Homogeneous Interference Game in Wireless Networks

Joseph (Seffi) Naor, Danny Raz, and Gabriel Scalosub

Abstract:

We consider the problem of joint usage of a shared wireless channel in a an interference-bound environment, and focus on a distributed setting where there is no central entity managing the various transmissions. In such systems, unlike other multiple access environments, several transmissions may succeed simultaneously, depending on spatial interferences between the different stations.
We use a game theoretic view to model the problem, where the stations are selfish agents aiming at maximizing their success probability. We show that when interferences are homogeneous, system performance suffers an exponential degradation in performance at an equilibrium, due to the selfishness of the stations. However, when using a proper penalization scheme for aggressive stations, we can ensure the system's performance value is at least 1/e of the optimal value, while still being at equilibrium.

Links:

paper, slides, preliminary technical report CS-2008-11