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Abstract—Recent advances in the standardization of 4G cel-
lular networks introduce the notion of multi-coverage, where
multiple base stations may collaboratively satisfy the demands of
mobile users. We provide a theoretical model for studying such
multi-coverage environments, in highly heterogeneous settings,
where users demands and profits may vary, as can base stations’
capacities and the rates with which they can service the users.

Whereas previous works provided solutions that were only
applicable to scenarios where rates are uniform throughout the
network, or allowed a mobile user to be serviced by at most one
base station, we present several algorithms for the multi-coverage
problem in the presence of non-uniform rates, and analyze their
performance. We complete our study by a simulation study that
further validates our results and provides further insight into
algorithm design, depending on the users’ characteristics.

I. INTRODUCTION

Next generation cellular systems, 3GPP Long Term Evo-

lution (LTE), [1], and IEEE 802.16m (WiMAX), [2] pro-

vide integrated broadband services while maintaining diverse

Quality of Service (QoS) guarantees. In these systems, each

mobile user is associated with a base station (BS)1. The base

station allocates (schedules) distinct frequency-time chunks

to the active mobile users within its cell. In order to cope

with the high traffic demands, the density of base stations is

expected to grow exponentially in the near future [3], where

each cell is expected to have a different size determined by

the maximum range at which the users can successfully hear

the transmitter and by the maximum combined data rate of

all the mobiles in the cell. Accordingly, coverage will be

provided by a mixture of cells, comprising Macrocells which

provide wide-area coverage of a few kilometers, Microcells

which cover a few hundred meters and are suitable for densely

populated urban areas, combined with smaller cells such as

Picocells which are installed in large indoor environments

such as offices or shopping centers and Femtocells which

are self-deployed residential base stations, which bring the

network closer to users and provide a big leap in performance.

The challenge in such dense networks is hence to provide

wide coverage supporting high data rate applications anywhere

and anytime, and in particular increasing cell edge users’

throughput allowing them to also benefit from the high data

rate application support.

1In this paper we use the terminology of users and base stations which
is similar to user equipment (UE) and evolved Node B (eNB), and mobile
stations (MS) and base station (BS), in the LTE and WiMAX jargon,
respectively.

Traditionally each user is associated with a single BS.

Accordingly, the BS-user association problem is crucial in

multicell networks. Typically a signal to noise ratio approach

is used in which a user is associated with the BS whose signal

is received with the highest average strength. Sometimes the

cell load is also considered, prioritizing cells with lighter traffic

loads. Nonetheless, when the traffic loads are high, the system

cannot support all users and admission control is required. One

should note that in such heavy loads scenarios, when the loads

among cells are not balanced, some users may be blocked

even though some of their neighboring cells may be not fully

utilized. In this paper we evaluate a mechanism which allows

more than one base station to transmit data to a single user

simultaneously. Note that this suggested mechanism is in the

spirit of the current standards which support the coordinated

multi-point (CoMP) mechanism between base stations, which

not only allows coordination between the BSs but also lever-

ages this coordination and allows more than one base station

to transmit data to a single user simultaneously.

Specifically, we consider a multiple base station (BS) net-

work serving a large number of users. Each user has a different

PHY data rate from each BS which is a function of the SNR

received from this BS. We further assume that different users

run different applications with different traffic demands, and

are therefore associated with different utilizations and gains.

We assume that each user has a minimum traffic demand which

if not fulfilled, the user is deemed uncovered. Furthermore,

no extra gain can be obtained from allocating extra resources

beyond the minimum required by a user, i.e., each user

utilization function can be modeled as a step function where

the step is located at its minimum demand. We study the user

selection problem in highly loaded heterogeneous scheduled

access networks.

Typically, the user selection problem considers two closely

related problems: (i) admission control, and (ii) schedule

and frame building procedure. The admission controller is

responsible for selecting the users that can be served. The

schedule and frame builder is responsible for the logical

positioning of the allocation within the frame. In this study

we deal only with the admission control mechanism, which

aims at maximizing the overall system benefit under the

constraint that the aggregate allocated resources by each BS

to its users is feasible. In this paper we overlook the micro

scheduling problem and its feasibility, i.e., we assume that

any resource distribution by the network which is feasible by
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each BS individually can be attained (scheduled) system wise.

In contrast to common user association problems in which a

user receives service from a single BS, in our approach a user

can be served by multiple BSs. In particular, in this paper

we analyze the achievable gain from allowing a user to be

served by multiple BSs. We prove that the multi-association

user-selection problem is a hard problem and prove some

properties of the multi-association paradigm. In addition, we

devise algorithms for solving the problem using this paradigm.

We analyze the performance of our algorithms, and provide

a simulation study that further highlights the benefits of our

approach.

A. Model and Definitions

Consider a bipartite graph G = (I, J, E) where I =
{1, 2, . . . ,m} is the set of base stations, J = {1, 2, . . . , n}
is the set of mobile users, and E ⊆ I × J . Every user j ∈ J
has a non-negative demand D(j) (in bits), and a non-negative

profit P (j), and every base station i ∈ I has a non-negative

capacity T (i) (in seconds). Furthermore, every user j ∈ J
and base station i ∈ I are characterized by a rate R(i, j)
(in b/s) capturing the service rate station i can provide user

j. For every base station i ∈ I we let N(i) denote the

set of users for which R(i, j) > 0, and similarly for every

user j ∈ J we let N(j) denote the set of base stations for

which R(i, j) > 0. We assume without loss of generality that

R(i, j) ≤ 1 for all i ∈ I, j ∈ J .2 For every i ∈ I, j ∈ J we

let E(i, j) = P (j)
D(j)R(i, j) denote the (i, j)-effectiveness.

We assume the following: (i) no-mice: there exists some δ >
0 such that if R(i, j) > 0 then R(i, j) > δ. This assumption

essentially means that the minimum rate a user may receive

from a base station cannot be infinitesimally small. (ii) no-

hogs: there exists some r ∈ [0, 1] such that if R(i, j) > 0
then D(j) ≤ rT (i)R(i, j). This assumption essentially means

that no user will need to use more than an r-fraction of the

capacity of a station that can provide him with service.

We further extend our notation to sets of nodes in G such

that for every function F defined over all the nodes and some

subset A ⊆ V , F (A) =
∑

v∈A F (v) (if F is real-valued) or

F (A) =
⋃

v∈A F (v) (if F is set-valued).

Given a subset of users S ⊆ J , a cover for S is a function

x : I × J → R
+ such that the following inequalities hold:

(i) for all i ∈ I ,
∑

j∈S xi,j ≤ T (i), and (ii) for all j ∈ S,
∑

i∈I xi,jR(i, j) ≥ D(j). For any i ∈ I and j ∈ J , we refer

to xi,j as the service given by base station i to user j, or

simply as the service along the edge (i, j). If S ⊆ J has a

cover x, then we say S is feasible. Given a cover x for S ⊆ J ,

for every i ∈ I , we let x(i) =
∑

j∈J xi,j . A cover x for S
is said to be a minimal cover for S if for any ε > 0 and any

i ∈ I and j ∈ J , x′ resulting from reducing xi,j by ε and

leaving all other values of x untouched, is no longer a cover

for S.

The (r, δ)-multi-rate cover ((r, δ)-MRC) problem (or sim-

ply, MRC) is to find a subset S ⊆ J and a cover x for S such

that P (S) is maximized.

2This assumption merely serves as a normalizing factor.

B. Our Contribution

In this paper we study the benefits of multi-coverage in

4G cellular networks, in the presence of non-uniform rates.

Such capabilities are suggested by recent standardization of

4G technologies such as LTE-Advanced and IEEE 802.16m.

We study the potential benefits of performing multi-

coverage compared to the common single-cover approach

employed in current cellular technologies. Specifically, we

show that even if rates are non-uniform, the difference between

the number of users covered by a multi-cover solution and the

number covered by a single-cover solution, is at most m− 1.

Furthermore, we show that the overall profit of a multi-cover

is never more than twice the optimal profit of a single-cover

solution.

We further devise approximation algorithms and heuristics

that aim at maximizing the overall profit gained from fully

serviced users. We present a (1−r)δ-approximation algorithm

for the problem, whose approximation ratio is the best known

for the values of r and δ satisfying (1− r)δ > 1−1/e (where

e is the base of the natural logarithm). We further devise a

heuristic that is inspired by our approximation algorithm.

It is important to note that our analysis and guarantees apply

to arbitrary profits.

We perform a simulation study examining the various

aspects addressed by our work, where we compare the perfor-

mance of classical single-cover solutions, our approximation

algorithm, and our proposed heuristic. Our results show that

the multi-cover paradigm yields a significant boost in attained

profit.

C. Related Work

User association policies and cell load balancing were

broadly studied under different models and assumptions. For

example some studies formulated the load balancing problem

as a convex optimization problem under various utility func-

tions, e.g., jointly optimized partial frequency reuse and load-

balancing [4], fairness criteria [5], [6], and sum rate of all

user maximization [7]. A game theoretic approach was taken

in [8]. Call admission control in 3GPP networks was also

widely studied, e.g., [9]–[11]. Significant work has been done

on scheduling algorithm in OFDMA system, e.g., [12], [13].

Our work is closely related to assignment problems studied

within the operations research community, and in particular

variants of the General Assignment Problem (GAP) which

generalize Multiple Knapsack Problems. In the MAX-GAP

problem we are given a set of jobs J and a set of machines I
such that each machine is associated with some size capacity,

and each (job,machine) pair is associated with some profit for

assigning the specific job to the specific machine, and some

size which would be used up by the machine if the job is

assigned to the machine. The goal is to find an assignment of

some subset of jobs to machines that maximizes the overall

profit while not violating the constraint imposed by each

machines’ size capacity. A 2-approximation algorithm for the

minimization version of the problem was presented in [14],
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which was later used to devise a 2-approximation for MAX-

GAP [15]. This latter work also showed that the GAP problem

is APX-hard (hardness later improved in [16]). Generalizations

(and algorithms for these generalizations) include Separable

Assignment Problems (SAP) studied in [17], where they also

provide a (1− 1/e)-approximation algorithm for MAX-GAP.

The current best approximation ratio for GAP is due to [18]

which guarantees to generate a (1 − 1/e + ε)-approximate

solution for some small constant ε. Essentially all these

algorithms are based on solving linear programs, where for

the most part they are based on meticulously rounding the

fractional solution to the linear programs. A combinatorial

(2 + ε)-approximation (for any ε > 0) was provided in [19].

The main difference between our work and this body of

research (using GAP terminology) is that we study the benefits

of, as well as algorithms for, exploiting the ability to satisfy the

packing requirement of every job by splitting this requirement

among several machines. Several works [20], [21] considered

splittable-assignment of objects to bins, with added overhead

(depending on the specific model). Our model allows for such

splittable-assignment but incurs no overheads, thus making it

generally applicable.

The work most closely related to ours is [22] which studies

multi-coverage solutions with uniform rates. They show a

(1− r)-approximation algorithm for the problem, where their

algorithm heavily relies on maximum-flow subproblems. Our

problem is considerably more complex, since having non-

uniform rates eliminates the ability to rely on maximum-flow

solutions. Furthermore, the solutions proposed for uniform

rates are inapplicable to the non-uniform rates settings, since it

is impossible to naively “trade” coverage. This difficulty lays

at the core of our results in Section II-A.

Paper Organization: In Section II we study the relation-

ship between multi-cover solutions, and single-cover solutions.

We focus on both structural aspects of such solutions, as

well as on the potential profit that can be accrued from each

approach. In Section III we consider the approximability of

the multi-cover problem in environments with non-uniform

rates. We present our approximation algorithm and analyze

its performance. We also propose a refined heuristic based

on our analytic viewpoint. Finally, in Section IV we present

our simulation results, where we compare the performance

of several solutions to the problem (both multi-cover and

single-cover) and extract further insight as to their benefits

and limitations.

II. MULTI-COVERAGE VS. SINGLE-COVERAGE

A. The Structure of a Multi-coverage Solution

In this section we study some fundamental properties of a

multi-coverage solution. In particular, we show the following

theorem:

Theorem 2.1: Any minimal cover x for a set S ⊆ J can be

transformed into a minimal cover x′ for S such that at most

(m−1) users in S are covered by more than one base station.

We note that in the case of uniform rates the above theorem

easily follows by applying simple cycle-cancelation arguments

on the bipartite graph. However, in the case of non-uniform

rates, such simple arguments do not suffice (this was already

mentioned in the Section I, and will further be discussed in

Section III). The reason why these simple arguments fail is

due to the fact that although the capacity of a BS (in seconds)

might be swapped between users, this does not translate to

equal quantities of service (in bits) that are swapped between

users, due to the heterogeneous rates.

The proof of the theorem is based on the following lemma

which shows we can cancel cycles of allocations in a cover,

even when rates are non-uniform.

Lemma 2.2: If x is a cover for S ⊆ J and there exists a

cycle C = (e1, . . . , e2k) in E such that x(eℓ) > 0 for all

ℓ = 1, . . . , 2k, then there exists a cover x′ for S that agrees

with x on all edges in E \C, and for which at least one edge

e ∈ C has x′(e) = 0.

Proof: Since we consider edges in E ⊆ I × J , we will

refer to any edge e = (i, j) as connecting base station i to

user j. Assume without loss of generality that for every ℓ =
1, . . . , k we have e2ℓ−1 = (ℓ, ℓ), for every ℓ = 1, . . . , (k − 1)
we have e2ℓ = (ℓ+1, ℓ), and finally e2k = (1, k). See Figure 1

for the schematics of the above cycle. In what follows we will

alternately increase and decrease the the amount of resources

allocated by x along the cycle C, while trying to maintain that

the resulting allocation x′ is indeed a cover for S. Assume we

wish to decrease x1,1 by an amount τ . It can be shown by

induction on i = 1, . . . , k that the following must hold if the

resulting allocation x′ is to be a cover for S

1) for every ℓ = 1, . . . , k, xℓ,ℓ must decrease by τ ·
[

∏ℓ−1
h=1

R(h,h)
R(h+1,h)

]

,3

2) for every ℓ = 1, . . . , (k − 1), xℓ+1,ℓ must increase by

τ ·
[

∏ℓ
h=1

R(h,h)
R(h+1,h)

]

, and

3) x1,k must increase by τ ·
[

∏k−1
h=1

R(h,h)
R(h+1,h)

]

· R(k,k)
R(1,k) .

The above amounts are essentially those compensating each

user for the increase or decrease in service it receives from its

adjacent base stations along the cycle. We refer the reader to

Figure 1.
It follows that for every base station save perhaps the

base station 1, the capacity constraint is satisfied since the
any service increase is compensated by an equal service
decrease. It remains to consider base station 1. Note that
the increase in service required from base station 1 is

τ
[

∏k−1
h=1

R(h,h)
R(h+1,h)

]

R(k,k)
R(1,k) , whereas the decrease in its service

is τ . In case
[

∏k−1
h=1

R(h,h)
R(h+1,h)

]

R(k,k)
R(1,k) > 1 such an assignment

of service might not be feasible since the capacity constraint
of base station 1 might be violated. However, if we reverse
the direction of our construction and start by an increase of
τ to x1,1, we obtain the same expressions as above, except
for the inverted roles of the edges: an edge along which we
previously increased the value of x would now have its value
decrease, and vice-a-versa. In such a case we would obtain

that the overall decrease is τ
[

∏k−1
h=1

R(h,h)
R(h+1,h)

]

R(k,k)
R(1,k) which

is greater than the increase of τ , in which case no violation

3We take the empty product to equal 1.
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τ ·
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]
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τ ·
∏k−1
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R(h,h)
R(h+1,h)e2k−1

τ ·
∏k−1
h=1

R(h,h)
R(h+1,h)

e2k−2

Fig. 1. The schematic structure of a cycle defined by a cover x for S ⊆ J .
Service is decreased along dotted edges, and increased along solid edges.
Each edge is marked with the amount of service increased/decreased along
the edge.

of the capacity occurs. It follows that we are guaranteed to
have a direction along the cycle (either clockwise or counter-
clockwise) for which there will be no violation of capacity in
any of the stations along the cycle. Assume without loss of
generality that the original construction (counter-clockwise in
Figure 1) does not violate the capacity of the base stations.
Consider all edges along which we are required to decrease the
service. By our assumption, in this case those are the edges of
type (ℓ, ℓ), ℓ = 1, . . . , k. In particular, note that the decrease
along any such edge (ℓ, ℓ) cannot be greater than the initial
amount of service xℓ,ℓ provided on that edge, which yields the
following set of inequalities:

τ

[

ℓ−1
∏

h=1

R(h, h)

R(h+ 1, h)

]

≤ xℓ,ℓ ℓ = 1, . . . , k.

This implies a set of k upper bounds on the value of τ
(essentially the quotient of dividing xℓ,ℓ by its respective

product, since these are all fixed given x). Note that taking

τ = τmin to be the minimum of these upper bounds implies

that at all the inequalities are satisfied, and at least one of them

holds with equality. Hence, reducing x1,1 by τmin would cause

the respective edge emin to have x′(emin) = 0, as required.

Note that by our construction every user in S continues to

have its demand satisfied, albeit using a different cover.

Applying Lemma 2.2 repeatedly, we obtain the following

corollary:

Corollary 2.3: Any minimal cover x for a set S ⊆ J can

be transformed into a minimal cover x′ for S such the set of

edges (i, j) for which x′
i,j > 0 forms a tree.

We can now turn to prove Theorem 2.1.

Proof of Theorem 2.1: Assume x is a minimal cover for

S ⊆ J . By Corollary 2.3 there exists a minimal cover x′ for

S such that the set of edges (i, j) ∈ I × J for which x′
i,j > 0

forms a tree. Such a tree spans at most m+ |S| vertices and

therefore has at most m + |S| − 1 edges. Since each user

j ∈ S can be associated with a unique edge connecting it to

some base station, it follows that there remain at most (m−1)

additional edges in the tree that contribute to the service of

multi-covered users. Since each such edge is connected to a

single user, the result follows.

B. The Profit of a Multi-coverage Solution

When studying the potential profit of using a multi-coverage

solution, one of the first question one is faced with is that of

the added value such a solution has compared to traditional

single coverage solutions. By considering the work of [14],

[15], and more specifically the standard integer programming

formulations of MAX-GAP, it is straightforward to show that

the linear programming relaxations of these formulations of

MAX-GAP and that of MRC are the same (more details on

these relaxations can be found in Section III).

The analysis of [14], [15] shows that their single-coverage

solution is within a factor of 2 from the optimal fractional

solution of the relaxation. This implicitly implies that the value

of an optimal multi-cover solution is never better than twice

the value of an optimal single-cover solution. It should be

noted that simple toy examples where this gap is almost tight

can be easily constructed.

III. APPROXIMATING THE MRC PROBLEM

A. Hardness

Since the MRC problem with non-uniform rates is a gen-

eralization of the case where rates are uniform, the hardness

results of [22] apply. In particular, if we allow users’ demands

to exceed the capacity of base stations that can provide

them with service (i.e., we consider instances that are not

required to satisfy the no-hogs assumption for any r ≤ 1),

then the problem is as hard to approximate as the Maximum

Independent Set (MIS) problem, i.e., for any ε > 0 it cannot

be approximated to within a factor of |J |ε, unless NP = ZPP.

Furthermore, the problem remains NP-hard for any r ≤ 1.

B. The Local-Ratio Technique

The algorithm we propose in the sequel is based on the

local-ratio technique, and is a generalization of the framework

set in [22] for uniform rates. It should be noted the dealing

with non-uniform rates renders the problem significantly more

complex, since computing maximum flow, along with mech-

anisms of flow augmentation, are no longer applicable when

dealing with non-uniform rates. Furthermore, when applying

the local-ratio technique one has to take caution when defining

the sub-instances in every iteration. We discuss these aspects

in further detail in the appropriate places throughout the proof.

As mentioned earlier, the local-ratio technique is based on a

decomposition of the profit function into a linear combination

of two profit functions. This decomposition is done recursively,

where in each level of the recursion some “maximal” solution

is returned.4 Using an inductive argument one shows that

the maximal solution approximates well both functions, and

hence also their linear combination. More formally, we use

4The exact meaning of “maximality” depends on the specific problem, and
will be defined shortly.
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the following formulation of the local-ratio lemma, adapted to

our settings:

Lemma 3.1 (Local-Ratio): Given an instance I to the (r, δ)-
MRC problem with profit function p, consider a linear de-

composition of p into two objective functions p1 and p2 s.t.

p1+ p2 = p. If x is a cover for some S ⊆ J such that S is an

α-approximate solution w.r.t. p1 and also an α-approximate

solution w.r.t. p2, then S is an α-approximate solution w.r.t.

p.

The proof follows from the linearity of the objective func-

tion, and its full derivation can be found in, e.g., [23].

In our proof, we decompose the profit function into two

components. It is important to note that although one of

the components is proportional to the demand, there is no

restriction on the original profit function, and in particular, it

need not be related to the demand at all.

C. Notions of Maximality

We now turn to define the notion of maximality of a cover

x for a set S ⊆ J . Given any A ⊆ I and B ⊆ J , we

define the mixed integer linear program MILPA,B , whose

relaxation and restrictions will serve as basic building blocks

in our algorithm.

(MILPA,B)

max
∑

j∈B

P (j)yj

s.t.
∑

j∈B

xi,j ≤ T (i) ∀i ∈ A (1)

∑

i∈A

R(i, j)xi,j ≥ D(j)yj ∀j ∈ B (2)

yj ∈ {0, 1} ∀j ∈ B (3)

xi,j ≥ 0 ∀i ∈ A, j ∈ B (4)

Note that MILPI,J is the mixed integer linear program

formulation of the (r, δ)-MRC problem.
By replacing constraint (3) with the constraints

yj ≤ 1 ∀j ∈ B (5)

yj ≥ 0 ∀j ∈ B (6)

we obtain a linear program, LPA,B .

It should be noted that the feasibility of any S ⊆ J can

be easily tested by using LPI,J where we require all the

constraints (2) and (5) corresponding to j ∈ S to hold with

equality. We further extend the notion of feasibility and say

S ⊆ J is feasible for the linear program if this requirement

holds.

Given any S ⊆ J , we let S = J \ S, and consider the sets

N(S) (the set of base stations that can provide service to some

user in S) and YS = I \ N(S) (the set of base stations that

have all of their neighbors strictly in S).

For any S ⊆ J , we say a a cover plan x for S drains YS

if there exists an optimal solution x̃, ỹ for LPYS ,S such that

x(i) ≥ x̃(i) for all i ∈ YS .

We can now define our notion of maximality. A subset S
with a cover plan x is said to be LP-maximal if the following

conditions hold: (i) set-maximality: for every j ∈ S there is

no cover plan for S ∪{j}, and (ii) drain-maximality: x drains

YS .

As specified in the informal description of our algorithm,

we will constantly extend partial solutions to maximal ones.

To this end, we need to demonstrate how such a maximal

solution can be obtained, and further show that the notion of

maximality is sound, i.e., that it does not restrict the feasible

solutions of the MRC problem.

Consider the following linear program LPA,B .

(LPA,B)

max
∑

i∈A,j∈B

E(i, j)xi,j

s.t.
∑

j∈B

xi,j ≤ T (i) ∀i ∈ A (7)

∑

i∈A

R(i, j)xi,j ≤ D(j) ∀j ∈ B (8)

xi,j ≥ 0 ∀i ∈ A, j ∈ B (9)

Lemma 3.2: LPA,B is equivalent to LPA,B .

Proof sketch: The equivalence follows from the assign-

ment yj =
∑

i∈A R(i, j)xi,j/D(j) for every j ∈ B.

We now turn to show that it suffices to consider feasible

solutions S which drain YS .
Given some optimal solution x̃, ỹ to LPYS ,S , consider

LPI,J with the additional two constraints

∑

j∈S

xi,j ≥
∑

j∈S

x̃ij ∀i ∈ YS (10)

∑

i∈I

R(i, j)xi,j ≥ D(j) ∀j ∈ S, (11)

and denote the resulting linear program by LPYS ,S
I,J .

Lemma 3.3: For any S ⊆ J , S is feasible for LPI,J if and

only if S is feasible for LPYS ,S
I,J .

Proof: By definition, any S that is feasible for LPYS ,S
I,J

with cover x, is also feasible for LPI,J with the same cover
x. Assume S is feasible for LPI,J , with a cover x. Define

x′
ij =











xi,jT (i)/x(i) if i ∈ YS and x(i) > 0

T (i)/ |N(i)| if i ∈ YS and x(i) = 0

xi,j otherwise

Note that since for each i ∈ I, j ∈ J , x′
ij ≥ xi,j , all the

constraints (2) are still satisfied, and in particular, since x was
a cover for S, so is x′. Furthermore, note that for each i ∈ YS

such that x(i) > 0 we have

x′(i) =
∑

j∈J

x′
ij =

∑

j∈J

xi,jT (i)/x(i) = T (i),

for each i ∈ YS such that x(i) = 0 we have x′(i) = T (i),
and for all other i-s we have x′(i) = x(i). This implies that

all the constraints (1) are also satisfied. It follows that x′, y
are a feasible solution for LPI,J , and x′ is a cover for S.

Given any optimal solution x̃, ỹ to LPYS ,S , note that for each

i ∈ YS , x′(i) = T (i) ≥ x̃(i), which by definition implies that

x′ satisfies constraint (10). It follows that S is feasible for

LPYS ,S
I,J with cover x′, thus completing the proof.
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Corollary 3.4: For any S ⊆ J , S has a cover plan if and

only if S has a cover plan that drains YS .

We conclude our discussion of LP-maximality by noting

that testing whether a set of users S has a cover that drains

YS can be done by solving LPYS ,S (producing a solution x̃)

followed by testing LPYS ,S
I,J for a feasible solution with x̃(i)

as a lower bound on the utilization of each base station i.
A feasible solution x for the latter linear program exists if

and only if S with cover x drains YS . By iteratively testing

the feasibility of S ∪ {j} for every j /∈ S, we obtain an LP-

maximal solution.

D. The Rec-MRC Algorithm

We now turn to formally define our algorithm for solving

the MRC problem. Our algorithm is a recursive algorithm,

that uses solutions to linear programs throughout its execution.

Given a polynomial size linear program LP with variables z,

Solve(LP ) returns an optimal solution z∗ for LP if LP has

a feasible solution, and zero otherwise. For any (partial) cover

x (potentially null-valued), Full(x) returns the set of users for

which constraint (2) is tight, i.e., the set of users S such that

x is a cover for S. If x is null, Full(x) returns the empty

set. Our algorithm receives as input a tuple (I, J, P,D, T,R),
consisting of the set of base stations, the set of users, the

user profit function, the user demand function, the base station

capacity function, and the rate matrix, respectively.

Algorithm 1 Rec-MRC(I, J, P,D, T,R)

1: if J = ∅ then ⊲ recursion base

2: return null

3: end if

4: if there exists a j ∈ J such that P (j) = 0 then

5: x← Rec-MRC(I, J \ {j} , P,D, T,R) ⊲ remove j
6: return x
7: else

8: for every j ∈ J , set E(j) = P (j)
D(j)

9: set j∗ = argminj∈J E(j)
10: for every j ∈ J , set P1(j) = E(j∗) ·D(j)
11: set P2 = P − P1

12: x← Rec-MRC(I, J, P2, D, T,R)
13: for every j such that P2(j) = 0 do

14: S ← Full(x) ⊲ x covers S

15: z ← Solve(LP
YS∪{j},S∪{j}

I,S∪{j} )
16: if Full(z) = S ∪ {j} then ⊲ test feasibility of S ∪ {j}
17: x← z ⊲ update cover

18: end if

19: end for

20: return x
21: end if

We first establish some observations on the instances gen-

erated by the algorithm during the recursive calls performed

throughout its execution.

Lemma 3.5: In every recursive call occurring in line 12, the

profit function P2 is non-negative, and there exists at least one

user j ∈ J for which P2(j) = 0.

Proof: Consider the user j∗ identified in line 9, and
the value E(j∗). By the definition of P1 in line 10 and the
minimality of E(j∗), for every user j ∈ J ,

P1(j) = E(j∗)D(j) ≤ E(j)D(j) = P (j).

which implies that P2 = P−P1 is non-negative. Furthermore,

for j = j∗ the above inequality holds with equality, implying

that P2(j
∗) = 0.

We now turn to analyze the performance of Rec-MRC.

First, we bound the overall profit obtained by a fractional

solution of the linear program LPI,J , and relate this to the

value of an LP-maximal solution. In what follows, given any

linear program LP , we let OPT(LP ) denote the value of an

optimal solution for LP .

Lemma 3.6: If S is an LP-maximal solution and P (·) =
D(·) then OPT(LPI,J) ≤ OPT(LPYS ,S) + T (N(S))

Proof: Let x be an optimal solution for LPI,J . Since
P (·) = D(·) we have E(i, j) = R(i, j). By using the

equivalent linear program LP I,J we obtain

OPT(LPI,J) =
∑

(i,j)∈YS×S

E(i, j)xi,j +
∑

(i,j)/∈YS×S

E(i, j)xi,j

≤ OPT(LPYS ,S) +
∑

(i,j)/∈YS×S

R(i, j)xi,j

≤ OPT(LPYS ,S) +
∑

(i,j)∈N(S)×J

xi,j

≤ OPT(LPYS ,S) +
∑

i∈N(S)

x(i, J)

≤ OPT(LPYS ,S) + T (N(S)).

The equality follows from the equivalence of LPI,J and

LP I,J shown in Lemma 3.2. The first inequality follows

from the fact that {xi,j |(i, j) ∈ YS × S} is a feasible solution

for LPYS ,S , the second inequality follows from the fact that

R(i, j) ≤ 1 for all i, j, along with the fact that base stations

in YS cannot contribute to the coverage of users in S, and the

third and fourth inequalities follow from the definitions. The

result follows.

Lemma 3.7: If S is an LP-maximal solution then

T (N(S)) < x(N(S),S)
1−r

Proof: Since S is LP-maximal, it holds that for every
j ∈ S, S∪{j} is not feasible for LPI,J . In particular, for every

j ∈ S and i ∈ N(S) we have (T (i)− x(i, S))R(i, j) < D(j)
(since otherwise we could have set xi,j = T (i)−x(i, S) while
keeping all other values of x unchanged, and obtain a feasible
solution for S ∪ {j}). Since by our assumption that there are
no hogs, D(j) ≤ rT (i)R(i, j), we obtain

(T (i)− x(i, S))R(i, j) < D(j) ≤ rT (i)R(i, j).

By rearranging and summing over all i ∈ N(S), the result

follows.

Lemma 3.8: If P (·) = D(·) and S ⊆ J with cover plan x
is LP-maximal, then P (S) ≥ (1− r)δP (OPT)

Proof: The result follows from the following series of
(in)equalities:
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P (OPT) = D(OPT) (12)

≤ OPT(LPI,J) (13)

≤ OPT(LPYS ,S) + T (N(S)) (14)

≤ x(YS , S) + T (N(S)) (15)

< x(YS , S) +
x(N(S), S))

1− r
(16)

=
1

1− r
((1− r)x(YS , S) + x(N(S), S))

<
1

1− r
(x(YS , S) + x(N(S), S))

=
1

1− r
x(I, S) (17)

≤
1

1− r
·
1

δ
D(S) (18)

=
1

(1− r)δ
· P (S). (19)

Equalities (12) and (19) follow from having P (·) = D(·).
Inequality (13) follows from the fact that LPI,J is a relax-

ation of the MRC problem, and inequality (14) follows from

Lemma 3.6. Inequality (15) follows from the LP-maximality of

x and having P (·) = D(·) and the fact all rates are at most 1.

Inequality (16) follows from Lemma 3.7. Equality (17) follows

from definition, and finally inequality (18) follows from the

fact all rates are at least δ.

We now turn to prove the upper bound on the performance

of algorithm Rec-MRC, which holds for any profit function.

Theorem 3.9: Algorithm Rec-MRC produces a (1 − r)δ-

approximate solution.

Proof: We prove by induction on the solution returned

by the recursive calls that the solution returned is a (1− r)δ-

approximation. For the base case, when J = ∅, both the

optimal solution and the solution returned in line 2 are

the empty solutions. It follows that the solution returned is

optimal, and in particular a (1− r)δ-approximation.

For the inductive step, there are two cases to consider. The

first case is the solution returned in line 6. Since P (j) = 0, if

x is a (1− r)δ-approximate solution w.r.t. J \ {j}, then it is

also a (1−r)δ-approximate solution w.r.t. J . The second case

to consider is the solution returned in line 20. We will show

that this solution is a (1−r)δ-approximate solution w.r.t. both

profit functions P1 and P2, and therefore, by lemma 3.1 it will

also be a (1− r)δ-approximate solution w.r.t. P = P1 + P2.

We begin by considering P2. By the induction hypothesis,

the solution x obtained in line 12 is a (1 − r)δ-approximate

solution w.r.t. profit function P2. Since every user j added

when extending the solution in lines 13–18 has P2(j) = 0, the

solution returned in line 20 is a (1−r)δ-approximate solution

w.r.t. profit function P2.

We now turn to consider P1. Since in lines 13–18 we

iteratively try to add users to the solution and provide a witness

cover that drains YS in each iteration, the solution returned in

line 20 is both drain-maximal and set-maximal. By Lemma 3.8

it follows that the resulting solution is a (1− r)δ-approximate

solution w.r.t. P1.

As mentioned earlier, since the solution returned in line 20

is (1− r)δ-approximate w.r.t. both P1 and P2, by Lemma 3.1

we conclude that it is (1−r)δ-approximate w.r.t. P = P1+P2,

which concludes the proof.

Our algorithm was presented in a recursive fashion since

this adheres more readily to our analysis approach. However,

the algorithm can be shown to be equivalent to the following

simple greedy approach: Sort the users in decreasing order of

their profit-to-demand ratio, and try to add them to the solution

one-by-one, in this order. One can add the current user j to

the current solution S, if there exists a feasible solution to

LPI,S∪{j}. In terms of time complexity, if we denote by F
the time it takes to solve a the linear program of LPI,J in

each iteration, then the overall running time of the algorithm

is O(n log n + nF ), where F can be made polynomial by

using the ellipsoid method or interior point method [24].

Next, we build upon the algorithmic approach set forth in

this section, and more specifically upon the iterative formu-

lation of our proposed algorithm, and design a more refined

heuristic for performing the task of multi-coverage.

E. A Refined Greedy Heuristic

The algorithm described in Algorithm 1 does not take into

account the available rates for each user, and makes greedy

decisions based on the profit-to-demand ratio alone. However,

the demand of a user from a base stations is strongly mitigated

by the rate with which the base station can serve a user. This

essentially means that for each base station i and for each user

j one can identify the rate-effective profit-to-demand ratio of

user j compared to station i as the quantity
P (j)

D(j)/R(i,j) =

E(i, j) where the denominator essentially captures the actual

amount of resources user j would require from base station i,
if covered by base station i alone.

This gives rise to the following greedy heuristic, described

in Algorithm 2, which aims to refine the greedy approach

manifested in the algorithms of Section III. In what follows,

for every X ⊆ J and rate matrix R′ we denote by LPI,X(R′)
the solution to the linear program LPI,X using the rate matrix

R′ (which might be different than the original matrix R defined

as part of the input to the problem).

IV. SIMULATION STUDY

In order to evaluate the two algorithms suggested in III, we

apply them on a variety of network topologies and compare

them to the single coverage suggested in [15]. We compare

all three heuristics to the fractional solution.

A. Simulation Settings

In this section we describe the settings of our simulations,

aimed to examine the performance and benefits of multi-cover

solutions to the MRC problem. We conducted our simulation

in MATLAB, where we consider settings which capture many

of the facets of a 4G cellular environment.

Our baseline deployment consists of 8 hexagonal cells. Each

cell is associated with a macro-cell base station at its center,

and all base stations use the same fixed transmit power of 50W.

This serves as our underlying cellular network. We consider

n users distributed uniformly at random within the region. We
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Algorithm 2 Heuristic-MRC(I, J, P,D, T,R)

1: S ← ∅
2: sort all pairs (i, j) in decreasing order of E(i, j)
3: for every pair (i, j) ∈ I × J \ S (in order) do

4: for every j′ ∈ J do

5: mri,j(j
′) = min {R(i′, j′) | E(i′, j′) ≥ E(i, j)} ⊲ set

the iteration min-rate for j′

6: end for

7: Ri,j = ~0 ⊲ initiate iteration rate matrix to zero

8: for every (i′, j′) ∈ I × S ∪ {j} do

9: if R(i′, j′) ≥ mri,j(j
′) then

10: Ri,j(i
′, j′) = R(i′, j′) ⊲ use only rates above the

current min-rate

11: end if

12: end for

13: x← Solve(LPI,S∪{j}(Ri,j)
14: if Full(x) = S ∪ {j} then

15: S ← S ∪ {j}
16: end if

17: end for

18: return S

use the Shannon capacity for computing the rates between the

users and the base stations, where the path losses (in dB) were

calculated according to the COST-Hata model [25, Chapter 4,

Equation 4.4.3]. For example, the rate at the edge of a cell

is 1.7Mbps. Depending on the value of δ, we prune all rates

which are below a fraction of δ of the maximum rate supported

by a base station, and consider only rates above this threshold.

This value affects the underlying bipartite graph describing the

connectivity of users to base stations. In the extreme cases,

δ = 1 implies a coverage radius of zero for each base station,

whereas δ = 0 implies an infinite coverage radius, which in

turn results in a complete bipartite graph.

We consider the case of uniform base station time capacities,

normalized to 1. Given the parameter r, for any user j and

base station i for which R(i, j) > 0, we obtain an upper bound

on the permissible demand of user j (due to our “no-hogs”

assumption). The minimum of these bounds, denoted Mj ,

serves as an upper bound on the demand of user j. We pick its

demand uniformly at random in the range [Mj/50,Mj ]. The

profit of satisfying a user’s demand is either chosen uniformly

at random from the range [0, 100] (referred to as random

profits), or they are chosen as equal to the demand, which

means the system aims at maximizing the overall throughput.

B. Simulation Results

Figures 3-2 show the results of our simulation study, where

we examine the performance of the two algorithms proposed

in the previous sections, Rec-MRC and Heuristic-MRC, with

the performance of the single coverage algorithm suggested

in [15], referred to as CK-GAP. In each of the plots we

describe the performance of each algorithm by its performance

ratio, which is the ratio between the algorithm’s performance,

and that of the optimal fractional solution to the LP relaxation

of the problem. This latter value serves as an upper bound on
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Fig. 2. Simulation results for varying value of δ

the optimal performance possible, and therefore serves as a

benchmark. Nonetheless, one should bear in mind that since

the fractional solution of the LP relaxation is usually infeasible

for the integral problem, the actual distance from the optimal

solution is usually smaller. For each setting we conducted a

set of 100 independent simulations, and the results show the

resulting average performance ratio and confidence intervals.

In Figure 2 we explore the effect of a minimum rate restric-

tion on the performance of the various algorithms in a system

with n = 250 users. In a path-loss-bounded environment the

minimum rate restriction is equivalent to limiting the coverage

radius of each base station, which is commensurate with the

average degree of the users in the underlying bipartite graph.

We recall that increasing δ implies a smaller coverage radius,

which results in a smaller average degree. In our simulations

we let δ vary in the range [0.37,0.51] which is equivalent to

allowing a coverage radius between 2R and R, where R is the

radius of the circumcircle of a single cell. For example, for

δ = 0.51 the vast majority of users can only receive service

from a single base station. Increasing δ beyond that would

result in disjoint knapsack problems where no user can receive

service from more than one base station.

In general all algorithms exhibit some performance degra-

dation as we increase δ (and reduce the coverage radius of the

base stations). One should note that this degradation is not only

absolute, but also relative to the solution of the LP relaxation.

For random profits (Figures 2(a)-2(b)), both of our proposed

algorithms employing multi-coverage exhibit a performance

which is very close to optimal, while the contending single

coverage algorithm CK-GAP shows a significantly inferior

performance, of up to 10%. Results from additional simula-

tions not presented here show that the gap in performance

continues to increase as users demands increase (governed

by the parameter r). The situation is more complex in the

case where profit equals demand. First, it should be noted that

our proposed algorithm Heuristic-MRC outperforms all other

algorithms by a significant margin. This can be attributed to
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Fig. 3. Simulation results for varying number of users

the fact that this algorithms exploits multi-coverage ability,

while taking into accounts rate diversity. In the case where

r = 0.1 (Figure 2(c)), i.e., when demands are relatively

small, the benefits of multi-coverage are more limited, and

even as δ increases, the performance degradation of CK-GAP
is relatively mild. When considering Rec-MRC in this case

where profits equal demand, the algorithm essentially adds

users in arbitrary order (since they all have a profit-to-demand

ratio of 1), and therefore suffers from severe performance

degradation as δ increases, and multi-coverage diversity de-

creases. In the case where r = 0.5 (Figure 2(d)), i.e., when

demands are more imposing, the single-coverage algorithm

CK-GAP is limited in its ability to fully use the capacity of

the base stations, leaving a more significant fraction of their

capacity unused, and therefore exhibiting fast-deteriorating

performance. Algorithm Rec-MRC exhibits poor performance

for all values of δ, again – due to its inability to discern

between users.

In Figure 3 we consider the effect of the number of users

in the system on the performance of the various algorithms,

with parameters r = 0.5 and δ = 0.44. The results show

the performance ratios for both random profits (Figure 3(a)),

and the case where profits equal demand (Figure 3(b)). In

both cases the performance of Heuristic-MRC and CK-GAP
slightly improves as user diversity increases, since both algo-

rithms are able to exploit this diversity. The same applies to

Rec-MRC in the case of random profits. However, in the case

where profits equal demand, Rec-MRC essentially adds users

in arbitrary order (as discussed earlier concerning Figure 2),

and therefore shows a steady decrease in performance.

V. CONCLUSIONS

We consider the problem of multi-coverage in 4G cellular

networks, where rates between base stations and users are

non-uniform. We explore the benefits of such an approach

compared to commonly used single-coverage solutions, and

design algorithms which aim at maximizing the profit obtained

from fully satisfied users. We provide upper bounds on the

performance of some of our algorithms, and use these analytic

insights to design further heuristics for the problem. Finally,

we conduct a simulation study which further validates our

results, and demonstrates the benefit of multi-coverage.
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