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Abstract

In many modern wireless scenarios, various stations contend for transmission in a an interference-bound envi-

ronment. The main concern is the ability of the receiving stations to distinguish between the signal of the message

and the noise created by other signals in the same proximity. We concentrate on a wireless environment where fixed

stations need to communicate with clients in their vicinity, over a common communication channel, and focus on a

distributed setting where there is no central entity managing the various transmissions. In such systems, unlike other

multiple access environments, several transmissions may succeed simultaneously, depending on spatial interferences

between the different stations.

We use a game theoretic view to model the problem, where the stations are selfish agents which aim at maximizing

their success probability. We show that when interferences are homogeneous, the system’s performance necessarily

suffers an exponential degradation of performance in an equilibrium, due to the selfishness of the stations. However,

when using a proper penalization scheme for aggressive stations, we can ensure the system’s performance value is at

least 1/e from the optimal value, while still being at equilibrium.

1 Introduction

Wireless networks often involve the joint usage of common communication channels in a multiple access environment.

In most of the models capturing such settings, simultaneous transmission by more than one station results in a collision

causing all transmissions at that time to fail. Methods like collision detection (CSMA/CD) and collision avoidance

(CSMA/CA), as well as other related protocols such as the various variants of the Aloha protocol, are used in such

scenarios in order to deal with collision, and to maximize the system’s throughput. In many current wireless networks,

such as mesh WiFi networks, or 802.15 clusters, simultaneous usage of the same wireless channel is possible. Consider

for example the settings described in Figure 1, where we outline two stations, A,B and their transmission ranges. If

the clients ofA andB are a and b respectively, then simultaneous transmissions will cause a collision at client a, while

b can receive the message from B. However, if the clients of A and B are a′ and b respectively, then simultaneous

transmissions will both succeed, since they do not collide at either of the receiving ends.

In wireless networks where channel access need not be exclusive, one of the major optimization issues is the

efficient use of radio resources. For example, in currently deployed wireless mesh networks, the currently available

MAC protocols, as well as routing protocols, do not provide sufficient scalability and consequently the throughput

tends to drop significantly as the number of nodes increases [1].

In this paper we consider the problem of joint usage of a common communication channel by a finite number

of stations, where stations are always backlogged, i.e., always have a packet to send. We present a generalization

of classic multiple access models by introducing the notion of spatial interference parameters, which capture the

pairwise interferences between the stations contending for the common radio resource.1 It is important to notice that

in this model several transmissions may succeed simultaneously, and thus the commonly assumed upper bound of one

on the overall throughput of the system no longer holds. The overall number of successful transmissions at any time
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1We do not consider any higher-order interferences. We note that our model, although focusing solely on pairwise-interferences, already

generalizes standard multiple access models commonly used in the analysis of such networking environments.
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Figure 1: Outline of two stations, A,B and their transmissions ranges.

can take any value between 0 and n, where n is the number of stations in the network. The exact value depends on the

inter-station interferences.

As a preliminary step in understanding this model, we focus our attention on the case of homogeneous interfer-

ences, where every station inflicts the same amount of interference on any other station.

Note that is we adopt the geometric interpretation of Figure 1, in the plane we can have at most 3 agents, all

inflicting the same amount of interference on each other, whereas for n agents we need n − 1 dimensions. Indeed,

such homogeneous interferences will usually not provide an accurate modeling for real-life scenarios where different

agents have different interference patterns. Yet, we believe that a better understanding of the restricted settings (where

the system is described by a single parameter) is both interesting and serves as an important step toward providing

insights into understanding more general non-homogeneous environments.

We conduct an analytical investigation of the performance of the network from a game-theoretic point of view,

where we assume stations are selfish agents and each such agent aims at maximizing its utility.

To evaluate the throughput of the system, we use the notions of price of anarchy [14] and price of stability [5, 9],

which compare the system’s performance in Nash equilibrium, (where no agent can do better by unilaterally altering

its chosen strategy), to the optimal throughput of the system.

We show that if the agent’s only goal is maximizing their success probability then the system’s performance

necessarily suffers an exponential degradation of performance in an equilibrium. However, when agents consider

also other parameters, such as for example their power consumption, we can ensure the system’s performance value at

equilibrium is at least 1/e from the optimal value. This is done by defining a proper penalization scheme for aggressive

stations that is proportional to the power used by this agent.

Note that our proposed model is general, and can be applied to many wireless environments, such as the ones

emerging in wireless mesh networks, wireless personal area networks (WPAN), and other ad-hoc networking envi-

ronments, where taking spatial considerations into account may significantly increase the network’s throughput and

efficiency.

In the remainder of this section we give a formal definition of the underlying model of interferences, present a

summary of our results, and discuss related work. In the sequel we present our analytical results for homogeneous

interferences, and conclude with some open questions.

1.1 Model

We model our problem as a game played by selfish agents. We consider a system consisting of n agents using a

common wireless medium. For every agent i, we let S = [0, 1] be the strategy space of agent i, and let Ri ∈ S denote

a strategy chosen by agent i. We refer to Ri as the probability that agent i transmits. Ri can also be considered as the

rate in which agent i transmits. Due to interferences, the probability of a successful transmission also depends upon

the transmission of other agents, or alternatively, the effective rate an agent eventually experiences depends upon the

transmission rates of the other agents. Given a profile R = (R1, . . . , Rn) ∈ [0, 1]n, we define the success probability

of agent i’s transmission (or alternatively, the effective rate obtained by agent i) as:

ri(R) = Ri · Πj 6=i(1 − αi,jRj),
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where for every 1 ≤ i, j ≤ n, αi,j ∈ [0, 1] is a fixed network-dependent parameter denoting the amount of interference

inflicted on i upon simultaneous transmission of both i and j. In what follows we will usually refer to the agents’

strategies as transmission probabilities.

One way to think about the αi,js is considering them as the probability that a transmission by j will interfere

with a transmission of i. Then in order for i’s transmission to succeed, none of the transmission of the other station

should interfere. Clearly, if for all i, j, αi,j = 0, i.e., there are no interferences, then in any reasonable setting the

selfish behavior of the agents will result in all agents transmitting with probability 1, which implies an optimal use of

resources. On the other hand, if for all i, j, αi,j = 1, then our model coincides with classic multiple access models,

where in any case of simultaneous transmissions a collision occurs, resulting in the failure of all the transmissions.

We refer to the interferences as homogeneous if there exists some α ∈ (0, 1) such that for all i, j, αi,j = α. By the

above observations, when considering homogeneous interferences, we restrict our attention to the case where for all

i, j, αi,j = α ∈ (0, 1).
Given a profile R = (R1, . . . , Rn), the social welfare ϕ(R) is considered to be the overall use of resources in the

system, i.e.

ϕ(R) =

n∑

i=1

ri(R) =

n∑

i=1

Ri

∏

j 6=i

(1 − αi,jRj).

ϕ(R) can be interpreted as the expected number of successful transmission, or alternatively, as the overall effective

usage of bandwidth in the network. We refer to ϕ(R) as the throughput of the system. Note that a-priori, ϕ(R) can

take any value between 0 and n, where the former is its value e.g. in case where αi,j = 1 for all i, j, and Ri = 1 for

all i, and the latter is its value where αi,j = 0 for all i, j, and Ri = 1 for all i. In what follows we refer to a profile R
as uniform, if Ri = Rj for all i, j.

For every agent i, we let Ui(R) be the utility function of agent i, assuming agents play profile R. In the following

sections we consider several choices for these utility functions, and discuss the system’s performance where agents

are selfish, and aim at maximizing their own utility, regardless of the effect their choices have on the overall social

welfare. We refer to the above setting as the homogeneous interferences multiple-access (HIMA) game.

Given any profile R = (R1, . . . , Rn), we let R−i denote the subprofile defined by strategies of all agents except

for agent i. We further denote by (R−i, R
′
i) the profile where every agent other than i plays the same strategy as in

R, while agent i plays strategy R′
i. A profile R is said to be a Nash equilibrium if for every i, and every R′

i ∈ [0, 1],
Ui(R) ≥ Ui(R−i, R

′
i). Intuitively, a profile is at Nash equilibrium if no agent can increase its benefit by unilaterally

deviating from his choice. Given any n ∈ N, we use R
(n)

NE
to denote a Nash equilibrium profile for n agents, and use

R
(n)

OPT
to denote any profile for n agents which maximizes the social welfare. Assuming a Nash equilibrium exists,

we use the notion of Price of Anarchy (PoA) in order to evaluate this effect, defined by the supremum over all Nash

equilibria R
(n)

NE
of the ratio between ϕ(R

(n)

OPT
) and ϕ(R

(n)

NE
), capturing the performance of the worst case equilibrium.

We further consider the notion of Price of Stability (PoS), defined by the infimum of the above ratio over all Nash

equilibria, capturing the performance of the best case equilibrium.

1.2 Our Results

We study the rational choices of agents in an HIMA game, and analyze the performance of Nash equilibria compared

to the optimal performance. We focus on the case of homogeneous interferences, and show that when the utility of

an agent is its effective rate, then selfishness can cause the system’s performance to be up to an exponential factor

away from the optimal performance. Specifically, we show that for any constant α, the price of anarchy as well as the

price of stability are exponential in the number of agents, i.e., any equilibrium suffers an exponential degradation in

performance. These results appear in Section 2.

We then turn to explore the effect of penalization, and to what extent does such an approach provide better system

performance at a state of equilibrium. We show that there exists a penalty function which is proportional to the amount

of aggressiveness demonstrated by an agent, such that for the case where the utility of an agent is the sum of its rate

and its penalty, then the price of stability with regards to the resulting coordinated equilibria can be made to drop to at

most e ≈ 2.718, thus demonstrating that an exponential improvement is possible compared to the uncoordinated case.

We further show that for interferences which are not too large, namely, for α ≤ 2/e ≈ 0.735, the price of anarchy
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is also bounded by e, thus ensuring that the degradation in performance due to the selfishness of the agents can be

guaranteed to be made very small. These results mean that if we impose these penalties upon the agents, either in the

form of payment for transmission to the network operator, or considering them as an intrinsic cost suffered by the agent

due to transmission (e.g., due to power consumption), then the performance can be dramatically improved compared

to the general case where the agent’s utility is merely its effective rate. These results are presented in Section 3. We

note that our results for the homogeneous settings also extend to the finite horizon repeated HIMA game [22].

1.3 Previous Work

Issues involving selfish behavior of agents in multiple access environments have received much attention in recent

years. The slotted Aloha model was studied in, e.g., [2, 4, 13, 16–18, 26], in the Markovian setting, presenting

conditions on the system’s stability, and investigating convergence to equilibrium. Other models of interferences

in wireless networks in Markovian settings are discussed in [7, 12, 23].

Additional works considered the issue of rate control in wireless networks, and discussed several game theoreti-

cal model of such games [20, 21]. Some recent work [19, 26], has also considered the role of introducing costs for

transmissions and its effect on the stability of the system. Other aspects of selfish behavior in CSMA/CA networks,

such as the effect of the selfish deviation of agents from a protocol, were studied in [25]. Power control penaliza-

tion schemes for wireless networks were discussed in [24, 27], whereas access pricing in wireless mesh networks is

discussed in [15].

There has been much interest in game theoretic perspectives of combinatorial optimization problems, most notably

following the introduction of the notion of price of anarchy in [14]. Recent works have considered the role of taxation,

or penalties, on the performance of non-cooperative systems with selfish agents, thus resulting in coordinated Nash

equilibria. Most of these works involve setting tolls in order to minimize congestion [6, 8, 11].

Correlated Nash equilibrium in multiple access environments is discussed in [3], where an arbitrator can send some

random signal to every agent. The signal can be used by the agent in choosing its strategy, such that the overall system

performance improves by agents using the additional information provided by the arbitrator, thus introducing some

level of coordination.

Another recent study focused on the time it takes all agents to successfully transmit one packet each [10], and

every agent’s goal is to minimize its delay. They show that while the price of anarchy is exponential (w.h.p.), the price

of stability is bounded by a constant (w.h.p.).

2 General Nash Equilibria

In this section we present several analytical results as to the effect of selfishness upon the performance of the network,

in the theoretical case where interferences are homogeneous, i.e., for every i, j, αi,j = α, for some system’s parameter

α ∈ (0, 1). We first consider the simple utility function Ui(R) = ri(R), and show that in such a case, the system’s

performance can be very far from optimal. Specifically we prove the following theorem:

Theorem 2.1. Given n stations, and any k ∈ {1, . . . , n− 1},

1. If α ∈
[

1
k+1 ,

1
k

)

then

PoA(n) = PoS(n) =
k

n(1 − α)n−k
.

2. If α ≤ 1
n

then PoA(n) = 1.

Note that Theorem 2.1 implies that for any constant m ∈ N, for α = 1/m we have

PoA(n) = PoS(n) = 2Ω(n).

In what follows we provide the necessary elements in order to prove the above theorem. The following lemma is

straight forward and follows immediately from the definition of the utility function:
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Lemma 2.2. For utility functionsUi(R) = ri(R), the only Nash equilibrium solution is obtained by the uniform profile

R where every station i plays the strategy Ri = 1. The social welfare value of this Nash equilibrium is n(1 − α)n−1.

Lemma 2.2 implies in particular that since there is only one Nash equilibrium in these settings, then the price of

stability equals the price of anarchy. In order to determine this value, we now turn to analyze the value of a profile

which maximizes the social welfare. We first analyze the value of the social welfare function on the boundary of the

profiles domain [0, 1]n, and then turn to analyze the maximum value obtained in the interior of the domain.

Since ϕ is symmetric, any two integral profiles R,R
′
∈ {0, 1}

n
having the same number of 1’s, satisfy ϕ(R) =

ϕ(R
′
). Let Bk = (R1, . . . , Rn) denote any profile with exactly k 1’s. It therefore follows that the value in every

extreme point where k stations play the 1-strategy and n− k stations play the 0-strategy, is given by

vk = ϕ(Bk)

=
∑

i:Ri=1Ri

∏

j 6=i(1 − αRj)

+
∑

i:Ri=0Ri

∏

j 6=i(1 − αRj)

=
∑

i:Ri=1

∏

j 6=i,Rj=1(1 − α)

= k(1 − α)k−1.

The following lemma shows an ordering of the values of vk, depending on the value of α.

Lemma 2.3. vk > vk−1 if and only if α < 1
k

.

Proof. Requiring that vk > vk−1 is equivalent to requiring vk/vk−1 > 1. By the definition of vk, this holds if and

only if

k(1 − α)k−1

(k − 1)(1 − α)k−2
> 1,

which by further simplification results in 1 − α > k−1
k

. This indeed holds if and only if α < 1
k

.

The following is an immediate corollary of Lemma 2.3:

Corollary 2.4. If α ∈ [ 1
k+1 ,

1
k
) then maxj vj = vk.

Figure 2 outlines the different values of vk, as a function of α. Recall that vk is the social value when exactly k
stations transmit, and all other n− k stations refrain from transmitting.

Since clearly ϕ(R
(n)

OPT
) ≥ vk for all k and for all α, we therefore have ϕ(R

(n)

OPT
) ≥ maxk vk for all α. In order to

show that indeed ϕ(R
(n)

OPT
) = maxk vk, we wish to show that the maximum of ϕ(·) is not obtained in the interior of

the domain. We first show that there is only one possible extreme point x0 in the interior of the domain (0, 1)n. We

further show that ϕ(x0) ≤ maxk vk, which therefore implies that ϕ(R
(n)

OPT
) = maxk vk for all α.

Lemma 2.5. In the n-stations HIMA game, given any α ∈ (0, 1), the only possible extreme point of the social welfare

function ϕ(·) in the interior of (0, 1)n is R0 = ( 1
αn
, . . . , 1

αn
).

Proof. Note that by algebraic simplification we have

ϕ(R) =
∑n

i=1Ri

∏

j 6=i(1 − αRj)

= Rn

∏

j 6=n(1 − αRj)

+
∑

i 6=nRi

∏

j 6=i(1 − αRj)

= Rn

∏

j 6=n(1 − αRj)

+(1 − αRn)
∑

i 6=nRi

∏

j 6=i,n(1 − αRj)

= Rn

(
∏

j 6=n(1 − αRj)

−α
∑

i 6=nRi

∏

j 6=i,n(1 − αRj)
)

+
∑

i 6=nRi

∏

j 6=i,n(1 − αRj).
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Figure 2: Different values of vk, depending on the value of α, up to k = 5.

By taking derivatives we obtain

∂ϕ

∂Rn

=
∏

j 6=n

(1 − αRj) − α
∑

i 6=n

Ri

∏

j 6=i,n

(1 − αRj),

where verifying when the above is zero and reordering we obtain (since α ∈ (0, 1))

0 = 1 − α
∑

i 6=n

Ri

1 − αRi

,

which in turn yields
αR1

1 − αR1
= 1 − α

∑

i 6=1,n

Ri

1 − αRi

.

Note that the term on the right hand side is independent of R1 and Rn. Following the same above procedure of

taking first the derivative with regards to R1, and then isolating Rn results in

αRn

1 − αRn

= 1 − α
∑

i 6=1,n

Ri

1 − αRi

=
αR1

1 − αR1
.

It therefore follows that R1 = Rn. Since the above argument holds for any 1 ≤ i < j ≤ n, we have that the only

point where all derivatives are zero satisfies Ri = Rj for all i, j.
We can therefore consider the possible extreme points of ϕ in the interior of the domain as a subset of the n-tuples

of the extreme points of the single variable function ψ, where ψ(x) = nx(1 − αx)n−1.

Taking derivatives we obtain

ψ′(x) = n(1 − αx)n−1

+ nx(n− 1)(1 − αx)n−2(−α)
= [(1 − αx) − α(n− 1)x]n(1 − αx)n−2 = 0.

There are two options to consider. First consider the case where (1−αx) = 0 which implies x = 1
α

. This is impossible

in the interior of the domain since α < 1. It therefore follows that

(1 − αx) − α(n− 1)x = 0.
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It therefore follows that x0 = 1
αn

, which in turn implies that the only possible extreme point of ϕ(·) in the interior of

(0, 1)n is R0 = ( 1
αn
, . . . , 1

αn
).

The following lemma suffices in order to show that ϕ(R0) ≤ maxj vj .

Lemma 2.6. Consider the profile R0 = ( 1
αn
, . . . , 1

αn
). For any k = 1, . . . , n− 1, if α ∈ [ 1

k+1 ,
1
k
), then ϕ(R0) ≤ vk.

Proof. By definition, we need to show

ϕ(R0) =
(n− 1)n−1

α · nn−1
≤ k(1 − α)k−1 = vk,

or equivalently, we need to show that for any α ∈ [ 1
k+1 ,

1
k
)

fk(α) = k · nn−1 · α(1 − α)k−1 − (n− 1)n−1 ≥ 0.

Taking derivatives, we obtain

f ′k(α) = k · nn−1(1 − α)k−1

− k · nn−1 · α(k − 1)(1 − α)k−2

= k · nn−1(1 − α)k−2 [(1 − α) − (k − 1)α]
= k · nn−1(1 − α)k−2 [1 − k · α] .

The derivative is zero in one of two cases:

1. α = 1: This is out of bound.

2. α = 1
k

.

It follows that for α < 1
k

, fk(α) is strictly monotone increasing. It therefore suffices to show that fk( 1
k+1 ) ≥ 0, i.e.:

fk( 1
k+1 ) = k · nn−1 · 1

k+1 · (1 − 1
k+1 )k−1

−(n− 1)n−1

= nn−1 · k
k+1 · (1 − 1

k+1 )k−1

−(n− 1)n−1

= nn−1 · k
k+1 · ( k

k+1 )k−1

−(n− 1)n−1

= nn−1( k
k+1 )k − (n− 1)n−1

= nn−1(1 − 1
k+1 )k − (n− 1)n−1 ≥ 0,

which follows since,

(1 −
1

k + 1
)k ≥ (1 −

1

n
)n−1,

for every k = 1, . . . n− 1, thus completing the proof.2

The above lemma combined with Corollary 2.4 immediately implies the following corollary:

Corollary 2.7. Given n agents, if α ∈ [ 1
k+1 ,

1
k
), then ϕ(R

(n)

OPT
) = vk.

2This is due to the fact that the function g(x) = (1 − 1/x)x−1 is monotone decreasing.
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Figure 2 depicts the various plots of vk as a function of α, up to k = 5. The maximal overall throughput as a

function of α is given by the maximal curve among all vks. One can see that the overall throughput, which is also the

optimal social welfare, increases as α approaches 0.

Combining Lemma 2.2 which shows that there exists a single Nash equilibrium solution R
(n)

NE
= (1, . . . , 1) whose

value is ϕ(R
(n)

NE
) = n(1 − α)n−1, along with Corollary 2.7, we can conclude the proof of Theorem 2.1.

As a consequence of Theorem 2.1, we restrict our attention in the following sections to the case where α ∈
(1/n, 1), since for α ≤ 1/n, the single Nash equilibrium of the HIMA game is indeed optimal. The following

sections present a penalization scheme which enables the system to obtain a much better throughput, while still being

at equilibrium.

We note that the above results as to the price of anarchy of the homogeneous HIMA game are based on the fact

that there exists a single Nash equilibrium. When considering the finite horizon repeated HIMA game, it is easy to

verify that this repeated game is subgame perfect, since the strategy chosen by each player at the single game Nash

equilibrium is a best response regardless of the strategies chosen by the other players. It therefore follows that our

analysis implies the same results for the subgame perfect equilibria emanating in the finite horizon repeated HIMA

game [22].

3 Coordinated Nash Equilibria

In this section we introduce a penalty based scheme, where every station i incurs a penalty pi(·) for transmission. We

consider two types of penalties. The first type depends upon the choices of all the stations in the system, i.e., pi(R),
while the second type only depends upon the choice of station i, i.e., pi(Ri). We refer to the former as an exogenous

penalty, whereas the latter is referred to as an endogenous penalty. The general form of the utility function of station i
is therefore Ui(R) = ri − pi (see [27] for a similar approach in the context of power control in cellular networks). We

use the notion of coordinated Nash equilibrium and show that for both penalty functions, the selfishness of the stations

does not result in more than a constant factor degradation in performance compared to the optimal performance.

This should be contrasted with the results presented in the previous section showing that the price of stability for the

uncoordinated case can be exponential in the number of stations.

We first show that there exists some q0 ∈ [0, 1] such that the uniform profile R where Ri = q0 for all i implies

a mere constant degradation in performance compared to the optimal throughput possible. Note however that such a

uniform profile need not be at Nash equilibria. We then show that there exist penalty functions which cause such a

uniform profile to be at Nash equilibrium. It therefore follows that by the use of appropriate penalties, selfishness can

be tamed into providing a throughput that is at most a constant factor far from the optimal throughput.

3.1 The Power of Uniform Profiles

Given any q ∈ [0, 1], let R
q

denote the uniform profile where Ri = q for all i. Note that the social welfare value of

any such profile R
q

is given by the function

ψ(q) = nq(1 − αq)n−1.

As shown in the proof of Lemma 2.5, the value of q which maximizes ψ(·) is q0 = 1
αn

. It follows that the social

welfare value of the profile R
q0

is

ψ(q0) =
1

α

(

1 −
1

n

)n−1

≥
1

eα
,

where the inequality follows from the fact that
(
1 − 1

n

)n−1
is strictly monotone decreasing, and converges to e−1.

As we have seen, the optimal value of the social welfare function for α ∈ [ 1
k+1 ,

1
k
) 3 is obtained for a profile where

k stations play the 1-strategy, and n− k stations play the 0-strategy, resulting in a social welfare value of

ϕ(R
(n)

OPT
) = k(1 − α)k−1 < k

(

1 −
1

k

)k−1

≤
1

α
.

3Equivalently, k < 1

α
≤ k + 1.
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It follows that

ϕ(R
(n)

OPT
)

ϕ(R
q0

)
≤ e.4

In the following sections we indeed show that we can choose a penalty function such that the profileR
q0

is at Nash

equilibrium.

3.2 Exogenous Penalties

Let q ∈ [0, 1], and consider the following utility function:

Uq
i (R) = Ri

∏

j 6=i

(1 − αRj)(2q −Ri),

which can be cast as a utility function of the form

Uq
i (R) = ri(R) − pq

i (R),

where the exogenous penalty is defined by

pq
i (R) =

∏

j 6=i

(1 − αRj)((1 − 2q)Ri +R2
i ).

Assume all stations except for i play strategy q. It follows that

Uq
i (R) = Ri(1 − αq)n−1(2q −Ri)

= (1 − αq)n−1(2qRi −R2
i ).

By taking derivatives, we obtain that the maximum is obtained for Ri = q, i.e., the uniform profile R
q

is at Nash

equilibrium.

It therefore follows that the price of stability is at least

max
q

ϕ(R
(n)

OPT
)

ϕ(R
q
)
.

In addition, since choosing Ri = q is the best response of station i regardless of the strategy chosen by any station

j 6= i, we can conclude that the uniform profile R
q

is the only Nash equilibrium solution, hence the price of anarchy

is the same as the price of stability.

Combining this result with the result presented in the previous section, for q0 = 1
αn

, we obtain the following

theorem:

Theorem 3.1. For every station i there exists an exogenous penalty function pi(R) for which the price of anarchy, as

well as the price of stability, are at most e.

Although Theorem 3.1 guarantees that aggressiveness can be tamed, and it is possible to use exogenous penalties

in order to obtain a better performance at equilibrium, this might not be completely satisfactory. Exogenous penalties

incurred by a station might change even if the station does not change its strategy. This might not be considered

a handicap if the penalties cannot increase if the station remains put, however in our case, other stations being less

aggressive actually increases the penalty incurred by a station, even if this station does not change its strategy. We

address this issue in the following section, and present an endogenous penalty scheme, in which the penalty imposed

on a station depends solely on its strategy, where increased aggressiveness is matched by increased penalties.

4Note that for α sufficiently distant from 1, a much better bound can be obtained. E.g., already for α < 1

2
this analysis yields that the ratio is at

most e/2.
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3.3 Endogenous Penalties

In this section we use the insights obtained from the proof of Theorem 3.1 in order to present for every station i an

endogenous penalty function pi which is independent of the strategy adopted by any station other than i, i.e., the

penalty function of station i depends only on Ri.

Specifically, given any q ∈ [0, 1], we consider for every station i the utility function

Uq
i (R) = ri(R) − pq

i (Ri),

where the endogenous penalty function is defined by

pq
i (Ri) = (1 − αq)n−1((1 − 2q)Ri +R2

i ).

Assume all stations but i play the strategy q. It follows that the utility function of station i is the same as in the

previous section, i.e.,

U q
i (Ri) = Ri(1 − αq)n−1(2q −Ri)

= (1 − αq)n−1(2qRi −R2
i ),

which in turn implies that the best strategy for station i to play is Ri = q, hence the uniform profile R
q

is at Nash

equilibrium. Similarly to Theorem 3.1, we thus obtain the following theorem:

Theorem 3.2. For every station i there exists an endogenous penalty function pi(Ri) for which the overall price of

stability is at most e.

In what follows we analyze the conditions for which the uniform profile R
q

is actually the only Nash equilibrium.

In any case for which there is a single Nash equilibrium, the price of stability is the same as the price of anarchy, which

provides a guarantee upon the worst case equilibrium. Specifically, we prove the following theorem:

Theorem 3.3. If α ≤ 2
e

, then for every station i there exists an endogenous penalty function pi(Ri) for which the

overall price of anarchy is at most e.

Proof. By considering the derivative of the utility function of station i, we obtain that

∂U q
i

∂Ri

=
∏

j 6=i

(1 − αRj) − (1 − αq)n−1(1 − 2q + 2Ri) = 0,

which implies

Ri =

∏

j 6=i(1 − αRj)

2(1 − αq)n−1
− (

1

2
− q).

By further isolating Rk for some k 6= i, we obtain

Ri = (1 − αRk)
∏

j 6=i,k
(1−αRj)

2(1−αq)n−1 − ( 1
2 − q)

=

[∏

j 6=i,k(1 − αRj)

2(1 − αq)n−1
− (

1

2
− q)

]

︸ ︷︷ ︸

ai,k

−

[

α ·

∏

j 6=i,k(1 − αRj)

2(1 − αq)n−1

]

︸ ︷︷ ︸

bi,k

Rk.

Note that ai,k and bi,k are independent of Ri and Rk, hence we can write the relation between them as

Ri = ai,k − bi,kRk.
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By applying the same arguments, starting with considering the derivative
∂U

q

k

∂Rk
, and then isolating Ri, we can obtain

that in the point where both derivatives are zero we must also have

Rk = ai,k − bi,kRi.

Solving this system of linear equations we obtain that any point in which both the derivative of U q
i (Ri) and of Uq

k (Rk)
is zero, assuming bi,k 6= 1, we must have Ri = Rk.5 Since this applies to any i, k, we can conclude that if for all i, k,

bi,k 6= 1, then we have R1 = R2 = . . . = Rn.

Assume now that for some i 6= k, bi,k = 1. In this case, we have

bi,k = α ·

∏

j 6=i,k(1 − αRj)

2(1 − αq)n−1
= 1,

which in turn implies
∏

j 6=i,k

(1 − αRj) =
2(1 − αq)n−1

α
.

By taking q = 1
αn

, we can conclude that

∏

j 6=i,k

(1 − αRj) =
2(1 − 1

n
)n−1

α
>

2e−1

α
.

Since
∏

j 6=i,k(1 − αRj) ≤ 1, we thus have α > 2
e

.

It follows that for q = 1
αn

, if α ≤ 2
e
∼ 0.736, then for all i 6= k, bi,k 6= 1. In such a case, we are guaranteed to

have Ri = Rk for all i, k.

Assume α ≤ 2
e

, (and q = 1
αn

) which implies that any Nash equilibrium solution must satisfy Ri = Rk for all i, k.

It follows that we seek a Nash equilibrium solution where the utility function of every station i is given by

Ũq
i (x) = x(1 − αy)n−1 − x(1 − αq)n−1(1 − 2q + x).

where all other stations except for i play the same strategy y. In order for this to be in equilibrium, the following

conditions must hold:

1. (Ũq
i )′(x) = 0.

2. x = y, since in any equilibrium all stations play the same strategy.

In order to see condition (1), consider

(Ũq
i )′(x) = (1 − αy)n−1 − (1 − αq)n−1(1 − 2q + 2x) = 0.

Since by condition (2) we must have x = y, it follows that we wish to find the solutions to the equation

(1 − αy)n−1

︸ ︷︷ ︸

p(y)

− (1 − αq)n−1(1 − 2q + 2y)
︸ ︷︷ ︸

`(y)

= 0.

Clearly, y = q is a solution to this equation. Furthermore, this is the only solution to this equation. To see this note

that p(y) is strictly decreasing as a function of y, while `(y) is strictly increasing as a function of y. It follows that any

deviation from y = q renders this equation false. It follows that y = q is the only solution to this equation, hence the

only Nash equilibrium solution is obtained for the uniform profile R = ( 1
αn
, . . . , 1

αn
).

5If we let a = ai,k and b = bi,k , by substitution we have Ri = a − b(a − bRi) = a − ab + b2Ri = a(1− b) + b2Ri which in turn implies

(1 − b2)Ri = a(1 − b), i.e., (1 − b)(1 + b)Ri = a(1 − b), which implies Ri = a
1+b

, assuming b 6= 1. Note that b ≥ 0.
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4 Conclusion and Open Questions

We present a generalization of the classic multiple access model, by introducing the notion of soft collisions, which

enable different transmissions to succeed simultaneously. This new model captures the fact that collisions are a

phenomenon experienced by the receiving end of transmissions, and it depends on the amount of interferences sensed

by this receiver from the various simultaneous transmissions.

We show that for homogeneous interferences, if agents are selfish, then the system’s performance at equilibrium

can be up to an exponential factor far away from the optimal performance. We further introduce a penalty function to

be cast on the agents, inducing a much better performance in an equilibrium, which is at most a factor of e away from

the optimal performance.

Several interesting questions remain open. The main question is, of course, obtaining analytic guarantees as to

the price of anarchy and the price of stability for non-homogeneous interferences. We believe that our results serve

as a mere first step in understanding such interference-bound environments. Furthermore, while still considering

homogeneous interferences, it would be interesting to see if there exists a penalization scheme where the penalty

incurred by an agent depends solely upon his chosen strategy, which results in a sub-exponential price of anarchy,

for the case of homogeneous interferences in the case where α ≥ 2/e. Another important goal is to try and use the

intuition gained by these analytic results in an attempt to devise better medium-access protocols, taking into account

possible prior knowledge of inter-agents interferences.
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