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Abstract—Cell selection is the process of determining the cell(s) are best detected (called astive sef, and sends an official

that provide service to each mobile station. Optimizing these service request to subscribe to base stations by their order
processes is an important step towards maximizing the utilization in that queue. The mobile station is connected to the first

of current and future cellular networks. In this paper we study b tati that itivel fi d it t R
the potential benefit of global cell selection versus the current ase station that positively confirmed ItS request. <easons

local mobile SNR-based decision protocol. In particular, we study for rejecting service requests may be handovers or drop-
the new possibility that is feasible in OFDMA-based systems, of calls areas, where the capacity of the base station is nearly
satisfying the minimal demand of a mobile station simultaneously exhausted.

by more than one base station. o Consider for example the settings depicted in Figure 1.
We formalize the problem as an optimization problem, called . . .
the all-or-nothing demand maximization problem, and show that ASSUMe that the best SNR for Mobile Station 1 (MS1) is
when the demand of a single mobile station can exceed the capac-detected from microcell A, and thus MS1 is being served by
ity of a base station, this problem is not only NP-hard but also this cell. When Mobile Station 2 (MS2) arrives, its best SNR
cannot be approximated within any reasonable factor. In contras s also from microcell A, who is the only cell able to cover

under the very practical assumption that the maximum required - \1so However, after serving MS1, microcell A does not have
bandwidth of a single mobile station is at most an--fraction of the ; '

capacity of a base station, we present two different algorithms enoth capacity to Sat_iSfy the demand of MS2 who !S a heavy
for cell selection. The first algorithm guarantees a satisfaction data client. However, if MS1 could be served by picocell B

of at least a1 — r fraction of an optimal assignment, where a then both MS1 and MS2 could be served. Note that MS1
mobile station can be covered simultaneously by more than one agnd MS2 could represent a cluster of clients. The example
base station. The second algorithm guarantees a satisfaction of a shows that the best-detected-SNR algorithm can be a factor

least a 1= fraction of an optimal assignment, while every mobile = . . .
2= P g Y of max{d}/min{d} from an optimal cell assignment, where

station is covered by at most one base station. Using an extensivex' s b
simulation study we show that the cell selections determined d IS the demand of any mobile station in the coverage area.

by our algorithms achieve a better utilization of high-loaded Theoretically speaking, this ratio can be arbitrarily farg
capacity-constrained future 4G networks than the current SNR This simple example illustrates the need for a global, rathe

based scheme. Specifically, our algorithms are shown to obtain w0, 5 |ocal, cell selection solution that tries to maximize
up to 20% better usage of the network’s capacity, in comparison

with the current cell selection algorithms. the global utilization of the network, and not just the SNR
of a single user. In voice only networks, where base station
I. INTRODUCTION capacities are considered to be high, sessions have limited

The ability to provide services in a cost effective manngyrat'onj and user demands are unlforn_1, this may not be a
is one of the most important building blocks of competitiv '9 barrn_ar. That is, the cu_rrent base station sg!ect!ormqszrs
modern cellular systems. Usually, an operator would like {8sults, in most cases, In a rea;onable utilization of the
have a maximal utilization of the installed equipment, fisat ne_twork. However, in the forthcoming 4G cellular networks
to maximize the number of satisfied customers at any givg?is may not be the pase. )

point in time. This paper addresses one of the basic problemé&\though the detailed structure of 4G systems is as of yet
in this domain, the cell selection mechanism that detersinB0t Well defined, there is a clear consensus regarding some of
the base station (or base stations) that provides the servic
to a mobile station - a process that is performed when a
mobile station joins the network (callecell selectiof, or
when a mobile station is on the move in idle mode (called
cell reselectionor cell change in HSPA).

In most current cellular systems the cell selection process
is done by a local procedure initialized by a mobile device
according to the best detected SNR. In this process the enobil
device measures the SNR to several base stations that are
within radio range, maintains a “priority queue” of thosatth

picocell B

microcell A

T This work was done while the author was with the Computer Seien Fig. 1. Bad behavior of thdest detected SNRIgorithm in high-loaded
Department at the Technion, Israel. capacitated network.



the important aspects of the technologies to be implementefined by the IEEE 802.16e standard. An important question
in these systens Fourth generation systems are planned ia this context is whether cover-by-many is indeed more
provide even higher transmission rates and larger captheity powerful than cover-by-one, in the sense that it improves th
current 3G (IMT-2000 based) systems, both in terms of tlability of the network to satisfy more clients.

number of users as well as in terms of traffic volume. Most Approximation algorithms and heuristics play a major role
likely, 4G systems will be designed to offer bit rates of 10t our paper. Ay-approximation algorithm is a polynomial-
Mbit/s (peak rate in mobile environment) to 1 Gbit/s (fixedime algorithm that always finds a feasible solution for vbhic
indoors) with a 5 MHz frequency bandwidth. The systemshe value of the objective function is within a proved factor
capacities are expected to be at least 10 times larger thidny of the optimal solution. Heuristics will be described in
current 3G systems. In addition, these objectives should temparison with the worst-case behavior of approximation
met together with a drastic reduction in the cost (1/10 t®Q/1 algorithms, in order to design a good practical solutionhi® t
per bit) [1]. Such high frequencies yield a very strong sign@aroblems in question.

degradation and suffer from significant diffraction remgt _Our Contribution

from small obstacles, hence forcing the reduction of cek si i i
(in order to decrease the amount of degradation and to iserea N tiS paper we present a new approach for cell selection

the degree of coverage), resulting in a significantly IarggPat is derived from the antl_c:lpated 4G technologles. To the
number of cells compared to previous generations. best of our knowledge, despite recent extensive reseamé do

The increased number of base stations, and the variaBRanture cellular networks planning and coverage optimiza

bandwidth demand of mobile clients, will force operators t on (9-9-’ [2], [3]). there is no explicit study in th? lieture
optimize the way thecapacity of a base station is utilized. iscussing the new IEEE 802.16e possibility of simultarseou

Unlike in previous generations, the ability of a base Smtid:o://\?rage c;)flm_ob|sle (i!|entls| t?r’] morﬁ thflin ;)_ne baske):l station.
to successfully satisfy the service demand of all its mobile € model, in section 11, the cell selection problem as an

: - - : . optimization problem calledll-or-nothing demand maximiza-
clients would be highly limited and will mostly depend on itdP .
infrastructure restrictions, as well as on the serviceithistion tion (AONDM). We _show tha_t the general version of AP_'\iDM
among its mobile clients. cannot be approximated within a factor better thdh °,

Another interesting aspect is the support for different Qolgﬂe.SSNP — ZPP, for any e > 0, where J is the set. of
classes for the mobile stations, (e.gald, silver, or bronzg. mobile stations. Motivated by this result, we address aiapec

In such a case, the operator would like to have as maﬁ@se O.f the prob!em. Following practical scenarios, we defin
satisfied "gold” customers as possible, even if this mea Srestrlctlve version of AONDM, the-AoNDM problem, for

several unsatisfied "bronze” customers. somer < 1, where the network satisfies the condition that

In this paper we study the potential benefit of a new glob ethdemand '(t)f e]\c/ery rEOb"e tstz;ﬂonﬂ:s tat mOSttTaﬁ? cltllon
cell selection mechanism, which should be contrasted wi € capacily of any base station that can potentially cove

the current local mobile SNR-based decision protocol e mobile station. We show that even this special case of the

. . . ._._problem is NP-hard. These results appear in Section IV.
particular, we rigourously study the problem of maX|m|2|n§ We further present, in Section IV 'E/E/)o different algorithms

the number of mobile stations that can be serviced by a given . T T :
set of base stations in such a way that each of the servif&rith'S problem. The first is éﬁ-apprommatmn algorithm,

mobile stations has its minimal demand fully satisfied. hich uses the cover-by-one paradigm, i.e., every mobile

differentiate between two coverage paradigms: The first srganon is covered by at most one base station. Note that this

cover-by-onewvhere a mobile station can receive service fro pproxmaﬂo_n guarantee is with regard _to the optiszler-
at most one base station. The seconddser-by-manywhere y-manyassignment. The second algorithm uses the cover-

we allow a mobile station to be simultaneously satisfied Q_Tl?gzegﬁg?dlgmﬁ\évrr]ee[ﬁaﬁ &Zbgzsse'{i}[g?ioﬁa?t ?Seacggfé?j
more than one base station. This means that when a mobil y 0y '

station has a relatively high demand (e.g. video-on-d@mar{e inement of the first algorithm, and we prove it guarantees
in a sparse area (e.g., sea-shore) severr;ll base statons ﬁt least al — r fraction of the value of an optimal solution, at

its active set can participate in its demand satisfactidris T a price of increased running t|me. :
N . T . In order to evaluate the practical differences betweenajlob
option is not available in third-generation networks (ared n

. . . anld local mechanisms for cell selection in future networks
even in HSPA networks) since these networks have universa . . . i
we conducted an extensive simulation study (Section V). We

frequency reuse and the quality of a service a mobile station .
. . : compare between global mechanisms that are based on our
receives will be severely damaged by the derived co-channe

interference. However, OFDMA-based technology systerﬁgpmx'matlon algorithms and the current best-SNR greedy

i S . .cell selection protocol. We study the relative performante
and their derivatives are considered to be among the prime . . -, .

) . thése three algorithms under different conditions. Inipaldr,
candidates for future cellular communication networkseThWe show that in a high-load capacitv-constrained 4G-like
ability to satisfy the demand of a mobile station by more than 9 pactty

) . . o network, where clients’ demands may be large with respect
one member of its active set pssiblein these systems, as : . ;
to cell capacity, global cell selection can achieve up to 20%

1See International Telecommunication Union (ITU) Web Site aipetter coverage than the current best-SNR greedy cellttriec
http://www. itu.int/home/index.htm . method.



[I. MODEL AND DEFINITIONS account variable base station capacities nor mobile statio
Consider a bipartite graplc = (I,J,E) where I = bandwidth demands. In the case of [4], [5], this enables the

{1,2,...,m} is the set of base stations adgd= {1,2,...,n} authors to reduce their corresponding optimization probie
is the set of mobile stations (alients. Every clientj € J @ polynomial-time solvable matching problem. As shown in
has a non-negative demantij), and a non-negative profit OU" Paper, when base station capacities and/or mobilessati
p(j), and every base statiane I has a non-negative Capacitydeman_ds are incorporated, this gpproach ig no Ionggr feasib
c(i). In addition, for every base statiane I, the coverage An integrated _mod_el for opt_lmal cell-site selectlon_and
area ofi is modeled by a subsef; C J of clients which frequency allocation is shown in [6], where the goal is to
can be serviced by. The set of base station®’(j) C I maximize the number of connected mobile stations, while
connected by edges to a client J, represents the active sefhaintaining quasi-independence of the radio based teagyol
of this client. We further extend the above definitions tcssef N€ Optimization problem in this model is shown to be NP-
of nodes, such that for every C J, d(A) = >~ , d(j) and hard. _ _
p(A) =3 .., p(j), and for everyB C I, ¢(B) = 3.,  c(i). AoNDM is very closely related to the problem of planning
Furthermojr%, given anyl C J, we |gtN(A) — U-éfﬁ\f( ). 4G cellular networks under budget limitation as described
Given a subset of clientss C .J, a cover pfan for 5 in[8],[9]. In this problem, in addition to the input of AONDM
is a weight functionz : E — R*, such that for every We aré given a sett of possible configuration of base stations,
je S, Y. unepa(i,j) > d(j), and for everyi € I, 23S well as an opening cogt(s) for everyi € I. When a client
> Zi(;’]})e ~ ¢(i). Notice that such a restriction of Pelongs to the coverage area of more than one base station,
ZJ- ((z 7;€§x(j’j) >_d(j) for everyj € S, is also known as interference between the servicing stations may occurs@he
1 (2,7)€ 7 - ’ ! . .
all-or-nothingtype of coverage. This means that clients thdfiterferences are modeled by a penalty-based mechanism and
are partially satisfied are not considered to be coverech(sf@ reduce the contribution of a base station to a client.
a model appears, for example, in OFDMA-based networ@e budgeted cell planning problemsks for a subset of base

where mobile stations have their slot requirements overSItions!” C I whose cost does not exceed a given budget
frame and these are not useful if not fulfilled). and the total number of fully satisfied clients is maximized.

The all-or-nothing demand maximization prob|emNoticethatinthese settings, by taking the Eef base stations

(AONDM) is to find a subset of clientss C J, and a with zero opening costs, without interferences, we get aiape
cover planz for $, such thap(S) is maximized. ’ case of AONDM where all clients have the same profit. It was

Fori € I, we usex(i) = - 2(i, ), and forj € J shown [9] that this problem cannot be approximated, unless
’ - 7 (i,5)erE 1) ’

we user(j) = 2, . ;e (i, 7). As before, we extend these”=NP: and that &~ -approximation algorithm exists for a
notations to setsZ 6f(zr7130(ejes, such that for evarg I, z(A) = special case of the problem where every sek ajpen base

S, a(i), and for everyB C J, z(B) = 3., 2(j). We stations can fully satisfy at least clients, for every integral
icA ' = = Z2.jeB :

further extend this notation to subgraphs(hfsﬁch that given value of . . .
anyACIandBC J, z(A,B) =Y, . (3, 5) Another closely related problem is ttadi-or-nothing mul-

In addition, for everyo e TUJ V\(/g”égnﬁé{‘exgglE(;) the ticommodity flow problemdiscussed in [10] and [11]. In
set of edges with endpoint, and for everyiv C T U J, let this problem we are given a capacnat_ed und!rected graph
EW) = U E(v). We further denote for_everyl c G = (V, E,u) (whereu is the edge-capacity function) and set
andB C J ‘E& B) = {(i,j) € EN(Ax B)}. = of k pairs(s1,t1),..., (s, t). Each pair has a unit demand.

Given any constant < 1, we say an instance isrestricted The objective IS to find a largest SUbﬁm {1, k} S.UCh
if for every (i, ) € E, d(j) < r - c(i). We further define the that one can simultaneously route for every S one unit of

problem ofr-AONDM as the AONDM problem limited to- flow betweens; andt¢;. It is straightforward to verify that the
restricted instances unit profit version of AONDM is a special case of this problem.

It was shown that the all-or-nothing multicommodity flow
[1l. RELATED WORK problem can be approximated within @dlog? k) factor of the

Cell selection has received much attention in recent yeaoret'mu"; [11]. On .the o':jher hqnhq, forfalay> 0, tlheégiréoblem
(e.g., [4]-[7]) where research focused mainly on multipl&zannot D€ approximated to within a acto;o«?y’(h%%v‘ [E1)
access techniques, as well as on power control schemes ghthe optimum, unles&P C ZPTIME (|V| ) [12].
handoff protocols [4], [5], [7]. However, no special attention is given to specific network

In [7] a cell selection algorithm is presented where th@Pologies (e.g., bipartite graphs, as in our case), androth

goal is to determine the power allocations to the variofPecial instances.
users, as well as a cover-by-one allocation, so as to satisfy
per-user SINR constraints. An HSPA-based handoff/cedl-si
selection technique is presented in [4], [5], where the aihje The important goal of efficiently solving the AoNDM
is to maximize the number of connected mobile statioqwoblem is beyond our reach since this problem is NP-hard,
(very similar to our objective), and reaching the optimalitas we mentioned before. Moreover, as the following theorem
of this objective is done via a new scheduling algorithm fashows, even obtaining a reasonable approximation algorith
this cellular system. All the above results did not take intfor the problem is improbable under standard complexity

IV. APPROXIMATING THEr-AONDM PROBLEM



assumptions. The proof is omitted due to space constraints. Given any cover-by-one planfor S C J, we say that: is
Theorem 4.1:For anye > 0, AONDM cannot be approxi- cover-by-one-maximal (CBO-maximéifor any j € J\ S, no
mated to within a factor better thaﬂi\l_e, unlessNP = ZPP. SU{j}-extension ofx exists. We further say C .J is CBO-
Motivated by this result, we focus on a special case ofiaximal when it has a CBO-maximal cover plan which is clear
the problem. Namely, for any < 1 we consider ther- from the context. For anyi C 7 andB C J, and any flowy in
AoNDM problem. The following theorem, whose proof isGf(A, B), we can denote the value of the flow hgs). Given
omitted due to space constraints, shows that even in suty cover plan: for S C J, we say that: is rearrangement-

restrictive settings, the problem is still intractable. maximalif for any j € J\ S, no S U {j}-rearrangement of
Theorem 4.2:For any fixedr < 1, the -AoNDM problem  exists. Given any sef C J, letS = J\ S andYs = I\ N(5).
is NP-hard, even if there is only one base station. We say a cover plan for S C J is cover-by-many-maximal

In what follows we present two approximation algorithm§éCBM-maximal)if = is rearrangement-maximal, andY’s, S)
for the »-AoNDM problem. The algorithms are local-ratiois @ maximum flow in the flow graply;(Ys, S). As before,
algorithms that are based on a decomposition of the profig further sayS C J is CBM-maximal when it has a CBM-
obtainable from every client into two non-negative termgnaximal cover plan which is clear from the context.
One part is proportional to the demand of the client, while The following lemma, appearing in [13], serves as a basic
the other part is the remaining profit. We define a family dpol with which we analyze the approximation guarantee of
feasible solutions, which we dub “maximal” (see below fothe algorithms proposed in this section.
the formal definition), and prove that any such solution is an Lemma 4.3 (Local Ratio)Let 7 be an instance tor-
approximate solution when considering a profit functionakhi AONDM, over a graphGG = (I, J, E), with profit functionp.
is proportional to the demand. The algorithms we presehben, ifp = p; +ps, andx is a cover plan for some sgtC J
generate such maximal solutions recursively. We then a@ply Which is c-approximate w.r.tp;, and alscc-approximate w.r.t.
inductive argument which proves that the solution gendratgz, thenz is c-approximate w.r.tp.
by the algorithm is also an approximate solution w.r.t. the
original profit function. A. A cover-by-one.=-approximation algorithm

We first present an approximation algorithm that guaranteeswe start with Algorithm CBO-MC; roughly speaking,
a solution whose value is within a factor £~ from the value under CBO-MC, given a specific ordering of the clients, and
of an optimal solution. This algorithm follows the cover-bygiven an existing cover plam, a client is added greedily by
one paradigm, and thus every mobile station is covered byfiaiding a CBO-extension of, if such an extension exists.
most one base station. Our second algorithm is obtained bptherwise, the client is discarded. See Algorithm 1 for the
careful refinement of this algorithm, and an appropriatengka pseudocode of the algorithm.
to the notion of maximality. This algorithm uses the cover-
by-many paradigm, and is guaranteed to produce a solutifyorithm 1 CBO-MC (G = (1, J, E), demandsi, profitsp,
whose value is within a factor ofl — r) from the value capacities)
of an optimal solution, while the complexity increases by a3 7 — 0 then
polynomial factor. Next we specify several definitions regtd ».  returnz = 0
for the analysis of the proposed algorithms. 3: end if

Given any instance of-AoNDM over a graphG = 4 if there exists g € J such thaip(j) = 0 then
(I,J,E), and any two subsetd C I and B C J, we define gf v« CBO-MC (" = (I, J\ {j}, E\ E(7)). d. p. ©)

7
8

the A-B flow-graph of G, G{(A,B) = (V,F), such that . elsere‘”mm

V = {s}UAUBU{t} for new verticess,t ¢ I UJ, and g for everyj € J, sete; = %
F=({s} xA)UE(A,B)U (B x {t}). We define a capacity 9: sete = min,e; !

function~ : F — R+ as follows: 10:  for everyj € J, setpi(j) = - d(j)
11: setps =p—p1
c(v) ifu=s,vecA 122z« CBO-MC (G, d, p2, c)
v (u,v) = 00 if uc A,veB 13: for .?vaeryj]\s[%c;] thart;f)gt(]j) T)O do( ) > d(j) th
- _ 14: if 3i € N(j) such thate(i) — z(i) > d(j) then
d(u) if ue B,v=t. 15 setz(i f) = d(j)
. . _ . 16: else
For brevity of notation, we let; = G(I, J). Given any two |- discard;

subsets”, D C V, we lety(C, D) = Zu)veFﬂ(CXD) v(u,v). 1 end if

A cover planz for S C J is said to be acover-by-one 19:  end for
plan if for every j € S, there is exactly one € I such that 20:  returnz
(i, §) > 0. Given a cover-by-one plan for S C J, a cover- 21 end if
by-one planz’ for T' C J is said to be d-extension oft, if
for anyj € S and everyi € I, 2'(i, j) = z(i, 7). Note that in Lemma 4.4:Consider any instance of theAoONDM prob-
such a case one is guaranteed to hs&ve T. Given a cover lem such that for every clienf, p(j) = € - d(j), for some
planz for S C J, a cover planz’ for T C J is said to be a constank. Any cover-by-one plar for S C J which is CBO-
T-rearrangement of, if S C T. maximal is a%—approximate solution w.r.t. profit functign




Proof: Let S = J\ S. Without loss of generality, we can Theorem 4.5:Algorithm CBO-MC produces a ;:1’;—
assume that no uncovered client receives any servicefdre., approximate solution.
everyj € S, z(j) = 0. Proof: We prove by induction on the recursion that the
If S = J, thenz is an optimal cover plan, and thereforecover plan returned from every call isja”-approximate solu-
i tion. Note that the number of clients in every two conseeutiv
J. First note that for every € N(S), one of the following recursive calls decreases by at least 1, thus the recursibn w

holds: terminate.
« Either there are no edges betweeand S, or For the base case, sincé = (), there are no clients
o 2(i) =2(i,8) > (1 —r)c(i). to cover, hencer = 0 is an optimal cover, and therefore
7 clearly i

To see this, assume by contradiction that there exists @n
N(S) such that there are edges betwéeand S, andz(i) <

(1 —r)e(i). By the assumption, there exists at least one cliefit
j € Ssuchthati, j) € E. Consider the function’ : £ — R*

We have two cases to consider. First, consider the cover plan
t for B C J\ {j} returned in line 6. By the induction
Hypothesus,B is ai=
G = (I,J\ {4}, E \ E(j)) and profit functionp. Since

defined by p(j) = 0, the optimal profit w.r.t the grapler = (I, J, E)
v oy oA if i =4, =3 and profit functionp cannot be greater than the optimal profit

(@,7) { x(i, 5") otherwise wrt the grath’ and profit functionp Hence,B is also a

=(I,J,E) and

Clearly, for everyi’ # i, 2’ does not violate the Capac'typroﬂt functionp. The second case to consider is the cover plan
constraint imposed by(i), since by the feasibility of, for 2 for B returned in line 20. By the induction hypothes,

every such/, 2'(i) = (i) < c(i). Furthermore, since was g a = approximate solution w.r.t. the gragh = (I, J, E)

a cover-by-one plan, then so is. Consider base station profrt functionp,. Since for every clientj considered

Since by the assumptiar(i) < (1—r)c(i), using the fact that ;, jjeq 13 19,p2(j) = 0, the optimal profit w.r.t the graph
the instance is-restricted, we have'(i) = x(i) +d(j') < _ (1 1 E) and profit functionp, cannot be greater than

c(i ),”hence thﬁ Caﬁa‘i!ty C‘?/”Stra'nt Is satisfied ]{ms We"h the optimal profit attainable from the instance returneanfro
Finally, note that all clientg” € SU {j} are satisfied by the the recursive call. Hence, the solution returned in line K0 i

cover planz’. It follows thatz’ is an.S U {;j}-extension ofz, L= approximate solution w.rt. the graphi = (I, J, )
contradicting the assumption thatis CBO-maximal. Using a _ 4"

i h i h and profit functionp,, and so is any extension of it using
similar argument one can show thi{(S) C N (S), otherwise clients j such thatpy(j) = 0. Note that for every client
there is a base station iN(S)\ V(9) that can satisfy at least

l di h l foll 4 such thatp,(j) = 0, who has a neighbor with sufficient
e o o |nS., cona |ct|rrg tne maxrm'a ity of’. It follows regjqyal capacityj is added to the cover, where exactly one
that for everyi € N(S), (i) > (1 — r)c(4).

X i base station is used to satisfy its demand. It follows that th
Let OPT C .J denote any optimal solution to the problemgg tion returned in line 20 is a CBO-maximal solution. By

Note that Lemma 4.4 it follows that this solution is £~ approximate
p(OPT) = p(OPTNS)+ p(OPTNS) < p(S) solution w.r.t. the graplt: = (I, J, E) and profit functionp;.
] _ Using Lemma 4.3 we conclude that the solution returned is a
+ e > d(i) <p(S) + e e(N(S)) ' = (I,J,E) and

JjeOPTNS profit functionp = p;1 + p2, which completes the proof. m

where the last inequality follows from the feasibility OGP T. Note that the solution produced by algorithm CBO-MC is
On the other hand, by the maximality 8t we are guaran- & cover-by-one plan. It therefore follows that the ratiodssn

teed to have the optimallcov.er—by—one solution and the optimal cover-by-
many solution is at mosé:—jj as well.
Z;d(]) - ZI“T(Z) 2 Zﬁ (i) B. A cover-by-manyl — r)-approximation algorithm
(S 1€ i . .
! EN(S) . We now turn to describe our second algorithm, called
> Y (1=r)-c(i) = (1—r)-c(N(S)), CBM-MC, which achieves an approximation ratio @f— r)
ieN(S) using the cover-by-many paradigm. Under CBM-MC, a client

is added by first trying to exhaust the capacities of base

which in turn implies stations which cannot contribute to uncovered clients, and

p(S) =€-d(S) > e(1—r)-c¢(N(S)). then using the capacity of the remaining base stations in

order to complete the cover. If such a cover cannot be

It follows that produced, then the client is discarded. The pseudocodeeof th
p(S) 1 2 _p algorithm is given in Algorithm 2, where we use the subrositin
p(OPT) < p(S)+—, =p(5) (1 Tz T) =1, P9, EK-MaxFLow (G(A, B)) to denote the computation of the

maximum s-¢ flow in the flow graphGy(A, B) using the
hencesS is a ;== approximate solution w.r.t the profit func-Edmonds-Karp algorithm [14]. Our choice of the Edmonds-
tion p. B Karp algorithm is motivated by two of its properties, namely




the fact that it converges from any feasible flow, and thfeund in polynomial time.

fact that it uses augmentation paths. This choice can be Proof: Let y = MAXFLOW(G¢(Ys,S)). Clearly y is
substituted by any algorithm for computing maximum flowa feasible flow inG; as well. Consider the Edmonds-Karp
which satisfies these properties. Note that by duality, rgivéAlgorithm (EK-MaxFLow, see [14] for details) for finding
any s-t flow in a flow graphG(A, B), it is easy to verify a maximum flow, executed on graph,, starting from the

if a cut is a minimum cut by checking that all the edges aiitial feasible flowy. We show that for every augmentation
saturated. path found by EK-MX FLow, after increasing the flow along
this path and obtaining some floyl, 3/(s, Ys) > y(s, Ys).
Algorithm 2 CBM-MC (G = (I, J, E), demandsd, profits  First note that we can assume that all the augmentation

p, capacities) paths used by the EK-Mx FLow algorithm are simple paths.
1. x — EK-MAXFLOW (G) Furthermore, note that by the fact that any augmentation pat
2. if {t} is a MINCUT in G/ then is simple, we obtain that for every flow obtained during
ij endr?ftumx executing the EK-Mx FLow algorithm, and for every € Y,

5: if there exists g € J such thatp(j) = 0 then y(s,i) < y'(s,i), since such flow can only decrease if the
6: x+ CBM-MC (G’ =(I,J\{j},E\E()), d, p, c) algorithm uses a patp such that(i, s) € p, which implies

7 returnz that p is not a simple path.

g: elsefor everyi € J, sete; — 2 Since for every feasible flow we havez(Ys, S) = z(s, Ys)

100 sete— ﬁn'e’ 7T d) (by flow conservation, and using the fact that there are no

11: for everyj € J, setpi(j) = e- d(j) edges between’s and S), we can conclude that during the

12:  setps =p—pi entire execution of the EK-MxFLow algorithm, the flow

13:  x < CBM-MC (G, d, p2, ¢) y' resulting in augmenting any path satisfiesy’(s, Ys) >

14:  for every;j such thatps(j) = 0 do y(s,Ys). On the other hand, note that given any maximum

ig; ge(t_zvij N i |1\;:((}< (:S%(J{ﬁ)) flow in G, if we consider its flow path-decomposition, then

17 setYSSU\{{;-}} S\ Ne the set of paths using edges betwégrand S also constitutes

18 J — EK-MAX FLOV?/E{G];(YSU“}, SuUL) a flow in Hg (due to the unidirectionality of edges between

19: z «— EK-MAXFLOW(G(I, S U{j})), starting from the Ng and S in Gy). Hence these paths cannot support a flow

initial feasible flowy. whose value is greater thanMFLow(Gf(Ys, S)).

20: if {t} is a MINCUT in G¢(1, S U {j}) then Finally note that EK-M\x FLow produces a maximum flow

g;j endxifH i in G in polynomial time, which completes the proof of the

23 end for lemma. =

24:  returnx The above lemma gives rise to the following corollary,

25: end if whose proof is omitted due to space constraints:

Corollary 4.9: If there exists a rearrangement-maximal

Given a cover plar: for S C J, letS = J\S, and consider cover plany for S C J, then there exists a CBM-maximal
I as partitioned into two sets¥Vz = N(S), andYs = I\ Ng. cover planz for S. Furthermore, such a cover plan can be
Note that by definition, for every € S andi € Y, (i,5) ¢ E. found in polynomial time.

The following lemma, whose proof is omitted due to space The following lemma shows a bound on the value of any
constraints, provides a necessary and sufficient condition maximum flow inG .
covering a set of clients. Lemma 4.10:Given any S C J, if S has a

Lemma 4.6:For any instance of-AoNDM over a graph CBM-maximal cover plan, then WxFLow(Gy) <
G =(I,J,E),and anyA C I and B C J, {t} is a minimum MAXFLOW(G(Ys, S)) 4 c(Ng).

s-t cut in the flow-graphG (A, B) if and only if A can cover Proof: Let y be a CBM-maximal cover plan fof, and
all clients in B. consider a partition of into two types of flow paths, each

Lemma 4.6 admits a method for finding a rearrangemem®nsisting of 3 edges:
maxirT_]aI cover plan, as shown in the f_oIIowing lemma, whose Ty = {p = (s,4,4,t) | such thati € Yg}.
proof is omitted .due to space constraints: o T = {p = (s,i,7,t) | such thati e NE}-

Lemma 4.7:Given any instance to-AoNDM over a graph
G = (I,J,E), any cover planz for S C J, and a client
j € J\ S, the task of finding a rearrangement ofwhich is
rearrangement-maximal can be done in polynomial time.

The following lemmas describe the correlation between the
maximum flow inG, and the maximum flow in flow graphs
of the form G, (Ys, S), for setsS which have a cover plan.

Lemma 4.8:AssumeS C J has some cover plan. Then, , _ , ,

Note that these are not augmentation paths used in computieg th

there exists a maximum flow in Gf such thatr(YS, S) =  maximum flow by EK-MAXFLow. These paths are part of an actual path
MAxXFLoW(G(Ys,S)). Furthermore, such a flow can bedecomposition of the maximum flow.

Note that such a packing exists, by the directionality of the
edges inG;.? If we denote the flow along a flow path by
x(p), then clearly

> x(p) < MAXFLOW(G(Ys, S))
peT)



since all paths irll; are paths inG¢(Ys,S), and therefore  In order to study the expected performance of the pro-
cannot support a flow greater thanAMFLOW(G(Ys,S)). posed global cell selection algorithms with respect to the

On the other hand, current local mobile SNR-based protocol we conducted séver
< No) — o N simulations over high-loaded, capacity constrained, &6-I|
Z:; z(p) < ¢(s, Ng) = ¢(Ng) networks. A secondary goal of these simulations was to study
pelz

the “benefit” of using the new ability, defined by the IEEE
since all these paths use edges in the(eulVg). It therefore 802.16e, of a mobile station to be satisfied simultaneougly b
follows that more than one base station.

MAXFLOW(Gf) < MAXFLOW(G¢(Ys, S)) 4 ¢(Ng). A. Methodology
We considered a network consisting of anx n-grid of

We can now continue in the same way as we did wit lients’ locations (demand points, each considered asgiesin

the simpler algorithm, where CBM-maximality replaces cBCE ient, or bin). Each client has a service request for either

maximality. voice or data service. The demand of a voice and data client
Lemma 4.11:Consider any instance of theAoNDM prob- 'S defined as 1 and 25, respectlv?t_elwnder this ratio between
lem such that for every client, p(j) = ¢-d(j), for some con- the demand of data and voice clients, the number of the data
stante. Any cover planz for S C J which is CBM-maximal clients was chosen so that the overall voice volume is 20%
is a (1 — r)-approximate solution w.r.t. profit function of the network’s traffi¢. The locations for each type of client
Proof: Let z be any cover plan forS C .J which was ur_ufor_mly and randomly selec_ted over the grid. _The profit
is CBM-maximal. If S = J, thenz is an o_ptimal cover for.sat|sfy|ng t.he demand of a voice CI'ET‘nt was defmeq as 1,
plan, and therefore clearly & — r) approximate solution. while satisfaction of a data client is credited with a prdfiatt

AssumesS C J. Note that by maximality ofr, z(Ys, S) — is proportional to its demand (i.e., 25 units of profit).

: We maintain microcells and picocells in our network. Since
C = - ) . )
MAXFLOW(G (Y, S));(an; sinces ¢ J, z(Ng, §) > (1 we implemented the restricted version of AONDM, the demand

r)e(Ng), i.e.,¢(Ng) < === By the fact thatr is & cover ot every client must be less than or equal torafraction of
plan for S, we havep(S5) = ed(5) = e(z(Ng, ) +(Ys,5)),  the capacity of any base station service this client. Tioeeef
since Ng, Ys are a partition off. , the capacity of a picocell was taken to be abiitr, for any

Let OPT C J denote any optimal solution to the problemgiyen value ofo < < 1. To simulate high-loaded networks
We wish to bound the value gb(OPT). Clearly, for any \ye assumed that the total sum of (client) demands equals
maximums-t flow y in Gy, d(OPT) < y(s), Since any COVer tha sum of (base station) capacities in the network. The rati

plan for OPT induces a feasible flow it ;. Combining the phenyeen the number of picocells and microcells was defined to
above with Lemma 4.10 we obtain that for any maximsih  pe \ while this factor was also selected as the ratio between

flow y in Gy, the corresponding radiuses and capacities of microcelis an
d(OPT) < y(s) picocells. By taking\ = 5, we can now derive the appropriate
< MAXFLOW(G(Ys, S)) + ¢(Ng) number of micrqcells and _picocells. The locations for each
< a(Ys,S) + z(Ng,5) type of base station was unlformly and rar_ldomly s_e[ectegj ove
- (,(1 7T)4.1L;(ry S) + 2(Ng. 5) the grid e_md clients were asso_matgd with (omnidirectipnal
< LT Ye.S 5}\77 g 57 base stations according to their distance from each of the
S T (x(Ys, 8) + z(Ng, 5)) centers.
= 1d9) In each of the following three sets of simulations we
By the definition ofp we obtain thap(S) > (1—r)-p(OPT), Mmeasured the ratio between the total profit achieved by each
which completes the proof. m Of the three algorithms and the total profit of all connected
Theorem 4.12:Algorithm CBM-MC produces g1 — r)-  clients, i.e., clients that are within service range of sdrase
approximate solution. station. As AoNDM is NP-hard, the maximum possible profit
Proof Sketch: The proof is by induction, and follows theis hard to calculate, and we consider the total profit of all
same lines as the proof of Theorem 4.5. m connected clients as an upper bound on the optimal solution.
B. Results

V. SIMULATION RESULTS

In the previous sections we proposed two different algo-
rithms for a new global mechanism for cell selection in 4
cellular networks. The main difference between these twosThe bit rate for voice applications is 64Kbps and the dovknliate for
algorithms is the way the demand of a mobile client idata application is approximately 2Mbps in HSDPA. This gieesatio of

satisfied. In the CBO-MC Algorithm (Section IV-A) at most?>,0 between the demand of voice and data clients. .
To be precise, ifn, andng are the number of voice and data clients,

one base station satisfies the demand of any given mokilgyectively, and, andd, are the corresponding demands, then the following
station while the CBM-MC Algorithm (Section 1V-B) allows are satisfies for an overall voice volume of of the network's traffic:

In the first set of simulations we study the performance of
e three algorithms over various network sizes (10K to 40K)

- . . 2
satisfaction of the demand simultaneously by more than oge =" — = 5, ng = n? — ny, andn, = {%J In our

base station. casey = 0.2.



and different values of- (0.05 to 0.3). Typical results aresatisfy clients.

shown in figures 2-4, where the upper, middle and the lowerFinally, the worst-case running time of each of the algo-
curves correspond to the cover-by-many algorithm, coyer-brithms, for all cases, was approximately 4 minutes for treeca

one algorithm, and the greedy-best detected-SNR algorithof n = 40000, r = 0.25, on a Pentium M machine, 1.4 GHz,

respectively. In each of the three scenarios, our resuttes shand 256 Mb of RAM.

that the cover-by-many algorithm is better than the cower-b

one algorithm by 5% (forr = 0.05) to 11% (forr = 0.3). 10
An improvement of at least 10% (and up to 20%) was
achieved by the cover-by-many algorithm in comparison with
the greedy-best detected-SNR algorithm. The results shaiv t P
the performances of all three algorithm are nearly indepand

of the size of the network. Moreover, due to the existence
of the simultaneous coverage in the third algorithm, when
r increases the “distance” between the performance of the
cover-by-many algorithm and the other two algorithms also
increases in a significant fashion. This shows that wherether
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exist mobile clients with demands that are relatively clase ool

the capacity of the servicing cell (e.g., in case of picagell

allowing satisfaction of a client by more than one basetati " s : s w3

is crucial in order to maintain high utilization of the netikko

capacities. Fig. 2. Expected profit as a function of the number of clients; 0.05

The second set of simulations investigates the level oftprofi
achieved by the three algorithms when the value- ofaries
(from r = 0.01 to » = 0.5). We fixed a network of 15129
clients (i.e., a grid ofl23 x 123) with a number of picocells
and microcells as explained above. Focusing on the relative
fraction of the demand of a client with respect to the capacit
of any serviced base station, the results show (Figure %) tha
when this fraction increases the ability to reach a higher
percentage of the total possible profit decreases. As shown i
Figure 5, all three algorithms exhibit the same behavioe Th
performance of the cover-by-many algorithm (upper curve)
decreases from 100% to 89% whenincreases from 0.01
to 0.5. The cover-by-one algorithm decreases by 21% (from 88\/\/\
100% inr = 0.01 to 79.5% inr = 0.5), and the greedy-best ‘ ‘ ‘ ‘
detected-SNR algorithm (lower curve) exhibited a decredise L Ls z 3
30% (from 89% to 59%).

The third set of simulations examines the level of profit
obtained by the three algorithms when the available capacit
increases. We fixed a network of 15129 clients, where each
client has a demand (of any service) that is at most a fraction
of 1/4 (r = 0.25) of the capacity of each of the servicing
base stations. In this study, the number of picocells as well
as microcells was increased hytimes their basic number,
j=1,1.5,2,...,5, where the basic numbers are the same as
the ones computed in the first set of simulations (65 mictecel
and 327 picocells). Note that fgr > 1, the total capacity is
higher than the total demand of clients. As one might expect
(see Figure 6), when there is a larger number of base stations
the performance of the three algorithms can only improve Th
greedy-best detected-SNR algorithm (lower curve) achive
improvement of up to 8% (from 79% to 87%) when the ‘ ‘ ‘ ‘ ‘ ‘
number of base station grows from 392 to 1960. The cover-by- ' e 2 umberorciems o
one algorithm (in the middle) achieves an improvement of up
to 8% (from 89% to 97%), and the cover-by-many algorithm Fig. 4. Expected profit as a function of the number of clientss 0.3
(upper curve) is nearly constant (around 99%) in its abtlity
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Fig. 3. Expected profit as a function of the number of clients; 0.1
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Fig. 5. Expected profit as a function of(n = 15129)
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Fig. 6. Expected profit as a function of available capacity=0.25,n =
15129)

VI. CONCLUSIONS

exist, the use of multiple base station to satisfy the denwdnd

a mobile station can maintain a level of at least 97% of the
possible coverage - 20% better coverage than the currefit bes
SNR greedy cell selection method. In addition to 4G networks
such relevant scenarios may be found in spread areas where
there are several very small populated areas and ‘standard’
infrastructure is not cost-effective. In these areas, @& can

be achieved using several WiMAX-cells and situations where
such cells are over-loaded may be common. Our scheme for
cell selection can be used in order to allow a better utitirat

of these coverage solutions.
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