of the optimal profit. On the other hand, by

Lemma 3, we can trim any tree T satisfying condition 2 in Lemma 1, so as
to obtain a tree with cost at most B + d, carrying at least an Ω(1

logn) fraction
of the optimal profit. Algorithm EXTRACT described in Algorithm 1 therefore
summarizes the method for finding a subtree T ⊆ G such that c(T) ≤ B + d

and π(T) = Ω
(

1
logn

)
OPTB .

Algorithm 1 EXTRACT (tree packing T , budget B)
1: set L = {T ∈ T |c(T) ≤ B}
2: setH = T \ L
3: set TL = arg max {π(T)|T ∈ L}.
4: set T = arg max {π(T)/c(T)|T ∈ H}
5: set TH = TRIM(T)
6: return arg max

{
π(TL), π(TH)

}

The above proves the following lemma:

Lemma 4. Given any instance of BP with graph G = (V,E) such that all
vertices are reachable from the root r ∈ V with cost at most d, and a budget

restriction B, where d ≤ B, algorithm EXTRACT produces a solution T such
that c(T) ≤ B + d and π(T) = Ω

(
1

logn

)
OPTB .

4 Structure of an Optimal Solution

In this section, we study the structure of an optimal solution. We show that as-
suming all optimal solutions have sufficiently large cost, there exists a decompo-
sition of an optimal solution into disjoint subtrees, such that at least one of them
has sufficiently small cost, while carrying at least an O

(
1

logn

)
fraction of the

profit attained by the optimal solution. Our study later motivates the definition
of a sequence of instances of BP, each corresponding to one of these subtrees,
such that at least one of these instances can be transformed into a (1+ ε, log n)-
approximate solution.

First note that if there exists an optimal solution T ∗, such that c(T ∗) ≤ B
2 ,

then by applying the algorithm of [2] over the same instance, with a budget
restriction of B′ = B

2 , we are guaranteed to obtain a (1, O(log n))-approximate
solution. We can therefore assume that for every optimal solution T ∗, c(T ∗) >
B
2 .

Let T ∗ be any such optimal solution, and let ε ∈ (0, 1]. Define k = d1+ε
2ε e =

Θ
(

1
ε

)
, and let σ = σ(k) = (σ1, . . . , σk−1) be a sequence of proportions, σi ≤ 1

for all i = 1, . . . , k−1, such that σ1 ≤ 1
2 . In what follows we let ρi =

∏i
j=1 σj ,

i = 1, . . . , k − 1 and define ρ0 = 1. We now describe a recursive partition of
T ∗ into k disjoint connected components {T ∗i }

k−1
i=0 according to σ. Let r0 = r

and let G∗0 = T ∗. Given G∗i−1, let ri ∈ G∗i−1 be such that

c(T ∗ri) ≥ ρiB (6)
c(T ∗u) ≤ ρiB ∀u ∈ CHT ∗(ri), (7)

and define G∗i = T ∗ri .
First note that for every i = 1, . . . , k − 1, there exists a node ri ∈ G∗i−1

which satisfies conditions (6) and (7). To see this, note that by our assumption
that σ1 ≤ 1

2 we have ρ1B ≤ B
2 . On the other hand, we have assumed that

c(T ∗) > B
2 , hence c(T ∗r0) = c(T ∗) ≥ ρ0B. Since ρi ≥ ρi+1, assuming we have

found a node ri ∈ G∗i−1 satisfying (6) and (7), we are guaranteed that ri also
satisfies c(T ∗ri) ≥ ρi+1B. Consider any maximal path of nodes ri = v0, . . . , v`
inG∗i , such that for every j = 0, . . . , `, c(T ∗vj

) ≥ ρi+1B. Such a path necessarily
exists since the tree is finite, and c(T ∗v0) ≥ ρi+1B. By maximality if follows that
we can pick ri+1 = v`, which would satisfy both condition (6) and condition
(7).

After having defined subtrees G∗0, . . . , G
∗
k−1 as described above, we can

assume without loss of generality that for all i = 0, . . . , k− 2, G∗i 6= G∗i+1, and

define T ∗i = G∗i \G∗i+1 for all i = 0, . . . , k−2 and T ∗k−1 = G∗k−1. We call such
a partition a σ-partition of T ∗. Note that such a partition can be identified by its
corresponding sequence of roots r0, . . . , rk−1. See Figure 1 for the schematics
of a σ-partition for k = 4.

G∗0 = T ∗

G∗1

G∗2

T ∗1

T ∗0

T ∗2

G∗3 = T ∗3

r = r0

r1

r2

r3

Fig. 1. Schematic σ-partition for k = 4

We will first bound the reachability of vertices in a component T ∗i from ri.

Lemma 5. For any k, given a σ-partition of T ∗, for every i = 1, . . . , k − 1, all
vertices in G∗i are reachable from ri with cost at most ρiB.

Proof. Let v be a vertex in G∗i . If v = ri we are done. Otherwise, there exists a
vertex u ∈ CHT ∗(ri) such that v ∈ T ∗u . In particular, path(ri, v) ∪ {v} ⊆ T ∗u ,
which by the definition of reachability and the choice of ri yields

d(ri, v) + c(v) = c(path(ri, v) ∪ {v}) ≤ c(T ∗u) ≤ ρiB

ut

Since T ∗i is a subset of G∗i we have the following corollary:

Corollary 2. Given a σ-partition of T ∗, for every i = 1, . . . , k− 1, all vertices
in T ∗i are reachable from ri with cost at most ρiB.

We now turn to bound the cost of every component T ∗i .

Lemma 6. For any k, given a σ-partition of T ∗, the following holds:

1. c(T ∗0) ≤ (1− ρ1)B
2. c(T ∗i) ≤ B − d(r, ri)− ρi+1B for all i = 1, . . . , k − 2.
3. c(T ∗k−1) ≤ B − d(r, rk−1)

Proof. To prove part 1 simply note that by the feasibility of T ∗, its cost is upper
bounded by B, and since by the choice of r1, c(G∗1) ≥ ρ1B, the result follows
from the definition of T ∗0 . In an even simpler manner, part 3 also follows from
the feasibility of T ∗ and the definition of T ∗k−1 as its subtree. As for part 2, since
ρiB ≤ c(G∗i) ≤ B − d(r, ri) then by the definition of T ∗i we have

c(T ∗i) = c(G∗i \G∗i+1) ≤
≤ B − d(r, ri)− ρi+1B

which completes the proof. ut

5 The Algorithm

5.1 Road Map

The structural analysis of an optimal solution presented in the previous section
motivates the definition of a sequence of instances of BP, each corresponding to
a different component in the decomposition.

Let T ∗ be an optimal solution to an instance I of BP, with budget restriction
B, and let k = Θ

(
1
ε

)
, as defined in section 4. For every i = 0, . . . , k − 1 and

v ∈ V we define a new instance of BP, Ii,v. In instance Ii,v we actually ”guess”
that v is the root of T ∗i (i.e. ri). We then consider all vertices with distance di
from v, and a budget restriction Bi. Using Lemma 4, we can conclude that we
can find a tree T ′i,v with cost at most Bi + di. Our choices of Bi and di will
be such that two conditions are met; First, for every i and every v, T ′i,v can be
extended to a solution Ti,v to the original instance, with overall cost at most
(1+ε)B. Second, for every i, T ∗i is a feasible solution to at least one of the new
instances. It follows that at least one of solutions Ti,v carries a profit of at least

an Ω
(

ε
logn

)
fraction of the optimal profit.

5.2 Detailed Description

Let I be any instance of BP over a graph G = (V,E), with a budget restric-
tion B. Given any v ∈ V and i ∈ {0, . . . , k − 1}, every instance Ii,v will
be determined by two parameters, whose values are motivated by Corollary 2

and Lemma 6; di representing a reachability radius around v, and a budget Bi.
Specifically, we consider the subset Vi,v ⊂ V consisting of all vertices with dis-
tance at most di from v, and let instance Ii,v be the instance over the subgraph
of G induced by Vi,v, with budget restriction Bi. Table 1 shows the different
values of di and Bi, depending on i.

i di Bi Bi + di

0 (1− ρ1)B (1− ρ1)B 2(1− ρ1)B

1, . . . , k − 2 ρiB B − d(r, v)− ρi+1B (1 + (1− σi+1)ρi)B − d(r, v)

k − 1 ρk−1B B − d(r, v) (1 + ρk−1)B − d(r, v)

Table 1. Values of reachability distance and budget of the new instances Ii,v

For every instance Ii,v, we solve the corresponding LP , compute the tree
packing Ti,v which corresponds to Ii,v implied by Theorem 1, and let T ′i,v =
EXTRACT(Ti,v). Note that by Corollary 2 and Lemma 6, for every i = 0, . . . , k−
1, T ∗i is a feasible solution for Ii,ri . The following lemma is an immediate con-
sequence:

Lemma 7. Given the above notation, for every v ∈ V and i = 0, . . . , k − 1,
c(T ′i,v) ≤ Bi+di, as specified in Table 1. Furthermore, for every i = 1, . . . , k−
1, π(T ′i,ri) = Ω

(
1

logn

)
π(T ∗i).

For every v ∈ V and i = 0, . . . , k−1, let Ti,v = T ′i,v∪path(r, v)∪{r}. Note
that every Ti,v is a tree rooted at r. The following corollary follows immediately
from Lemma 7:

Corollary 3. Given the above notation

1. c(T0,v) ≤ 2 (1− ρ1)B, for all v ∈ V .
2. c(Ti,v) ≤ (1 + (1− σi+1) ρi)B, for all i = 1, . . . , k−2 and v ∈ V .
3. c(Tk−1,v) ≤ (1 + ρk−1)B, for all v ∈ V .

4. π(Ti,ri) = Ω
(

1
logn

)
π(T ∗i) for all i = 0, . . . , k − 1.

The following lemma, whose proof is omitted due to space constraints, en-
sures we can bound the cost of every Ti,v constructed above by (1 + ε)B:

Lemma 8. For σ defined by

σi =


k − i

k − i+ 1
i = 2, . . . , k − 1

k − 1
2k − 1

i = 1,
(8)

we have c(Ti,v) ≤ (1 + ε)B for all i = 0, . . . , k − 1 and v ∈ V .3

We can now prove our main result, as to the performance of algorithm BPA
described in Algorithm 2.

Algorithm 2 BPA (G = (V,E), costs c, profits π, budget B)
1: S1 ← MR(G, c, π, B

2
) . Apply the algorithm appearing in [2] with half the budget

2: S2 ← ∅
3: for every i ∈ {0, . . . , k − 1} and v ∈ V do
4: let Ii,v be the appropriate instance
5: solve the LP corresponding to Ii,v

6: let Ti,v be its corresponding tree packing
7: T ′i,v ← EXTRACT(Ti,v)
8: Ti,v ← T ′i,v ∪ path(r, v) ∪ {r}
9: if π(Ti,v) > π(S2) then

10: S2 ← Ti,v

11: end if
12: end for
13: T ← arg max {π(S1), π(S2)}
14: return T

Theorem 2. For any ε ∈ (0, 1], algorithm BPA produces a (1+ε,O(1
ε log n))-

approximate solution to BP.

Proof. The first candidate solution considered by the algorithm (line 1) is the
solution produced by applying the algorithm proposed by Moss and Rabani [2].
If there exists an optimal solution with cost at most B

2 , then this candidate is
guaranteed to be a (1, O(log n))-approximate solution. The remainder of the
algorithm is designed to deal with the case where every optimal solution has
cost greater than B

2 .
By the analysis presented in Section 4 and the pigeonhole principle we are

guaranteed to have at least one subtree T ∗i contributing at least a 1
k fraction of the

optimum’s profit. Let m be the index of such a subtree. Consider the instance

3 Note that by our choice, we have σ1 ≤ 1
2

, which guarantees our solutions correspond to the
decomposition described in Section 4.

corresponding to Im,rm , and let T ′m,rm be the candidate solution produced by
the algorithm in the appropriate iteration.

By Lemma 4 and the fact that k = Θ(1
ε), the subtree T ′m,rm produced in

line 7 satisfies

π(T ′m,rm) = Ω

(
1

log n

)
π(T ∗m) = Ω

(
ε

log n

)
OPTB .

Since T ′m,rm ⊆ Tm,rm , we are guaranteed to have π(Tm,rm) = Ω
(

ε
logn

)
OPTB .

Since by Lemma 8 the cost of every candidate solution produced by the
algorithm in line 8 is at most (1+ ε)B, and as shown above at least one of them
has profit at least Ω

(
ε

logn

)
OPTB , the result follows. ut

References

1. Marathe, M., Ravi, R., Sundaram, R., Ravi, S., Rosenkrantz, D., (III), H.H.: Bicriteria net-
work design problems. Journal of Algorithms 28(1) (1998) 142–171

2. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted steiner tree
problems. SIAM Journal on Computing 37(2) (2007) 460–481

3. Guha, S., Moss, A., Naor, J., Schieber, B.: Efficient recovery from power outage. In: Pro-
ceedings of the 31st ACM Symposium on Theory of Computing. (1999) 574–582

4. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted
steiner trees. Journal of Algorithms 19(1) (1995) 104–114

5. Feige, U.: Threshold of lnn for approximating set cover. Journal of the ACM 45(4) (1998)
634–652

6. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest
problems. SIAM Journal on Computing 24(2) (1995) 296–317

7. Johnson, D., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and
practice. In: Proceedings of the 11th annual ACM-SIAM symposium on Discrete algorithms.
(2000) 760–769

8. Jain, K., Hajiaghayi, M.: The prize-collecting generalized steiner tree problem via a new ap-
proach of primal-dual schema. In: Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithms. (2006) 631–640

9. Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In: Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing. (2005) 396–402

10. Ravi, R., Goemans, M.: The constrained minimum spanning tree problem. In: Proceedings
of the 5th Scandinavian Workshop on Algorithmic Theory. (1996) 66–75

11. Khuller, S., Moss, A., Naor, S.: The budgeted maximum coverage problem. Information
Processing Letters 70(1) (1999) 39–45

12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization. Second corrected edn. Springer-Verlag (1993)

