
Online Time-Constrained Scheduling in Linear
Networks

Joseph (Seffi) Naor† Adi Rosén Gabriel Scalosub
Computer Science Department

Technion - Israel Institute of Technology
Haifa 32000, Israel

Email: {naor,adiro,gabriels}@cs.technion.ac.il

Abstract— We consider the problem of scheduling a sequence
of packets over a linear network, where every packet has a source
and a target, as well as a release time and a deadline by which
it must arrive at its target. The model we consider is bufferless,
where packets are not allowed to be buffered in nodes along
their paths other than at their source. This model applies to
optical networks where opto-electronic conversion is costly, and
packets mostly travel through bufferless hops. The offline version
of this problem was previously studied in [1]. In this paper we
study the online version of the problem, where we are required to
schedule the packets without knowledge of future packet arrivals.
We use competitive analysis to evaluate the performance of our
algorithms. We present the first deterministic online algorithms
for several versions of the problem. For the problem of throughput
maximization, where all packets have uniform weights, we give an
algorithm with a logarithmic competitive ratio, and present some
lower bounds. For other weight functions, we show algorithms
that achieve optimal competitive ratios. We complete our study
with several experimental results.

I. INTRODUCTION

As technology advances, communication networks are con-
stantly going through rapid change. The classic best-effort
mechanisms are given up in favor of networks that are able
to provide Quality-of-Service (QoS) guarantees. The growing
use of multimedia applications motivate this transition. Such
applications involve continuous transmission of data, which
requires some guarantees as to its arrival time, bandwidth
allocation etc. [2].

It is often the case that the overall number of packets
destined to be transmitted through the network exceeds the
network’s capacity. In such cases, packets are either delayed
or dropped. When considering streaming video or audio data,
there is very little point in delaying such packets more than
some predetermined period of time. Take, for example, a home
user listening to the radio over the Internet. We can model such
a transmission by considering every packet to have a certain
deadline by which it must arrive at its destination. In such a
setting, having the packet arrive after its deadline is of no use.

Real life applications vary in importance and value as well,
thus rendering some packets more important than others. Con-
sider, for example, the case of MPEG encoding, where some

†This research is supported in part by a foundational and strategical
research grant from the Israeli Ministry of Science, and by a US-Israel BSF
Grant 2002276.

packets are more important than others when reconstructing
the image at the target. This situation makes it vital to decide
which packets to schedule at any given time, such that the
decision will eventually result in a ”best” possible set of
packets, which are all delivered by their deadline.

When considering such packets with their corresponding
deadlines, one would want to take into account both the
packet’s importance as well as its deadline when trying to
determine which packet to route first. Additionally, packets can
have different values, according to the end user’s willingness
to pay for an improved quality of service. In such a scenario,
delivering valuable packets on time would mean more profit
for the service provider, which should naturally be maximized.
Time-constrained traffic is also the common case in real-time
applications, such as avionics, industrial process control, and
automated manufacturing, which necessitate coping with time
constrained communication in interconnection networks [3].

In this paper we consider the problem of online scheduling
a sequence of packets, each with a deadline constraint. The
model underlying our work is a bufferless scheduling envi-
ronment. In this model, a packet can only be stored at its
source, and cannot be buffered in any node along its path.
Once a packet has left its source, it must move along its
designated path without interruptions or delays, until arriving
at its destination. Any interruption or delay causes the packet
to be dropped. This model is the common setting in optical
networks, where trying to buffer packets in nodes along
the path requires opto-electronic conversion of the signal, a
prohibitively costly operation. This is the case in Wavelength
Division Multiplexing (WDM) networks, where a packet is
assigned a wavelength along which it is supposed to be
transmitted throughout its path.

We restrict our attention to specific network topologies such
as the line and the ring. The results of [4] motivate this focus,
since under common complexity assumptions, for arbitrary
graphs, no reasonable approximation can be obtained in poly-
nomial time. Moreover, focusing on simple network topology
like the line topology or the ring topology is motivated by
considering electro-optical interconnection networks. In such
networks, we might have a packet’s path go through several
long bufferless hops with very few nexus points, each enabling
the expensive optical-electric conversion. This occurs for ex-

ample in a mesh network topology, employing a dimension-
order routing policy. In such a case we can use a bufferless
strategy along rows and columns, and perform a conversion to
change dimensions (see [3]). Another advantage in considering
simple topologies is the fact that they usually adhere to simple
routing-path selection. In cases of less regularly structured
networks, it is often the case that packets are routed along
subnetworks of such simple topologies.

A. Our Results

We present the first online algorithm for bufferless schedul-
ing of packets with deadline constraints in a linear network
topology. Our goal is to maximize the total weight of packets
delivered by their deadlines. A packet p contributes its weight
to the overall weight gained by the algorithm only if it
arrives at its target node by its deadline. We can further show
that these results extend to a ring network topology, using
arguments similar to those appearing in [1].

We present results for several special cases of the prob-
lem, determined by the weights given to the packets. In the
Throughput Maximization problem the packets have uniform
weights, i.e., for every packet p, its weight is equal to some
constant w, where without loss of generality w = 1, and
thus our goal is to maximize the number of packets scheduled
successfully. In the Maximum Network Utilization problem the
weight of each packet is defined to be its path length. The
optimization problem in this case can be considered as trying
to maximize the utilization of the network over time, where
only packets scheduled successfully contribute to the network
utilization. We further present results for the general case of
arbitrary weights.

We analyze the performance of our online algorithm us-
ing competitive analysis (see [5], [6]), which compares the
schedule produced by the algorithm to the optimal schedule
produced by an algorithm with full knowledge of future
incoming packets. This approach is robust in the sense that
it makes no assumptions on the arrival sequence of packets.
We assume that the algorithm has no knowledge about any
packet until the packet is released at its source, at which
point the algorithm learns its source, target, and deadline. A
deterministic online algorithm for a maximization problem is
said to be c-competitive if the ratio between its performance
and the performance of an optimal schedule is at least 1/c,
for every possible request sequence.

In Section II we present an O(min {log α,R})-competitive
algorithm for the throughput maximization problem, where α
is the ratio between the length of the longest path of a packet
in the input sequence and the length of the shortest path, and
R is the number of different path lengths appearing in the
sequence. This reduces to an O(log n)-competitive algorithm
in the worst setting. Unlike the results of [7] and [8] for task
scheduling on a single machine, our algorithm need not know
the value of the parameter α beforehand. We give an example
exhibiting our analysis to be tight up to a constant factor.
We additionally show that no deterministic algorithm for the

problem can achieve a competitive ratio better than 2.
In Section III we give a constant competitive algorithm for

the problem of maximizing network utilization. This algorithm
is an adaptation to our model of an algorithm given in [9].
We further derive an O(β)-competitive algorithm for arbitrary
weights where β is the maximum ratio between any two
packets’ weight-to-length ratio. Due to the results of [10], this
is the best possible, up to a constant factor.

In Section IV we show how our results can be applied to a
ring network topology.

In Section V we present several experimental results, where
we compare the performance of our suggested algorithm
for the problem of maximum throughput with an offline 2-
approximation algorithm, as well as with an online greedy
algorithm. We test the performance of the algorithms on
randomly generated input sequences, and show that the per-
formance of our algorithm is very close to the performance of
the offline 2-approximate schedule. Our results further show
that our algorithm outperforms the greedy algorithm.

B. Previous Work

The offline version of our problem in the linear network
topology was first considered by Adler et al. in [1]. They
restricted their attention to the problem of throughput maxi-
mization and showed that it is NP-hard, and further provided
a 2-approximation algorithm for the problem. Another model
considered in [1] is the buffered model, where packets are
allowed to be stored in a buffer of any node along their
path. Adler et al. showed that allowing the packets to be
buffered along their paths can increase the throughput by at
most an O(log γ) factor, relative to the throughput obtained
by a bufferless schedule, where γ is the minimum among the
network size, the number of packets in the instance and the
maximum slack a packet has.1 Adler et al. devised a distributed
online algorithm for the buffered case, which mimics the
approximation algorithm given for the buffereless case. An
extension of these results was later given by Adler et al.
in [4], where they present algorithms for several versions of
the time constrained scheduling problem, all in an offline
setting. They first describe a 2-approximation algorithm for
the bufferless case in a linear network, where packets are
allowed to have arbitrary weights. They further consider the
case where the underlying network topology is a tree or a
mesh in the bufferless setting. For this problem they present
constant-approximation algorithms for both the throughput
maximization problem as well as for arbitrary weights. For
the buffered case under the tree and mesh topologies, they
devise an algorithm based on the algorithm for the bufferless
case, with a logarithmic approximation guarantee.

The hardness results appearing in [4] motivate the focus on
particular network topologies as they show that for any ε > 0,
there is no k1−ε-approximation algorithm for the problem in
general networks, unless NP=ZPP, where k is the number of

1For the definition of slack, see Section I-C.

packets in the instance. This hardness result is based on the
hardness of MAX-INDEPENDENT-SET, and it holds even if the
underlying topology is either a directed acyclic graph or a
planar graph.

The only result regarding the online version of the problem
is given in [4], where they show that no deterministic online
algorithm can achieve a competitive ratio better than Ω(log n)
when the underlying graph is a tree, in both the bufferless
and the buffered settings, where n denotes the size of the
network. One can compare this result with our upper bound
for the linear network topology, which is guaranteed to be
O(log n)-competitive.

Our problem is closely related to interval scheduling prob-
lems and other call control models, e.g., [9], [11], and [12]. In
the online interval scheduling problem we are given a sequence
of intervals to schedule on a line segment. In some cases
the problem can be solved in polynomial time, e.g., the case
where the intervals are given in non-decreasing order of their
left end-point, all having uniform weights, and preemption is
allowed. In other cases however there are lower bounds on
the attainable competitive ratio of any online algorithm, e.g.,
the case where the weight of an interval is defined to be its
length, even in a randomized setting [11], and the case where
intervals have uniform weights in a deterministic setting [9].
These lower bounds apply to non-preemptive scheduling of the
intervals. Our model however is not reducible in the general
case to either of these. The main difference between our model
and the ones mentioned above is the concept of time, which
introduces further constraints on the scheduling problem.
Further results related to our problem involve multiple bin-
packing, dealt with in the context of call admission control
and wavelength division multiplexing in optical networks [13],
which were later adapted to the case were calls are allowed
to be preempted [12].

Some results regarding online task scheduling on a single
machine, where each job must terminate by a certain deadline,
are also related to our problem. Baruah et al. show in [10] that
when packets may have arbitrary weights, no deterministic
online algorithm can achieve a competitive ratio better than
Ω(β), where β is the ratio between the largest and the smallest
weight-to-length ratio of the packets in the instance. In [7]
Koren and Shasha present an online algorithm for the problem,
whose guarantee is exactly that of the lower bound in [10].
Their algorithm need know the value of β in advance. A
guarantee based on a different parameter is given by Garay
et al. in [8] for the problem of throughput maximization.
They present an algorithm that is guaranteed to be O(1/κ)-
competitive, where κ is the minimum ratio between the slack
and the processing time of all jobs in the request sequence. In
this case as well, the algorithm has to be given the value of κ
in advance.

C. The Network Model

Our main results will be described for the linear network.
We model our problem by a digraph G = (V,E), where

V = {1, . . . , n}, and E = {(i, i + 1)|1 ≤ i ≤ n− 1}. An
instance comprises additionally of a set of packets that are to
be routed through the network. Each packet p is specified by
a tuple (sp, tp, rp, dp, wp), where sp and tp denote the source
and target nodes respectively, rp is the packet’s release time,
i.e., the time at which the packet is available for routing, dp

denotes the packet’s deadline, and wp is the packet’s weight.
We denote by |p| = tp − sp the length of packet p. The
algorithm learns of packet p in time rp. The above definitions
make it natural to consider the concept of slack each packet
has, also known as laxity, defined by `(p) = dp − rp − |p|.
The slack of packet p captures the notion of the maximum
amount of time a packet can wait at its source node if it
is to arrive at its target node by its deadline. We denote by
`t(p) = dp− t−|p| the residual slack of packet p in time t. A
packet can be scheduled to leave its source at any time t for
which `t(p) ≥ 0. We consider a synchronous model, where
at each time step at most one packet can be transmitted on
any edge, and we focus our attention on the bufferless case.
We make no restriction on the amount of storage available
at any node. We further assume packets can be preempted
but cannot be rescheduled. Preemption means that a packet
on route to its destination can be stopped, in which case it
is dropped and cannot be rescheduled, even if its residual
slack allows it. Every packet arriving at its destination by its
deadline contributes its weight to the overall weight obtained,
and is considered successfully scheduled. Every other packet
contributes 0 to the overall obtained weight. The goal is to
maximize the weight obtained.

D. Terminology

We follow the geometric representation introduced in [1].
We define the concept of waves upon which we ”mount”
the packets to be scheduled. Consider a two dimensional
array whose X-axis represents the linear network, numbered
1, . . . , n to designate the network nodes, and its Y -axis
represents time, numbered 1, 2, . . . to designate discrete time
steps. Given a packet p that was presented at time rp with
slack `(p), in order for it to arrive at its destination by
its deadline, it must be sent from its source at some time
t ∈ {rp, . . . , rp + `(p)}. Every such scheduling of p starting
at t can be geometrically viewed as packing an interval of
length |p| on a SW-NE line starting at point (sp, t) and ending
in (tp, t + |p|). We call each such SW-NE line a wave. Every
such wave represents the network resources used over time.
Each packet has a set of eligible waves, defined according to
the packet’s parameters, where a packet can be mounted on any
of its eligible waves. Figure 1 shows an example of the waves
eligible for a packet p for which `(p) = 4, and the location in
which it can be mounted in every one of them. For each packet
p, we consider the waves eligible for packet p as ordered
from earliest (crossing point (sp, rp)) to latest (crossing point
(sp, rp+`(p))). A feasible schedule solution is a packing of the
packets upon the waves, such that on any wave no two packets
intersect, and every packet is scheduled on at most one wave.

Consider for example an instance where all packets have zero
slack. In this case, every packet has only one eligible wave. We
therefore seek to compute a maximum-independent set, in an
online fashion, for each wave independently. Since preemption
is allowed, for such instances this can be done optimally (in
the case of uniform weights). To see this notice that when
focusing on a single wave, the packets corresponding to this
wave are given in increasing order of their left end-point. This
is due to the fact that packet p is introduced in time rp. We can
therefore preempt a currently scheduled packet q on the wave
in favor of a packet p for which tp < tq. This mimics exactly
the behavior of an offline algorithm for finding a maximum
independent set in an interval graph in these settings, which
finds an optimal solution. If we allow packets to have positive
slack, the plot thickens, as demonstrated in Section II-A.

sp tp

`(p)

time

rp

dp

1 n

Fig. 1. Geometric representation of waves

In what follows we will use the following notation. Let
M = maxp |p| and let m = minp |p|. We let α denote the
ratio M/m and R is the number of different packet lengths
appearing in the input. Define the density of packet p to be
ρ(p) = wp/|p|. Denote by ρmin = minp ρ(p), ρmax = maxp ρ(p)
and let β = ρmax/ρmin.

II. THROUGHPUT MAXIMIZATION

We first consider the case where for every packet p, wp = w
for some constant w. Without loss of generality we assume
w = 1, and thus our goal is to maximize the number of packets
scheduled.

A. Online Bufferless Lower Bound

Theorem 1: No deterministic online algorithm can achieve
a competitive-ratio better than 2. This holds even if reschedul-
ing is allowed.

Proof: Consider a linear network with 4 nodes
{v1, . . . , v4}. We now describe an adversary. The adversary
releases at time 0 a packet p with slack = 1, going from v1

to v4. If the algorithm schedules it on its first wave (i.e., it
starts moving at t = 0), then the adversary releases at time
t = 2 a packet q with zero slack, going from v3 to v4. If, on

the other hand, the algorithm schedules p on its second wave
(i.e., it starts moving at t = 1), then the adversary releases at
time t = 2 a packet q with zero slack, going from v2 to v3.
In either case, the algorithm can deliver at most one of the
two packets, while an optimal solution delivers both. Notice
that in both cases, if the algorithm preempts p in favor of q,
then it cannot reschedule p on any other wave, because at the
time of preemption p has a negative residual slack, i.e., it can
no longer reach its target node by its deadline. We can repeat
this procedure an arbitrary number of times, thus ensuring no
deterministic online algorithm can achieve a competitive ratio
better than 2.

B. Online Bufferless Upper Bound

1) A Simple Randomized Strategy: A simple greedy strat-
egy can be used to devise a randomized O(log n)-competitive
non-preemptive algorithm for the problem. Consider a new
packet just arrived. If it can be scheduled (considering the
previously scheduled packets) on any wave, then schedule
it. Otherwise, discard it. Since this algorithm is (α + 1)-
competitive when considered on any single wave, using the
multiple-bin packing methodology appearing in [13], it follows
that the above algorithm is (α + 2)-competitive for our prob-
lem. We now introduce randomization: Consider a partition
of the packets into O(log n) classes according to their length,
where class i consists of all packets whose length falls in
the interval (2i, 2i+1], and we have i = 0, . . . , log n − 1.
Pick uniformly at random a class i, and use the greedy
strategy described above to schedule only packets from class
i. Denote by αi the ratio between the maximum length to the
minimum length of packets in class i. Since for every i we
have αi = 2, using linearity of expectation, we conclude that
the above randomized non-preemptive algorithm is O(log n)-
competitive.

2) The Deterministic Case: The non-preemptive simple
strategy applied above will not do in the deterministic setting.
To see this, consider an input sequence consisting of all
zero slack packets. One packet which needs to traverse the
entire network, followed by a sequence of (n− 2) unit-path-
length non-intersecting packets, each intersecting the path of
the first packet on a different link. It follows that any non-
preemptive deterministic algorithm can be O(n)-competitive at
best. We apply a different method for the deterministic case to
balance between ”long” and ”short” packets. We analyze in the
Theorem 2 the competitive ratio guarantee of our algorithm,
which we call MT (See Algorithm 1 below).

We say that packet p evicts packet q if the condition in line
7 holds and q is replaced by p. Let us first make sure that
the algorithm is well defined, and indeed produces a feasible
schedule.

Lemma 1: For any sequence of h packets, MT produces a
feasible schedule.

Proof: Proof by induction on h. For h = 0, the claim
clearly holds. Assume the claim is true for any sequence of

Algorithm 1 Algorithm MT
Given a new packet p just arrived,

1: if there exists a wave c eligible for p such that p doesn’t
intersect any currently scheduled packet on c then

2: schedule p on c
3: else
4: let c be the earliest eligible wave for p
5: while c is still eligible for p and p is not yet scheduled

do
6: let q be the first (i.e., leftmost) packet scheduled

on c which intersects p
7: if |p| ≤ |q|/2 and tp ≤ tq then
8: replace q by p . p evicts q
9: end if

10: c← c + 1
11: end while
12: end if

h − 1 packets. Let p be the h’th packet introduced. If p
is scheduled on a wave c such that p doesn’t intersect any
currently scheduled packet on c, then the schedule remains
feasible. Otherwise, assume for every wave c eligible for p,
there are scheduled packets intersecting p on c. If p is not
scheduled by MT, then clearly the schedule remains feasible.
Otherwise, let c be the wave on which MT schedules p. Let
Sp be the set of packets intersecting p on c, and let q ∈ Sp be
the first packet (i.e., leftmost packet) which intersects p on c.
Since p is scheduled on c, by the condition in line 7 it follows
that tp ≤ tq , hence Sp = {q}, and therefore since q is evicted
in favor of p, all the packets intersecting p on c are evicted,
which results in a feasible schedule.

We now turn to show the competitive ratio guarantee of MT.
Theorem 2: Algorithm MT is an O(min {log α,R})-

competitive algorithm, where α is the ratio between the longest
and shortest packets, and R is the number of different packet
lengths.

Proof: Let A be the set of packets scheduled by MT and
O be the set of packets scheduled by some optimal schedule.
Denote by N the set of packets never scheduled on any wave
by MT. We distinguish between two types of packets in O\A.

Packets scheduled. Consider a packet p ∈ (O \A) ∩N . Let
c be the wave on which p was scheduled. Packet p was not
successfully sent by A, and therefore was evicted from c by
some packet q. Note that this can only happen if the condition
of line 7 is met. Note that q is not necessarily in A either, since
q might have been later evicted by a packet q′. However, notice
that continuing this scenario eventually results in a packet that
is successfully sent by A, since the line is of finite length, and
in every time step we have a finite number of packets’ arrivals.
Denote any such maximal sequence by q1, . . . , qk, where q1 is
a packet scheduled on c without evicting any other packet, and
qk is a packet eventually sent by A. We therefore have, by the
condition of line 7, |qi+1| ≤ |qi|/2 for all i = 1, . . . , k − 1.

Let us map each such p to its corresponding qk. Each p that
maps to a specific qk, is mapped via one of the packets qi that
evicts it. Notice that the proof of Lemma 1 implies that any
such qi is responsible for evicting at most one packet from
(O \A) ∩N . We therefore have a one-to-one correspondence
between packets in (O \A) ∩N and packets in any such
maximal sequence. Let us turn to bound the size of each
sequence:

m ≤ |qk| ≤ 2−(k−1)|q1| ≤ 2−(k−1)M

which in turn yields

k ≤ log α + 1. (1)

It follows that |(O \A) ∩N | ≤ (k − 1)|A| since for each
sequence we have one packet that is eventually sent by A.

Packets never scheduled. Consider a packet
p ∈ (O \A) ∩N . Packet p was never scheduled because on
each wave c eligible for p the condition of line 7 was not met.
This specifically holds for the wave c on which O schedules
p. Assume first that the condition was not met in wave c
because of excess length of p, i.e., if q is the packet scheduled
by A on c specified by the algorithm in line 6, preventing p
from being scheduled on c, then |p| > |q|/2. Notice that each
such q can be responsible for the ”non-scheduling” of at most
2 packets in (O \A) ∩N that suffer from excess length. This
is because all such packets are successfully scheduled on c in
the optimal schedule, and therefore do not intersect on c. In
addition, there might be at most one packet in (O \A) ∩N
that isn’t scheduled by A because of its end point being later
to that of the conflicting packet q scheduled by A. This is
again because O produces a valid schedule, so there is at
most one packet using c on any edge, specifically at most
one using the edge leaving the endpoint of q. The same
maximal sequences identified in the analysis of the packets in
(O \A) ∩N occur here. There are at most k such packets,
where each one is ”responsible” for the non-scheduling of at
most 3 packets. It follows that |(O \A) ∩N | ≤ (3k − 1)|A|.

We can now conclude the proof of the theorem.

|O| ≤ |(O \A) ∩N |+ |(O \A) ∩N |+ |A|
≤ (k − 1 + 3k − 1 + 1)|A|
≤ (4 log α + 3)|A| = O(log α)|A|.

Note that by the condition of line 7, k ≤ R, hence
combining this with Eq. (1) gives a competitive ratio of
O(min {log α,R}), which completes the proof.

MT has running time of O(δn) per packet, where δ is the
maximal slack of any packet in the sequence, and n is the
network size. Note that MT need not know the values of α or
R in advance.

C. A Tight Example for MT

We now give an example showing that the above analysis is
tight, up to a constant factor. I.e., the above algorithm cannot
achieve a performance superior to Ω(log n). Assume that n =

2k and let r = k/2 − 1. Define xi = 1
2i . We therefore have

xi+1 = xi/2.
We consider two series of packets: P = {p1, p2, . . . , pr}

and P ′ = {p′1, p
′

2, . . . , p
′

r}, all with zero slack, where each
packet is defined by its release time and its path:

• Packet pi: release time si = n(1− xi) and path [si, n].
• Packet p′i: release time s′i = n(1− xi) + 1 + i and path

[s′i, s
′

i + nxi+1 + 1].

Figure 2 shows an outline of the above sequence.

p1

p′3p′2p′1

p4

p3

p2

Fig. 2. Outline of the sequence showing MT is Ω(log n)-competitive.

Observation. For all i, si < s′i < si+1. The first inequality
follows from the definition, whereas the second follows from
the fact that

si+1 − s′i = −nxi+1 + nxi − 1− i

= nxi+1 − 1− i

= 2k−(i+1) − (i + 1) > 0

for all i ≤ k/2− 1 = r.
Lemma 2: For every i, if pi is scheduled by MT at the end

of time si, then p′i is rejected by MT.
Proof: Assume pi is currently scheduled by MT. By the

previous observation, the next packet in the sequence is p′

i.
Since

|pi| = nxi = 2nxi+1 < 2(nxi+1 + 1) = 2|p′i|,

then by the condition in line 7, p′i is rejected by MT.
Lemma 3: For every i, if pi is scheduled by MT at the end

of time si, then upon the arrival of pi+1, MT preempts pi and
schedules pi+1 instead.

Proof: Assume pi is scheduled by MT at the end of time
si. By Lemma 2, p′i, which is the next packet in the sequence,
is rejected. The following packet is pi+1, for which we have
|pi| = xi ≥ 2xi+1 = 2|pi+1|, and in addition pi+1 doesn’t
terminate after pi. By the condition in line 7, pi is preempted
by MT and pi+1 is scheduled in its place.

Lemma 4: MT finishes scheduling only one packet from P ,
while there exists a scheduling that schedules all the packets
in P ′.

Proof: Since MT starts by scheduling p1, then by
Lemmas 2 and 3 it finishes scheduling only pr. On the other

hand notice that we can schedule all the packets in P ′. Since
the end point of p′i is

s′i + nxi+1 + 1 = n(1− xi) + 1 + i + nxi+1 + 1

= n(1− xi+1) + 1 + (i + 1)

= s′i+1,

its path does not intersect with that of p′i+1’s.
Since |P ′| = Ω(log n), this example shows our analysis is

tight up to a constant factor.

III. NON-UNIFORM WEIGHTS

A. Maximum Network Utilization

Assume that every packet p has weight wp = |p|, and
recall that our goal is to maximize the sum of the weights
of delivered packets. This setting corresponds to optimizing
network utilization. Unlike the case of uniform weights, the
idea here is to prefer longer packets, which give a better
utilization of the network. Let φ denote the golden ratio 2.
Consider the following algorithm for the problem, which we
call MNU (see Algorithm 2 below).

Algorithm 2 Algorithm MNU
Given a new packet p just arrived,

1: if there exists a wave c eligible for p such that p doesn’t
intersect any currently scheduled packet on c then

2: schedule p on c
3: else
4: let c be the earliest eligible wave for p
5: while c is still eligible for p and p is not yet scheduled

do
6: let Sp be the set of packets scheduled on c which

intersects p.
7: if |p| ≥ φ ·maxq∈Sp

|q| then
8: replace Sp by p . p evicts Sp

9: end if
10: c← c + 1
11: end while
12: end if

MNU is an adaptation to our model of the algorithm given
by Garay et al. in [9], for the problem of call admission, where
a call’s value is its route length.

We say packet p was rejected by packet q if q is the packet
with maximal length in Sp, and p is rejected by the algorithm.
In case more than one such packet exists, we choose one of
them arbitrarily. We will sometimes abuse notation, referring
to a packet as the set of its edges and to a set of edges as the
set of intervals defined by them. Assume the packets arrived
in the order p1, . . . , pk. We first introduce some notation. For
every 1 ≤ i ≤ k, and every wave c, let Ac(i) be the set of
packets scheduled on c after the arrival of the i’th packet. For
every packet p ∈ Ac(i), let us denote the following:

2φ = 1+
√

5

2

• Sc
p - the set of packets preempted by MNU in order to

schedule p (might be empty).
• T c

p - the transitive closure of Sc
p. This set is defined imme-

diately after p arrives and remains unchanged thereafter.
• Rc

p(i) - the set of packets up to the i’th packet, rejected
because of packets in T c

p ∪ {p}.
• Ic

p(i) - the collection of all edges in the paths of packets
in T c

p ∪Rc
p(i) ∪ {p}.

Lemma 5: For every wave c, every i, and every p ∈ Ac(i),

Ic
p(i) ⊆ [sp − φ|p|, tp + φ|p|].

Proof: Clearly, the scheduling and preemption of packets
on any wave c is of no consequence to packets scheduled on
waves other than c. We may therefore deal with each wave
independently. Let c be any wave. We prove the claim by
induction on i. The claim trivially holds for i = 0. Assume
the claim holds for i−1. Let p be the i’th packet that arrived.
If c is not eligible for p then the claim clearly holds, so assume
c is eligible for p.

Assume first that p is scheduled on c, and does not intersect
any currently scheduled packet on c. In this case, for every
packet q ∈ Ac(i) other than p, Ic

q (i) = Ic
q (i − 1) and

the induction hypothesis ensures the required result. For p,
Ic
p(i) = {e|e is in p’s path}, and the claim trivially holds.

Assume next that p is not scheduled on c. Let q be the packet
responsible for rejecting p. Hence q = arg maxw∈Sc

p
|w|. We

need to show that p ⊆ [sq − φ|q|, tq + φ|q|]. Assume the
contrary. Therefore p’s path contains a point to the left of
sq−φ|q|, or it contains a point to the right of tq +φ|q|. Since
p was rejected because of q, clearly p and q intersect. Hence,
|p| > φ|q|, contradicting the fact that p was rejected because
of q, and should therefore satisfy |p| ≤ φ·maxw∈Sc

p
|w| = φ|q|.

The last case to consider is the case where p is scheduled
on c, and preempts the packets in Sc

p. We only need concern
ourselves with p, as for every packet q ∈ Ac(i) other than p,
Ic
q (i) = Ic

q (i− 1). We will show that for every packet q ∈ Sc
p

preempted by p, Ic
q (i − 1) ⊆ [sp − φ|p|, tp + φ|p|], which

will complete our proof. Since q ∈ Sc
p, p and q intersect.

Furthermore, since q was preempted by p we have that |q| ≤
|p|. One of the following must therefore be true: either sp ≤
sq < tp, or sp < tq ≤ tp. In both cases we have [sq−φ|q|, tq+
φ|q|] ⊆ [sp − (|q|+ φ|q|), tp + (|q|+ φ|q|)]. Since |p| ≥ φ|q|,
we have |q|+φ|q| ≤ |p|/φ+|p| = φ|p|, where the last equality
follows from the defintion of φ. This concludes the proof of
the lemma.

We will use the above lemma, to analyze the performance
of algorithm MNU.

Theorem 3: MNU is a (2φ + 1)-competitive3 algorithm for
the problem of maximum network utilization, where φ denotes
the golden ratio.

Proof: An immediate consequence of Lemma 5 is the
fact that for every wave c, every i, and every p ∈ Ac(i),
|Ic

p(i)| ≤ (1 + 2φ)|p|. Given a set X of packets, let U(X) =

32φ + 1 ∼ 4.236

∑
p∈X |p|. Consider the set of packets O scheduled in some

optimal solution. Denote by M the set of packets that MNU
schedules. Every packet in the sequence contributes its edges
to at least one set Ic

p(n), for some wave c, and some p ∈ Ac(n)
(since every packet is either scheduled, or was rejected or
preempted). Moreover, every packet scheduled in an optimal
schedule contributes its edges to at least one such set. We
therefore have

U(O) ≤
∑

wavec

∑
p∈Ac(n)|I

c
p(n)|

≤
∑

wave c

∑
p∈Ac(n)(1 + 2φ)|p|

= (1 + 2φ)U(M)

which completes the proof of the theorem.
Baruah et al. ([10]) present a lower bound of 4 for a problem

of online task scheduling on a single machine, which applies to
our model as well. It follows that any deterministic algorithm
for our problem cannot have a competitive factor better than
4.

B. Arbitrary Weights

Assume without loss of generality that the minimum density
of any packet, which we denoted by ρmin, is 1. We can scale all
weights otherwise. Due to the lower bound for the problem of
online task scheduling on a single machine appearing in [10],
on the performance of any online deterministic algorithm, the
following result is the best one could hope for, up to a constant
factor.

Theorem 4: There exists an online algorithm for arbitrary
weights with competitive ratio O(β), where β is the ratio
between the maximum and minimum densities of the packets
in the input.

Proof: Apply MNU, thus seeking to maximize the
network utilization. Let A be the set of packets scheduled by
MNU. For every set of packets Y , define U(Y) =

∑
p∈Y |p|

and w(Y) =
∑

p∈Y wp. Let O be the set of packets scheduled
in some optimal solution. Let c = (2φ + 1) be the constant
competitive ratio guaranteed by MNU. We thus have

w(A) ≥ U(A) ≥ (2)

≥
1

c
· U(O) ≥ (3)

≥
1

cβ
· w(O) (4)

where (2) follows from our assumption that ρmin = 1, (3)
follows from MNU’s performance guarantee, and (4) is due to
the fact that the weight of an optimal solution is bounded by
the best network utilization solution, where all the scheduled
packets have maximal density.

Note that the algorithm depicted above need not know the
value of β in advance.

IV. THE RING TOPOLOGY

Our results readily extend to a ring network topology.
To see this, notice that our algorithms for a linear network

compute a packing of the packets on the waves. We therefore
need only present an appropriate notion of waves for a ring
topology, which we call ring-waves. Given these waves, our
algorithms can be adapted in a straightforward manner to the
ring topology.

A ring is characterized by an underlying digraph
G = (V,E), where V = {0, . . . , n− 1} and E =
{(i, i + 1 mod n)|1 ≤ i ≤ n− 1}. In the linear topology, we
have an unbounded number of waves, each of finite length
defined by the size of the network. In a ring topology,
however, we have a finite number ring-waves, defined by
the size of the network, where each ring-wave is of infinite
length. Every ring-wave is specified by sequence of pairs
(t, j), where t represents a time step, and j represents a
node in the network. Ring-wave i corresponds to the sequence
{(t, j)|t− j mod n = i}. See Figure 3 for an illustration of
the ring waves for a ring of size 6.

1
0

3

t=4

t=3

ring-wave 1
t=0

t=1

t=2

5

4 2

Fig. 3. Geometric interpretation of ring-waves for a network of size 6. The
hexagon represents the ring, and the solid lines represent time. Each wave is
represented by a dotted line.

V. EXPERIMENTAL RESULTS

We conducted several simulations to examine the perfor-
mance of MT for the problem of throughput maximization on
a line network topology. In order to illustrate the performance
of MT, we considered 3 algorithms for the problem:

• Algorithm MT - The algorithm specified in Section II-B.
• Algorithm OFFLINE - The offline algorithm of Adler

et al. ([1]). This algorithm loops through the waves and
computes a maximum independent set on each wave,
i.e., it tries to mount as many packets as possible on
the given wave, considering only packets for which the
wave is eligible. Packets that are mounted are discarded in
subsequent iterations. As was shown in [1], the schedule
produced by OFFLINE is guaranteed to successfully
deliver at least half the maximum number of packets
delivered by any optimal schedule. We use the output
of this algorithm as an estimate to the performance of an
optimal schedule.

• Algorithm URGENT - The algorithm given in Algo-
rithm 3 specified below. The intuition underlying this

algorithm is the following: At a given time t, a packet
which has not yet been scheduled is considered urgent
if its residual slack at time t is zero. In every node i
the algorithm might have at most 2 packets contending
for the outgoing link at any time t: One that is en-route
and has arrived from node i − 1, and a pending packet
whose source is i, with minimum residual slack among
all the packets with source i. The algorithm prefers the
packet en-route, unless its pending packet is urgent. The
algorithm will preempt the packet-en route q for such a
pending packet only if q wasn’t urgent when it left its
source.

Algorithm 3 Algorithm URGENT
At any given node i with buffer Bi, at any time t

1: Insert all packets p such that rp = t and sp = i into Bi.
2: Let S(i, t) be the set of packets with minimum slack

among the packets currently in Bi.
3: Let A(i, t) be the set of packets sent
4: from node i− 1 at time t− 1 whose
5: destination is j > i. . |A(i, t)| ≤ 1
6: if S(i, t) isn’t empty then
7: Let p = arg minq∈S(i,t)|q|.
8: if A(i, t) isn’t empty then
9: Let q ∈ A(i, t).

10: if `(p) = 0 and dq − t > tq − i then
11: Schedule p to leave i at time t.
12: else
13: Schedule q to leave i at time t.
14: end if
15: else . A(i, t) is empty
16: schedule p to leave i at time t.
17: end if
18: else . S(i, t) is empty
19: if A(i, t) isn’t empty then
20: Schedule q ∈ A(i, t) to leave i at time t.
21: end if
22: end if
23: Remove all scheduled and expired packets from Bi.

A. Sequence Generation

In our simulations, we use the release time to control the
traffic intensity. In every time step t we release a quantity
of λ packets to every node. For each such packet we choose
uniformly at random its path length 4. For every packet p, we
choose its slack to be κ · |p|, where κ is chosen uniformly at
random from some set {1, . . . ,m}. Once these parameters are
set, they imply the packet’s deadline and target node. We refer
to λ as the overload parameter, and to m as the slack factor.
We denote a sequence generated in this manner by σ(λ,m).
As the overload parameter increases, the amount of overload
encountered by the network increases, and as the slack factor

4Notice that in a line network topology, as the node index increases, the
maximum possible path length is shorter.

5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Network size

Th
ro

ug
hp

ut
 ra

tio
 c

om
pa

re
d

to
 O

FF
LI

N
E

MT
URGENT

Fig. 4. Performance of MT and URGENT as a function of network size
(overload parameter= 1, slack factor= 2)

increases, packets might have bigger slack. Given a network
size, we generate a σ(λ,m) sequence. This sequence is given
as input to OFFLINE. When executing MT and URGENT, the
sequence is given in an online fashion, such that the algorithm
has no information about packets released after the current
clock tick.

B. Results

We conducted several trials of every experiment. The plots
in this section correspond to the average of the results ob-
tained. When comparing the performance of either MT or
URGENT, we compare the ratio between the number of
packets successfully scheduled by the algorithm, and the
number of packets successfully scheduled by OFFLINE. We
present results of two types of experiments: experiments
comparing the performance of MT and URGENT, and experi-
ments investigating the performance of MT in several network
settings, namely its performance under various overloads, and
its performance under varying slack bounds.

Figure 4 shows a comparison of the performance of MT and
URGENT as the network size increases. We consider networks
of varying sizes, from 6 to 30. The input given to both
algorithms are σ(1, 2) sequences, i.e., one packet is released
to every node at every clock tick, and for every packet p in the
sequence, `(p) ∈ {|p|, 2|p|}. We can see that MT maintains its
performance of 90-95% compared to OFFLINE as the network
size increases while the performance of URGENT deteriorates
monotonically to 70-75% compared to OFFLINE.

Figure 5 shows the difference between the performance of
MT and that of URGENT, as the network becomes more and
more overloaded. We consider a network of size 16 and gen-
erate input sequences σ(λ, 2), where the overload parameter λ
varies from 1 to 6, while allowing each packet p to have slack
in {|p|, 2|p|}. The plots show that as might be expected, as the

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.75

0.8

0.85

0.9

0.95

1

Overload parameter

Th
ro

ug
hp

ut
 ra

tio
 c

om
pa

re
d

to
 O

FF
LI

N
E

MT
URGENT

Fig. 5. Performance of MT and URGENT as a function of overload (n = 16,
slack factor= 2)

network becomes more and more overloaded, the performance
of both algorithms improves. Note that in this case as well, the
performance of MT compared to OFFLINE is still better than
the performance of URGENT compared to OFFLINE by more
than 20% for low overload. This gap decreases, as the overload
increases, down to ∼8% for highly overloaded networks, as
both algorithms improve their performance.

The simulation results in Figure 6 show the behavior of
MT and URGENT, as packets are allowed to have larger
slacks. We consider a network of size 16, and generate input
sequences σ(1,m), for a slack factor m = 1, . . . , 10, thus
releasing one packet at every node at every clock tick. The
results show that MT outperforms URGENT as packets are
allowed to have greater slack. Furthermore, the performance
of MT compared to OFFLINE remains in the range of 92-
94%, with a slight monotonic increase, while the performance
of URGENT compared to OFFLINE degrades monotonically
as the slack factor increases, dropping from ∼80% for a slack
factor of 1, to ∼75% for slack factor of 10.

We further investigate the tolerance of MT to varying
network settings, as the network size increases. Figure 7 shows
the performance of MT where we let the slack factor take
values 1, 3, and 5. We consider network sizes from 6 to 30,
where we take the overload parameter to be 1. We can see that
the performance of the algorithm differs by ∼ 3% under the
various slack factor bounds, and the performance is mainly
dominated by the network size.

The effect of increasing network overload on the perfor-
mance of MT is demonstrated in Figure 8, where we consider
overload parameters 1, 3, and 5. We examine networks of
sizes 6 to 30, with slack factor 2. Note that as in the previous
experiment, as the network becomes more overloaded the
performance improves. In addition we see the degradation in
performance, as the network size increase, maintains its pro-

1 2 3 4 5 6 7 8 9 10
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Slack factor

Th
ro

ug
hp

ut
 ra

tio
 c

om
pa

re
d

to
 O

FF
LI

N
E

MT
URGENT

Fig. 6. Performance of MT and URGENT as a function of maximum slack
factor bound (n = 16, overload parameter= 1)

5 10 15 20 25 30
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Network size

Th
ro

ug
hp

ut
 ra

tio
 c

om
pa

re
d

to
 O

FF
LI

N
E

SF=1
SF=3
SF=5

Fig. 7. Performance of MT under variable maximum slack bounds, as a
function of network size (overload parameter= 1)

portions under the different overload parameters considered.

VI. DISCUSSION

We have presented the first online algorithms for the prob-
lem of bufferless time-constrained scheduling of packets in
a linear network. These results extend to the ring topol-
ogy as well. For the problem of maximum throughput, i.e.,
when packets have uniform weights, our algorithm achieves a
competitive ratio of O(min {log α,R}), where α is the ratio
between the longest and shortest path lengths a packet has,
and R is the number of different lengths of packet paths
appearing in the input sequence. We additionally show that no
online deterministic algorithm can achieve a competitive ratio
better than 2 for this setting. We present a constant competitive

5 10 15 20 25 30
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Network size

Th
ro

ug
hp

ut
 ra

tio
 c

om
pa

re
d

to
 O

FF
LI

N
E

Overload=1
Overload=3
Overload=5

Fig. 8. Performance of MT under variable overloads, as a function of network
size (slack factor= 2)

algorithm for the problem of maximizing network utilization,
where the weight of each packet is its length. For the case of
arbitrary packet weights we give an algorithm with competitive
ratio O(β), where β is the ratio between the maximum and
minimum weight-to-length ratios. Our algorithms for these
cases are optimal up to a constant factor.

Our experimental results show that our algorithm for the
problem of throughput maximization performs much better
than its worst case guarantee, for randomly generated input
sequences. Its performance is very close to the performance
of an offline algorithm, which is guaranteed to schedule at
least half the number of packets scheduled in an optimal
schedule. Our algorithm also outperforms an intuitive online
greedy algorithm, which prefers to schedule urgent packets
first.

It would be interesting to try and close the gap between
the upper and lower bounds for the problem of throughput
maximization, as well as to see how rescheduling can effect
the performance of such algorithms.

VII. ACKNOWLEDGEMENTS

We thank Danny Raz for useful discussions.

REFERENCES

[1] M. Adler, A. L. Rosenberg, R. K. Sitaraman, and W. Unger, “Scheduling
time-constrained communication in linear networks,” Theoretical Com-
puter Science, vol. 35, no. 6, pp. 599–623, 2002.

[2] J. Liebeherr, “Multimedia networks: Issues and challanges,” IEEE Com-
puter, vol. 28, no. 4, pp. 68–69, 1995.

[3] J. Rexford, J. Hall, and K. G. Shin, “A router architecture for real-
time communication in multicomputer networks,” IEEE Transactions
on Computers, vol. 47, no. 10, pp. 1088–1101, 1998.

[4] M. Adler, S. Khanna, R. Rajaraman, and A. Rosén, “Time-constrained
scheduling of weighted packets on trees and meshes,” Algorithmica,
vol. 36, no. 2, pp. 123–152, 2003.

[5] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Communications of the ACM, vol. 28, no. 2, pp. 202–208,
1985.

[6] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[7] G. Koren and D. Shasha, “Dover : An optimal on-line scheduling
algorithm for overloaded uniprocessor real-time systems,” SIAM Journal
on Computing, vol. 24, no. 2, pp. 318–339, 1995.

[8] J. A. Garay, J. Naor, B. Yener, and P. Zhao, “On-line admission control
and packet scheduling with interleaving,” in Proceedings of the IEEE
INFOCOM’02, New York, NY, June 2002, pp. 94–103.

[9] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung, “Efficient
on-line call control algorithms,” Journal of Algorithms, vol. 23, no. 1,
pp. 180–194, 1997.

[10] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E.
Rosier, D. Shasha, and F. Wang, “On the competitiveness of on-line
real-time task scheduling,” Real Time Systems, vol. 4, no. 2, pp. 125–
144, 1992.

[11] R. J. Lipton and A. Tomkins, “Online interval scheduling,” in Proceed-
ings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
1994, pp. 302–311.

[12] R. Adler and Y. Azar, “Beating the logarithmic lower bound: Random-
ized preemptive disjoint paths and call control algorithms,” Journal of
Scheduling, vol. 6, no. 2, pp. 113–129, 2003.

[13] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén, “On-
line competitive algorithms for call admission in optical networks,”
Algorithmica, vol. 31, no. 1, pp. 29–43, 2001.

