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Abstract—Cell selection is the process of determining the cell(s)
that provide service to each mobile station. Optimizing these
processes is an important step towards maximizing the utilization
of current and future cellular networks. In this paper we study
the potential benefit of global cell selection versus the current
local mobile SNR-based decision protocol. In particular, we study
the new possibility that is feasible in OFDMA-based systems, of
satisfying the minimal demand of a mobile station simultaneously
by more than one base station.

We formalize the problem as an optimization problem, called
the all-or-nothing demand maximization problem, and show that
when the demand of a single mobile station can exceed the capac-
ity of a base station, this problem is not only NP-hard but also
cannot be approximated within any reasonable factor. In contrast,
under the very practical assumption that the maximum required
bandwidth of a single mobile station is at most anr-fraction of the
capacity of a base station, we present two different algorithms
for cell selection. The first algorithm guarantees a satisfaction
of at least a 1 − r fraction of an optimal assignment, where a
mobile station can be covered simultaneously by more than one
base station. The second algorithm guarantees a satisfaction of at
least a 1−r

2−r
fraction of an optimal assignment, while every mobile

station is covered by at most one base station. Using an extensive
simulation study we show that the cell selections determined
by our algorithms achieve a better utilization of high-loaded
capacity-constrained future 4G networks than the current SNR-
based scheme. Specifically, our algorithms are shown to obtain
up to 20% better usage of the network’s capacity, in comparison
with the current cell selection algorithms.

I. I NTRODUCTION

The ability to provide services in a cost effective manner
is one of the most important building blocks of competitive
modern cellular systems. Usually, an operator would like to
have a maximal utilization of the installed equipment, thatis,
to maximize the number of satisfied customers at any given
point in time. This paper addresses one of the basic problems
in this domain, the cell selection mechanism that determines
the base station (or base stations) that provides the service
to a mobile station - a process that is performed when a
mobile station joins the network (calledcell selection), or
when a mobile station is on the move in idle mode (called
cell reselection, or cell change, in HSPA).

In most current cellular systems the cell selection process
is done by a local procedure initialized by a mobile device
according to the best detected SNR. In this process the mobile
device measures the SNR to several base stations that are
within radio range, maintains a “priority queue” of those that

† This work was done while the author was with the Computer Science
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are best detected (called anactive set), and sends an official
service request to subscribe to base stations by their order
in that queue. The mobile station is connected to the first
base station that positively confirmed its request. Reasons
for rejecting service requests may be handovers or drop-
calls areas, where the capacity of the base station is nearly
exhausted.

Consider for example the settings depicted in Figure 1.
Assume that the best SNR for Mobile Station 1 (MS1) is
detected from microcell A, and thus MS1 is being served by
this cell. When Mobile Station 2 (MS2) arrives, its best SNR
is also from microcell A, who is the only cell able to cover
MS2. However, after serving MS1, microcell A does not have
enough capacity to satisfy the demand of MS2 who is a heavy
data client. However, if MS1 could be served by picocell B
then both MS1 and MS2 could be served. Note that MS1
and MS2 could represent a cluster of clients. The example
shows that the best-detected-SNR algorithm can be a factor
of max{d̃}/min{d̃} from an optimal cell assignment, where
d̃ is the demand of any mobile station in the coverage area.
Theoretically speaking, this ratio can be arbitrarily large.

This simple example illustrates the need for a global, rather
then a local, cell selection solution that tries to maximize
the global utilization of the network, and not just the SNR
of a single user. In voice only networks, where base station
capacities are considered to be high, sessions have limited
duration, and user demands are uniform, this may not be a
big barrier. That is, the current base station selection process
results, in most cases, in a reasonable utilization of the
network. However, in the forthcoming 4G cellular networks
this may not be the case.

Although the detailed structure of 4G systems is as of yet
not well defined, there is a clear consensus regarding some of

MS2

MS1

microcell A

picocell B

Fig. 1. Bad behavior of thebest detected SNRalgorithm in high-loaded
capacitated network.



the important aspects of the technologies to be implemented
in these systems1. Fourth generation systems are planned to
provide even higher transmission rates and larger capacitythan
current 3G (IMT-2000 based) systems, both in terms of the
number of users as well as in terms of traffic volume. Most
likely, 4G systems will be designed to offer bit rates of 100
Mbit/s (peak rate in mobile environment) to 1 Gbit/s (fixed
indoors) with a 5 MHz frequency bandwidth. The systems’
capacities are expected to be at least 10 times larger than
current 3G systems. In addition, these objectives should be
met together with a drastic reduction in the cost (1/10 to 1/100
per bit) [1]. Such high frequencies yield a very strong signal
degradation and suffer from significant diffraction resulting
from small obstacles, hence forcing the reduction of cell size
(in order to decrease the amount of degradation and to increase
the degree of coverage), resulting in a significantly larger
number of cells compared to previous generations.

The increased number of base stations, and the variable
bandwidth demand of mobile clients, will force operators to
optimize the way thecapacity of a base station is utilized.
Unlike in previous generations, the ability of a base station
to successfully satisfy the service demand of all its mobile
clients would be highly limited and will mostly depend on its
infrastructure restrictions, as well as on the service distribution
among its mobile clients.

Another interesting aspect is the support for different QoS
classes for the mobile stations, (e.g.,gold, silver, or bronze).
In such a case, the operator would like to have as many
satisfied ”gold” customers as possible, even if this means
several unsatisfied ”bronze” customers.

In this paper we study the potential benefit of a new global
cell selection mechanism, which should be contrasted with
the current local mobile SNR-based decision protocol. In
particular, we rigourously study the problem of maximizing
the number of mobile stations that can be serviced by a given
set of base stations in such a way that each of the serviced
mobile stations has its minimal demand fully satisfied. We
differentiate between two coverage paradigms: The first is
cover-by-onewhere a mobile station can receive service from
at most one base station. The second iscover-by-many, where
we allow a mobile station to be simultaneously satisfied by
more than one base station. This means that when a mobile
station has a relatively high demand (e.g., video-on-demand)
in a sparse area (e.g., sea-shore), several base stations from
its active set can participate in its demand satisfaction. This
option is not available in third-generation networks (and not
even in HSPA networks) since these networks have universal
frequency reuse and the quality of a service a mobile station
receives will be severely damaged by the derived co-channel
interference. However, OFDMA-based technology systems
and their derivatives are considered to be among the prime
candidates for future cellular communication networks. The
ability to satisfy the demand of a mobile station by more than
one member of its active set ispossiblein these systems, as

1See International Telecommunication Union (ITU) Web Site at
http://www.itu.int/home/index.html.

defined by the IEEE 802.16e standard. An important question
in this context is whether cover-by-many is indeed more
powerful than cover-by-one, in the sense that it improves the
ability of the network to satisfy more clients.

Approximation algorithms and heuristics play a major role
in our paper. Aγ-approximation algorithm is a polynomial-
time algorithm that always finds a feasible solution for which
the value of the objective function is within a proved factor
of γ of the optimal solution. Heuristics will be described in
comparison with the worst-case behavior of approximation
algorithms, in order to design a good practical solution to the
problems in question.

Our Contribution

In this paper we present a new approach for cell selection
that is derived from the anticipated 4G technologies. To the
best of our knowledge, despite recent extensive research done
on future cellular networks planning and coverage optimiza-
tion (e.g., [2], [3]), there is no explicit study in the literature
discussing the new IEEE 802.16e possibility of simultaneous
coverage of mobile clients by more than one base station.

We model, in Section II, the cell selection problem as an
optimization problem calledall-or-nothing demand maximiza-
tion (AoNDM). We show that the general version of AoNDM
cannot be approximated within a factor better than|J |1−ǫ,
unlessNP = ZPP, for any ǫ > 0, where J is the set of
mobile stations. Motivated by this result, we address a special
case of the problem. Following practical scenarios, we define
a restrictive version of AoNDM, ther-AoNDM problem, for
somer < 1, where the network satisfies the condition that
the demand of every mobile station is at most anr fraction
of the capacity of any base station that can potentially cover
the mobile station. We show that even this special case of the
problem is NP-hard. These results appear in Section IV.

We further present, in Section IV, two different algorithms
for this problem. The first is a1−r

2−r
-approximation algorithm,

which uses the cover-by-one paradigm, i.e., every mobile
station is covered by at most one base station. Note that this
approximation guarantee is with regard to the optimalcover-
by-manyassignment. The second algorithm uses the cover-
by-many paradigm, where a mobile station can be covered
simultaneously by more than one base station. It is a careful
refinement of the first algorithm, and we prove it guarantees
at least a1− r fraction of the value of an optimal solution, at
a price of increased running time.

In order to evaluate the practical differences between global
and local mechanisms for cell selection in future networks
we conducted an extensive simulation study (Section V). We
compare between global mechanisms that are based on our
approximation algorithms and the current best-SNR greedy
cell selection protocol. We study the relative performanceof
these three algorithms under different conditions. In particular,
we show that in a high-load capacity-constrained 4G-like
network, where clients’ demands may be large with respect
to cell capacity, global cell selection can achieve up to 20%
better coverage than the current best-SNR greedy cell selection
method.



II. M ODEL AND DEFINITIONS

Consider a bipartite graphG = (I, J,E) where I =
{1, 2, . . . ,m} is the set of base stations andJ = {1, 2, . . . , n}
is the set of mobile stations (orclients). Every clientj ∈ J
has a non-negative demandd(j), and a non-negative profit
p(j), and every base stationi ∈ I has a non-negative capacity
c(i). In addition, for every base stationi ∈ I, the coverage
area of i is modeled by a subsetSi ⊆ J of clients which
can be serviced byi. The set of base stationsN(j) ⊆ I
connected by edges to a clientj ∈ J , represents the active set
of this client. We further extend the above definitions to sets
of nodes, such that for everyA ⊆ J , d(A) =

∑

j∈A d(j) and
p(A) =

∑

j∈A p(j), and for everyB ⊆ I, c(B) =
∑

i∈B c(i).
Furthermore, given anyA ⊆ J , we let N(A) =

⋃

j∈A N(j).
Given a subset of clientsS ⊆ J , a cover plan for S
is a weight functionx : E → R+, such that for every
j ∈ S,

∑

i : (i,j)∈E x(i, j) ≥ d(j), and for everyi ∈ I,
∑

j : (i,j)∈E x(i, j) ≤ c(i). Notice that such a restriction of
∑

i : (i,j)∈E x(i, j) ≥ d(j), for everyj ∈ S, is also known as
all-or-nothing-type of coverage. This means that clients that
are partially satisfied are not considered to be covered (such
a model appears, for example, in OFDMA-based networks
where mobile stations have their slot requirements over a
frame and these are not useful if not fulfilled).

The all-or-nothing demand maximization problem
(AoNDM) is to find a subset of clientsS ⊆ J , and a
cover planx for S, such thatp(S) is maximized.

For i ∈ I, we usex(i) =
∑

j : (i,j)∈E x(i, j), and forj ∈ J ,
we usex(j) =

∑

i : (i,j)∈E x(i, j). As before, we extend these
notations to sets of nodes, such that for everyA ⊆ I, x(A) =
∑

i∈A x(i), and for everyB ⊆ J , x(B) =
∑

j∈B x(j). We
further extend this notation to subgraphs ofG, such that given
any A ⊆ I andB ⊆ J , x(A,B) =

∑

(i,j)∈E∩(A×B) x(i, j).
In addition, for everyv ∈ I ∪ J we denote byE(v) the

set of edges with endpointv, and for everyW ⊆ I ∪ J , let
E(W ) =

⋃

v∈W E(v). We further denote for everyA ⊆ I
andB ⊆ J , E(A,B) = {(i, j) ∈ E ∩ (A × B)}.

Given any constantr < 1, we say an instance isr-restricted
if for every (i, j) ∈ E, d(j) ≤ r · c(i). We further define the
problem ofr-AoNDM as the AoNDM problem limited tor-
restricted instances.

III. R ELATED WORK

Cell selection has received much attention in recent years
(e.g., [4]–[7]) where research focused mainly on multiple-
access techniques, as well as on power control schemes and
handoff protocols [4], [5], [7].

In [7] a cell selection algorithm is presented where the
goal is to determine the power allocations to the various
users, as well as a cover-by-one allocation, so as to satisfy
per-user SINR constraints. An HSPA-based handoff/cell-site
selection technique is presented in [4], [5], where the objective
is to maximize the number of connected mobile stations
(very similar to our objective), and reaching the optimality
of this objective is done via a new scheduling algorithm for
this cellular system. All the above results did not take into

account variable base station capacities nor mobile station
bandwidth demands. In the case of [4], [5], this enables the
authors to reduce their corresponding optimization problem to
a polynomial-time solvable matching problem. As shown in
our paper, when base station capacities and/or mobile stations’
demands are incorporated, this approach is no longer feasible.

An integrated model for optimal cell-site selection and
frequency allocation is shown in [6], where the goal is to
maximize the number of connected mobile stations, while
maintaining quasi-independence of the radio based technology.
The optimization problem in this model is shown to be NP-
hard.

AoNDM is very closely related to the problem of planning
4G cellular networks under budget limitation as described
in [8], [9]. In this problem, in addition to the input of AoNDM,
we are given a setI of possible configuration of base stations,
as well as an opening costw(i) for everyi ∈ I. When a client
belongs to the coverage area of more than one base station,
interference between the servicing stations may occur. These
interferences are modeled by a penalty-based mechanism and
may reduce the contribution of a base station to a client.
The budgeted cell planning problemasks for a subset of base
stationsI ′ ⊆ I whose cost does not exceed a given budgetB,
and the total number of fully satisfied clients is maximized.
Notice that in these settings, by taking the setI of base stations
with zero opening costs, without interferences, we get a special
case of AoNDM where all clients have the same profit. It was
shown [9] that this problem cannot be approximated, unless
P=NP, and that ae−1

3e−1 -approximation algorithm exists for a
special case of the problem where every set ofk open base
stations can fully satisfy at leastk clients, for every integral
value ofk.

Another closely related problem is theall-or-nothing mul-
ticommodity flow problemdiscussed in [10] and [11]. In
this problem we are given a capacitated undirected graph
G = (V,E, u) (whereu is the edge-capacity function) and set
of k pairs (s1, t1), . . . , (sk, tk). Each pair has a unit demand.
The objective is to find a largest subsetS of {1, . . . , k} such
that one can simultaneously route for everyi ∈ S one unit of
flow betweensi andti. It is straightforward to verify that the
unit profit version of AoNDM is a special case of this problem.
It was shown that the all-or-nothing multicommodity flow
problem can be approximated within anO(log2 k) factor of the
optimum [11]. On the other hand, for anyǫ > 0, the problem
cannot be approximated to within a factor ofO(log

1

3
−ǫ |E|)

of the optimum, unlessNP ⊆ ZPTIME (|V |poly log|V |
) [12].

However, no special attention is given to specific network
topologies (e.g., bipartite graphs, as in our case), and other
special instances.

IV. A PPROXIMATING THE r-AONDM PROBLEM

The important goal of efficiently solving the AoNDM
problem is beyond our reach since this problem is NP-hard,
as we mentioned before. Moreover, as the following theorem
shows, even obtaining a reasonable approximation algorithm
for the problem is improbable under standard complexity



assumptions. The proof is omitted due to space constraints.
Theorem 4.1:For anyǫ > 0, AoNDM cannot be approxi-

mated to within a factor better than|J |1−ǫ, unlessNP = ZPP.
Motivated by this result, we focus on a special case of

the problem. Namely, for anyr < 1 we consider ther-
AoNDM problem. The following theorem, whose proof is
omitted due to space constraints, shows that even in such
restrictive settings, the problem is still intractable.

Theorem 4.2:For any fixedr < 1, ther-AoNDM problem
is NP-hard, even if there is only one base station.

In what follows we present two approximation algorithms
for the r-AoNDM problem. The algorithms are local-ratio
algorithms that are based on a decomposition of the profit
obtainable from every client into two non-negative terms;
One part is proportional to the demand of the client, while
the other part is the remaining profit. We define a family of
feasible solutions, which we dub “maximal” (see below for
the formal definition), and prove that any such solution is an
approximate solution when considering a profit function which
is proportional to the demand. The algorithms we present
generate such maximal solutions recursively. We then applyan
inductive argument which proves that the solution generated
by the algorithm is also an approximate solution w.r.t. the
original profit function.

We first present an approximation algorithm that guarantees
a solution whose value is within a factor of1−r

2−r
from the value

of an optimal solution. This algorithm follows the cover-by-
one paradigm, and thus every mobile station is covered by at
most one base station. Our second algorithm is obtained by a
careful refinement of this algorithm, and an appropriate change
to the notion of maximality. This algorithm uses the cover-
by-many paradigm, and is guaranteed to produce a solution
whose value is within a factor of(1 − r) from the value
of an optimal solution, while the complexity increases by a
polynomial factor. Next we specify several definitions needed
for the analysis of the proposed algorithms.

Given any instance ofr-AoNDM over a graphG =
(I, J,E), and any two subsetsA ⊆ I andB ⊆ J , we define
the A-B flow-graph of G, Gf (A,B) = (V, F ), such that
V = {s} ∪ A ∪ B ∪ {t} for new verticess, t /∈ I ∪ J , and
F = ({s} ×A)∪E(A,B)∪ (B × {t}). We define a capacity
function γ : F → R+ as follows:

γ(u, v) =







c(v) if u = s, v ∈ A
∞ if u ∈ A, v ∈ B
d(u) if u ∈ B, v = t.

For brevity of notation, we letGf = Gf (I, J). Given any two
subsetsC,D ⊆ V , we letγ(C,D) =

∑

u,v∈F∩(C×D) γ(u, v).
A cover planx for S ⊆ J is said to be acover-by-one

plan if for every j ∈ S, there is exactly onei ∈ I such that
x(i, j) > 0. Given a cover-by-one planx for S ⊆ J , a cover-
by-one planx′ for T ⊆ J is said to be aT -extension ofx, if
for any j ∈ S and everyi ∈ I, x′(i, j) = x(i, j). Note that in
such a case one is guaranteed to haveS ⊆ T . Given a cover
plan x for S ⊆ J , a cover planx′ for T ⊆ J is said to be a
T -rearrangement ofx, if S ⊆ T .

Given any cover-by-one planx for S ⊆ J , we say thatx is
cover-by-one-maximal (CBO-maximal)if for any j ∈ J \S, no
S ∪{j}-extension ofx exists. We further sayS ⊆ J is CBO-
maximal when it has a CBO-maximal cover plan which is clear
from the context. For anyA ⊆ I andB ⊆ J , and any flowy in
Gf (A,B), we can denote the value of the flow byy(s). Given
any cover planx for S ⊆ J , we say thatx is rearrangement-
maximalif for any j ∈ J \ S, no S ∪ {j}-rearrangement ofx
exists. Given any setS ⊆ J , let S = J \S andYS = I \N(S).
We say a cover planx for S ⊆ J is cover-by-many-maximal
(CBM-maximal)if x is rearrangement-maximal, andx(YS , S)
is a maximum flow in the flow graphGf (YS , S). As before,
we further sayS ⊆ J is CBM-maximal when it has a CBM-
maximal cover plan which is clear from the context.

The following lemma, appearing in [13], serves as a basic
tool with which we analyze the approximation guarantee of
the algorithms proposed in this section.

Lemma 4.3 (Local Ratio):Let I be an instance tor-
AoNDM, over a graphG = (I, J,E), with profit functionp.
Then, ifp = p1+p2, andx is a cover plan for some setS ⊆ J
which isc-approximate w.r.t.p1, and alsoc-approximate w.r.t.
p2, thenx is c-approximate w.r.t.p.

A. A cover-by-one1−r
2−r

-approximation algorithm

We start with Algorithm CBO-MC; roughly speaking,
under CBO-MC, given a specific ordering of the clients, and
given an existing cover planx, a client is added greedily by
finding a CBO-extension ofx, if such an extension exists.
Otherwise, the client is discarded. See Algorithm 1 for the
pseudocode of the algorithm.

Algorithm 1 CBO-MC (G = (I, J,E), demandsd, profitsp,
capacitiesc)

1: if J = ∅ then
2: returnx ≡ 0
3: end if
4: if there exists aj ∈ J such thatp(j) = 0 then
5: x← CBO-MC (G′ = (I, J \ {j} , E \ E(j)), d, p, c)
6: returnx
7: else
8: for everyj ∈ J , setǫj = p(j)

d(j)

9: set ǫ = minj ǫj

10: for everyj ∈ J , setp1(j) = ǫ · d(j)
11: setp2 = p− p1

12: x← CBO-MC (G, d, p2, c)
13: for everyj such thatp2(j) = 0 do
14: if ∃i ∈ N(j) such thatc(i)− x(i) ≥ d(j) then
15: setx(i, j) = d(j)
16: else
17: discardj
18: end if
19: end for
20: returnx
21: end if

Lemma 4.4:Consider any instance of ther-AoNDM prob-
lem such that for every clientj, p(j) = ǫ · d(j), for some
constantǫ. Any cover-by-one planx for S ⊆ J which is CBO-
maximal is a1−r

2−r
-approximate solution w.r.t. profit functionp.



Proof: Let S = J \S. Without loss of generality, we can
assume that no uncovered client receives any service, i.e.,for
every j ∈ S, x(j) = 0.

If S = J , then x is an optimal cover plan, and therefore
clearly a1−r

2−r
approximate solution. Assume therefore thatS (

J . First note that for everyi ∈ N(S), one of the following
holds:

• Either there are no edges betweeni andS, or
• x(i) = x(i, S) > (1 − r)c(i).

To see this, assume by contradiction that there exists ani ∈
N(S) such that there are edges betweeni andS, andx(i) ≤
(1− r)c(i). By the assumption, there exists at least one client
j ∈ S such that(i, j) ∈ E. Consider the functionx′ : E → R+

defined by

x′(i′, j′) =

{

d(j′) if i′ = i, j′ = j
x(i′, j′) otherwise.

Clearly, for everyi′ 6= i, x′ does not violate the capacity
constraint imposed byc(i′), since by the feasibility ofx, for
every suchi′, x′(i) = x(i) ≤ c(i). Furthermore, sincex was
a cover-by-one plan, then so isx′. Consider base stationi.
Since by the assumptionx(i) ≤ (1−r)c(i), using the fact that
the instance isr-restricted, we havex′(i) = x(i) + d(j′) ≤
c(i), hence the capacity constraint is satisfied fori as well.
Finally, note that all clientsj′ ∈ S ∪ {j} are satisfied by the
cover planx′. It follows thatx′ is anS ∪ {j}-extension ofx,
contradicting the assumption thatx is CBO-maximal. Using a
similar argument one can show thatN(S) ⊆ N(S), otherwise
there is a base station inN(S)\N(S) that can satisfy at least
one client inS, contradicting the maximality ofS. It follows
that for everyi ∈ N(S), x(i) > (1 − r)c(i).

Let OPT ⊆ J denote any optimal solution to the problem.
Note that

p(OPT) = p(OPT∩S) + p(OPT∩S) ≤ p(S)

+ ǫ ·
∑

j∈OPT∩S

d(j) ≤ p(S) + ǫ · c(N(S))

where the last inequality follows from the feasibility ofOPT.
On the other hand, by the maximality ofS, we are guaran-

teed to have

d(S) =
∑

j∈S

d(j) =
∑

i∈I

x(i) ≥
∑

i∈N(S)

x(i)

>
∑

i∈N(S)

(1 − r) · c(i) = (1 − r) · c(N(S)),

which in turn implies

p(S) = ǫ · d(S) > ǫ(1 − r) · c(N(S)).

It follows that

p(OPT) ≤ p(S)+
p(S)

1 − r
= p(S)

(

1 +
1

1 − r

)

=
2 − r

1 − r
·p(S),

henceS is a 1−r
2−r

approximate solution w.r.t the profit func-
tion p.

Theorem 4.5:Algorithm CBO-MC produces a 1−r
2−r

-
approximate solution.

Proof: We prove by induction on the recursion that the
cover plan returned from every call is a1−r

2−r
-approximate solu-

tion. Note that the number of clients in every two consecutive
recursive calls decreases by at least 1, thus the recursion will
terminate.

For the base case, sinceJ = ∅, there are no clients
to cover, hencex ≡ 0 is an optimal cover, and therefore
clearly a 1−r

2−r
-approximate solution. For the inductive step,

we have two cases to consider. First, consider the cover plan
x′ for B ⊆ J \ {j} returned in line 6. By the induction
hypothesis,B is a 1−r

2−r
approximate solution w.r.t. the graph

G′ = (I, J \ {j} , E \ E(j)) and profit functionp. Since
p(j) = 0, the optimal profit w.r.t the graphG = (I, J,E)
and profit functionp cannot be greater than the optimal profit
w.r.t the graphG′ and profit functionp. Hence,B is also a
1−r
2−r

approximate solution w.r.t. the graphG = (I, J,E) and
profit functionp. The second case to consider is the cover plan
x′ for B returned in line 20. By the induction hypothesis,B
is a 1−r

2−r
approximate solution w.r.t. the graphG = (I, J,E)

and profit functionp2. Since for every clientj considered
in lines 13–19,p2(j) = 0, the optimal profit w.r.t the graph
G = (I, J,E) and profit functionp2 cannot be greater than
the optimal profit attainable from the instance returned from
the recursive call. Hence, the solution returned in line 20 is
a 1−r

2−r
approximate solution w.r.t. the graphG = (I, J,E)

and profit functionp2, and so is any extension of it using
clients j such thatp2(j) = 0. Note that for every client
j such thatp2(j) = 0, who has a neighbor with sufficient
residual capacity,j is added to the cover, where exactly one
base station is used to satisfy its demand. It follows that the
solution returned in line 20 is a CBO-maximal solution. By
Lemma 4.4 it follows that this solution is a1−r

2−r
approximate

solution w.r.t. the graphG = (I, J,E) and profit functionp1.
Using Lemma 4.3 we conclude that the solution returned is a
1−r
2−r

approximate solution w.r.t. the graphG = (I, J,E) and
profit functionp = p1 + p2, which completes the proof.

Note that the solutionx produced by algorithm CBO-MC is
a cover-by-one plan. It therefore follows that the ratio between
the optimal cover-by-one solution and the optimal cover-by-
many solution is at most1−r

2−r
as well.

B. A cover-by-many(1 − r)-approximation algorithm

We now turn to describe our second algorithm, called
CBM-MC, which achieves an approximation ratio of(1− r)
using the cover-by-many paradigm. Under CBM-MC, a client
is added by first trying to exhaust the capacities of base
stations which cannot contribute to uncovered clients, and
then using the capacity of the remaining base stations in
order to complete the cover. If such a cover cannot be
produced, then the client is discarded. The pseudocode of the
algorithm is given in Algorithm 2, where we use the subroutine
EK-MAX FLOW (Gf (A,B)) to denote the computation of the
maximum s-t flow in the flow graphGf (A,B) using the
Edmonds-Karp algorithm [14]. Our choice of the Edmonds-
Karp algorithm is motivated by two of its properties, namely,



the fact that it converges from any feasible flow, and the
fact that it uses augmentation paths. This choice can be
substituted by any algorithm for computing maximum flow,
which satisfies these properties. Note that by duality, given
any s-t flow in a flow graphGf (A,B), it is easy to verify
if a cut is a minimum cut by checking that all the edges are
saturated.

Algorithm 2 CBM-MC (G = (I, J,E), demandsd, profits
p, capacitiesc)

1: x← EK-MAX FLOW (Gf )
2: if {t} is a MINCUT in Gf then
3: returnx
4: end if
5: if there exists aj ∈ J such thatp(j) = 0 then
6: x← CBM-MC (G′ = (I, J \ {j} , E \ E(j)), d, p, c)
7: returnx
8: else
9: for everyj ∈ J , setǫj = p(j)

d(j)

10: set ǫ = minj ǫj

11: for everyj ∈ J , setp1(j) = ǫ · d(j)
12: setp2 = p− p1

13: x← CBM-MC (G, d, p2, c)
14: for every j such thatp2(j) = 0 do
15: S ← {j′ ∈ J | x(j′) = d(j′)}
16: setN

S\{j} = N(J \ (S ∪ {j}))
17: setYS∪{j} = I \N

S\{j}

18: y ← EK-MAX FLOW(Gf (YS∪{j}, S ∪ {j}))
19: z ← EK-MAX FLOW(Gf (I, S ∪ {j})), starting from the

initial feasible flowy.
20: if {t} is a MINCUT in Gf (I, S ∪ {j}) then
21: x← z
22: end if
23: end for
24: returnx
25: end if

Given a cover planx for S ⊆ J , let S = J \S, and consider
I as partitioned into two sets:N

S
= N(S), andYS = I \N

S
.

Note that by definition, for everyj ∈ S andi ∈ YS , (i, j) /∈ E.
The following lemma, whose proof is omitted due to space
constraints, provides a necessary and sufficient conditionfor
covering a set of clients.

Lemma 4.6:For any instance ofr-AoNDM over a graph
G = (I, J,E), and anyA ⊆ I andB ⊆ J , {t} is a minimum
s-t cut in the flow-graphGf (A,B) if and only if A can cover
all clients inB.

Lemma 4.6 admits a method for finding a rearrangement-
maximal cover plan, as shown in the following lemma, whose
proof is omitted due to space constraints:

Lemma 4.7:Given any instance tor-AoNDM over a graph
G = (I, J,E), any cover planx for S ⊆ J , and a client
j ∈ J \ S, the task of finding a rearrangement ofx which is
rearrangement-maximal can be done in polynomial time.

The following lemmas describe the correlation between the
maximum flow inGf , and the maximum flow in flow graphs
of the formGf (YS , S), for setsS which have a cover plan.

Lemma 4.8:AssumeS ⊆ J has some cover plan. Then,
there exists a maximum flowx in Gf such thatx(YS , S) =
MAX FLOW(Gf (YS , S)). Furthermore, such a flow can be

found in polynomial time.
Proof: Let y = MAX FLOW(Gf (YS , S)). Clearly y is

a feasible flow inGf as well. Consider the Edmonds-Karp
Algorithm (EK-MAX FLOW, see [14] for details) for finding
a maximum flow, executed on graphGf , starting from the
initial feasible flowy. We show that for every augmentation
path found by EK-MAX FLOW, after increasing the flow along
this path and obtaining some flowy′, y′(s, YS) ≥ y(s, YS).

First note that we can assume that all the augmentation
paths used by the EK-MAX FLOW algorithm are simple paths.
Furthermore, note that by the fact that any augmentation path
is simple, we obtain that for every flowy′ obtained during
executing the EK-MAX FLOW algorithm, and for everyi ∈ YS ,
y(s, i) ≤ y′(s, i), since such flow can only decrease if the
algorithm uses a pathp such that(i, s) ∈ p, which implies
that p is not a simple path.

Since for every feasible flowz we havez(YS , S) = z(s, YS)
(by flow conservation, and using the fact that there are no
edges betweenYS and S), we can conclude that during the
entire execution of the EK-MAX FLOW algorithm, the flow
y′ resulting in augmenting any pathp satisfiesy′(s, YS) ≥
y(s, YS). On the other hand, note that given any maximum
flow in Gf , if we consider its flow path-decomposition, then
the set of paths using edges betweenYS andS also constitutes
a flow in HS (due to the unidirectionality of edges between
N

S
and S in Gf ). Hence these paths cannot support a flow

whose value is greater than MAX FLOW(Gf (YS , S)).
Finally note that EK-MAX FLOW produces a maximum flow

in Gf in polynomial time, which completes the proof of the
lemma.

The above lemma gives rise to the following corollary,
whose proof is omitted due to space constraints:

Corollary 4.9: If there exists a rearrangement-maximal
cover plany for S ⊆ J , then there exists a CBM-maximal
cover planx for S. Furthermore, such a cover plan can be
found in polynomial time.

The following lemma shows a bound on the value of any
maximum flow inGf .

Lemma 4.10:Given any S ⊆ J , if S has a
CBM-maximal cover plan, then MAX FLOW(Gf ) ≤
MAX FLOW(Gf (YS , S)) + c(N

S
).

Proof: Let y be a CBM-maximal cover plan forS, and
consider a partition ofy into two types of flow paths, each
consisting of 3 edges:

• T1 = {p = (s, i, j, t) | such thati ∈ YS}.
• T2 =

{

p = (s, i, j, t) | such thati ∈ N
S

}

.

Note that such a packing exists, by the directionality of the
edges inGf .2 If we denote the flow along a flow pathp by
x(p), then clearly

∑

p∈T1

x(p) ≤ MAX FLOW(Gf (YS , S))

2Note that these are not augmentation paths used in computing the
maximum flow by EK-MAX FLOW. These paths are part of an actual path
decomposition of the maximum flow.



since all paths inT1 are paths inGf (YS , S), and therefore
cannot support a flow greater than MAX FLOW(Gf (YS , S)).
On the other hand,

∑

p∈T2

x(p) ≤ c(s,N
S
) = c(N

S
)

since all these paths use edges in the cut(s,N
S
). It therefore

follows that

MAX FLOW(Gf ) ≤ MAX FLOW(Gf (YS , S)) + c(N
S
).

We can now continue in the same way as we did with
the simpler algorithm, where CBM-maximality replaces CBO-
maximality.

Lemma 4.11:Consider any instance of ther-AoNDM prob-
lem such that for every clientj, p(j) = ǫ ·d(j), for some con-
stantǫ. Any cover planx for S ⊆ J which is CBM-maximal
is a (1 − r)-approximate solution w.r.t. profit functionp.

Proof: Let x be any cover plan forS ⊆ J which
is CBM-maximal. If S = J , then x is an optimal cover
plan, and therefore clearly a(1 − r) approximate solution.
AssumeS ( J . Note that by maximality ofx, x(YS , S) =
MAX FLOW(Gf (YS , S)), and sinceS ( J , x(N

S
, S) > (1 −

r)c(N
S
), i.e., c(N

S
) <

x(N
S

,S)

1−r
. By the fact thatx is a cover

plan forS, we havep(S) = ǫd(S) = ǫ(x(N
S
, S)+x(YS , S)),

sinceN
S
, YS are a partition ofI.

Let OPT ⊆ J denote any optimal solution to the problem.
We wish to bound the value ofp(OPT). Clearly, for any
maximums-t flow y in Gf , d(OPT) ≤ y(s), since any cover
plan for OPT induces a feasible flow inGf . Combining the
above with Lemma 4.10 we obtain that for any maximums-t
flow y in Gf ,

d(OPT) ≤ y(s)
≤ MAX FLOW(Gf (YS , S)) + c(N

S
)

< x(YS , S) +
x(N

S
,S)

1−r

= 1
1−r

(

(1 − r) · x(YS , S) + x(N
S
, S)

)

≤ 1
1−r

(

x(YS , S) + x(N
S
, S)

)

= 1
1−r

d(S).

By the definition ofp we obtain thatp(S) > (1−r) ·p(OPT),
which completes the proof.

Theorem 4.12:Algorithm CBM-MC produces a(1 − r)-
approximate solution.

Proof Sketch: The proof is by induction, and follows the
same lines as the proof of Theorem 4.5. �

V. SIMULATION RESULTS

In the previous sections we proposed two different algo-
rithms for a new global mechanism for cell selection in 4G
cellular networks. The main difference between these two
algorithms is the way the demand of a mobile client is
satisfied. In the CBO-MC Algorithm (Section IV-A) at most
one base station satisfies the demand of any given mobile
station while the CBM-MC Algorithm (Section IV-B) allows
satisfaction of the demand simultaneously by more than one
base station.

In order to study the expected performance of the pro-
posed global cell selection algorithms with respect to the
current local mobile SNR-based protocol we conducted several
simulations over high-loaded, capacity constrained, 4G-like
networks. A secondary goal of these simulations was to study
the “benefit” of using the new ability, defined by the IEEE
802.16e, of a mobile station to be satisfied simultaneously by
more than one base station.

A. Methodology

We considered a network consisting of ann × n-grid of
clients’ locations (demand points, each considered as a single
client, or bin). Each client has a service request for either
voice or data service. The demand of a voice and data client
is defined as 1 and 25, respectively3. Under this ratio between
the demand of data and voice clients, the number of the data
clients was chosen so that the overall voice volume is 20%
of the network’s traffic4. The locations for each type of client
was uniformly and randomly selected over the grid. The profit
for satisfying the demand of a voice client was defined as 1,
while satisfaction of a data client is credited with a profit that
is proportional to its demand (i.e., 25 units of profit).

We maintain microcells and picocells in our network. Since
we implemented the restricted version of AoNDM, the demand
of every client must be less than or equal to anr-fraction of
the capacity of any base station service this client. Therefore,
the capacity of a picocell was taken to be about25/r, for any
given value of0 < r < 1. To simulate high-loaded networks
we assumed that the total sum of (client) demands equals
the sum of (base station) capacities in the network. The ratio
between the number of picocells and microcells was defined to
be λ while this factor was also selected as the ratio between
the corresponding radiuses and capacities of microcells and
picocells. By takingλ = 5, we can now derive the appropriate
number of microcells and picocells. The locations for each
type of base station was uniformly and randomly selected over
the grid and clients were associated with (omnidirectional)
base stations according to their distance from each of the
centers.

In each of the following three sets of simulations we
measured the ratio between the total profit achieved by each
of the three algorithms and the total profit of all connected
clients, i.e., clients that are within service range of somebase
station. As AoNDM is NP-hard, the maximum possible profit
is hard to calculate, and we consider the total profit of all
connected clients as an upper bound on the optimal solution.

B. Results

In the first set of simulations we study the performance of
the three algorithms over various network sizes (10K to 40K)

3The bit rate for voice applications is 64Kbps and the downlink rate for
data application is approximately 2Mbps in HSDPA. This givesa ratio of
25-30 between the demand of voice and data clients.

4To be precise, ifnv and nd are the number of voice and data clients,
respectively, anddv anddd are the corresponding demands, then the following
are satisfies for an overall voice volume ofγ of the network’s traffic:

dv·nv

dv·nv+dd·nd

= γ, nd = n2 − nv , and nv =

⌊

γ·dd·n2

(dd−dv)·γ+1

⌋

. In our

caseγ = 0.2.



and different values ofr (0.05 to 0.3). Typical results are
shown in figures 2-4, where the upper, middle and the lower
curves correspond to the cover-by-many algorithm, cover-by-
one algorithm, and the greedy-best detected-SNR algorithm,
respectively. In each of the three scenarios, our results show
that the cover-by-many algorithm is better than the cover-by-
one algorithm by 5% (forr = 0.05) to 11% (for r = 0.3).
An improvement of at least 10% (and up to 20%) was
achieved by the cover-by-many algorithm in comparison with
the greedy-best detected-SNR algorithm. The results show that
the performances of all three algorithm are nearly independent
of the size of the network. Moreover, due to the existence
of the simultaneous coverage in the third algorithm, when
r increases the “distance” between the performance of the
cover-by-many algorithm and the other two algorithms also
increases in a significant fashion. This shows that when there
exist mobile clients with demands that are relatively closeto
the capacity of the servicing cell (e.g., in case of picocells)
allowing satisfaction of a client by more than one base station
is crucial in order to maintain high utilization of the network
capacities.

The second set of simulations investigates the level of profit
achieved by the three algorithms when the value ofr varies
(from r = 0.01 to r = 0.5). We fixed a network of 15129
clients (i.e., a grid of123 × 123) with a number of picocells
and microcells as explained above. Focusing on the relative
fraction of the demand of a client with respect to the capacity
of any serviced base station, the results show (Figure 5) that
when this fraction increases the ability to reach a higher
percentage of the total possible profit decreases. As shown in
Figure 5, all three algorithms exhibit the same behavior. The
performance of the cover-by-many algorithm (upper curve)
decreases from 100% to 89% whenr increases from 0.01
to 0.5. The cover-by-one algorithm decreases by 21% (from
100% in r = 0.01 to 79.5% inr = 0.5), and the greedy-best
detected-SNR algorithm (lower curve) exhibited a decreaseof
30% (from 89% to 59%).

The third set of simulations examines the level of profit
obtained by the three algorithms when the available capacity
increases. We fixed a network of 15129 clients, where each
client has a demand (of any service) that is at most a fraction
of 1/4 (r = 0.25) of the capacity of each of the servicing
base stations. In this study, the number of picocells as well
as microcells was increased byj times their basic number,
j = 1, 1.5, 2, . . . , 5, where the basic numbers are the same as
the ones computed in the first set of simulations (65 microcells
and 327 picocells). Note that forj > 1, the total capacity is
higher than the total demand of clients. As one might expect
(see Figure 6), when there is a larger number of base stations
the performance of the three algorithms can only improve. The
greedy-best detected-SNR algorithm (lower curve) achievean
improvement of up to 8% (from 79% to 87%) when the
number of base station grows from 392 to 1960. The cover-by-
one algorithm (in the middle) achieves an improvement of up
to 8% (from 89% to 97%), and the cover-by-many algorithm
(upper curve) is nearly constant (around 99%) in its abilityto

satisfy clients.
Finally, the worst-case running time of each of the algo-

rithms, for all cases, was approximately 4 minutes for the case
of n = 40000, r = 0.25, on a Pentium M machine, 1.4 GHz,
and 256 Mb of RAM.
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Fig. 2. Expected profit as a function of the number of clients,r = 0.05
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Fig. 3. Expected profit as a function of the number of clients,r = 0.1
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Fig. 4. Expected profit as a function of the number of clients,r = 0.3
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Fig. 5. Expected profit as a function ofr (n = 15129)
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Fig. 6. Expected profit as a function of available capacity (r = 0.25, n =

15129)

VI. CONCLUSIONS

In this paper we present a rigorous study of a new approach
for cell selection in fourth generation cellular networks.Unlike
the current cell selection protocol, our proposed mechanism is
global, has a performance guarantee, and addresses many of
the anticipated 4G technologies. We show that even though
AoNDM is hard to approximate to within a reasonable factor,
we can still cover all practical scenarios by adopting the
assumption that every mobile station has a traffic demand
that is relatively smaller than the capacity of any base station
that is able to participate in its coverage. We give two
approximation algorithms for this problem. The first is a
1−r
2−r

-approximation algorithm for the case where each mobile
station can be covered by exactly one base station (cover-
by-one). The second is a slower, delicate refinement of the
first algorithm, guaranteeing a(1 − r)-approximate solution,
that adopt the new IEEE 802.16e possibility of simultaneous
coverage of mobile clients by more than one base station
(cover-by-many). We compare between global mechanisms
that are based on our approximation algorithms and a local
procedure performed by the current best-SNR greedy cell
selection protocol. We show that when clients of very high
bandwidth demand, relatively to the base station’s capacity,

exist, the use of multiple base station to satisfy the demandof
a mobile station can maintain a level of at least 97% of the
possible coverage - 20% better coverage than the current best-
SNR greedy cell selection method. In addition to 4G networks,
such relevant scenarios may be found in spread areas where
there are several very small populated areas and ‘standard’
infrastructure is not cost-effective. In these areas, coverage can
be achieved using several WiMAX-cells and situations where
such cells are over-loaded may be common. Our scheme for
cell selection can be used in order to allow a better utilization
of these coverage solutions.

Acknowledgements

This research was partially supported by REMON - Israel
4G Mobile Consortium, sponsored by Magnet Program of the
Chief Scientist Office in the Ministry of Industry and Trade
of Israel.

REFERENCES

[1] N. Umeda, T. Otsu, and T. Masamura, “Overview of the fourth-
generation mobile communication system,”NTT DoCoMo Technical
Review, vol. 2, no. 9, pp. 12–31, 2004. [Online]. Available:
http://www.ntt.co.jp/tr/0409/special.html

[2] D. Amzallag, M. Livschitz, J. Naor, and D. Raz, “Cell planning of 4G
cellular networks: Algorithmic techniques, and results,” in Proceedings
of the 6th IEE International Conference on 3G & Beyond, 2005, pp.
501–506.

[3] M. J. Nawrocki, M. Dohler, and A. H. Aghvami, Eds.,Understanding
UMTS Radio Network: Modelling, Planning and Automated Optimisa-
tion. John Wiley & Sons, Ltd., 2006.

[4] A. Sang, X. Wang, M. Madihian, and R. D. Gitlin, “A Load-aware
handoff and cell-site selection scheme in multi-cell packet data systems,”
in Proceedings of the IEEE 47th Global Telecommunications Conference
(GLOBECOM)., vol. 6, 2004, pp. 3931–3936.

[5] ——, “Coordinated load balancing, handoff/cell-site selection, and
scheduling in multi-cell packet data systems,” inProceedings of the 10th
Annual International Conference on Mobile Computing and Networking
(MOBICOM), 2004, pp. 302–314.

[6] R. Mathar and M. Schmeink, “Integrated optimzal cell site selection and
frequency allocation for cellular radio networks,”Telecommunication
Systems, vol. 21, pp. 339–347, 2002.

[7] S. V. Hanly, “An algorithm for combined cell-site selection and power
control to maximize cellular spread spectrum capacity,”IEEE Journal
on Selected Areas in Communications, vol. 13, no. 7, pp. 1332–1340,
1995.

[8] D. Amzallag, J. Naor, and D. Raz, “Coping with interference: From
maximum coverage to planning cellular networks,” inProceedings of
the 4th Workshop on Approximation and Online Algorithms (WAOA),
ser. Lecture Notes in Computer Science, vol. 4368. Springer-Verlag,
2006, pp. 29–42.

[9] D. Amzallag, R. Engelberg, J. Naor, and D. Raz, “Cell planning of
4G cellular networks,” Computer Science Department, Technion - Israel
Institute of Technology, Tech. Rep. CS-2008-04, 2008.

[10] C. Chekuri, S. Khanna, and F. B. Shepherd, “The all-or-nothing mul-
ticommodity flow problem,” inProceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC), 2004, pp. 156–165.

[11] ——, “Multicommodity flow, well-linked terminals, and routing prob-
lems,” in Proceedings of the 37th Annual ACM Symposium on Theory
of Computing (STOC), 2005, pp. 183–192.

[12] M. Andrews and L. Zhang, “Hardness of the undirected edge-disjoint
path problem,” inProceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC), 2005, pp. 276–283.

[13] R. Bar-Yehuda, “One for the price of two: A unified approach for
approximating covering problems,”Algorithmica, vol. 27, no. 2, pp.
131–144, 2000.

[14] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,”Journal of the ACM, vol. 19, pp.
248–264, 1972.


