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ABSTRACT
Passive monitoring utilizing distributed wireless sniffers is
an effective technique to monitor activities in wireless in-
frastructure networks for fault diagnosis, resource manage-
ment and critical path analysis. In this paper, we introduce
a quality of monitoring (QoM) metric defined by the ex-
pected number of active users monitored, and investigate
the problem of maximizing QoM by judiciously assigning
sniffers to channels based on knowledge of user activities in
a multi-channel wireless network. Two capture models are
considered. The first one, called the user-centric model as-
sumes frame-level capturing capability of sniffers such that
the activities of different users can be distinguished. The
second one, called the sniffer-centric model only utilizes bi-
nary channel information (active or not) at a sniffer. For the
user-centric model, we show that the implied optimization
problem is NP-hard, but a constant approximation ratio can
be attained via polynomial complexity algorithms. For the
sniffer-centric model, we devise a stochastic inference scheme
that transforms the problem into the user-centric domain,
where we are able to apply our polynomial approximation
algorithms. The effectiveness of our proposed scheme and
algorithms is further evaluated using both synthetic data as
well as real-world traces from an operational WLAN.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network
architecture and design—distributed networks, wireless com-
munication

General Terms
Algorithms, theory

Keywords
Quality of monitoring, wireless networks, approximation al-
gorithms, binary independent component analysis
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1. INTRODUCTION
Deployment and management of wireless infrastructure

networks (WiFi, WiMax, wireless mesh networks) are often
hampered by the poor visibility of PHY and MAC charac-
teristics, and complex interactions at various layers of the
protocol stacks both within a managed network and across
multiple administrative domains. In addition, today’s wire-
less usage spans a diverse set of QoS requirements from
best-effort data services, to VOIP and streaming applica-
tions, making the task of managing the wireless infrastruc-
ture even more difficult, due to the additional constraints
posed by QoS sensitive services. Monitoring the detailed
characteristics of an operational wireless network is critical
to many system administrative tasks including, e.g., fault
diagnosis, resource management, and critical path analysis
for infrastructure upgrades.

Passive monitoring is a technique where a dedicated set
of hardware devices called sniffers, or monitors, are used to
monitor activities in wireless networks. These devices cap-
ture transmissions of wireless devices or activities of inter-
ference sources in their vicinity, and store the information in
trace files, which can be analyzed distributively or at a cen-
tral location. Wireless monitoring [23, 24, 19, 6, 7] has been
shown to complement wire side monitoring using SNMP and
basestation logs since it reveals detailed PHY (e.g., signal
strength, spectrum density) and MAC behaviors (e.g, col-
lision, retransmissions), as well as timing information (e.g.,
backoff time), which are often essential for wireless diag-
nosis. The architecture of a canonical monitoring system
consists of three components, 1) sniffer hardware, 2) sniffer
coordination and data collection, and 3) data processing and
mining.

Depending on the type of networks being monitored and
hardware capability, sniffers may have access to different
levels of information. For instance, spectrum analyzers can
provide detailed time- and frequency- domain information.
However, due to the limit of bandwidth or lack of hard-
ware/software support, it may not be able to decode the
captured signal to obtain frame level information on the fly.
Commercial-off-the-shelf network interfaces such as WiFi
cards on the other hand, can only provide frame level in-
formation1. The volume of raw traces in both cases tends
to be quite large. For example, in the study of our campus

1Certain chip sets and device drivers allow inclusion of
header fields to store a few physical layer parameters in the
MAC frames. However, such implementations are generally
vendor and driver dependent.



WLAN, 4 million MAC frames have been collected per snif-
fer per channel over an 80-minute period resulting in a total
of 8 million distinct frames from four sniffers. Furthermore,
due to the propagation characteristics of wireless signals, a
single sniffer can only observe activities within its vicinity.
Observations of sniffers within close proximity over the same
frequency band tend to be highly correlated. Therefore, two
pertinent issues need to be addressed in the design of pas-
sive monitoring systems; 1) what to monitor, and 2) how to
coordinate the sniffers to maximize the amount of captured
information.

This paper assumes a generic architecture of passive mon-
itoring systems for wireless infrastructure networks, which
operate over a set of contiguous or non-contiguous channels
or bands2. To address the first question, we consider two
different models for the capturing capability of the system.
The first model, called the user-centric model, assumes avail-
ability of frame-level information such that activities of dif-
ferent users can be distinguished. The second model, called
the sniffer-centric model, only assumes binary information
regarding channel activities, i.e., whether some user is active
in a specific channel near a sniffer. Clearly, the latter model
imposes minimum hardware requirements, and incurs mini-
mum cost for transferring and storing traces. In some cases,
due to hardware constraints (e.g., in wide-band cognitive
radio networks) or security/privacy considerations, decod-
ing of frames to extract user level information is infeasible.

We further characterize theoretically the relationship be-
tween the two models. To address the second question, we
introduce a quality-of-monitoring (QoM) metric defined as
the total expected number of active users detected, where a
user is said to be active at time t, if it transmits over one of
the wireless channels. The basic problem underlying all of
our models can be cast as finding an assignment of sniffers
to channels so as to maximize the quality-of-monitoring.

We note that the problem of sniffer assignment, in an at-
tempt to maximize the QoM metric, is further complicated
by the dynamics of real-life systems such as 1) the user popu-
lation changes over time (churn), 2) activities of a single user
is dynamic, and 3) connectivity between users and sniffers
may vary due to changes in channel conditions or mobility.
These practical considerations reveal the fundamental inter-
twining of “learning”, where the usage pattern of wireless
resources is to be estimated online based on captured in-
formation, and “decision making”, where sniffer assignments
are made based on available knowledge of the usage pattern,
and in turn affect the QoM. In this paper, we do not address
the learning problem. Rather, we focus on designing algo-
rithms that aim at maximizing the QoM metric with differ-
ent granularities of a priori knowledge. The usage patterns
are assumed to be stationary during the decision period.

Our Contribution.In this paper, we make the following
contributions toward the design of passive monitoring sys-
tems for multi-channel wireless infrastructure networks,

• We provide a formal model for evaluating the quality
of monitoring.

• We study two models that differ in the capturing ca-
pability of passive monitoring systems. For each of

2A channel can be a single frequency band, a code in CDMA
systems, or a hopping sequence in frequency hopping sys-
tems.

these models we provide algorithms and methods that
optimize the quality of monitoring.

• We unravel interactions between the various models.

More specifically, we show that in both the user- and sniffer-
centric models considered, a pure strategy where a sniffer is
assigned to a single channel suffices in order to maximize the
QoM. In the user-centric model, we show that our problem
can be formulated as a covering problem. The problem is
proven to be NP-hard, and constant-approximation polyno-
mial algorithms are provided. In the sniffer-centric model,
we characterize the expressiveness of such a model depend-
ing on the amount of a priori information available. We
show that somewhat surprisingly, although the only infor-
mation retrieved by the sniffers in this model is binary (in
terms of channel activity), it still maintains much of the
“structure” of the underlying processes. Discovery of the
structure using binary adaptation of the Independent Com-
ponent Analysis (ICA) technique [16] allows mapping the
sniffer assignment problem to the user-centric model. We
complete our study by extensive evaluation using both syn-
thetic data as well as real-world traces from an operational
WLAN to demonstrate the effectiveness of our schemes in
both models.

The paper is organized as follows. We first provide an
overview of related work in Section 2. In Section 3, we for-
mally introduce the QoM metric and the user-centric and
sniffer-centric models for a passive monitoring system. The
NP-hardness and polynomial-time algorithms for the maxi-
mum effort coverage problem which underlies two variants of
the user central model are discussed in Section 4. The rela-
tionship between the user-centric and sniffer-centric models
is established in Section 5, where we also describe our scheme
for solving the QoM problem under the sniffer-centric. Fi-
nally, we present the results of our evaluation study using
both synthetic and real traces in Section 6, and conclude the
paper in Section 7.

2. RELATED WORK
Wireless monitoring is an active area of research, that has

received much attention from several perspectives. There
has been much work done on wireless monitoring from a
system-level approach, in an attempt to design complete sys-
tems, and address the interactions among the components
of such systems. The work in [2, 14] uses AP, SNMP logs
and wired side traces to analyze WiFi traffic characteristics.
Passive monitoring using multiple sniffers was first intro-
duced by Yeo et al. in [23, 24], where the authors articu-
late the advantages and challenges posed by passive mea-
surement techniques, and discuss a system for performing
wireless monitoring with the help of multiple sniffers, syn-
chronization and merging of the traces via broadcast beacon
messages. The results obtained for these systems are mostly
experimental. Rodrig et al. in [19] used sniffers to capture
wireless data, and analyze the performance characteristics of
an 802.11 WiFi network. One key contribution was the in-
troduction of a finite state machine to infer missing frames.
The Jigsaw system, that was proposed in [6], focuses on large
scale monitoring using over 150 sniffers.

A number of recent works focused on the diagnosis of wire-
less networks to determine causes of errors. In [3], Chandra
et al. proposed WiFiProfiler, a diagnostic tool that uti-



lizes exchange of information among wireless hosts about
their network settings, and the health of network connec-
tivity. Such shared information allows inference of the root
causes of connectivity problems. Building on their monitor-
ing infrastructure, Jigsaw, Cheng et al. [5] developed a set
of techniques for automatic characterization of outages and
service degradation. They showed how sources of delay at
multiple layers (physical through transport) can be recon-
structed by using a combination of measurements, inference
and modeling. Qiu et al. in [18] proposed a simulation based
approach to determine sources of faults in wireless mesh net-
works caused by packet dropping, link congestion, external
noise, and MAC misbehavior.

All the afore-mentioned work focuses on building moni-
toring infrastructure, and developing diagnosis techniques
for wireless networks. The question of optimally allocat-
ing monitoring resources to maximize captured information
remains largely untouched. In [20], Shin and Bagchi con-
sider the selection of monitoring nodes and their associated
channels for monitoring wireless mesh networks. The opti-
mal monitoring is formulated as maximum coverage problem
with group budget constraints (denoted MC-GBC), which
was previously studied by Chekuri and Kumar in [4]. In this
problem, we are given a ground set of n elements U , and a
set S of m sets of subsets of U . Given an integer bound
d ≤ m, we are required to find a subset T ⊆ S of size at
most d, and for each s ∈ T a unique subset cs ∈ s, such that
the number of elements covered by

⋃
s∈T cs is maximized.

One can view each element u ∈ U as a user, each s ∈ S as
a sniffer, and each c ∈ s as the set of users using a unique
channel, that are within the sensing range of s. The problem
is then to choose at most d sniffers, and assign each one to
a channel, so as to maximize the number of users covered.
The standard maximum coverage problem is the special case
where for each s ∈ S, |s| = 1. Polynomial-time algorithms
are devised and are shown to achieve optimal approximation
ratio. The user-centric model results in a problem formu-
lation that is similar to (albeit different from) the one ad-
dressed in [20]. On the one hand, we assume all sniffers may
be used for monitoring (hence parting with our problem be-
ing akin to the classical maximum-coverage problem which
is trivial for d = m), while on the other hand we focus on
the weighted version of the problem, where elements to be
covered have weights. One should note that all the lower
bounds mentioned in [4, 20] do not apply to our problem.

Independent component analysis (ICA) is a computational
method for separating a multivariate signal into additive
subcomponents supposing the mutual statistical indepen-
dence of the non-Gaussian source signals. Most ICA meth-
ods assume linear mixing of continuous signals [16]. A spe-
cial variant of ICA, called binary ICA (BICA), considers
boolean mixing (e.g., OR, XOR etc.) of binary signals, and
has been applied in the context of multi-assignment cluster-
ing for boolean data [22], and medical diagnosis [8], etc. Ex-
isting solutions to BICA mainly differ in their assumptions of
prior distribution of the mixing matrix, noise model, and/or
hidden causes. For instance, in [8], an infinite number of
hidden causes following the same Bernoulli distribution are
assumed. Accordingly, reversible jump Markov chain Monte
Carlo and Gibbs sampler techniques are applied. In con-
trast, in our sniffer-centric model, the hidden causes may
follow different distribution and the mixing matrix tends to
be sparse.

3. PROBLEM FORMULATION

3.1 Network model and QoM metric
Consider a system of m sniffers, and n users, where each

user u operates in one of K channels, c(u) ∈ K = {1, . . . ,K}.
The users can be wireless (mesh) routers, access points or
mobile users. At any point in time, a sniffer can only monitor
packet transmissions over a single channel. We assume the
propagation characteristics of all channels are similar. We
represent the relationship between users and sniffers using
an undirected bi-partite graph G = (S,U,E), where S is
the set of sniffer nodes and U is the set of users. An edge
e = (s, u) exists between sniffer s ∈ S and user u ∈ U if s
can capture the transmission from u. If transmissions from a
user cannot be captured by any sniffer, the user is excluded
from G. For every vertex v ∈ S ∪ U , we let N(v) denote
vertex v’s neighbors in G. For users, their neighbors are
sniffers, and vice versa. Abusing the notation slightly, we
also refer to G as the binary adjacency matrix of graph G.

We will consider sniffer assignments of sniffers to chan-
nels, a : S → K. Given a sniffer assignment a, we consider
a partitioning of the set of sniffers S =

⋃K
k=1 Sk, where

Sk is the set of sniffers assigned to channel k. We fur-
ther consider the corresponding partition of the set of users
U =

⋃K
k=1 Uk, where Uk is the set of users operating in

channel k. Let Gk = (Sk, Uk, Ek) denote the bipartite sub-
graph of G induced by channel k. Given any sniffer s, we
let Nk(s) = N(s)∩Uk, i.e., the set of neighboring users of s
that use channel k.

A monitoring strategy determines the channel(s) a sniffer
monitors. It could be a pure strategy, i.e., the channel a
sniffer is assigned to is fixed, or a mixed strategy where
sniffers choose their assigned channel in each slot according
to a certain distribution. Formally, let A = {a | a : S → K}
be the set of all possible assignments. Let π : A → [0, 1] be
a probability distribution over the set of sniffer assignments.
We refer to such a distribution as a mixed strategy. Clearly,
a pure strategy a that selects a single channel per sniffer is
a special case of mixed strategies, namely, π(a) = 1.

We measure the quality of monitoring (QoM) by the total
expected number of active users monitored by the set of
sniffers. This measure is called the QoM metric.

3.2 Models for Observing User Access Patterns
In this section, two parametric models are proposed to

describe the observability of usage patterns. We assume
time is slotted, and that all channel and users’ statistics
remain stationary for a period of time T .

User-centric model.First, we consider transmission events
in the network from the user’s viewpoint. We assume that
the bipartite graph G is known by inspecting the packet
header information from each sniffer’s captured traces.

In the user-centric model, the transmission probabilities
of the users p = (pu)u∈U are known and assumed to be
independent 3 (pu denotes the transmission probability of
user u)4. Clearly, if pu is set to 1, user u always has packets

3The assumption that user activities are independent has
been widely adopted in literature, examples are [10] and
[17].
4The proposed optimization framework is valid for both IID
and non-IID user processes.



to transmit. This can be used to model scenarios where
worst-case traffic load is assumed.

Sniffer-centric model.The user-centric model requires de-
tailed knowledge of each user’s activities. This necessitates
frame-level capturing capability by the passive monitoring
system. In the sniffer-centric model, only binary informa-
tion (on or off) of the channel activity at each sniffer is
assumed.

Let x = [x1, x2, . . . , xm] be a vector of m binary ran-
dom variables, where xi denotes whether or not sniffer si
captures communication activities in its associated channel.
We further denote by xk the binary vector of observations
for sniffers Sk (operating on channel k). We will sometimes
abuse notation and let x = {xk | k = 1, . . . ,K}. We assume
that sniffers’ observations in different channels are indepen-
dent. However, dependency exists among observations of
sniffers operating in the same channel (as a result of trans-
missions made by the same set of users). Given an assign-
ment a, a complete characterization of the sniffers’ observa-
tions is given by the joint probability distribution Pa(xk),
k = 1, . . . ,K. By independence of different channels we have
Pa(x) =

∏K
k=1 Pa(xk).

Clearly, the sniffer-centric model is not as expressive as the
user-centric model (formally proven in Section 5.1). How-
ever, it has the advantage of being based on aggregated statis-
tics, which are likely to remain stationary in the presence
of moderate user-level dynamics, such as joining and leav-
ing the networks, or changes in transmission activities (e.g.,
busy or thinking time). Furthermore, obtaining such binary
information is less costly in both hardware requirements and
communication/storage complexity.

4. QOM UNDER THE USER-CENTRIC MODEL
Under the user-centric model, the goal is to maximize the

expected number of active users monitored. Recall that pu
is the transmission probability of user u. This problem can
be formulated formally by:

max
∑

u∈U pu ×
∑

a∈A(u) π(a)

s.t. π(a) ∈ [0, 1]∑
a∈A π(a) = 1,

(1)

where

A(u) = {a | ∃s ∈ N(u) s.t. a(s) = c(u)} ,

i.e., A(u) is the set of assignments that monitors user u.
The objective function can be rewritten as∑

a∈A

πa

∑
u∈U

pu · 1(a ∈ A(u)), (2)

where 1(·) is an indicator function. From Eq. (2) it is clear
that a pure strategy can be adopted, i.e., an optimal assign-
ment is given by

a∗ = arg max
∑
u∈U

pu · 1(a ∈ A(u)).

4.1 Problem formulation
Let MAX-EFFORT-COVERAGE (MEC) denote the prob-

lem of finding the largest (weight) set of users that can be
monitored by a set of sniffers, where each sniffer can monitor
one of a set of k channels. Note that in MEC the weights
can in fact be any non-negative values and are not limited

to [0, 1]. The MEC problem can be cast as the following
integer program (IP):

max
∑

u∈U puyu

s.t.
∑K

k=1 zs,k ≤ 1 ∀s ∈ S
yu ≤

∑
s∈N(u) zs,c(u) ∀u ∈ U

yu ≤ 1 ∀u ∈ U
yu, zs,k ∈ {0, 1} ∀u, s, k.

(3)

Each sniffer is associated with a set of binary decision
variables, zs,k = 1 if the sniffer is assigned to channel k; 0,
otherwise. yu is a binary variable indicating whether or not
user u is monitored, and pu is the weight associated with
user u.

One should first note that the problem is trivial if k =
1, since all sniffers would simply be assigned to the sole
available channel. We can therefore assume that k ≥ 2.

The MEC problem can be viewed as a special case of the
MC-GBC (described in Section 2), where we have d = m.
One should note that previous hardness results for MC-GBC
(both NP-hardness, as well as hardness of approximation)
were based on a reduction to the standard maximum cov-
erage problem for d < m (the maximum coverage problem
becomes trivial for d = m). It follows that none of these
proofs are applicable to the MEC problem. Surprisingly,
there has not been any work done explicitly on the MEC
problem, which seems to be a natural and important vari-
ant of the maximum coverage problem.

4.2 Hardness of MEC
In what follows we show that the MEC problem is NP-

hard for k ≥ 2, even for the unweighted case (i.e., where
pu = 1 for all u ∈ U). Our proof shows that the hardness of
the MEC problem actually follows from the choices available
to the different sniffers. It is inherently different from the
hardness suggested for the MC-GBC problem, which follows
from limiting the number of sniffers one is allowed to use.

The proof uses a reduction from the problem of Monotone-
3SAT (MON3SAT), which is known to be NP-hard (see [12,
11]). In MON3SAT we are given as input an instance of
3SAT where every clause consists of either solely positive
variables, or solely negated variables. The goal is to decide
whether or not there exists an assignment which satisfies all
clauses.

Theorem 1. The unweighted MEC problem is NP-hard,
even for k = 2.

Proof. Let C = {C1, . . . , Cn} be a set of 3SAT clauses,
where each clause Ci is either the disjunction of 3 positive
variables, or the disjunction of 3 negated variables, over a
ground set of variables X = {x1, . . . , xm}. We construct the
following instance to MEC with k = 2 channels: for every
variable xi we define a sniffer si, and for every clause Cj

we define a user uj . We let c(uj) = 1 if Cj consists solely
of positive variables, and c(uj) = 2 if Cj consists solely
of negated variables (note that this definition is consistent
since we start with an instance of MON3SAT, where in ev-
ery clause all variables agree in sign). We now define the
bipartite graph G = (U, S,E) which defines which user is in
the range of which sniffer. We do this by defining the neigh-
boring users of every sniffer and every channel. For every
i = 1, . . . ,m we define

N(si) = {uj | xi ∈ Cj} ∪ {uj | ¬xi ∈ Cj}



The set of edges E is therefore defined by

E = {(uj , si) | uj ∈ N(si)} .

Given a channel assignment a : S → {1, . . . ,K}, we define
a truth assignment φ for the variables in X as follows:

φ(xi) =

{
T a(si) = 1
F a(si) = 2

Clearly φ is well defined. We now show that assignment a
is able to monitor all the users if and only if all the clauses
are satisfied by truth assignment φ. Assume a is able to
monitor all the users, and let Cj be a clause in C. By the
assumption, uj must be monitored by at least one sniffer si
such that a(si) = c(uj) and uj ∈ N(si). Assume Cj consists
of solely positive variables. It follows that si is assigned
to channel c(uj) = 1. It follows that φ(xi) = T . Since
by the definition of N(si) we have that xi ∈ Cj (since Cj

is a clause of solely positive variables), we are guaranteed
that truth assignment φ satisfies Cj . The case where Cj

consists of solely negative variables is symmetric. Assume
now that a does not monitor all the users, and let uj be an
un-monitored user. Assume Cj consists of solely negative
variables, which in turn implies that c(uj) = 2. Since uj is
un-monitored, it follows that for every sniffer si such that
uj ∈ N(si), a(si) = 1. By the definition of the reduction,
and the definition of φ, this implies that for every variable
xi which appears in Cj , φ(xi) = T . Since all these variables
appear in their negated form in Cj , Cj is not satisfied by
assignment φ. Again, the case where Cj consists of solely
positive variables is symmetric.

Theorem 1 implies that one would have to settle for ap-
proximate solutions to MEC. We first note that Guruswami
and Khot show in [13] that MON3SAT is NP-hard to ap-
proximate within a factor of 7/8 + ε for every ε > 0. The
following is a corollary of the above fact, and the proof of
Theorem 1:

Corollary 2. The MEC problem is NP-hard to approx-
imate to within a factor of 7/8 + ε for every ε > 0.

Proof. By closely examining the reduction appearing in
the proof of Theorem 1, it follows that the number of sat-
isfied clauses given the truth assignment φ is exactly the
number of users that are covered by the channel assignment
a. It therefore follows that the reduction is approximation-
preserving (i.e., any α-approximation for MEC implies an
α-approximation for MON3SAT). Combining this with the
fact that it is NP-hard to approximate MON3SAT to within
a factor of 7/8 + ε for every ε > 0 ([13]), the result fol-
lows.

4.3 Algorithms for MEC
As previously stated, since MEC is a special case of the

MC-GBC problem, we can use the available approximation
algorithms for MC-GBC (e.g., [4, 20]) to solve our problem
in the user-centric model. In what follows we give a brief
overview of the algorithms we use. These algorithms would
serve as a crucial component in maximizing QoM in the more
oblivious settings of the sniffer-centric model (where no a
priori knowledge of the problem’s structure is available), as
we discuss in Section 5.

The greedy algorithm.The greedy algorithm Greedy iter-
atively assigns sniffers to users, where at each step it chooses
the sniffer and the assignment that (locally) maximizes the
weight of coverage of those not yet monitored users.

It is proven in [4] that in the unweighted case, i.e., where
all users have the same weight, Greedy guarantees to pro-
duce a 1

2
-approximate solution, and that this is tight. The

following theorem shows that the same holds also for the
weighted case, which generalizes the MEC problem.

Theorem 3. Greedy is a 1
2

-approximation algorithm for
the weighted MC-GBC problem.

Proof. The proof follows closely the proof appearing
in [4], and is omitted due to space limit.

Note that the example provided in [4] showing that this
analysis is tight naturally also holds for the weighted case.

LP-based algorithm.This algorithm is based on solving
the LP-relaxation of the IP formulation for MEC appear-
ing in Eq. (3). Once we have an optimal solution to the
LP-relaxation, we round the fractional solution into an inte-
gral solution, with e.g., the probabilistic rounding technique
of Srinivasan [21]. We next sketch the basic idea of this
probabilistic rounding technique. Let z∗ be an optimal so-
lution to the LP relaxation of Eq. (3), and let s be any
sniffer. If

∑
k z
∗
s,c > 0, one can view the induced solution

z∗s : C → [0, 1] as a probability measure over the different
channels (via normalization). The goal is to decide on an
integral channel assignment for s, namely, setting each z∗s,c
to a value in {0, 1} such that exactly one variable out of the
k variables corresponding to sniffer s is set to the value 1.
The algorithm builds a binary tree whose leaves corresponds
to the k variables zs,k associated with sniffer s, and pairs un-
set variables in a bottom-up fashion. The pairing is made
such that an internal node sets at least one of the variables
corresponding to its children. This is done while adjusting
the (probability) value of the (other) unset variable. This
approach is proven to produce a valid assignment in linear
time [21]. We refer to the above algorithm as ProbRand.

As mentioned in [4] (and later made explicit in [20]), this
method produces a (1 − 1/e)-approximate solution, for the
case where all users have the same weight. As is the case
with the greedy algorithm, the analysis for the unweighted
case (e.g., appearing in [20]) can be extended to provide the
same guarantee also for the weighted case, as demonstrated
by the following theorem (the proof is omitted due to space
constraints).

Theorem 4. ProbRand is a (1 − 1/e)-approximation al-
gorithm for the weighted MC-GBC problem.

One could also use the pipage LP-based technique sug-
gested by Ageev and Sviridenko [1], as an alternative to
ProbRand. This approach has the exact same approxima-
tion guarantee as ProbRand.

We note that the approximation guarantee of the LP-
based algorithms are best possible for the MC-GBC prob-
lem, again, due to a reduction from maximum coverage, and
the fact that it is hard to approximate the maximum cov-
erage problem to within a factor better than (1 − 1/e) [9].
However, this lower bound does not necessarily hold for the
MEC problem, for which the previous lower bound of 7/8+ε
for every ε > 0 is the best available.



5. QOM UNDER THE SNIFFER-CENTRIC
MODEL

Recall that in the sniffer-centric model, given an assign-
ment a ∈ A,

∏K
k=1 Pa(xk) is the probability distribution of

binary observations x = {xk, k = 1, . . . ,K} from m sniffers.
Let w(xk) be the expected number of active users moni-
tored by sniffers in channel k. The MEC problem under the
sniffer-centric model is defined as follows.

max
∑

a∈A π(a)
∑K

k=1 w(xk)Pa(xk)
s.t. π(a) ∈ [0, 1]∑

a∈A π(a) = 1,

Clearly, a pure strategy suffices, i.e., there exists an optimal
assignment such that,

a∗ = arg max

K∑
k=1

w(xk)Pa(xk). (4)

Note that in contrast to the user-centric model, where
transmission activities from different users are independent,
observations of sniffers are correlated. As a result, Pa(xk)
cannot be simplified as a product form. This motivates us
to exploit the underlying (though not directly observable)
independence among users, and map the problem to QoM
under the user-centric model.

5.1 Relationship between the user-centric and
sniffer-centric models with known G and
unknown p

In the sniffer-centric model, each sniffer only reports bi-
nary output regarding the channel activities, and thus the
access probability of the users as well as the bipartite graph
G, are both hidden. In this section we derive the sufficient
and necessary conditions for unraveling the access probabil-
ities of the users given G and P(x).

Let y = [y1, y2, . . . , yn] be a vector of n binary random
variables, where yj = 1 if user uj transmits in its asso-
ciated channel, and yj = 0 otherwise. yc is the vector
of activities for users transmitting in channel k (i.e., users
in Uk). The joint distribution of y is given by P(y) =∏

yj=1 pj
∏

yj=0(1 − pj). The product form is due to the

independence among users’ activities. The main question
we aim to answer is the following: Given the vector xk of
sniffers’ observations, what knowledge can be obtained re-
garding yc? Throughout this section, unless otherwise spec-
ified, we limit the discussion to users and sniffers in a fixed
channel k, and drop the subscript. We will also denote by
gij the entry in the i’th row and j’th column of G.

Using the adjacency matrix, we have the following,

xi =

n∨
j=1

gij ∧ yj , i = 1, . . . , I, (5)

where ∧ is Boolean AND and ∨ Boolean OR. Define the set

Y (x) = {y |
n∨

j=1

gij ∧ yj = xi, ∀i}.

Therefore,

P(x) = P(y ∈ Y (x)) =
∑

y∈Y (x)

P(y) (6)

The necessary and sufficient conditions that uniquely de-
termine p using G and P(x) is characterized in the following
theorem.

Theorem 5. Given G = (S,U,E), p can be uniquely de-
termined by P(x) iff ∀uj 6= uj′ ∈ U , N(uj) 6= N(uj′).

Proof. The proof is omitted due to space limit.

The above theorem essentially shows that in the sniffer-
centric model, if the adjacency matrix is known, then one
can effectively determine the transmission probabilities of
the users from the joint distribution of sniffers’ observa-
tions. In presence of measurement noise, methods such as
Expectation-Maximization can be applied. We therefore ob-
tain an instance of the problem corresponding to our user-
centric model, which can be solved efficiently using the al-
gorithms described in Section 4.3.

5.2 Inference of G and unknown p using bi-
nary ICA

In this section we deal with the sniffer-centric model, and
the problem of QoM in a scenario where both the user access
probabilities and the adjacency matrix are unknown. In
such a scenario, the question is whether knowledge regarding
G and p can still be obtained from P(x). The answer is
positive. Consider the simple example, where two sniffers s1
and s2 observe the activity of a single user u. In this case,
x1 = x2. Therefore,

P(x) = P(x1)1(x1 = x2)
= P(yu = x1)

=

{
pu, x1 = 1
1− pu, x1 = 0

.

Therefore, if the joint distribution of xk is the product of
a marginal distribution with an indicator function, and the
two marginal distributions are identical, we can infer that
both sniffers observe the same set of users. Generally, the
joint distribution of x preserves a certain stochastic “struc-
ture” of the user’s activities. We will formalize this obser-
vation in the subsequent section by devising an inference
method to estimate G and p from P(x).

Estimation of G.This problem is similar to the problem
addressed by the Independent Component Analysis (ICA)
scheme [16], where the observed data is expressed as a linear
transformation of latent variables that are non-Gaussian and
mutually independent. ICA is widely used in applications
such as blind source separation, feature extraction, noise
reduction in imaging data etc. In the classic ICA model,
continuous-value variables are mixed linearly:

x = Gy,

where x = (x1, x2, . . . , xm)T is the vector of observed ran-
dom variables, y = (y1, y2, . . . , yn)T is the vector of indepen-
dent latent variables (the “independent components”), and
G is an unknown constant matrix, called the mixing matrix.
The problem is then to estimate both the mixing matrix G
and the distribution of the latent variables yi, using obser-
vations of x alone. ICA can be solved by casting it as an
optimization problem which aims at maximizing the non-
gaussianity of estimates ŷ (thus aiming at preserving the
level of independence in y). (see [16]).

ICA assumes that both y and x are continuous random
variables and linear mixing of y, and thus is not directly
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Figure 1: Channel selection algorithm under the sniffer-centric model

applicable to our problem. In Eq. (5), x and y are binary
random variables, and Boolean operations are used. In [15]
Himberg et al. show that with a proper transformation,
extensions of well-known ICA algorithms work well when the
data is sparse enough. We adopt the algorithm presented in
[15] with some modifications. The basic idea is as follows.

First, Eq. (5) is simplified using linear mixing and a (coordinate-
wise) unit step function.

x = U(Gy), (7)

where U(·) is unit step functions defined by U(r) = 1(r > 0).
By applying the standard ICA, an estimation of the linear

mixing matrix ĜL can be found by ignoring the step func-
tion. Then, the binary mixing matrix Ĝ can be estimated
by a quantization operation, defined by

Ĝ = U(Λ−1ĜL − T ). (8)

The diagonal scaling matrix Λ has

λii = signmax(ĝLi),

where

signmax(r) =

{
max(r) if |max(r)| > |min(r)|
min(r) otherwise.

Λ scales the elements in the mixing matrix to the maximum
value 1. The matrix T contains thresholds, such that the
higher the threshold value, the sparser Ĝ is. We note that
our definition of the signmax is different than the one used
in [15].5

Estimation of P(y).Once Ĝ is determined, P(y) needs to
be estimated. From xi = U(ĝiyi), where ĝi is the ith row of

Ĝ, we have,

p(xi = 0) =
∏

ĝij=1

p(yj = 0).

The product is due to independence of yi’s. Taking log(·)
on both sides, we have

log(p(xi = 0)) =
∑
ĝij=1

log(p(yj = 0)).

Let αi = log(p(xi = 0)), and βi = log(p(yj = 0)). Define
α = [α1, α2, . . . , αm]T , and β = [β1, β2, . . . , βn]T . Therefore,
we formulate the following optimization problem.

min ‖ α− Ĝβ ‖2

s.t β < 0, (9)

where ‖ · ‖ is the norm of a vector. Clearly, this is a
constrained quadratic programming problem with a positive
semi-definite matrix (i.e., all eigenvalues are non-negative),
and can be solved in polynomial time.

5We believe the form of signmax in [15] is not correct.

Channel selection.With the estimates ŷ and Ĝ at hand,
we effectively transform the sniffer-centric model to the user-
centric model. The method described in Section 4.3 can then
be applied to determine the channel assignment of each snif-
fer. The complete channel assignment scheme in the sniffer-
centric model is illustrated in Figure 1.

6. EVALUATION
In this section we evaluate the performance of different

algorithms under the user-centric and sniffer-centric models
using both synthetic and real traces. Synthetic traces allow
us to control the parameter settings by varying the number
of users, the number of channels as well as the traffic load of
users, and investigate their effects on the performance of dif-
ferent algorithms. The real-world traces are collected from
an operational WLAN. They provide insights on the per-
formance under realistic traffic loads and user distributions
over space.

In addition to the greedy and LP-based algorithm, two
baseline algorithms are considered:

• Random channel assignment (Rand), where the
sniffer channels are assigned randomly. Rand assumes
no prior information regarding either user activities or
sniffers’ observations. It is independent of whether the
user or sniffer centric model is assumed. However, for
conciseness of presentation, we only compare it side-
by-side with results of user-centric models.

• Max Sniffer Channel (Max), where a sniffer is as-
signed to its busiest channel. This scheme is the most
intuitive approach in the sniffer-centric model when
sniffers decide their channel assignment non-cooperatively
based on local observations. Note it is easy to con-
struct scenarios where Max performs arbitrarily bad.
Thus, its worst case performance is unbounded.

For the inference scheme in the sniffer-centric model, we used
the FastICA algorithm [16] to compute the linear mixing

matrix ĜL.

6.1 Synthetic traces
A toy example.We begin this section by considering a toy
example, which provides insight as to the operation of our
proposed scheme, as well as to the limitation of both our
scheme and the other algorithms considered.

Consider four sniffers and 5 users operating in two chan-
nels, as depicted in Figure 2(a). The center user operates in
channel 1, and the remaining ones in channel 2. The trans-
mission probabilities of the users are marked, with the center
node having higher transmission probability. The marginal
probabilities of sniffers observing the first and the second
channel busy are [0.5 0.5 0.5 0.5] and [0.49 0.49 0.49 0.49],
respectively. The inference algorithm yields the inferred bi-
partite graph Ĝ and the access probabilities p as specified in
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Figure 2: A toy example. Users are shown in circles with their
active probabilities. Sniffers are shown as solid circles. An edge
between a sniffer and a user exists if the sniffer can capture the
user’s transmissions. The center user operates in channel 1, and
the remaining ones in channel 2.

Table 1: Comparison of QoM under user and sniffer-centric mod-
els in the toy example

Rand/Max Greedy LP-Round

User-centric 1.08 (Rand) 1.66 1.16
Sniffer-centric 0.50 (Max) 1.37 1.66

Figure 2(b) (note that the inferred graph is a strict subgraph
of the original graph).

Table 1 summarizes the performance of the various algo-
rithms with respect to the QoM under both the user-centric
model and the sniffer-centric model. The Rand algorithm is
applied in the user-centric model; and the Max algorithm is
applied in the sniffer-centric model. In both cases the op-
timal QoM is 1.66. Although the inference algorithm does
not yield exactly the same bipartite graphs, nor the same
user transmission probabilities (by comparing Figures 2(a)
and 2(b)), the resulting sniffer assignment still provides good
monitoring quality. In contrast, the Max algorithm, which
greedily selects the busiest channel for each sniffer individu-
ally can lead to significant performance degradation. Inter-
estingly, the greedy algorithm sometimes outperforms the
LP rounding algorithm.

Large scale networks.In this set of simulations, 1000 wire-
less users are placed randomly in a 500x500 square meter
area. The area is partitioned into hexagon cells with cir-
cumcircle of radius 86 meters. Each cell is associated with
a base station operating in a channel (and so are the users
in the cell). The channel to base station assignment ensures
that no neighboring cells use the same channel. 25 Sniffers
are deployed in a grid formation separated by distance 100
meters, with a coverage radius of 120 meters. A snap shot of
the synthetic deployment is shown in Figure 3. The trans-
mission probability of users is selected uniformly from [0,
0.06], resulting in an average busy probability of 0.2685 in
each cell. We vary the total number of orthogonal channels
from 3 to 9.6 The results shown are the average of 20 runs
with different seeds.

Figure 4(a) shows the simulation results under the user-
centric model. One can see that the performance of the
greedy algorithm and LP-based algorithm with random round-
ing are comparable to the LP upper bound. When the num-

6In 802.11a networks, there are 8 orthogonal channels in
5.18-5.4GHz, and one in 5.75GHz.

ber of channels is small, a random assignment can yield a
reasonable monitoring quality. However, as the number of
channels increases, some channels of a sniffer do not have
any activity leading to poorer performance of the random
assignment.

Figure 4(b) summarizes the simulation results for the sniffer-
centric model. In this part, we compare the QoM using the
Max algorithm, with that attained by the greedy and LP-
based channel assignment, applied to the mixing matrix Ĝ
and user access probabilities p inferred by our scheme de-
picted in Figure 1. We observe that the algorithms based
on the inferred Ĝ and ŷ outperform the Max algorithm.
Recall that according to the Max algorithm, a sniffer non-
cooperatively decides its own channel assignment and selects
the most active channel. Clearly, the Max algorithm does
not take into account the correlations among the observa-
tions of neighboring sniffers in the same channel. In contrast,
the proposed inference algorithm can indeed extract such a
correlative structure from the binary observations. We fur-
ther note that by comparing Figure 4(a) and Figure 4(b),
one can detect QoM degradations due to uncertainty in G
and p. Such degradations are expected due to the infor-
mation loss in having merely the binary observations of the
sniffers.

6.2 Real traces
In this section, we evaluate our proposed schemes using

real traces collected from the campus wireless network using
21 WiFi sniffers deployed in our building. Over a period
of 6 hours, between 12pm and 6pm, each sniffer captured
approximately 300,000 MAC frames. Altogether, 655 unique
users are observed operating over three channels.7

The number of users observed on channels 1, 2, 3 are 382,
118, and 155, respectively.

The histogram of user active probability (calculated as
the percentage of 20µs slots that a user is active) is shown

7Our measurements used the campus IEEE 802.11g WLAN,
which has three orthogonal channels.
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Figure 3: Hexagonal layout with users (‘+’), sniffers (solid dots),
and channels of each cell (in different colors)
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Figure 4: QoM under user-centric and sniffer-centric models with synthetic traces

in Figure 5. Clearly, most users are active less than 1% of
the time except for a few heavy hitters. The average active
probability is 0.0014.

Figure 6 gives the average number of active users moni-
tored under the user-centric and sniffer-centric models. The
number of sniffers in the experiments varies from 5 to 21 by
including only traces from the corresponding sniffers. The
number of channels is fixed at 3. Except for the case with
21 sniffers, all data points are averages of 5 scenarios with
different sets of sniffers, chosen uniformly at random. Recall
that the average active probability is 0.0014. Thus, the num-
ber of users active in a slot is around 1. In the user-centric
cases (Figure 6(a)), both the greedy and the LP-round algo-
rithms with random rounding significantly outperform the
random assignment. Moreover, their performance is compa-
rably with the LP upper bound on the optimal performance
possible. As the number of sniffers increases, the average
number of users monitored increases but tends to flatten
out since most users have been monitored. The performance
gain of the greedy/LP-round over random also reduces from
31.6% at 5 sniffers to about 10% at 21 sniffers. In the sniffer-
centric case, both the greedy and the LP-round algorithms
outperform Max. However, we observe performance degra-
dation due to the uncertainty in G and p, as would be ex-
pected due to the loss of information, when compared to the
performance in the user-centric model.
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Figure 5: Histogram of user active probability measured as the
percentage of active 20µs slots. The average active probability is
0.0014.

7. CONCLUSION
In this paper, we formulate the problem of maximizing

QoM in multi-channel infrastructure wireless networks with
different a priori knowledge. Two different models are con-
sidered, which differ by the amount (and type) of informa-
tion available to the sniffers. We show that when complete
information of the underlying cover graph and the access
probabilities of users is available, the problem is NP-hard,
but can be approximated within a constant factor. We fur-
ther show that when only binary information about chan-
nel activities is available to the sniffers, one can map the
problem to the the one where complete information is at
hand using the statistics of the sniffers’ observations. Eval-
uations demonstrate the effectiveness of our proposed infer-
ence method and optimization techniques.

There are a few fundamental open questions that remain
to be addressed, including 1) design and analysis of binary
inference schemes, with provable performance bounds, and
2) resolving the gap between the upper and lower bounds on
the approximation ratio of the MEC problem.
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