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Abstract. We consider the following model of cellular networks. Each base sta-
tion has a given finite capacity, and each client has some demand and profit. A
client can be covered by a specific subset of the base stations, and its profit is ob-
tained only if its demand is provided in full. The goal is to assign clients to base
stations, so that the overall profit is maximized subject to base station capacity
constraints.
In this work we present a distributed algorithm for the problem, that runs in poly-
logarithmic time, and guarantees an approximation ratio close to the best known
ratio achievable by a centralized algorithm.

1 Introduction

In future cellular networks, base stations capacities, as well as clients diversity, will
become a major issue in determining client coverage and service. The main service
provided by current cellular networks is voice traffic, which has relatively small band-
width requirement, compared to the capacity available at the base stations. However, in
future 4G cellular networks the services offered by cellular providers are expected to
require higher rates, and client diversity is expected to increase. Such services include
video traffic, and other high-rate data traffic. In such settings, maximizing the usage of
available resources would become a more challenging task, and as recent evidence has
shown, current solutions might end up being far from optimal.

In this work we address one of the basic optimization problems arising in such
settings, namely, the assignment of clients to base stations, commonly known as cell
selection. We take into account both base stations diversity, encompassed by (possibly)
different capacities for each base station, as well as clients diversity, encompassed by
different clients having different demands, and different profits. A major obstacle in
tackling this problem is due to the fact that, naturally, different base stations have dif-
ferent coverage areas, and therefore can contribute to covering only some subset of the
set of clients.

The currently used scheme for assigning clients to base stations is the greedy best-
SNR-first approach, where clients and base stations interact locally, and assignment is
made in a greedy and local manner. This approach might provide reasonable perfor-
mance when clients demands are small with respect to the base stations capacity (as is
? Supported in part by the Israel Science Foundation, grant 664/05.



the case for voice traffic), and all clients are considered equally profitable. However, as
clients’ demands increase, the resource utilization degrades considerably. This degrada-
tion was the main concern of a recent work by Amzallag et al. [1], who propose several
global mechanisms for determining the assignment of clients to base stations, while
providing guarantees as to their performance. However, these mechanisms are based on
a centralized approach: effectively, it is assumed that information of the entire network
is gathered by a central server, which locally finds an assignment of clients, and then
distributed back to the base stations. This approach suffers from the usual drawbacks of
a centralized approach, such as inability to scale to large numbers.

In this paper we present an efficient distributed algorithm that computes an assign-
ment. In our algorithm, clients and base stations communicate locally, and after a poly-
logarithmic number of rounds of communication agree upon an assignment, without
resorting to a centralized algorithm with global knowledge. Our algorithm is robust
and handles both various base stations capacities, as well as clients’ heterogeneous de-
mands, and variable profits. We give worst-case guarantees on the performance of our
algorithm (with high probability), and show its approximation ratio is arbitrarily close
to the best known ratio of centralized solution. To state our results more precisely, let
us first formalize the problem and the computational model.

1.1 Problem Statement and Model

We consider the following model. An instance of the Cellular Coverage problem (CC)
consists of the following components.

– A bipartite graph G = (I, J, E) where I = {1, 2, . . . ,m} is a set of base stations
and J = {1, 2, . . . , n} is a set of clients. An edge (i, j) represents the fact that
client j can receive service from base station j.

– A capacity function c that maps each base station i to a non-negative integer c(i)
called the capacity of i.

– A demand function d that maps each client j to a non-negative integer d(j) called
the demand of j.

– A profit function p that maps each client j to a non-negative integer p(j) called the
profit of j.

The output of CC is a partial assignment of clients to base stations, where a client may
be assigned only to one of its neighboring base stations, and such that the total demand
of clients assigned to a base station does not exceed its capacity. The goal is to maximize
the sum of profits of assigned clients.

Given a constant r ≤ 1, an instance of CC is said to be r-restricted if for every
(i, j) ∈ E, we have d(j) ≤ r · c(i), i.e., no client demands more than an r-fraction of
the capacity of a base station from which it may receive service. The r-CC problem is
the CC problem where all instances are r-restricted.

Let (I, J, E, c, d, p) be an instance of CC. For every base station i we let N(i) ⊆ J
denote the set of clients which can be covered by i, and for every client j we letN(j) ⊆
I denote the set of base stations which can potentially cover j. For any set of clients or



base stations A, we let N(A) =
⋃
v∈AN(v). Given any function f (e.g., the demand,

profit, or capacity), we let f(A) =
∑
v∈A f(v). Given any subset of clients S ⊆ J , we

define S = J \ S.
Let x be a mapping that assigns clients to base stations, and let clients(x) denote the

set of clients assigned by x to some base station. For a base station i ∈ I let loadx(i) =∑
j : x(j)=i d(j), i.e., loadx(i) is the sum of all demands assigned to i. We further let

resx(i) denote the residual capacity of i, i.e., resx(i) = c(i) − loadx(i). For a client
j ∈ J \clients(x) and a base station i ∈ N(j) we say that j is eligible for i if resx(i) ≥
d(j).

Model of Computation. We consider the standard synchronous message passing dis-
tributed model of computation (cf. the CONGEST model of [2]). Briefly, the system is
modeled as an undirected graph, where nodes represent processing entities and edges
represent communication links. Execution proceeds in synchronous rounds, each round
consists of three substeps: first, each node may send a message over each of its incident
links; then nodes receive all messages sent to them in that round; and finally some local
computation is carried out. The length of every message is restricted to O(log n) bits,
where n is the number of nodes in the system. Nodes may have unique identifiers of
O(log n) bits. Note that in our model, the communication graph is identical to the input
graph of CC.

1.2 Our Results

We present a distributed randomized algorithm for the r-CC problem, which, given
any γ ∈ (0, 1], runs in time O(γ−2 log3 n), and guarantees, with high probability, to
produce an assignment with overall profit at least a 1−r

2−r (1− γ) fraction of the optimal
profit possible.

We note that our running time is affected by the best running time of a distributed
algorithm finding a maximal matching, which we use as a black box. The best algorithm
up to date, due to [3], has expected running time O(log n), which is reflected by one
of the logarithmic factors of our running time. Any improvement in such an algorithm
to time O(T ) would immediately imply a running time of O(γ−2T log2 n) for our
algorithm.

1.3 Previous Work

There has been extensive work done on cell selection, and client assignment to base
stations in the networking community, focusing on aspects of channel allocation, power
control, handoff protocols, and cell site selection (e.g., [4–7]).

Our proposed model was studied in the offline setting in [1]. They study two types
of setting, where the first allows the coverage of a client by at most one base station,
and the other allows covering a client by more than one base station, whereas its profit
is obtained only if its entire demand is satisfied. They refer to the former as the cover-
by-one paradigm, and to the latter as the cover-by-many paradigm. They present a lo-
cal ratio algorithm for the r-CC problem using the cover-by-many paradigm which is



guaranteed to produce a (1 − r)-approximate solution. This algorithm is based upon a
simpler algorithm using the cover-by-one paradigm which is guaranteed to produce a
1−r
2−r -approximate solution, and this is with respect to the best possible cover-by-many
solution.

The CC problem using the cover-by-one paradigm is also closely related to the
multiple knapsack problem with assignment constraints, for which a special case where
clients demands equal their profits is considered in [8]. They present several approxi-
mation algorithms for this problem, starting from a randomized LP-rounding algorithm
which produces a 1

2 -approximate solution, through an algorithm employing a sequen-
tial use of the FPTAS for solving a single knapsack problem which produces a ( 1

2 − ε)-
approximate solution, and finally a greedy algorithm which is guaranteed to produce
a 1

3 -approximate solution. Another related problem is the general assignment problem
considered in the offline settings in [9–11] (see also references therein).

Although the offline problem, and its various variants, has received considerable
amount of attention in recent years, we are not aware of any attempts to solve any of
the above problems in a distributive manner. Some very restricted cases of the problem,
namely, where all the capacities and all the demands are the same, can be viewed as
matching problems, and hence distributed algorithms for solving them are available
(see [12] for an overview of these results). Specifically, for the subcase where clients
profits are arbitrary, the problem reduces to finding a maximum weight matching in
the underlying bipartite graph, whereas in the subcase where all clients profits are the
same, the goal is to find a maximum cardinality matching. For both these problems
the best solutions are due to [12]. For the former problem they show how to obtain a
( 1
2 − ε)-approximate solution, whereas for the latter problem, they guarantee a (1− ε)-

approximate solution. Another closely related problem is that of finding a maximal
matching in an unweighted graph for which there exists a distributed algorithm [3]. All
of the above algorithms are randomized, and their expected running time is logarithmic
in the number of nodes.

Paper Organization. In Section 2 we discuss the centralized version of the problem.
In Section 3 we present the details of our distributed algorithm, and analyze its per-
formance guarantee and running time. In Section 4 we present some extensions of our
results, and finally, in Section 5 we conclude and discuss some open questions.

2 A Centralized Approach

In this section we explain a centralized algorithm for CC which we later implement in
a distributed model. The idea is to use the local ratio approach [13, 14], which in our
case boils down to an extremely simple greedy algorithm: compute, for each client, its
profit-to-demand ratio; scan clients in decreasing order of this ratio, and for each client
in turn, assign it to a base station if possible, or discard it and continue. However, to
facilitate the analysis, we present this algorithm in recursive form in Algorithm 1.

To specify the algorithm, we need the following concept. Given an assignment x,
let J ′ ⊆ J be a set of clients such that J ′ ⊇ clients(x). We say that x is an α-cover



w.r.t. J ′ if the following condition holds: if loadx(i) < α · c(i) for a base station i, then
N(i) ∩ J ′ ⊆ clients(x). In other words, a client from J ′ may not be assigned by an
α-cover only if the load of each of its neighbors is at least an α fraction of its capacity.

The key step in Algorithm 1 below (Step 10) is to extend the assignment returned
by the recursive call of Step 8. The algorithm maintains the invariant that the returned
assignment is an α-cover w.r.t. J . Whenever the recursive call of Step 8 returns, the
assignment is extended using the clients in J ′′ to ensure that the invariant holds true.

Algorithm 1 — CCC(I, J, c, d, p)

1: if J = ∅ then return empty assignment.
2: J ′ = {j ∈ J | p(j) = 0}
3: if J ′ 6= ∅ then
4: return CCC(I, J \ J ′, c, d, p)
5: else
6: δ = minj∈J

{
p(j)
d(j)

}
7: for all j, define p1(j) = δ · d(j)
8: x← CCC(I, J, c, d, p− p1)
9: J ′′ = {j ∈ J | p(j) = p1(j)}

10: using clients from J ′′, extend x to an α-cover w.r.t. J
11: return x
12: end if

The key to the analysis of the algorithm is the following result (see also [1, 8]).

Lemma 1. Assume there exists some δ ∈ R+ such that p(j) = δ · d(j) for every
client j. Consider any assignment x. If x is an α-cover w.r.t. J , then p(clients(x)) ≥
( α
1+α ) · p(clients(y)) for any feasible assignment y.

Proof. Let S = clients(x), and let Y = clients(y). Then

p(Y ) = p(Y ∩ S) + p(Y ∩ S)
= δ

[
d(Y ∩ S) + d(Y ∩ S)

]
≤ δ

[
d(S) + c(N(S))

]
≤ δ [d(S) + d(S)/α]

=
α+ 1
α
· p(S) ,

where the first inequality follows from the feasibility of y and the definition of N(S)
(see Figure 1), and the second inequality follows from our assumption that x is an α-
cover w.r.t. J . ut

We note that the above lemma actually bounds the profit of an α-cover even with
respect to fractional assignments, where a client may be covered by several base stations
(so long as the profit is obtained only from fully covered clients).
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Fig. 1: Depiction of a solution S that uses an α fraction of the capacity of N(S).

The following theorem shows that Algorithm CCC produces an α
α+1 -approximation,

assuming one can extend a given solution to an α-cover.3

Theorem 1. Algorithm CCC returns an α
α+1 -approximation.

Proof. The proof is by induction on the number of recursive calls. The base case is
trivial. For the inductive step, we need to consider two cases. For the cover returned in
Step 4, by the induction hypothesis it is an α

α+1 -approximation w.r.t. J \ J ′, and since
all clients in J ′ have zero profit, it is also an α

α+1 -approximation w.r.t. J . For the cover
returned in Step 11, note that by the induction hypothesis, the solution returned by the
recursive call in Step 8 is an α

α+1 -approximation w.r.t. profit function p−p1. Since every
client j ∈ J ′′ satisfies p(j) − p1(j) = 0, it follows that any extension of this solution
using clients from J ′′ is also an α

α+1 -approximation w.r.t. to p−p1. Since the algorithm
extends this solution to an α-cover by adding clients from J ′′, and p1 is proportional to
the demand, by Lemma 1 we have that the extended α-cover is an α

α+1 -approximation
w.r.t. p1. By the Local-Ratio Lemma (see, e.g., [14]), it follows that this solution is an
α
α+1 -approximation w.r.t. p, thus completing the proof. ut

A closer examination of the local-ratio framework presented above shows that what
the algorithm essentially does is to traverse the clients in non-decreasing order of their
profit-to-demand ratio, while ensuring that any point, the current solution is an α-cover
w.r.t. clients considered so far.

In what follows, we build upon the above framework, and show that given any
γ ∈ (0, 1], one can emulate distributively the above approach, while losing a mere
(1 − γ) factor in the approximation guarantee. Furthermore, we show that this can be
obtained in time O(γ−2 log3 n).

3 A Distributed Approach

In this section we present a distributed algorithm for the CC problem. We first give an
overview of our approach, and then turn to provide the details of our algorithm.

3 In [1] they extend the solution to a maximal solution (w.r.t. set inclusion), which implies a
(1− r)-cover.



3.1 Overview

Conceptually, the algorithm is derived by a series of transformations that allows us to
represent any instance of CC as a multiple instances of maximal matching, which can
be solved efficiently in a distributed model. Specifically, our generalization proceeds as
follows.

Unit demand, unit capacity, unit profit. First, consider the case where all demands,
capacities and profits are one unit each. In this case, CC is exactly equivalent to the
problem of maximum matching, which for any ε ∈ (0, 1]) can be solved in O( logn

ε )
rounds with approximation ratio (1− ε) [12].

Unit demand, different capacities, unit profit. Next, suppose that all demands and
profits are equal, but capacities may vary. This case is easy to solve as follows: Each
base station i of capacity c can be viewed as c unit-capacity “virtual” base stations
i1, . . . , ic; then maximum matching can be applied to the graph consisting of the origi-
nal clients and virtual base stations, where each client j originally connected to a base
station i is now connected to all the induced virtual base stations i1, . . . , ic. Some care
needs to be exercised to show that this emulation can be carried out using O(log n) bit
messages without any increase in the running time.

Different demands, different capacities, profit equals demand. The next generaliza-
tion is to consider the case where base stations have arbitrary capacities, and clients
have arbitrary demands, but the profit from each client is proportional to its demand.
To solve this case, we use a scaling-like method: we round each demand to the nearest
power (from above) of 1 + ε, where ε > 0 is a given parameter. This rounding reduces
the number of different demands, and as we show, only the O(log(1+ε) n) = O( logn

ε )
topmost different demands need be considered. For each fixed demand, we are back in
the previous case. The penalty of rounding the profits is a (1 + ε) factor degradation
in the approximation ratio. Some additional complications due to interference between
the different demands degrade the approximation ratio to 1−r

2−r , where r is the maximal
demand-to-capacity ratio in the given instance. As mentioned above, the running time
increases by a factor of O( logn

ε ).
Different demands, different capacities, different profit. This last generalization is

taken care of by applying the local ratio method presented in Section 2, which means
that we need to go over the different profit-to-demand ratios in decreasing order. To
avoid too many such ratios, we again use the trick of rounding to the nearest power
of (1 + ε), but this time we round the profits, resulting in an additional degradation of
(1 + ε) factor in the approximation ratio, and an additional factor of O( logn

ε ) in the
running time.

3.2 Partitioning the Clients

Recall that all demands and capacities are integral, and assume that the minimum de-
mand is 1. Let ε ∈ (0, 1].

First Cut: Partition by Cost-Effectiveness. We consider a partition of the clients into
sets J0, J1, . . ., such that a client j is in Jk iff p(j)

d(j) ∈ [(1 + ε)k, (1 + ε)k+1). If these



ratios are polynomially bounded, then we have O(log(1+ε) n) = O( 1
ε log n) such sets.

Denote the number of these sets by W . For every client j, we let its (1 + ε)-rounded
profit be defined by

p(1+ε)(j) = min
k∈N

{
(1 + ε)k d(j) | (1 + ε)k d(j) ≥ p(j)

}
.

The following lemma relates the value of any solution to an instance of the r-CC
problem, to the value of the same solution when considering the instance with (1 + ε)-
rounded profits.

Lemma 2. Given some input I = (I, J, E, c, d, p) to the r-CC problem, and some
ε > 0, consider the instance I ′ = (I, J, E, c, d, p(1+ε)), and let x be any assignment of
clients. It follows that clients(x) is a feasible solution to I iff it is a feasible solution to
I ′, and p(1+ε)(clients(x)) ≤ (1 + ε) p(clients(x)).

Proof. The first part of the claim follows from the fact that feasibility is not affected by
the change in the profit function, since it relies solely on the underlying topology of G,
along with the base stations’ capacities and clients’ demands. For the second part, by
the definition of p(1+ε) it follows that for every client j, p(1+ε)(j) ≤ (1 + ε) p(j), and
therefore by considering sets of clients, the claim follows. ut

The following corollary is an immediate consequence of Lemma 2.

Corollary 1. For every β ≤ 1, and any instance I = (I, J, E, c, d, p), if a feasible
assignment x is a β-approximate solution with respect to profit function p(1+ε), then it
is a β

(1+ε) -approximate solution with respect to profit function p.

Proof. Consider the instance I ′ = (G, c, d, p(1+ε)). First note that by Lemma 2, S is
a feasible solution to I. Furthermore, for any optimal solution S∗ to I, S∗ is also a
feasible solution to I ′, and since for any j we have p(1+ε)(j) ≥ p(j) it follows that

OPT(I) ≤ OPT(I ′) ≤ 1
β
· p(1+ε)(S) ≤ 1 + ε

β
· p(S) ,

as required, where the last inequality follows from lemma 2. ut

Corollary 1 ensures that by assuming that in every set Jk, the profits are of the same
proportion as the demands, does not cause us to lose more than a 1

(1+ε) factor of the
original profit obtained from the same solution.

We henceforth assume that the actual profit of every client j is its (1 + ε)-rounded
profit. It follows that in every Jk all clients have profits which are proportional to the
demand. Note that in such a case, the order implied on the set of clients by their profit-
to-demand ratio is exactly the same as the order in which CCC considers the clients,
also assuming (1 + ε)-rounded profits.



Second Cut: Partition by Demand. For every k, we consider a subpartition of the set
Jk into subsets J0

k , J
1
k , . . . such that a client j ∈ Jk is in J`k if d(j) ∈ [(1 + ε)`, (1 + ε)`+1).

For every k we let rk denote the maximal ` such that J`k 6= ∅. We further let J ′k =⋃
`≥rk−3 log(1+ε) n

J`k.

3.3 A Distributed Algorithm

We now turn to describe our distributed algorithm, DCC. Let α = 1−r
1+ε . The goal of our

algorithm is to produce an assignment that is an α-cover with respect to J ′ =
⋃
k J
′
k.

Using the results presented in Section 2 this would serve as a first component in proving
our approximation guarantee. We later show that by restricting our attention to J ′ we
lose a marginal factor in the approximation ratio.

The algorithm, whose formal description in given in Algorithm 2, works as follows.
It traverses the subsets Jk in decreasing order of k. For each k, it computes an α-
cover with respect to J ′k (this is done by using Algorithm MC which we discuss in the
following section). This enables us to show that DCC also produces an α-cover with
respect to J ′. For clarity we first analyze the performance of Algorithm DCC assuming
that MC indeed produces an α cover with respect to J ′k, and then discuss the details
of Algorithm MC. The following lemma shows that this assumption on MC suffices in
order for DCC to produce an α-cover with respect to J ′.

Algorithm 2 — DCC(I, J, c, d, p)

1: R = J . uncovered eligible clients
2: x← empty assignment
3: for every i ∈ I , let resx(i) = c(i) . the residual capacity
4: for k = W downto 0 do
5: (xk, resx)← MC(k, I, Jk ∩R, resx, d) . compute an α-cover w.r.t. J ′k
6: update x according to xk
7: remove all clients matched in xk from R
8: remove all ineligible clients from R
9: end for

10: return x

Lemma 3. Assume that for every k, MC produces an α-cover with respect to J ′k. For
every k, the cover produced by DCC after the end of the kth iteration, is an α-cover
with respect to J ′≥k =

⋃
t≥k J

′
k.

Proof. The claim follows from the fact that in every iteration, the residual capacity
never increases, which implies that for any k, if we extend an α-cover for J ′≥k, and
ensure the extension is an α-cover for J ′k−1, then we obtain an α-cover for J ′≥k−1. ut



(a) Original instance. (b) Virtual base-stations instance.

Fig. 2: The original graph representing I and its corresponding virtual base-stations
graph representing VG(I). The clients are placed on the right.

3.4 Covering Equally Cost-effective Clients

In order to describe our algorithm, we need the following notion. Consider any ε ∈
(0, 1), and an instance I = (I, J, E, c, d, p) to the CC problem. Assume there exist
some µ such that for all clients j, d(j) ∈ [ µ

1+ε , µ]. We consider the virtual base-stations
instance VG(I) = (I ′, J, E′, c′, d, p), where every base station i ∈ I is replaced by
bc(i)/µc base stations in I ′, each with capacity µ. We refer to these new base stations
as copies of i. E′ contains all virtual edges implied by the above swap, i.e., for ev-
ery (i, j) ∈ E, we have an edge (i′, j) for every copy i′ of i. Given such an instance
VG(I), note that every copy has sufficient capacity to cover any single client, and at
most one such client. We may therefore assume without loss of generality that all de-
mands are unit demands, and all capacities (of the copies) are unit capacities. It follows
that any matching in VG(I) induces a feasible assignment of clients to base stations.
See Figure 2 for an outline of a virtual instance corresponding to an original instance.

Given Jk, the goal of algorithm MC, whose formal description appears in Algo-
rithm 3, is to produce an assignment that is an α-cover with respect to J ′k.

In what follows, we refer to MM as any distributed algorithm for finding a maximal
matching in an unweighted bipartite graph. As mentioned earlier, the currently best
algorithm for this problem is due to [3], which finds a maximal matching (with high
probability) in expected logarithmic time.

Intuitively, the algorithm works as follows. For every base station i, the base station
traverses 3 log(1+ε) n subsets J`k in decreasing order of `, starting from the maximal `
for which it has eligible neighbors in. For every such J`k, the algorithm considers its
corresponding virtual base-stations instance G`k while taking into account only eligible
clients. It then computes distributively a maximal matching in the above graph using
algorithm MM. Any matched client is assigned to its matched base station, and each
base station updates its residual capacity accordingly.



Algorithm 3 — MC(k, I, Jk, c, d)

1: xk ← empty assignment
2: for every i ∈ I , resxk(i) = c(i) . the residual capacity
3: for every i ∈ I , let rik = max

{
` | ∃ eligible j ∈ N(i) ∩ J`k

}
. every base station

picks its highest relevant level

4: every base station i does:
5: for ` = rik downto rik − 3 log(1+ε) n do . we only consider the topmost

3 log(1+ε) n subsets
6: i announces to its eligible neighbors in J`k about the round
7: di` ← maximal demand of an eligible client in J`k ∩N(i)
8: i uses

⌊
resxk(i)/d

i
`

⌋
copies of itself in the virtual graph G`k

9: update xk according to MM(G`k) . performed in parallel
10: update resxk(i) . update the residual capacity according to the demand of

matched clients
11: end for
12: return (xk, resxk)

We first show that the algorithm computes a (1−r)
1+ε -cover with respect to J ′k. In the

sequel we show that by considering only the topmost 3 log n subsets we are able to ob-
tain polylogarithmic running time in exchange for a marginal drop in the approximation
ratio.

Lemma 4. Algorithm MC computes a feasible 1−r
1+ε -cover with respect to J ′k.

Proof. We first note that the algorithm produces a feasible cover with respect to J ′k.
To see this, note that any client j is assigned to a base station i only via the match-
ing produced by MM. Since in the virtual base stations graph used by MM, we have⌊
resxk(i)/d

i
`

⌋
copies of base station i, each with capacity di`, and every one of its neigh-

bors in this round has demand at most di` (by Step 7), we are guaranteed that every base
station has sufficient capacity to cover its matched clients in every round (since residual
capacities are updated at the end of every round). We now turn to show the solution is
indeed a 1−r

1+ε -cover with respect to J ′k.
Consider any uncovered client j ∈ J ′k, and let ` ≥ rk − 3 log(1+ε) n be such that

j ∈ J`k. All we need to show is that for every i ∈ N(j), i has used at least a 1−r
1+ε -

fraction of its capacity. Let i be any base station in N(j). Note first that by maximality
of rk we have rik ≤ rk, which implies that ` ≥ rik − 3 log(1+ε) n.

If i did not participate in a round corresponding to `, this can only be because at that
time, resxk(i) < di`.

4 Since di` ≤ r · c(i), this implies that resxk(i) < r · c(i). It follows
that in this case we are done.

Assume i did participate in a round corresponding to `, and consider the copies of i
in the virtual base stations graph. By Step 8, there are

⌊
resxk(i)/d

i
`

⌋
copies of i in this

4 This is also the case when ` > ri
k.



graph, and they were all matched by MM since otherwise, we could have matched j,
whose demand is at most di`, contradicting maximality of the output of MM.

The unused capacity due to rounding down the number of copies of i in the virtual
graph implies the base station left out less than di` ≤ r · c(i) of its capacity from being
used in this round. It follows that it has dedicated (and partly used) at least a (1 − r)-
fraction of its capacity for covering clients in all rounds up to (and including) round
`. Every client j covered by i in any such round `′ ≤ `, is matched to a copy of the
base station, which represents a capacity of di`′ ∈ [d(j), (1+ ε)d(j)). It follows that we
effectively use up at least a 1

1+ε -fraction of the capacity dedicated for covering clients
in all rounds up to (and including) round `. Combining the above we obtain that base
station i has used at least a 1−r

1+ε of its capacity, as required. ut

Note that algorithm MC performs 3 log(1+ε) n rounds, in each of which it executes
Algorithm MM.

3.5 Wrapping Up

In this section we show how to combine the results presented in the previous sections,
to obtain the following:

Theorem 2. For every γ ∈ ( 1
n2 , 1], algorithm DCC produces a 1−r

2−r (1−γ)-approximate
solution to r-CC, with high probability, in time O(γ−2 log3 n).

First we note that by combining Lemma 4 and Lemma 3, the solution produced by
DCC is a 1−r

1+ε -cover w.r.t. J ′ =
⋃
k J
′
k.

Let pM be the maximal profit of any client in J . The following lemma shows that
every j ∈ J \ J ′, has very small profit.

Lemma 5. Every j ∈ Jk \ J ′k satisfies p(j) ≤ pM
n3 .

Proof. Let ` < rk − 3 log(1+ε) n be such that j ∈ J`k. It follows that the demand of j is

at most (1 + ε)rk−3 log(1+ε) n = (1+ε)rk

n3 . It follows that p(j) ≤ p(j′)
n3 , where j′ ∈ Jrkk .

Note that by the definition of rk, such a client j′ exists. It follows that p(j) ≤ pM
n3 , as

required. ut

We henceforth refer to a client j for which p(j) ≥ pM
n3 as a fat client. Lemma 5

ensures that all fat clients are in J ′. The following lemma shows that by ignoring non-
fat clients, we lose only a negligible fraction of the possible profit.

Lemma 6. Let OPT denote a solution to some instance I of r-CC, and let OPT′

denote a solution to the same instance, restricted solely to fat clients. Then p(OPT) ≤
(1 + 1

n2 )p(OPT′).



Proof. Let pM denote the maximal profit of any client in J . Since clearly p(OPT) ≥
p(OPT′) ≥ pM , it follows that

p(OPT) = p(OPT∩JB) + p(OPT∩JB)

≤ p(OPT′) + n · pM
n3

= p(OPT′) +
pM
n2

≤ p(OPT′)(1 +
1
n2

),

as required. ut

The above lemmas ensure that any α-cover w.r.t. J ′ guarantees an approximation
factor of α

1+α ( 1
1+1/n2 ) ≈ α

1+α ·(1−
1
n2 ). Since we assume clients have (1 + ε)-rounded

profits, by Corollary 1 we lose at most an additional 1
1+ε factor in the approximation

factor.
Given any γ ∈ ( 1

n2 , 1], by considering an appropriate constant ε = ε(γ) ∈ (0, 1],
we can guarantee that the 1−r

1+ε -cover produced by DCC is a 1−r
2−r (1 − γ)-approximate

solution, thus completing the proof of Theorem 2.
As for the running time of algorithm DCC, we use the randomized algorithm of [3].

(This is the only place where randomization is used in our algorithm.) Running that
algorithm for c log n rounds results in a maximal matching with probability at least
(1 − 1

nΩ(c) ). Since the total number of times our algorithm invokes MM is at most n,
by the Union Bound it follows that by choosing a sufficiently large constant c, we can
guarantee, with high probability, that all executions of MM in Algorithm MC produce
a maximal matching.

It follows that if maxj {p(j)/d(j)} is polynomially bounded, then our algorithm
runs for O(γ−2 log3 n) rounds, and produces a 1−r

2−r (1− γ)-approximate solution with
high probability.

A note on very small and very large values of γ. Note that for γ < 1/n, we can
send the entire network information to every base station in time O(γ−2) = O(n2),
in which case every base station may calculate in a centralized manner a deterministic
approximate solution. If we are given γ > 1, we use the algorithm with γ = 1.

4 Extensions

In this section we present several extensions of our results, whose proofs will appear in
the full version.

Clients with Different Classes of Service and Location-Dependent Demands. Our algo-
rithm can be extended to the model where every client j has a specific class of service
qj , and the profit from satisfying a demand d is qjd. Moreover, the client may have
a different demand from each possible base station (this may be the case when the



requested service is location-dependent): namely, the demand client j has from base
station i is d(j, i), and the profit obtained from assigning client j to base station i is
p(j, i) = qj · d(j, i). We can show that even in this general setting, our algorithm pro-
vides the same approximation guarantees (with high probability), as well as having the
same running time. We note that we still insist that on the condition that a profit is ob-
tained from a client only if its demand is met in full (by one of its neighboring base
stations).

Absence of Global Bounds. Our results extend to the model where base stations have
no a priori knowledge of the maximal density of the instance (corresponding to the
value W in our analysis), and perform on a merely local information basis. In this
extension every base station takes on a myopic view of the network, and considers the
partition corresponding solely to its neighboring clients. We can show that even in such
an asynchronous environment, a simple extension of our algorithm provides the same
approximation factors and time complexity.

5 Conclusions and Open Questions

In this work we presented a randomized distributed algorithm for the cellular coverage
problem, such that for every γ ∈ (0, 1] our algorithm guarantees to produce a 1−r

2−r (1−
γ)-approximate solution with high probability, in time O(γ−2 log3 n).

There are several interesting questions that arise from our work. First, our work pro-
vides a distributed emulation of a centralized local ratio algorithm. It is of great interest
to see if similar emulations can be obtained to other problems, where local ratio algo-
rithms provide good approximations. The main elements that seem to facilitate such an
emulation are an ordering (or partitioning) of the input implied by the profit decompo-
sition, and a notion of maximality that can be maintained locally. When considering the
CC problem, a major goal is to try and improve the running time of a distributed algo-
rithm for solving r-CC. There is currently no reason to believe that a good cover cannot
be obtained in logarithmic time. Furthermore, it is interesting to see if there exists a dis-
tributed algorithm which makes use of the cover-by-many paradigm, which was shown
to provide better solutions than the cover-by-one paradigm. For the more general for-
mulation of the CC problem, it is not evident that one cannot obtain an approximation
guarantee that is independent of r. In this respect, we conjecture that even for r = 1 the
problem admits to constant approximation.
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