
Bounded Delay Scheduling with Packet
Dependencies

Michael Markovitch and Gabriel Scalosub
Department of Communication Systems Engineering

Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel

Email: markomic@post.bgu.ac.il, sgabriel@bgu.ac.il

Abstract—A common situation occurring when dealing with
multimedia traffic is having large data frames fragmented into
smaller IP packets, and having these packets sent independently
through the network. For real-time multimedia traffic, dropping
even few packets of a frame may render the entire frame
useless. Such traffic is usually modeled as having inter-packet
dependencies. We study the problem of scheduling traffic with
such dependencies, where each packet has a deadline by which
it should arrive at its destination. Such deadlines are common for
real-time multimedia applications, and are derived from stringent
delay constraints posed by the application. The figure of merit in
such environments is maximizing the system’s goodput, namely,
the number of frames successfully delivered.

We study deterministic online algorithms for the problem of
maximizing goodput of delay-bounded traffic with inter-packet
dependencies, and use competitive analysis to evaluate perfor-
mance. We present a competitive algorithm for the problem, as
well as matching lower bounds that are tight up to a constant
factor. We further present the results of a simulation study
which further validates our algorithmic approach and shows
that insights arising from our analysis are indeed manifested
in practice.

I. INTRODUCTION

A recent report studying the growth of real-time entertain-
ment traffic in the Internet predicts that by 2018 approximately
66% of Internet traffic in North America will consist of
real-time entertainment traffic, and most predominantly, video
streaming [1]. Such traffic, especially as video definition
increases, is characterized by having large application-level
data frames being fragmented into smaller IP packets which
are sent independently throughout the network. For stored-
video one can rely on mechanisms built into various layers
of the protocol stack (e.g., TCP) that ensure reliable data
transfer. However, for real-time multimedia applications such
as live IPTV and video conferencing, these mechanisms are
not applicable due to the strict delay restrictions posed by the
application (such traffic is therefore usually transmitted over
UDP). These restrictions essentially imply that retransmission
of lost packets is in most cases pointless, since retransmitted
packets would arrive too late to be successfully decoded and
used at the receiving end. Furthermore, the inability to decode
an original dataframe once too many of its constituent packets
have been dropped, essentially means that the resources used
by the network to deliver those packets that did arrive success-
fully, have been wasted in vain. Since network elements make
their decisions on a packet-level basis, and are unaware of

such dependencies occurring between packets corresponding
to the same frame, such utilization inefficiencies can be quite
common, as also demonstrated in experimental studies [2].

Some of the most common methods employed to deal with
the hazardous effect of packet loss in such scenarios focus on
trading bandwidth for packet loss; The sender encodes the data
frames while adding significant redundancy to the outgoing
packet stream, an approach commonly known as forward error
correction (FEC). This allows the user to mitigate the effect of
packet loss, at the cost of increasing the rate at which traffic is
transmitted. This makes it possible (in some cases) to decode
the data frame even if some of its constituent packets are
dropped. However, increasing the bandwidth can be costly,
especially in various scenarios such as wireless access net-
works, network transcoders, and CDN headends. Therefore it
is important to strike a balance between redundancy and the
resulting overhead.

In this work we study mechanisms and algorithms that are
to be implemented within the network, targeted at optimizing
the usage of network resources (namely, buffer space and link
bandwidth). We consider traffic that is delay-sensitive, exhibit-
ing inter-packet dependencies, and our goal is to maximize the
number of frames which can be successfully decoded.

Previous models presenting solutions for packet dependen-
cies focused on managing a bounded-buffer FIFO queue, and
mainly addressed the questions of handling buffer overflows
(see more details in Section subsection I-B). We consider a
significantly different model where each arriving packet has a
deadline (which may or may not be induced by a deadline im-
posed on the data frame to which it corresponds). We assume
no bound on the available buffer space, but are required to
maximize the system’s goodput, namely, the number of frames
for which all of their packets are delivered by their deadline.1

This model better captures the nature of real-time video
streaming, where a data frame must be successfully decoded
in real-time, based on some permissible deadline by which
packets should arrive, that still renders the stream usable. We
note that our model and results assume no FEC/redundancy
in the underlying data stream and we show that even this
simplified scenario poses significant difficulties. We believe
that better understanding these settings (and the dilemmas

1It should be noted that the objective of maximizing goodput (on the frame-
level) is in most cases significantly different than the common concept of
maximizing throughput (on the packet-level).

2

that they entail) lay at the basis of further investigation of
more complex settings which include both redundancy, higher-
level depedencies (e.g., inter-frame), and network wide effects.
These aspects and extensions are to be pursued in future work.

We consider traffic as being burst-bounded, i.e., there is an
upper bound on the number of packets arriving in a time-
slot. This assumption does not restrict the applicability of our
algorithms, since it is common for traffic (and especially traffic
with stringent Quality-of-Service requirements) to be regulated
by some token-bucket envelope [3].

We focus on the impact of algorithmic choices, and use
competitive analysis to show how these choices can bring
us closer to an optimal solution. This approach makes our
results globally applicable, and independent of the specific
process generating the traffic. We further present the results
of a simulation study which better highlights the impact of
the various parameters, and gives further insight into the
algorithmic design.

Due to space constraints many of the proofs are omitted,
and can be found in [4].

A. System Model

We consider a time-slotted system where traffic consists of a
sequence of unit-size packets, p1, p2, . . ., such that packets are
logically partitioned into frames. Each frame f corresponds to
k of the packets, pf1 , . . . , p

f
k ∈ {p1, p2, . . .}, where we refer to

packet pf` as the `-packet of frame f . For every packet p we
denote its arrival time by a(p), and we assume that the arrival
of packets corresponding to frame f satisfies a(pf`) ≤ a(pf`+1)
for all ` = 1, . . . , k − 1. In general we assume packets from
the same source arrive at the order they were created. Each
packet p is also characterized by a deadline, denoted e(p), by
which it should be scheduled for delivery, or else the packet
expires. We assume e(p) ≥ a(p) for every packet p, and define
the slack of packet p to be r(p) = e(p)−a(p). For every time
t and packet p for which t ∈ [a(p), e(p)], if p has not yet been
delivered by t, we say p is pending at t. we further define its
residual slack at t to be rt(p) = e(p)− t.2

We refer to an arrival sequence as being d-uniform if for
every packet p in the sequence we have r(p) = d. We
assume that k ≤ d, which implies that any arriving frame can
potentially be successfully delivered. We further let b denote
the maximum burst size, i.e., for every time t, the number of
packets arriving at t is at most b.

The packets arrive at a queue residing at the tail of a
link with unit capacity. The queue is assumed to be empty
before the first packet arrival. In each time-slot t we have
three substeps: (i) the arrival substep, new packets arrive at
time t and are stored in the queue, (ii) the scheduling/delivery
substep, at most one packet from the queue is scheduled for
delivery, and (iii) the cleanup substep, where every packet
p currently in the queue which can not be scheduled by its
deadline is discarded from the queue, either because rt(p) = 0,
or because it belongs to a frame which has multiple pending

2Note that this is a tad different from the model used in [5] since we allow
a packet to be scheduled also at time e(p) = a(p) + r(p).

packets at time t and it is not feasible to schedule at least one
of them by its deadline. Such packets are also said to expire
at time t.

For every frame f and every time t, if f is not yet
successful, but all of its packets that have arrived by t are
either pending or have been delivered, then f is said to be
alive at t. Otherwise it is said to have expired. A frame is said
to be successful if each of its packets is delivered (by their
deadlines).

The Bounded-Delay Goodput problem (BDG) is defined as
the problem of maximizing the number of successful frames.
When traffic is d-uniform, we refer to the problem as the d-
uniform BDG problem (d-UBDG).

The main focus of our work is to study and develop
algorithms for the BDG problem. An algorithm is said to be
online if at any point in time t the algorithm knows only of
arrivals that have occurred up to t, and has no information
about future arrivals. We employ competitive analysis [6] to
bound the performance of the algorithms. We say an online
algorithm ALG is c-competitive (for c ≥ 1) if for every finite
arrival sequence it produces a solution who’s goodput is at
least a 1/c fraction from the optimal goodput possible. c is then
said to be an upper bound on the competitive ratio of ALG.
For completeness, we also address the offline problem where
the entire arrival sequence is given in advance. In such offline
settings the goal is to study the approximation ratio guaranteed
by an algorithm, namely, what fraction of the optimal goodput
is the algorithm guaranteed to deliver.

B. Previous Work

The effect of packet-level decisions on the successful de-
livery of large data-frames has been studied extensively in the
past decades. Most of these works considered FIFO queues
with bounded buffers and focused on discard decisions made
upon overflows [7], as well as more specific aspects relating to
video streams [8], [9]. This research thrust was accompanied
by theoretical work trying to understand the performance
of buffer management algorithms and scheduling paradigms,
where the underlying architecture of the systems employed
FIFO queues with bounded buffers. The main focus of these
works was the design of competitive algorithms in an attempt
to optimize some figure of merit, usually derived from Quality-
of-Service objectives (see [10] for a survey). However, most of
the works within this domain assumed the underlying packets
are independent of each other, and disregarded any possible
structure governing the generation of traffic.

Recently, a new model dealing with packet dependencies
was suggested in [11]. The main focus of this work was buffer
management of a single FIFO queue equipped with a buffer of
size d, and the algorithmic question was how to handle buffer
overflows. In what follows we refer to this problem as the
d-bounded FIFO problem (d-BFIFO). Following this work,
a series of works studied algorithms for various variants of
the problem [12]–[15]. Our model differs significantly from
these studies since in our model we assume no bounds on the
available buffer size (as is more common in queueing theory

3

models), nor do we assume the scheduler conforms with a
FIFO discipline.

Another vast body of related work focuses on issues of
scheduling, and scheduling in packet networks in particular,
in scenarios where packets have deadlines. Earliest-Deadline-
First scheduling was studied in various contexts, including
OS process scheduling [16], and more generally in the OR
community [17]. Our framework is most closely related to [5]
which considers a packet stream where each packet has a
deadline as well as a weight, and the goal is to maximizing
the weight of packets delivered by their deadline. Additional
works provided improved competitive online algorithms for
this problem (e.g. [18], [19]). However, none of these works
considered the settings of packet-dependencies, which is the
main focus of our work.

II. THE OFFLINE SETTINGS

In order to study the d-UBDG problem in the offline
settings, it is instructive to consider the d-BFIFO problem
studied in [11] of managing a FIFO queue with buffer capacity
d, where the goal is to maximize the number of successfully
delivered frames (that none of their packets were dropped due
to buffer overflows).

In what follows we first prove that these two problems are
equivalent in the offline settings (proof omitted).

Lemma 1. For any arrival sequence σ, a set of frames F
constitutes a feasible solution to the d-UBDG problem if and
only if it is a feasible solution to the d-BFIFO problem.

Note that in particular, Lemma 1 implies that a set of frames
F is optimal for d-UBDG if and only if it is optimal for d-
BFIFO. By using the results of [11] for the d-BFIFO problem
we obtain the following corollaries:

Corollary 2. It is NP-hard to approximate the BDG problem
to within a factor of o(k

ln k) for k ≥ 3, even for 0-uniform
instances.

Corollary 3. There is a deterministic (k + 1)-approximation
algorithm for the d-UBDG problem.

III. THE ONLINE SETTINGS

The offline settings studied in section II, and the relation
between the d-UBDG problem and the d-BFIFO problem,
give rise to the question of whether one should expect a similar
relation to be manifested in the online settings. In this section
we answer this question in the negative.

A first fundamental difference is due to the fact that in
the d-UBDG problem the scheduler is not forced to follow a
FIFO discipline. This means that the inherent delay of packets
stored in the back of the queue which occurs in a FIFO buffer
(unless packets are discarded upfront) can be circumvented
by the scheduler in the d-UBDG problem, allowing it to take
priorities into account. Another significant difference between
the two problems is that while in the d-BFIFO problem discard
decisions in case of buffer overflow must be made immediately
upon overflow, in the d-UBDG problem such decisions can be

somewhat delayed. Intuitively, the online algorithm in the d-
UBDG problem has more time to study the arrivals in the near
future, before making a scheduling decision, and thus enable
it to make somewhat better decisions, albeit myopic. We note
that this view is also used in [18], [19] in the concepts of
provisional schedules and suppressed packets (we give more
details of these features in subsection IV-B).

A. Lower Bounds

In this section we provide several lower bounds for various
ranges of our systems parameters. The main theorem is the
following (proof omitted):

Theorem 4. Any algorithm for the d-UBDG and d-BFIFO
problems with burst size b > 1 has a competitive ratio
Ω(bk−1).

Our lower bounds can be adapted to token-bucket regulated
traffic, with maximum burst size b and average rate r. Such
restrictions on the traffic are quite common in SLAs. Of special
interest is the case where the average rate is r = 1, which
essentially means the link is not oversubscribed. Even for such
highly regulated traffic, we have the following lower bound
(proof omitted):

Theorem 5. For token-bucket regulated traffic with param-
eters (b, r = 1), any algorithm for the d-UBDG problem
where b ≥ 2d has competitive ratio Ω(

(
b
d

)k−1
).

This lower bound shows that the application of an access
control mechanism does not in itself suffice for providing a
goodput guarantee, thus emphasizing the need to study the
underlying scheduling problem and address the algorithmic
dilemmas it entails.

B. Upper Bounds

There are two natural criteria which can be used to decide
what packet to schedule at a given time slot: (i) give priority to
“important” packets, i.e., a packet which brings us the closest
to the complete delivery of a frame, or (ii) give priority to
“urgent” packets, i.e., a packet with the smallest residual slack.

For the case of d-uniform traffic, a FIFO scheduler im-
plicitly opts for the latter criteria. By allowing a non-FIFO
scheduling regime one obtains many more degrees of freedom
which can potentially be exploited in an attempt to maximize
the system’s goodput. This lays at the core of the algorithms
proposed in the sequel.

For every time t and frame f that has pending packets
at t, let It(f) denote the index of the first pending packet
of f . Recall that by our assumption on the order of packets
within a frame, this is the minimal index of a pending packet
corresponding to f . We consider at every time t all pending
frames as ordered in decreasing order (It(f). In what follows
we slightly abuse notation and refer to a frame as alive as long
as none of its packets has expired nor was dropped, and it is
possible to schedule all of its packets currently in the buffer
before their deadlines. Our proposed algorithm, GREEDY is
described in Algorithm 1.

4

Algorithm 1 GREEDY: at the scheduling substep of time t

1: drop all pending packets of frames that are not alive
2: Qt ← all alive frames with pending packets at t
3: f ← arg max {It(f ′) | f ′ ∈ Qt}
4: deliver the first pending packet of f

The following theorem, for which we give merely a proof
sketch here, is the main result in this section (as mentioned
earlier, the complete proof can be found in [4]).

Theorem 6. Algorithm GREEDY is O(bk−1)-competitive.

Proof sketch: The analysis is based on partitioning the set
of frames successfully delivered by some optimal solution into
sets, such that every such set Af can be mapped via a bijection
to a frame f successfully delivered by GREEDY and showing
that every such Af is of size O(bk−1). More specifically, we
construct a dynamic mapping of arriving frames onto frames
that have packets delivered by GREEDY. In particular, these
frames “piggyback” the frames of the optimal solution. In case
a frame is dropped by GREEDY its piggybacked frames are
remapped onto another frame that is still alive at that time. This
dynamic mapping eventually results in a set of (kb)-ary trees
of height k, each rooted at some frame delivered by GREEDY,
and each frame in the arrival sequence corresponds to a node
in one of the trees. A closer examination of the tree and the
mapping procedure allows us to significantly prune the tree
and keep only frames that were successfully delivered by the
optimal solution. A combinatorial argument then shows that
the number of such frames in any such tree is at most O(bk)
(as opposed to the overall size of the tree which is (bk)k). This
bound is achieved purely by considering the priority given to
“important” packets. An improved bound of O(bk−1) can be
obtained by a closer look at the effect of deadlines on the
performance of our algorithm as well as that of an optimal
solution. In particular, this is facilitated by noting that our
algorithm keeps frames alive for as long as possible.

We note that our lower bounds indicate that GREEDY is
asymptotically optimal. Furthermore it should be noted that
GREEDY does not necessarily deliver packets in FIFO order,
and therefore could not be implemented with a FIFO queue.

IV. FURTHER ALGORITHMIC CONSIDERATIONS

A. Tie-breaking
The results from the analysis above shows that an algo-

rithm should prefer frames which are closer to completion
(since this characteristic ensures competitiveness), and that
live frames should be kept in the buffer for as long as
possible (which is used to show the asymptotically tight
performance guarantee). However, the GREEDY algorithm did
does not make an explicit use of the deadline information in
making scheduling decisions; the only effect of deadlines is
on packets’ expiry. This gives rise to the question of how
to best use the deadline characteristics. One intuitive way to
make use of this information is for performing tie-breaking
between frames of with equal It(f) value (instead of arbitrary
tie-breaking).

A natural choice for a tie-breaker is the residual slack rt(pf)
of the smallest-index packet pf ∈ Qt∩f for each frame f that
has the maximal It(f) value. The purpose of such a tie breaker
is of course to improve performance by keeping as many
frames alive as possible, which emphasizes the characteristics
of GREEDY that allow it to match the lower bound.

One should note that the tie-breaking rule does not affect
the asymptotic competitiveness of GREEDY, which is tight up
to a constant factor. However, this it is expected to heavily
influence the performance of the algorithms in practice. This
is further discussed and validated in section V,

B. Scheduling

For the GREEDY algorithm presented in subsection III-B,
the first packet of the preferred frame was sent, where the
difference between the algorithms boiled down to the way
other pending packets were treated. In particular, the residual
slack of the packets is essentially ignored by these greedy
approaches (although it can be taken into account in tie-
breaking, as discussed above).

One common approach to incorporate residual slack into the
scheduler is considering provisional schedules, which essen-
tially try pick the packet to be delivered using a local offline
algorithm, which takes into account all currently available
information. Such an approach can be viewed as aiming to
maximize the benefit to be accrued from the present packets,
assuming no future arrivals. Such an approach lays at the core
of the solutions proposed by [5], [18], [19] which each used an
algorithm for computing an optimal offline local solution. In
our case, as shown in Corollary 2, computing such an optimal
provisional schedule is hard, but, as shown in Corollary 3,
there exists a (k+1)-approximation algorithm for the problem.

We adapt this algorithm into a procedure for computing a
provisional schedule, which would allow a smaller I-indexed
frame to have one of its packets scheduled, only if non of the
frames with a higher I-index would become infeasible in the
following time slot. Our proposed heuristic, OPPORTUNISTIC,
is described in Algorithm 2. OPPORTUNISTIC builds a provi-
sional schedule Ft as follows:

1) Sort pending frames3 in decreasing lexicographical order
of (It(f), d − rt(f)). I.e., preference is given to frames
with higher I-index values. In case of ties, preference is
given to the frame that has a pending packet with the
minimal residual slack.

2) Initialize the provisional schedule Ft = ∅.
3) For each frame f in this order, test whether for all s =

0, . . . , d, the pending packets of f can be added to Ft

such that the overall number of packets in the provisional
schedule with remaining slack at most s, does not exceed
s. If f can be added, update Ft = Ft ∪ {f}.

V. SIMULATIONS

We now turn to present our simulation results studying the
performance of the algorithms, as well as the impact of the
parameters k and d on the performance.

3A frame is pending if it has pending packets.

5

Algorithm 2 OPPORTUNISTIC: at the scheduling substep of
time t

1: Build the provisional schedule Ft

2: transmit the packet with minimum residual slack in Ft

A. Traffic Generation and Setup
We recall that the problem of managing traffic with packet

dependencies captured by our model is most prevalent in
real-time video streams. We therefore perform a simulation
study that aims to capture many of the characteristics of such
streams.

We generate traffic which is an interleaving of streams,
where each stream is targeted at a different receiver, and all
streams require service from a single queue at the tail of
a link. Specifically, we focus on traffic with the following
characteristics. (i) We assume each stream has a random
start time where packets are generated. This corresponds to
scenarios of multiple independent streams. (ii) We assume
the average bandwidth demand of all streams is identical.
(iii) Frames of a single stream are non-overlapping, and are
produced by the source in evenly spaced intervals. E.g., if we
consider video streams consisting of 30FPS, each interval is
33ms. (iv) The source transmits the packets of each frame in a
burst, and we assume each frame consists of the same number
of packets. Such a scenario occurs, e.g., in MPEG encoding
making use of I-frames alone. We assume all packet have
the same size, namely, the network’s MTU. (v) We assume
a random delay variation between the arrival of consecutive
packets corresponding to the same stream (possibly introduced
upstream). Specifically, we assume a uniform delay variation
of up to 5 time slots. (vi) We assume each packet contains
the frame number, and the index number of the packet within
the frame. Such information can be encoded, e.g., in the RTP
header.

For the setup we chose to simulate, the packet sizes are
set such that every time slot one packet can be scheduled,
and the aggregate bandwidth of all the streams is equal to the
service bandwidth. We note that even in such cases, no online
algorithm is guaranteed to obtain the optimal goodput.

We simulate 2 minutes worth of traffic for 50 streams, where
for all the streams the frame rate is 30FPS (for a total of 3600
frames per stream). Since we fix the service rate as 1, in the
simulation the interval between consecutive frames arrival in
a stream is ∆F = k · 50 time slots, where k is the number of
packets per frame. As k grows the “real” duration of a single
time slot decreases, as the service rate effectively increases.

B. Simulated Algorithms
We performed the simulation study for four scheduling

algorithms, where in all algorithms in case of ties in the
priorities, these are broken according to the a random (but
fixed) priority on the streams: (i) The offline O(k + 1)-
approximation algorithm of [11]. This algorithm serves as
a benchmark for evaluating the performance of the online
algorithms. (ii) Algorithm GREEDY, described and analysed
in subsection III-B. This algorithm represents our baseline

for studying the the performance of online algorithms for
the problem. (iii) Algorithm GREEDYSLACK, which implements
GREEDY with ties broken according to minimum residual
slack, as discussed in subsection IV-A. (iv) Algorithm OP-
PORTUNISTIC, based on provisional schedules, presented in
subsection IV-B.

C. Results

The simulation results confirm our hypothesis that imple-
mentation of the proposed algorithm design guideline does
indeed impact the performance of online algorithms. We depict
the performance of each online algorithm by its goodput ratio,
measured by the ratio between the goodput of the online
algorithm and that of the offline algorithm.

Figure 1 presents the performance of the online algorithms
as a function of the slack each packet has, for k = 12. It
can be seen that as the slack increases the tie-breaking rule
in GREEDYSLACK shows significant improved performance in
comparison with the vanilla greedy algorithm. The figure also
shows that the OPPORTUNISTIC exhibits a better performance
than GREEDYSLACK (although this improvement is paid for by
significant additional complexity). We note that results for
greater values of k exhibit the same trends. Also of note is that
the GREEDYSLACK and OPPORTUNISTIC manage to trace the
performance of the offline algorithm (and actually complete
all the frames of all the streams) for traffic with sufficiently
large slack.

0 20 40 60 80 100 120 140 160 180
Slack

0.70

0.75

0.80

0.85

0.90

0.95

1.00

G
oo

dp
ut

ra
tio

Goodput of online algorithms - k=12

GREEDY

GREEDYSLACK

OPPORTUNISTIC

Fig. 1: Comparison of the goodput of online algorithms

In Figure 2 we present the goodput ratio of OPPORTUNISTIC
and GREEDYSLACK as a function of d/k, where different values
of k correspond to different (independent) simulations. The
first lesson learnt from this data is that the performance of
the opportunistic algorithm is superior to that of the enhanced
greedy algorithm, in particular for small d/k values where the
difference becomes more pronounced (these results are also
hinted by Figure 1, but are not as pronounced). Furthermore,
the performance of both algorithms depends exponentially
on the ratio between d and k (shown by the log scale), as
even though both graphs present results of many simulations

6

100 101

log d/k

0.70

0.75

0.80

0.85

0.90

0.95

1.00

G
oo

dp
ut

ra
tio

Goodput of OPPORTUNISTIC

k=6
k=12
k=18
k=24
k=30

(a) OPPORTUNISTIC

100 101

log d/k

0.70

0.75

0.80

0.85

0.90

0.95

1.00

G
oo

dp
ut

ra
tio

Goodput of GREEDYSLACK

k=6
k=12
k=18
k=24
k=30

(b) GREEDYSLACK

100 101

log d/k

0.70

0.75

0.80

0.85

0.90

0.95

1.00

G
oo

dp
ut

ra
tio

Goodput of GREEDY

k=6
k=12
k=18
k=24
k=30

(c) GREEDY

Fig. 2: Goodput of the online algorithms as a function of d/k on a logarithmic scale

with different inputs having different parameters, the plots
show a linear trend up to the point where they match the
goodput of the offline algorithm. We note that this exponential
dependency on d/k highlighted by our simulation results is
obfuscated by our worst-case analysis, which merely shows
exponential dependency in 1/k. This gives further insight into
the performance of our proposed algorithm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we address the problem of maximizing the
goodput of delay sensitive traffic with inter-packet depen-
dencies. We provide lower bounds on the competitiveness of
deterministic online algorithms for the general case that the
traffic is burst bounded, and present competitive scheduling
algorithms for the problem. Our goal is to study the impact
of algorithmic considerations, and through the analysis we
show that there exists an algorithmic guideline that ensures
competitiveness, namely, giving preference to frames that are
closer to completion. We provide an algorithm that ensure the
optimal performance possible, up to a small constant factor.

Our analysis further provides insights into improving the
performance of online algorithms for the problem. These
insights are further verified by a simulation study which
shows that our improved algorithms which are inspired by
our analytic results, are very close to the performance of the
currently best known offline algorithm for the problem. More
specifically, the performance of our algorithms approach the
performance of our benchmark algorithm with an exponential
correlation to the increase in delay-slack.

This work serves as an initial study of scheduling delay-
bounded traffic with inter-packet dependencies and raises
new questions about the performance of algorithms for this
problem, including (i) how one should deal with non-uniform
deadlines, (ii) what are the algorithmic principles that should
be employed in the face of redundancy, and (iii) what are
network wide effects of such an algorithmic approach.

REFERENCES

[1] Sandvine, “Global Internet phenomena report – 1H 2013,” http://www.
sandvine.com/, July 2013.

[2] J. M. Boyce and R. D. Gaglianello, “Packet loss effects on MPEG
video sent over the public internet,” in Proceedings of the 6th ACM
International Conference on Multimedia, 1998, pp. 181–190.

[3] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach. Addison-Wesley, 2011.

[4] M. Markovitch and G. Scalosub, “Bounded delay scheduling
with packet dependencies,” December 2013. [Online]. Available:
http://arxiv.org/pdf/1402.6973.pdf

[5] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and
M. Sviridenko, “Buffer overflow management in QoS switches,” SIAM
Journal on Computing, vol. 33, no. 3, pp. 563–583, 2004.

[6] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[7] S. Ramanathan, P. V. Rangan, H. M. Vin, and S. S. Kumar, “Enforcing
application-level QoS by frame-induced packet discarding in video
communications,” Computer Communications, vol. 18, no. 10, pp. 742–
754, 1995.

[8] A. Awad, M. W. McKinnon, and R. Sivakumar, “Goodput estimation for
an access node buffer carrying correlated video traffic,” in Proceedings
of the 7th IEEE Symposium on Computers and Communications (ISCC),
2002, pp. 120–125.

[9] E. Gürses, G. B. Akar, and N. Akar, “A simple and effective mechanism
for stored video streaming with TCP transport and server-side adaptive
frame discard,” Computer Networks, vol. 48, no. 4, pp. 489–501, 2005.

[10] M. H. Goldwasser, “A survey of buffer management policies for packet
switches,” ACM SIGACT News, vol. 41, no. 1, pp. 100–128, 2010.

[11] A. Kesselman, B. Patt-Shamir, and G. Scalosub, “Competitive buffer
management with packet dependencies,” Theoretical Computer Science,
vol. 489–490, pp. 75–87, 2013.

[12] Y. Emek, M. M. Halldórsson, Y. Mansour, B. Patt-Shamir, J. Radhakrish-
nan, and D. Rawitz, “Online set packing,” SIAM Journal on Computing,
vol. 41, no. 4, pp. 728–746, 2012.

[13] Y. Mansour, B. Patt-Shamir, and D. Rawitz, “Competitive router schedul-
ing with structured data,” in Proceedings of the 9th Workshop on
Approximation and Online Algorithms (WAOA), 2011.

[14] ——, “Overflow management with multipart packets,” Computer Net-
works, vol. 56, no. 15, pp. 3456–3467, 2012.

[15] G. Scalosub, P. Marbach, and J. Liebeherr, “Buffer management for ag-
gregated streaming data with packet dependencies,” IEEE Transacations
on Parallel and Distributed Systems, vol. 24, no. 3, pp. 439–449, 2013.

[16] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
John Wiley & Sons, 2012.

[17] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer,
2012.

[18] M. Englert and M. Westermann, “Considering suppressed packets im-
proves buffer management in quality of service switches,” SIAM Journal
on Computing, vol. 41, no. 5, pp. 1166–1192, 2012.

[19] L. Jez, F. Li, J. Sethuraman, and C. Stein, “Online scheduling of packets
with agreeable deadlines,” ACM Transactions on Algorithms, vol. 9,
no. 1, 2012.

