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Abstract

We introduce the problem of managing a FIFO buffer
of bounded space, where arriving packets have dependen-
cies among them. Our model is motivated by the scenario
where large data frames must be split into multiple packets,
because maximum packet size is limited by data-link restric-
tions. A frame is considered useful only if sufficiently many
of its constituent packets are delivered. The buffer manage-
ment algorithm decides, in case of overflow, which packets
to discard and which to keep in the buffer. The goal of the
buffer management algorithm is to maximize throughput of
useful frames. This problem has a variety of applications,
e.g., Internet video streaming, where video frames are seg-
mented and encapsulated in IP packets sent over the Inter-
net. We study the complexity of the above problem in both
the offline and online settings. We give upper and lower
bounds on the performance of algorithms using competitive
analysis.

1 Introduction

Classical Queuing Theory [16], as well as modern Ad-
versarial Queuing Theory [10], study the conditions un-
der which the system is stable, i.e., the queue sizes remain
bounded. Ideally, a stable system can be designed so that
buffer overflows virtually never occur, and hence the issue
of buffer overflows was largely overlooked by these dis-
ciplines. However, in the Internet, buffer overflows occur
quite often (being intentionally generated by TCP). In re-
sponse, a new model to study overflows was defined re-
cently [14, 17], and quite a few results were obtained (see,
for example, [1, 3, 5–7, 11, 15, 20]). In this paper we extend
this line of research with a new model and new results.

Specifically, we consider the following scenario. There
is a FIFO buffer which can hold B packets. The packets
arrive at the buffer according to an adversarial process, but

only one packet can be sent out of the buffer in each time
step. Therefore, overflows may occur, and the buffer man-
agement algorithm tries to minimize their damage. This is
the model proposed in [14,17]. The new variant we consider
here models dependencies among the arriving packets. In
particular, we consider the common case where the arriv-
ing data stream originally consists of large frames, while
the data link can carry only small packets, and therefore
each frame must be fragmented into a few packets. This
scenario introduces dependencies, because, for example, in
many cases a frame is useless unless all its constituent pack-
ets are delivered. It follows that in this common case, decid-
ing which packet to drop may influence the decision about
packets that may arrive only in the distant future, giving rise
to new algorithmic questions. For example, it turns out that
some natural algorithms perform very poorly in the con-
text of packets with dependencies, whereas other algorithms
work relatively well.

In this paper we make a few first steps in the direction
of studying packet dependencies, which include introduc-
ing the model and proving a few preliminary results. In
particular, we provide near-optimal off-line and on-line al-
gorithms for the case where all packets need to be delivered
for a frame to be useful. Before we can state our results
more meaningfully, we need to define our model.

1.1 The Model

The input to the system consists of a sequence of unit-
size packets. We assume that the packets are derived from
a sequence of frames, where a frame fi comprises a set of
packets denoted p1

i , . . . , p
n
i . A packet pj

i is referred to as
the j-packet of frame fi. The system progresses in discrete
time steps, where in each step an arbitrary set of packets
arrive. The arrival step number of a packet p is denoted by
arr(p). It is assumed that for each frame index i we have
arr(pj

i ) ≤ arr(pj+1
i ) for 1 ≤ j < n, i.e, the packets of each

frame arrive in order.



The packets arrive at a FIFO buffer denoted Q. The
buffer can contain at mostB packets, and has an output link
that can transmit one packet per step. Specifically, an execu-
tion proceeds as follows. Initially, the buffer is empty. Each
step consists of three substeps. The first substep is the deliv-
ery substep: if the buffer is non-empty, the head-of-the-line
packet is transmitted on the link (otherwise nothing happens
in this substep). In the second substep, called the arrival
substep, an arbitrary set of packets arrives at the system. Fi-
nally, at the discretion of the buffer management algorithm,
some packets may be dropped. This substep is referred to as
the drop substep. An algorithm which drops only newly ar-
riving packets is called an admission control algorithm; an
algorithm which may also discard packets that arrived ear-
lier and are currently in the buffer is called preemptive. In
any case, the FIFO order of the surviving packets is main-
tained. A feasible system satisfies the following capacity
constraint: the maximum number of packets in the buffer
between consecutive time steps (i.e., after the drop substep)
must not exceed the given buffer size B. A buffer man-
agement algorithm may drop packets even if there is space
available at the buffer. A schedule produced by a buffer
management algorithm is an assignment of packets to time
steps, such that a packet assigned to time t, is transmit-
ted (or equivalently, delivered) in time t. Given an arrival
sequence, we sometimes identify an execution of an algo-
rithm with the schedule of its transmitted packets. Given
any buffer management algorithm ALG, and every packet
p, we let sALG(p) denote the time step in which the algo-
rithm delivers packet p.

In the k-of-n frame throughput maximization prob-
lem, denoted k-of-n FTM, the aim of the buffer manage-
ment algorithm is to maximize the number of successfully
delivered frames, where a frame is considered successfully
delivered if at least k out of its n constituent packets are
delivered. A special case of this problem is the case where
k = n, which we refer to as the k-frame throughput max-
imization problem, and denote by k-FTM. In this problem
a frame is considered to successfully delivered if all of its
constituent packets are delivered.

We use competitive analysis [9, 21] to evaluate the per-
formance of online algorithms. An algorithm ALG is said
to be c-competitive if for all traffic arrival sequences σ, the
maximal number of frames successfully delivered by any
feasible schedule is at most c times the number of frames
delivered by ALG from σ, for some c ≥ 1. As customary in
competitive analysis, we may view the on-line algorithm as
competing against an off-line adversary that generates the
input stream, and provides an optimal schedule for that in-
put. Given an algorithm ALG, we will sometime abuse no-
tation and refer to ALG also as the set of packets or frames
delivered by ALG.

1.2 Our Results

Most of our results are for the k-FTM problem. In Sec-
tion 2, as a gentle warm-up, we look at the offline version
of k-FTM. On the one hand we show that approximating k-
FTM to within o(k/ln k) is NP-hard for k ≥ 3, even for
B = 1. On the other hand we give a simple algorithm
which is guaranteed to produce a (k + 1)-approximate so-
lution to the problem, for any buffer size. In Section 3 we
study online algorithms for k-FTM. We first prove that no
algorithm can have bounded competitive ratio for general
k-FTM even when k = 2. We therefore propose a certain
natural condition on the ordering of packets in the arrival se-
quence, and proceed to show that the competitive factor for
such “order respecting” arrival sequences is between O(k2)
and Ω(k). Our online algorithm used to prove the upper
bound is non preemptive: no packet admitted to the buffer
is ever dropped. We also investigate a natural greedy algo-
rithm, and show that while it is O(1)-competitive for the
2-FTM problem, its competitive factor for k-FTM problem
with k ≥ 3 is unbounded. In Section 4 we consider some
special cases of the k-of-n FTM problem. We conclude
with open problems in Section 5.

1.3 Previous Work

As mentioned earlier, there has been extensive work
dealing with management of buffer overflows. Many
of these works study systems that should provide some
Quality-of-Service (QoS) guarantees to the underlying traf-
fic subject to the buffer capacity and FIFO order constraints.
In the delay-oriented approach, each packet has a dead-
line by which it must be delivered. In the FIFO model,
it is typically assumed that each packet has a value, and
the goal of the algorithm is to maximize the total value of
delivered packets [14, 17]. In the case of a single buffer,
the best known competitive ratio for algorithms under gen-
eral values is

√
3 ≈ 1.732, and the best lower bound is

1 + 1/
√

2 ≈ 1.707 [12]. If packets have only one of two
values, 1 and α > 1, then the competitive ratio is roughly
1.3 [12], and this is optimal [4].

Our definition of the k-of-n FTM problem is motivated
by traffic with forward error-correction (FEC), which can
tolerate some losses. FEC is also useful to get shorter de-
lays by using more bandwidth. There are many papers
discussing different methods of implementing such an ap-
proach in the coding and information theory communities
(e.g., [2, 8, 18]), where the predominant application is en-
coding schemes for video streaming (see, e.g., [19]). Our
model provides an abstraction of the buffer overflow man-
agement problem in such systems, and our algorithms can
be seen as treating such settings from a more systems-
oriented viewpoint.
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Figure 1. An example of Algorithm G-OFF with B = 4 and k = 3, depicting buffer occupancy in every
time step. The algorithm first adds frame f1 whose packets (white) arrive as described on the left,
resulting in the schedule depicted in the middle. Then f2 (light gray) is added. Finally, f3 (dark gray)
cannot be added due to an overflow of p1

3 that would occur at time 3.

2 Offline k-FTM

In this section we consider the offline version of k-FTM.
Corollary 2 proves that it is NP-hard to approximate this
problem to within o(k/ log k), and Theorem 3 shows that it
can be approximated to within a factor of k + 1.

2.1 A Lower Bound

We now show that a special case of k-FTM is hard
to approximate, by giving an approximation-preserving re-
duction from k-dimensional matching. In k-dimensional
matching, denoted k-DM henceforth, there are k pairwise
disjoint sets V1, . . . , Vk, and the input consists of a set
S ⊆ V1 × · · · × Vk. The goal is to find a maximum sub-
set M ⊆ S such that every element x ∈ ⋃k

i=1 Vi appears
in at most one element of M . For k = 2 the problem is
simply bipartite matching, which can be solved in polyno-
mial time, but for k ≥ 3, k-DM cannot be approximated to
within o

(
k

ln k

)
unless P=NP [13].

We now give the reduction from k-DM to k-FTM with
B = 1. Note that in our model, B = 1 means that in each
time step the algorithm can keep only one packet to transmit
in the following step.

Lemma 1. The special case of k-FTM where B = 1 is
equivalent to k-DM.

Proof. Let S ⊆ V1 × · · · × Vk be an instance of k-DM.
We construct an instance of k-FTM as follows. Map each
element x ∈ ⋃k

i=1 Vi to a distinct time step tx such that if
x ∈ Vi and y ∈ Vj for j > i then tx < ty . This way,
each member e ∈ S corresponds to k times steps. We de-
fine these time steps to be the arrival times of packets of a

single frame corresponding to e. Having done this for all el-
ements in S, we obtain an arrival sequence σ(S). Consider
a feasible schedule for σ(S): Since B = 1, any two pack-
ets delivered by a feasible schedule arrive at different time
steps. Therefore, the set of complete frames delivered by a
feasible schedule for σ(S) uniquely defines a k-dimensional
matching for S and vice versa. Hence the maximal number
of delivered frames in σ(S) is exactly the maximal number
of elements in the matching for S, and we are done.

Lemma 1, in conjunction with the hardness result of [13],
implies the following.

Corollary 2. Unless P=NP, no poly-time algorithm for k-
FTM can guarantee o(k/ln k) approximation factor.

2.2 An Upper Bound

The offline version of k-FTM is easy to approximate by
the following greedy algorithm, denoted G-OFF. Algorithm
G-OFF constructs the schedule iteratively by scanning the
frames in arbitrary order, and adding each frame to the cur-
rent schedule if none of its packets violate the buffer capac-
ity constraint. See Figure 1 for an example.

Theorem 3. Algorithm G-OFF is a (k+ 1)-approximation
for the k-FTM problem.

Proof. Fix an input arrival sequence σ, and let OPT be
an optimal schedule for σ. Consider a frame fi ∈
OPT \G-OFF: if fi /∈ G-OFF then at least one of its
packets would have caused an overflow, and could not be
accepted into the buffer by G-OFF, whereas all of fi’s pack-
ets are accepted by OPT. When considering the buffer occu-
pancy of G-OFF compared to that of OPT, it follows that in
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Figure 2. Outline of lower bound described in Theorem 4. Each square represents the arrival of B
packets. Squares above the dashed line represent packets corresponding to the algorithm’s frames,
and squares below the dashed line represent packets corresponding to the adversary’s frames.

at least one timestep, there exists some location in the buffer
of G-OFF which contains some packet p corresponding to
some frame previously accepted by G-OFF, whereas at the
same time, and at the same location, OPT has stored one of
the packets corresponding to fi. The above follows from a
pigeonhole argument, since otherwise G-OFF would have
had sufficient buffer space resources to accept all packets
of fi. We construct a mapping where we map each such
frame fi to one such packet p. We note that regardless of
the packets we choose for determining the mapping, the re-
sulting mapping is a bijection, since by feasibility of both
OPT and G-OFF, any location at any specific time may be
occupied by a single packet, and both algorithms are non-
preemptive.

It therefore follows that any packet delivered by G-OFF
accounts for at most one frame which is mapped to it ac-
cording to the above procedure. It therefore follows that the
number of frames in OPT \G-OFF accounted for by any
frame successfully delivered by G-OFF is at most k, which
completes the proof.

3 Online k-FTM

In this section we study the online version of k-FTM. We
start by showing that for unrestricted arrival sequences, no
deterministic algorithm can have a bounded competitive ra-
tio. We then proceed to propose a natural restriction on the
order of packets in an arrival sequence, and give upper and
lower bounds on the competitive ratio under that constraint.

3.1 Order is Essential

Theorem 4. No online algorithm has bounded competitive
ratio for general k-FTM, even for k = 2.

Proof. Let T be some positive integer, and consider the fol-
lowing arrival sequence. For i = 0, . . . , T − 1 we have
2B 1-packets arrive at time ti = iB. Let X1

i denote the
set of 1-packets accepted by the algorithm at time ti. Then∣∣X1

i

∣∣ ≤ B, and the algorithm drops at least B packets at
time ti. For every such i, denote by Y 1

i some B 1-packets
out of this set of dropped packets.

For i = 0, . . . , T − 1, let X2
i and Y 2

i denote the set of
2-packets corresponding to X1

i and Y 1
i , respectively. At

time TB we have all 2-packets in
⋃T−1

i=0 X2
i arrive. The al-

gorithm can accept at most B of these 2-packets, and can
therefore deliver an overall of at most B complete frames.
For every i = 0, . . . , T − 1 we have all 2-packets of Y 2

i

arrive at time si = TB + iB. It follows that the adversary
can accept all 1-packets in

⋃T−1
i=0 Y 1

i , as well as the set of
all their corresponding 2-packets

⋃T−1
i=0 Y 2

i . It can there-
fore successfully deliver an overall of TB complete frames.
Since T can be arbitrarily large, we conclude that no online
algorithm can have a bounded competitive ratio, even for
k = 2. Figure 2 gives an outline of the arrival sequence,
and the packets accepted by the algorithm and the adver-
sary.

Theorem 4 motivates us to consider restricted adver-
saries. Specifically, we consider order-respecting adver-
saries, in which the arrival order of j-packets is independent
of j. Intuitively, an arrival sequence is order-respecting if
the order of frames induced by considering solely j pack-
ets, is the same as the order of frames when considering
solely j′ packets, for every j and j′. The above is captured
by the following formal definition.

Definition 5. An input sequence is order-respecting if for all
i, i′, j, j′: arr(pj

i ) ≤ arr(pj
i′) ⇔ arr(pj′

i ) ≤ arr(pj′

i′ ) .

Note that the adversary used in the proof of Theorem 4
is not order-respecting: the frame order of 1-packets and
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the frame order of 2-packets differ. To see this consider
for example the set of 1-packets Y 1

1 which arrives strictly
before the set of 1-packets X1

2 . When considering the 2-
packets of these frames, we see that the 2-packets in the set
Y 2

1 arrive strictly after the 2-packets in the set X2
2 .

3.2 Lower Bounds for Order Respecting
Adversaries

We now show that even order-respecting arrivals are non-
trivial to manage.

Theorem 6. Any deterministic algorithm for k-FTM has
competitive ratio Ω(k), even for order-respecting arrival
sequences.

Proof. Assume that k is a power of 2, and consider the
following arrival sequence, consisting of log k + 1 blocks,
R1, . . . , Rlog k+1. At the beginning ofR1, 2B 1-packets ar-
rive simultaneously. Any feasible algorithm can accept at
most B of these packets, and hence must drop at least B
1-packets, which imply forfeiting B frames. We refer to the
frames corresponding to B such 1-packets dropped by the
algorithm as the adversary’s frames and to the remaining B
frames as the algorithm’s frames.

For every i = 2, . . . , log k, block Ri consists of the ar-
rival of all j-packets, for j = 2i−1, . . . , 2i−1 as follows: At
the beginning of the block we have a burst of all j-packets
of the algorithm’s frames, for j = 2i−1, . . . , 2i − 1. After
this burst, the j-packets of the adversary’s frames arrive one
by one, respecting the overall frame order, i.e., we first have
a stream of 2i−1-packets, followed by a stream of 2i−1 + 1-
packets, and so on, ending by a stream of 2i − 1-packets,
where for each such block of j-packets, their order is ac-

cording to the overall frame order. Finally, Rlog k+1 con-
sists of the arrival of all the k-packets of all frames, arriving
one by one, respecting the overall frame order. Note that the
above arrival sequence is indeed order-respecting. Figure 3
gives an outline of the arrival sequence.

The frames that have not yet been dropped by the algo-
rithm at the end of a block Ri are called live frames at that
time. We claim, by induction on the block number, that the
number of live frames at the end of Ri is at most B/2i−1.
The claim clearly holds for i = 1. Assume it holds for
i − 1, and consider the arrival of packets in block Ri. By
the induction hypothesis, at the beginning of block Ri the
algorithm has at mostB/2i−2 live frames. By the definition
of blockRi, all the j-packets, for j = 2i−1, . . . , 2i−1, cor-
responding to these live frames, arrive together at the begin-
ning of block Ri. This yields a total of 2i−1 ·B/2i−2 = 2B
packets corresponding to the live frames of the algorithm.
The algorithm may only accept B out of these 2B packets.
In order for a frame to remain a live frame at the end of
the block, all of its packets arriving at the beginning of the
block must be accepted by the algorithm. Hence, at most
B/2i−1 live frames can survive at the end of block Ri, out
of the B/2i−2 live frames at the end of the previous block.

It follows that at the end of block Rlog k, the algorithm
can maintain at most B/2log k−1 = 2B/k live frames. The
adversary, on the other hand, has none of its packet arrivals
in a bursty manner, and thus can deliver all of its B frames.
It follows that the ratio between the number of frames de-
livered by the adversary and the number of frames delivered
by the algorithm is at least k/2.

The above argument holds for any value of k which is a
power of 2. For arbitrary k one loses at most an extra factor
of 2.



The above argument can be adjusted to provide a
stronger lower bound for the case of k-packet frames, where
k = 2, 3, as the following lemma shows.

Lemma 7. No deterministic algorithm for k-FTM can have
a competitive ratio better than 2, even if we only allow 2-
frames, and even for order-respecting arrival sequences.

Proof. Consider the following arrival sequence, comprising
solely of 2-frames: At time t = 0, 2B 1-packets arrive. Any
feasible algorithm can accept at most B of these packets,
and hence must forfeit at least B frames. We refer to the
frames corresponding to B such 1-packets dropped by the
algorithm as the adversary’s frames and to the remaining B
frames as the algorithm’s frames.

At time B we have additional B 1-packets arriving (we
refer to the frames to which these 1-packets correspond as
the new frames), along with the B 2-packets correspond-
ing to the algorithm’s frames. At time 2B we have the B
2-packets corresponding to the adversary’s frames arrive,
and at time 3B we have the B 2-packets corresponding to
the new frames arrive. Note that the algorithm may accept
at most B frames out of the set of its frames and the new
frames, whereas the adversary can accept both all its frames,
as well as all the new frames.

3.3 The Static-Partitioning Algorithm

In this section we show that a simple admission control
algorithm achieves O(k2) competitive ratio for k-FTM. A
nice feature of our algorithm is that it is non-preemptive,
i.e., no packet that enters the buffer is ever evicted. This al-
lows for efficient implementation, in contrast to preemptive
algorithms.

Our algorithm, called Static-Partitioning Algorithm
(SPA), aims at ensuring that for any j = 1, . . . , k, suffi-
ciently many j-packets are delivered, where these j-packets
are relatively evenly spaced. This ensures that eventually,
sufficiently many of their corresponding k-packets are also
delivered. Specifically, SPA virtually partitions its buffer
into k sub-buffers, each of size B

k , where the j’th sub-buffer
is dedicated solely to j-packets (and referred to as the j-
buffer). We emphasize that the buffer is a FIFO queue, and
the partition is virtual, implemented by a simple counter for
each sub-buffer.

To describe the algorithm, we define the key concept of
j-synchronization for j = 0, . . . , k. Let the input frames
be f1, . . . , f`. It is convenient to extend the input se-
quence with a fictitious frame f`+1 satisfying arr(pj

`+1) =
arr(pj

`) +B for all j = 1, . . . , k. Now, a j-synchronization
is a frame index, and we let i(m, j) denote the frame in-
dex of the mth j-synchronization (j is a packet number
within the frame, and m is the running number of the

j-synchronizations). We define j-synchronizations induc-
tively in the following way:

• Every frame index is a 0-synchronization: i(m, 0) =
m for all 1 ≤ m ≤ `+ 1.

• For j > 0, the j-synchronization i(m, j) is defined
as follows: i(1, j) = 1, and i(m, j) for m > 1
is the smallest (j − 1)-synchronization index i, such
that arr(pj

i ) ≥ arr(pj

i(m−1,j)+ B
k −1

) + B, namely the

first (j − 1)-synchronization index i for which its j-
packet arrives after the arrival of B/k − 1 additional
j-packets after the previous j-synchronization, and B
additional time steps. If no such frame exists, then the
j-synchronization is defined to be `+ 1.

A packet pj
i(m,j) is called a j-synchronization packet.

Let Aj denote the set of frame indices which are j-
synchronizations. Then Aj ⊆ Aj−1 for every j = 1, . . . , k.
Also, {1, `+ 1} ⊆ Aj for every j = 1, . . . , k. For each
j = 1, . . . , k, partition the frame indices according to the
j-synchronizations: let F (m, j) consist of all frame indices
of j-packets that arrive after pj

i(m,j) (inclusive) until the ar-

rival of pj
i(m+1,j) (exclusive). Note that the partition corre-

sponding to some j is in general different from the partition
corresponding to j′, but if the traffic is order-respecting, the
partition corresponding to j is a refinement of the partition
corresponding to j′ ≥ j (this is a direct consequence of the
definition of F (m, j), along with the fact that Aj ⊆ Aj−1

for every j).
We now describe Algorithm SPA in detail. Intuitively,

for every j = 1, . . . , k, the algorithm alternates between
accepting and rejecting states. During an “accept” state a
contiguous block of B

k j-packets is accepted, starting with
a j-synchronization packet. The state then flips to “reject”
state, where it stays long enough to allow delivery of all re-
cently accepted j-packets. The transition between the states
is governed by the arrival of the next j-synchronization
packet. The basic argument of our analysis is that suffi-
ciently many k-packets are delivered by SPA between any
two consecutive k-synchronizations.

Pseudo code for SPA is given in Algorithm 1. The only
delicate issue in the Algorithm’s specification is the iden-
tification of j-synchronizing packets (lines 12–14). Re-
call that, arr(pj−1

i ) ≤ arr(pj
i ) for all i. Identifying 1-

synchronizing packets is easy, since it depends only on the
termination of a reject phase. For j ≥ 2 it can be shown
by induction, that since arr(pj−1

i ) ≤ arr(pj
i ) for all i, de-

termining whether i ∈ Aj−1 is done before the algorithm is
presented with pj

i .
Note that since the traffic is order-respecting, once a

frame index i has been identified as a (j−1)-synchronization
(line 12), all (j−1)-synchronizations i′ such that i′ ≤ i are
no longer relevant. We do not explicitly remove these in-
dices from Aj−1 in the algorithm’s specification merely for



Algorithm 1 SPA:
1: mj ← 1 for all j = 1, . . . , k . counter for j-synchronizations
2: i(mj , j)← 1 for all j = 1, . . . , k . start index of a j-synchronization
3: Aj ← {1} for all j = 1, . . . , k . set of indices of j-synchronizations
4: A0 ← ∅ . set of indices of possible 1-synchronizations
5: for every packet pj

i , in order of arrival do
6: A0 ← A0 ∪ {i} . makes sure every i is a candidate for a 1-synchronization
7: if i ≤ i(mj , j) + B

k − 1 then . pj
i arrives during the accept phase

8: accept pj
i

9: else if arr(pj
i ) < arr(pj

i(mj ,j)+ B
k −1

) +B then . pj
i arrives during the reject phase

10: reject pj
i

11: else . wait for a j-synchronization
12: if i ∈ Aj−1 then . pj

i is a j-synchronizing packet
13: mj ← mj + 1; i(mj , j)← i; Aj ← Aj ∪ {i}
14: accept pj

i

15: else . pj
i is not yet a j-synchronizing packet

16: reject pj
i

17: end if
18: end if
19: end for

the sake of brevity. The above implies that very little state
information has to actually be maintained by the algorithm
(in contrast to the greedy algorithm, presented in Section
3.4). We now turn to bound the competitive ratio of SPA.

Theorem 8. Algorithm SPA is (2k2+k)-competitive for the
k-FTM problem.

We start the analysis with the following lemma.

Lemma 9. For every j = 1, . . . , k and for every m =
1, . . . , |Aj | − 1, arr(pj

i(m+1,j))− arr(pj
i(m,j)) ≥ B.

Proof. For 1 ≤ j ≤ k, and 1 ≤ m ≤ |Aj |−2, the claim fol-
lows immediately from the fact that j-synchronizations, by
definition, are at leastB time units apart. Form = |Aj |−1,
the claim follows from the fact that pj

`+1 is defined to arrive
at time arr(pj

`) +B ≥ arr(pj
i(m,j)) +B.

Given j′ ≥ j, let Pj′(m, j) denote the set of j′-packets
corresponding to frames whose indices are in F (m, j). In
what follows, for every j = 1, . . . , k and every m =
1, . . . , |Aj | − 1, we let r(m, j) = min

{
B
k , |Pj(m, j)|

}
.

The following lemma ensures that SPA accepts and delivers
sufficiently many j-packets between any two consecutive
j-synchronizations.

Lemma 10. For every j = 1, . . . , k and for every m =
1, . . . , |Aj | − 1, the j-buffer of SPA is empty before the
arrival substep in time arr(pj

i(m,j)), all r(m, j) packets

pj
i(m,j), . . . , p

j
i(m,j)+r(m,j)−1 are accepted by SPA, and they

are all delivered by time arr(pj
i(m+1,j)).

Proof. Let j be such that 1 ≤ j ≤ k. The proof is by induc-
tion on m. For the base case consider m = 1, and note that
by definition i(m, j) = 1. Clearly the j-buffer is empty
before the arrival substep in time arr(pj

1), and therefore
all the r(1, j) packets pj

1, . . . , p
j
r(1,j) are accepted. Since

SPA delivers packets according to FIFO order, no packet
resides in the buffer more than B time steps, and therefore
by Lemma 9 all these r(1, j) packets are delivered by time
arr(pj

i(2,j)).
For the induction step, assume the claim holds for the

(m − 1)’th j-synchronization, and consider the m’th j-
synchronization. By the induction hypothesis all the j-
packets pj

i(m−1,j), . . . , p
j
i(m−1,j)+r(m−1,j)−1 are delivered

by time arr(pj
i(m,j)). Since by definition SPA does not ac-

cept any j-packets out of pj
i(m−1,j)+r(m,j), . . . , p

j
i(m,j)−1,

the j-buffer is empty before the arrival substep in time
arr(pj

i(m,j)). It follows that SPA has sufficient buffer
space in its j-buffer to accept all r(m, j) j-packets
pj

i(m,j), . . . , p
j
i(m,j)+r(m,j)−1. By the fact that the buffer

delivers packets according to FIFO order and Lemma 9,
all these packets are delivered by time arr(pj

i(m+1,j)), thus
completing the proof.

Lemma 10 implies the following lower bound on the
number of frames delivered by SPA between two consec-
utive k-synchronizations.

Corollary 11. SPA delivers at least r(m, k) frames of in-
dices in F (m, k), for any m.



Proof. Note that by the definition of synchronization, for
any i(m, k) ∈ Ak and every j = 1, . . . , k − 1, pj

i(m,k)
is also a j-synchronizing packet. By Lemma 10 it fol-
lows that all the packets corresponding to frame indices
in {i(m, k), . . . , i(m, k) + r(m, k)− 1} are delivered by
SPA, as required.

Next, we turn to consider the performance of an optimal
policy, OPT, for a given input sequence. We first bound the
number of j-packets any policy may accept between any
two consecutive j-synchronizations.

Lemma 12. For every j = 1, . . . , k, and every m =
1, . . . , |Aj | − 1, OPT can accept at most j(B

k + 2B) j-
packets out of Pj(m, j).

Proof. The proof is by induction on j. For the base
case, assume j = 1, and consider any m such that 1 ≤
m ≤ |A1| − 1. By the definition of 1-synchronization
packets, p1

i(m+1,1) is the earliest arriving 1-packet af-
ter time arr(p1

i(m,1)+r(m,1)−1) + B. Out of packets in
P1(m, 1), OPT can accept at most the set of r(m, 1) con-
secutive 1-packets accepted by SPA out of P1(m, 1), and
at most 2B additional packets arriving during the interval
[arr(p1

i(m,1)+r(m,1)−1), arr(p1
i(m,1)+r(m,1)−1) + B), since

this is an interval of length B. It follows that the over-
all number of 1-packets OPT could have accepted out of
P1(m, 1) is at most r(m, 1) + 2B ≤ B

k + 2B.
For the induction step, assume the claim holds for

j − 1 and consider j. Let m be such that 1 ≤ m ≤
|Aj | − 1. Similarly to the base case, OPT can accept
the r(m, j) consecutive packets accepted by SPA. Let
i′ be the minimal frame index of a j-packet such that
arr(pj

i′) ≥ arr(pj
i(m,j)+r(m,j)−1) + B. OPT can ac-

cept at most 2B j-packets arriving during the interval
[arr(pj

i(m,j)+r(m,j)−1), arr(pj
i(m,j)+r(m,j)−1) + B) since,

again, this is an interval of length B. Next, consider
the number of j-packets OPT can accept by the next j-
synchronization. Given the above frame index i′, since
{F (t, j − 1)}|Aj−1|−1

t=1 is a partition of all frame indices,
it follows that there exists some 1 ≤ m′ ≤ |Aj−1| − 1
such that i′ ∈ F (m′, j − 1). Furthermore, by definition
there must be a j-synchronization corresponding to packet
i(m′+ 1, j− 1). To see this, note that i(m′+ 1, j− 1) ≥ i′
(since i′ is in F (m′, j − 1)), and i(m′ + 1, j − 1) is the
frame index of the earliest arriving packet after i(m′, j− 1)
corresponding to a (j − 1)-synchronization. This implies
that i(m+ 1, j) = i(m′ + 1, j − 1).

Since any j-packet whose frame index i′′ is in
{i′, i′ + 1, i(m+ 1, j)− 1} satisfies i′′ ∈ F (m′, j − 1),
it follows that the overall number of j-packets OPT could
have accepted out of Pj(m′, j − 1) is bounded by the
number of (j − 1)-packets it could have accepted out of

Pj−1(m′, j − 1).1 By the induction hypothesis this implies
that OPT could have accepted at most (j − 1)(B

k + 2B)
j-packets out of Pj(m′, j − 1), and therefore at most
(j−1)(B

k +2B) j-packets out of the j-packets whose frame
index is in {i′, i′ + 1, i(m+ 1, j)− 1}.2

Combining the above bounds we conclude that OPT
could have accepted at most

B

k
+ 2B + (j − 1)

(
B

k
+ 2B

)
= j

(
B

k
+ 2B

)
j-packets out of Pj(m, j), as required.

Lemma 12 immediately implies the following upper
bound on the overall number of frames successfully de-
livered by any policy between any two consecutive k-
synchronizations:

Corollary 13. OPT accepts at most 2kB + B frames of
indices in F (m, k), for any m.

The proof of Theorem 8 now follows from Corollaries 11
and 13 due to the fact that {F (m, k)}|Ak|−1

m=1 is a partition of
all frame indices.

3.4 The Greedy Algorithm

In this section we consider a natural online algorithm
called G-ON. The basic intuition underlying this greedy al-
gorithm is, in case of an overflow, to prefer keeping packets
from frames for which it has already delivered many pack-
ets, and dropping packets from frames with fewer packets
already delivered. This algorithm essentially tries to “cash-
in” on effort already invested in delivering earlier packets of
a frame. We show that while G-ON is effective for 2-FTM,
it breaks down in the case of k-FTM with k ≥ 3. In what
follows we make use of the following notation with regards
to G-ON:

• A packet pj
i is said to be relevant if either j = 1, or

j = 2 and p1
i has not yet been dropped by G-ON.

• If G-ON sends p1
i at time t, packet p2

i is said to be
committed as of time t.

• For a time step t and algorithm ALG, we let A(t) de-
note the set of packets arriving at time t, and we let
BuffALG(t) denote the set of packets residing in the
buffer of ALG at the beginning of time t.

1Note that we can assume without loss of generality that if OPT drops
some packet pj

i , then it also drops all packets pj′

i , for all j′ > j.
2This follows from the fact that since traffic is order-respecting, the

partition of frame indices induced by the j − 1 synchronization packets is
a refinement of the partition induced by the j synchronization packets.



• For a time step t and algorithm ALG, we let
LALG(t) ⊆ A(t) ∪ BuffALG(t) denote the set of all
relevant packets in A(t) ∪ BuffALG(t).

We now specify the algorithm more formally for the case
of 2-FTM. The greedy algorithm G-ON accepts all relevant
packets, except for the case of an overflow, in which it keeps
packets according to the following strict priority (ties are
broken according to time of arrival, by preferring earlier ar-
riving packets):

1. First, 2-packets whose 1-packets were delivered are
taken

2. If there is additional room, complete frames (both their
1-packet and 2-packet) are taken.

3. Finally, remaining 1-packets fill the leftover space if
any.

Note that Algorithm G-ON is preemptive: a packet that
has entered the buffer may be dropped later.

The following lemma shows that once a 2-packet is ac-
cepted by G-ON, it is never dropped in subsequent time
steps.

Lemma 14. When considering 2-FTM, G-ON never drops
a previously-accepted 2-packet.

Proof. Let p2
j be any packet in BuffG-ON(t). By the as-

sumption that the traffic is order-respecting, any 2-packet
p2

` arriving at time t must satisfy ` > j, and if any such
packet is committed upon arrival at t, then p2

j must also be
committed at t. It therefore follows that in scanning either
committed packets, or complete frames, p2

j is always pre-
ferred to any such p2

` . In addition, clearly p2
j is always pre-

ferred to any 1-packet, which completes the proof.

We now turn to prove our main result in this section as
to the performance of Algorithm G-ON.

Theorem 15. When considering 2-FTM, the online algo-
rithm G-ON is (11 + 8

B−1 )-competitive.

Proof. Consider any frame fi ∈ OPT \G-ON. This can
happen because one of the following:

1. p1
i ∈ G-ON, and p2

i /∈ G-ON:

For every such frame fi, by Lemma 14, p2
i is dropped

upon arrival due to overflow, such that at time arr(p2
i )

G-ON’s buffer holds at least
⌊

B
2

⌋
≥ B−1

2 =
B
2

(
1− 1

B

)
2-packets. To see this, note that a 2-

packet is only dropped when at least B − 1 slots in
the buffer are dedicated to committed 2-packets, and
complete frames. We henceforth ignore the floor no-
tation, which will later be accounted for by the above
factor of

(
1− 1

B

)
.

Let ti = arr(p2
i ) and consider the intervals Ii =

(ti, ti + B] corresponding to frames fi which adhere
to the case under consideration. Let R be any maximal
set of such intervals such that I(R) = ∪R is a contin-
uous interval, and WLOG assume R = {I1, . . . , I`}.
We now show that during any such interval I(R), G-
ON delivers at least I(R)

2 2-packets.

For every i = 2, . . . , `, denote by mi the number of
packets in BuffG-ON(ti−1) ∩ BuffG-ONG(ti), and let
m1 = 0.

By the definition of mi, for every i = 2, . . . , `, the
number of new packets accepted by greedy during in-
terval [ti−1, ti) is exactly B − mi. Since there is an
overflow causing the dropping of a 2-packet at time ti,
it follows that at least B−mi

2 of these packets must be
2-packets. Since by the end of I(R) all these 2-packets
have already been delivered by G-ON, and since at
time t1 the buffer contains at least B

2 2-packets, it fol-
lows that the number of 2-packets delivered by G-ON
during I(R) is at least

B

2
+
∑̀
i=2

B −mi

2
=

1
2

∑̀
i=1

B −mi.

Furthermore, since G-ON is never idle during I(R) (by
the definition of R), and ti − ti−1 ≤ B, we have

|I(R)| = B +
∑̀
i=2

B −mi =
∑̀
i=1

B −mi,

which implies that G-ON delivers at least |I(R)|
2 2-

packets during I(R).

When considering the number of 2-packets which can
be accepted by OPT during I(R), note that this num-
ber is bounded by |I(R)| + B, implying that the ratio
between the number of 2-packets delivered by G-ON,
and the number of 2-packets of frames corresponding
to the case under consideration, is no more than

|I(R)|
2

|I(R)|+B
≤ 1

4
,

where the inequality follows from the fact that
|I(R)| ≥ B.

It therefore follows that we can map the 2-packets ac-
cepted by OPT during any such interval to a distinct
set of packets delivered by G-ON during such a block,
such that every such 2-packet in G-ON is mapped to by
at most four 2-packets in OPT. Specifically we do not
map more than 4 distinct frames corresponding to the
case under consideration, to any single frame delivered
by G-ON.



2. p1
i /∈ G-ON:

p1
i is not delivered by greedy because it was dropped

due to overflow at some time t ≥ arr(p1
i ). It must

follow that at time t, G-ON’s buffer is full, and there
exists some packet p ∈ G-ON such that sG-ON(p) =
sOPT(p1

i ). In what follows we distinguish between
several cases.

(a) p = p2
j is a 2-packet:

This particularly means that fj ∈ G-ON, in
which case we map fi to fj .

(b) p = p1
j is a 1-packet, and p2

j ∈ G-ON:
In this case we map fi to fj .

(c) p = p1
j is a 1-packet, and p2

j /∈ G-ON:
When restricting our attention to frames fi corre-
sponding to this case, we first note that the index-
ing mapping j = j(i), implied by the definition
of p, is a bijection.
In this case it must follows that at time arr(p2

j ),
G-ON’s buffer contains at least

⌊
B
2

⌋
2-packets.

By the order in which G-ON scans the packets,
we are guaranteed to have arr(p1

j ) ≤ arr(p1
i ). To

see this assume the contrary. If t ≥ arr(p1
j ), then

by the assumption that traffic is order-respecting,
G-ON would have preferred dropping p1

j before
resorting to dropping p1

i . It therefore follows that
arr(p1

j ) > t. Since at time t G-ON’s buffer
is full, and G-ON employs a FIFO discipline,
it must follow that sG-ON(p1

j ) > t + B ≥
arr(p1

i )+B. On the other hand, OPT also follows
a FIFO discipline, implying that sOPT(p1

i ) ≤
arr(p1

i ) + B, contradicting our assumption that
sG-ON(p1

j ) = sOPT(p1
i ).

Note that sOPT(p1
i ) > arr(p1

i ) and sG-ON(p1
j ) ≤

arr(p1
j ) + B. Since sG-ON(p1

j ) = sOPT(p1
i ) we

are guaranteed to have arr(p1
i ) < arr(p1

j ) +B.

Consider the interval [arr(p1
j ), arr(p1

i )]. By the
above argument we are guaranteed to have that
during this interval, OPT can accept at most
arr(p1

i ) − arr(p1
j ) + B ≤ 2B 1-packets which

are not accepted by G-ON.
Consider the interval [arr(p2

j ), arr(p2
i )]. Al-

though this interval may be longer than B, by
the assumption that traffic is order-respecting, as-
sumption we are guaranteed that during this in-
terval, OPT can accept at most 2B 2-packets that
are not accepted by G-ON.
Let ti = arr(p2

j(i)) and consider the intervals
Ii = (ti, ti + B] corresponding to frames fi

which adhere to the case under consideration. We

can now employ the same argument as the one
appearing in case (1).
It therefore follows that we can map every frame
fi corresponding to the case under considera-
tion to a frame successfully delivered by G-ON,
such that every such packet delivered by G-ON is
mapped to by at most four such frames in OPT.

By reaccounting for the (1 − 1
B ) = (1 + 1

B−1 )−1 fac-
tor emanating from cases (1) and (2c), and summing over
all possibilities, it follows that the number of frames in
OPT \G-ON that are mapped to a single frame fj ∈
G-ON is at most

4
(

1 +
1

B − 1

)
+1+1+4

(
1 +

1
B − 1

)
= 10+

8
B − 1

,

where the summands correspond to cases (1), (2a), (2b), and
(2c), respectively.

The greedy algorithm naturally extends to the k-packet
frame case: in case of overflow, prefer taking packets corre-
sponding to frames for which the most packets have already
been delivered. This intuitive algorithm tries to “cash in”
the work that has been invested in delivering previous pack-
ets. Perhaps surprisingly, this greedy algorithm fails to be
competitive even for 3-FTM, as the following lemma im-
plies.

Lemma 16. The natural extension to G-ON has no bounded
competitive ratio for frames consisting of 3 packets, even for
order-respecting input sequences.

Proof. Consider the following packet arrivals, consisting of
2 batches of frames:

• t = 0, . . . , T − 1 (for an arbitrary large value of T ):
a sequence of 1-packets arriving, one in every time
step. These are the 1-packets of the first batch of
frames.

• t = T :
B 2-packets corresponding to the first sequence, fol-
lowed by the remaining T −B 2-packets, arriving one
in every time step. These are the 2-packets of the
first batch of frames. This sequence terminates at time
2T −B.

• t = T, . . . , 2T −B:
a second sequence of 1-packets arriving, one in every
time step. These are the 1-packets of the second batch
of frames

• t = 2T −B + 1:
T 3-packets corresponding to the first sequence. These
are the 3-packets of the first batch of frames
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Figure 4. Outline of adversary described in Lemma 16 yielding an unbounded competitive ratio for
the greedy algorithm. Each square marked by pi

j (qi
j) represents the arrival of the i-packet corre-

sponding to the j’th frame of G-ON (of the adversary).

• t = 2T −B + 1, . . .:
the remaining 2-packets and then 3-packets corre-
sponding the second batch of frames, arriving one in
every time step.

Figure 4 gives an outline of the above arrival sequence. It
is not hard to see that G-ON would drop all 1-packets cor-
responding to the second batch in favor of accepting all 2-
packets corresponding to the first batch, and will eventu-
ally be able to accept only B of the 3-packets correspond-
ing to the first batch, thus completing the delivery of only
B frames. The adversary, on the other hand, would fo-
cus solely on the second batch, and can deliver all frames
in that batch, for a total of T − B frames. Since T may
be arbitrarily large, this implies that G-ON cannot have a
bounded competitive ratio for the case where frames con-
sist of 3 packets each.

4 k-of-n FTM

In this section we consider some special cases of the
k-of-n FTM problem. We provide only statements here.
Proofs are omitted due to space constraints.

It turns out that the k-FTM problem can be as hard as the
k-of-n FTM in the following sense.

Theorem 17. If there is an offline polynomial time algo-
rithm solving (k + 1)-FTM for B = 1 with approximation
ratio α, then there is a polynomial time algorithm solving
k-of-n FTM with approximation ratio α for the case where
B = 1 and either k or n− k is constant.

For the special case of 1-of-n FTM, we have the follow-
ing results.

Theorem 18. The 1-of-n FTM problem can be solved opti-
mally off-line in polynomial time.

Theorem 19. The online greedy algorithm for the 1-of-n
FTM problem is 2-competitive.

5 Conclusions and Open Questions

Motivated by the scenarios where large data frames are
fragmented into multiple packets, we present in this paper
a new model for managing buffer overflows, where arriv-
ing packets have dependencies among them. We present
several lower bounds and provide algorithms for both the
online and offline cases. In the online setting, we analyzed
the performance of our algorithms by means of competi-
tive analysis. Our results provide initial insight into the new
buffer management problem with packet dependencies.

There are many interesting problems that we leave open,
and many ways to extend the model. Here are a few obvious
open problems.

• What is the true competitiveness of online k-FTM for
order-respecting inputs? We conjecture it is Θ(k) (but
our upper bound is O(k2)).

• What is the complexity of off-line 2-FTM when B >
1? We know that it is polynomial when B = 1 and
NP-hard when k > 2.

• What is the online competitiveness of order-respecting
k-of-n FTM for general n and k?

• Our results focused on deterministic settings. Does
randomization help in tackling the problem of buffer
management with dependencies? If so, to what extent?



Regarding extensions of the model, here are a few possible
directions.

• This paper defined a 2-level model of packets and
frames. It seems natural to ask about general hierar-
chies. (This occurs frequently in practice: For exam-
ple, MPEG video frames are broken in slices and ag-
gregated in Groups of Pictures.)

• Study conditions under which competitive algorithms
are possible: perhaps there is a better alternative to our
notion of “order-respecting arrivals.”

• This work focused on the problem of inter packet de-
pendencies where packets can be dropped in a single
bottleneck buffer: it is natural to extend it to a general
network setting, where multiple buffers on the packets
path can overflow.
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