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The Global Point of View

Cn-Functionals
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Review of Basic Kinematics and Statics on Manifolds

The mechanical system is
characterized by its
configuration space—a
manifold Q.

Velocities are tangent vectors
to the manifold—elements
of TQ.

A Force at the configuration
κ is a linear mapping
F : TκQ → R.
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Review of Basic Kinematics and Statics on Manifolds

• The mechanical system is
characterized by its con-
figuration space—a man-
ifold Q.

• Velocities are tangent vec-
tors to the manifold—
elements of TQ.

• A Force at the configura-
tion κ is a linear mapping
F : TκQ → R.

Q

κ

TκQ

Can we apply this framework to Continuum Mechanics?

Reuven Segev: Geometric Methods, March 2001
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Problems Associated with the Configuration Space

in Continuum Mechanics

What is a configuration?

Does the configuration space have a structure of a manifold?

The configuration space for continuum mechanics is infinite
dimensional.
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Configurations of Bodies in Space

A mapping of the body into space;

material impenetrability—one-to-one;

continuous deformation gradient (derivative);

do not “crash” volumes—invertible derivative.
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Configurations of Bodies in Space

• A mapping of the body into space;

• material impenetrability—one-to-one;

• continuous deformation gradient (derivative);

• do not “crash” volumes—invertible derivative.

U

κ

κ(B)

Space

A body B

Reuven Segev: Geometric Methods, March 2001
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Manifold Structure for Euclidean Geometry

If the body is a subset of R3 and space is modeled by R3, the collection
of differentiable mappings C1(B,R3) is a vector space

However, the subset of “good” configurations is not a vector space,
e.g., κ − κ = 0—not one-to-one.

We want to make sure that the subset of configurations Q is an open
subset of C1(B,R3), so it is a trivial manifold.
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Manifold Structure for Euclidean Geometry

• If the body is a subset of R3 and space is modeled by R3, the
collection of dicerentiable mappings C1(B,R3) is a vector space

• However, the subset of “good” configurations is not a vector
space, e.g., κ − κ = 0—not one-to-one.

• We want to make sure that the subset of configurations Q is an
open subset of C1(B,R3), so it is a trivial manifold.

all dicerentiable mappings all dicerentiable mappings
C1(B,R3) C1(B,R3)

configurations configurations
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The C0-Distance Between Functions

The C0-distance between functions measures the maximum difference
between functions.

A configuration is arbitrarily close to a “bad” mapping.
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The C0-Distance Between Functions

• The C0-distance between functions measures the maximum
dicerence between functions.

• A configuration is arbitrarily close to a “bad” mapping.

Space

Body

a configuration
“bad mapping”

dotted
solid

Reuven Segev: Geometric Methods, March 2001
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The C1-Distance Between Functions

The C1 distance between functions measures the maximum difference
between functions and their derivative

|u− v|C1 = sup{|u(x)− v(x)|, |Du(x)−Dv(x)|}.

A configuration is always a finite distance away from a “bad” mapping.
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The C0-Distance Between Functions

• The C0-distance between functions measures the maximum
dicerence between functions.

• A configuration is arbitrarily close to a “bad” mapping.

Space

Body

a configuration
“bad mapping”

dotted
solid

Reuven Segev: Geometric Methods, March 2001
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Conclusions for R3

If we use the C1-norm, the
configuration space of a continuous
body in space is an open subset of
C1(B,R3)-the vector space of all
differentiable mapping.

Q is a trivial infinite dimensional
manifold and its tangent space at
any point may be identified with
C1(B,R3).

A tangent vector is a velocity field.
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Conclusions for R3

• If we use the C1-norm, the
configuration space of a con-
tinuous body in space is an
open subset of C1(B,R3)-the
vector space of all diceren-
tiable mapping.

• Q is a trivial infinite dimen-
sional manifold and its tan-
gent space at any point may be
identified with C1(B,R3).

• A tangent vector is a velocity
field.

u(κ(x)) =
dκ(x)

dt
κ{B}

Reuven Segev: Geometric Methods, March 2001
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For Manifolds

Both the body B and space U are differentiable manifolds.

The configuration space is the collection Q = Emb(B, U ) of the embeddings
of the body in space. This is an open submanifold of the infinite dimensional
manifold C1(B, U ).

The tangent space TκQ may be characterized as

TκQ = {w : B → TQ|τ ◦w = κ}, or alternatively, TκQ = C1(κ∗TU ).
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For Manifolds
• Both the body B and space U are dicerentiable manifolds.

• The configuration space is the collection Q = Emb(B, U ) of the
embeddings of the body in space. This is an open submanifold of the
infinite dimensional manifold C1(B, U ).

• The tangent space TκQ may be characterized as
TκQ = {w : B → TQ|τ ◦w = κ}, or alternatively, TκQ = C1(κ∗TU ).

κ

B
a body

space manifold

projection

x
τ

w

M

TM

TxM

κ∗(TM)
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Representation of C0-Functionals by Integrals

Assume you measure the size of a function using the C0-distance,
‖w‖ = sup{|w(x)|}.

A linear functional F : w 7→ F(w) is continuous with respect to this norm if
F(w) → 0 when max |w(x)| → 0.

Riesz representation theorem: A continuous linear functional F with respect to
the C0-norm may be represented by a unique measure µ in the form

F(w) =
∫
B

w dµ.
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Velocity

force density
φ

w

Body B

δ

F(w) =
∫

B
wφdx

force density
φ

Body B

δ

F(w) =
∫

B
wφdx

Velocity
w

F isn’t sensitive to the derivative
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Representation of C1-Functionals by Integrals

Now, you measure the size of a function using the C1-distance,
‖w‖ = sup{|w(x)|, |Dw(x)|}.

A linear functional F : w 7→ F(w) is continuous with respect to this norm if
F(w) → 0 when both max |w(x)| → 0 and max |Dw(x)| → 0.

Representation theorem: A continuous linear functional F with respect to the
C1-norm may be represented by measures σ0, σ1 in the form

F(w) =
∫
B

w dσ0 +
∫
B

Dw dσ1.
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Representation of C1-Functionals by Integrals
• Now, you measure the size of a function using the C1-distance,
‖w‖ = sup{|w(x)|, |Dw(x)|}.

• A linear functional F : w 7→ F(w) is continuous with respect to this norm
if F(w) → 0 when both max |w(x)| → 0 and max |Dw(x)| → 0.

• Representation theorem: A continuous linear functional F with respect to
the C1-norm may be represented by measures σ0, σ1 in the form

F(w) =
∫

B

w dσ0 +
∫

B

Dw dσ1.

Body B

δ

F is sensitive to the derivative

φ0

F(w) =
∫
B

φ0wdx +
∫
B

φ1 Dwdx

stress density
φ1

“self” force density

Velocity gradient
Dw

Velocity
w
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Non-Uniqueness of C1-Representation by Integrals

We had an expression in the form

F(w) =
∫
B

w dσ0 +
∫
B

w′ dσ1.

If we were allowed to vary w and w′ independently, we could determine σ0
and σ1 uniquely.

This cannot be done because of the condition w′ = Dw.
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Non-Uniqueness of C1-Representation by Integrals

• We had an expression in the form

F(w) =
∫

B

w dσ0 +
∫

B

w′ dσ1.

• If we were allowed to vary w and w′ independently, we could determine

σ0 and σ1 uniquely.

• This cannot be done because of the condition w′ = Dw.

Body B

δ

φ0
stress density

φ1

“self” force density

Velocity
w

w′

F(w) =
∫
B

φ0wdx +
∫
B

φ1w′dx

Reuven Segev: Geometric Methods, March 2001
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Unique Representation of a Force System

Assume we have a force system, i.e., a force FP for every subbody P of B.

We can approximate pairs of non-compatible functions w and w′, i.e.,
w′ 6= Dw, by piecewise compatible functions.
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Unique Representation of a Force System
• Assume we have a force system, i.e., a force FP for every subbody P of

B.

• We can approximate pairs of non-compatible functions w and w′, i.e.,
w′ 6= Dw, by piecewise compatible functions.

P1P2

P1P2

Body B

Body B

w

w′

. . . . . .

. . . . . .

∫
B wdσ0

approximation of

approximation of
∫
B w′dσ1

∫
B wdσ0

∫
B w′dσ1Calculate

Calculate

• This way the two measures are determined uniquely.

• One needs consistency conditions for the force system.

Reuven Segev: Geometric Methods, March 2001

This way the two measures are determined uniquely.

One needs consistency conditions for the force system.
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Generalized Cauchy Consistency Conditions
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Generalized Cauchy Consistency Conditions

• Additivity:

FP1∪P2 (w|P1∪P2 ) = FP1 (w|P1 )+ FP2 (w|P2 ).

• Continuity: If Pi → A, then FPi (w|P1 )
converges and the limit depends on A only.

P2

P1

Pi

A

• Uniform Boundedness: There is a K > 0 such that for every subbody
P and every w,

|FP (w|P ) ≤ K‖wP‖.

Main Tool in Proof: Approximation of measurable sets by bodies
with smooth boundaries.

Reuven Segev: Geometric Methods, March 2001

• Additivity:

FP1∪P2
(w|P1∪P2

) = FP1
(w|P1

)+ FP2
(w|P2

).

• Continuity: If Pi → A, then FPi
(w|P1

)
converges and the limit depends on A only.
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P and every w,

|FP (w|P ) ≤ K‖wP‖.
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• Uniform Boundedness: There is a K > 0 such that for every
subbody P and every w,

|FP(w|P) ≤ K‖wP‖.

Main Tool in Proof: Approximation of measurable sets by
bodies with smooth boundaries.
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Generalizations

All the above may be formulated and proved for differentiable
manifolds.

This formulation applies to continuum mechanics of order k > 1 (stress
tensors of order k). One should simply use the Ck-norm instead of the
C1-norm.

The generalized Cauchy conditions also apply to continuum mechanics
of order k > 1. This is the only formulation of Cauchy conditions for
higher order continuum mechanics.

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 16 / 20



Locality and Continuity in Constitutive Theory
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Global Constitutive Relations

(Elasticity for Simplicity)

Q, the configuration space of a body B.

C0(B, L
(
R3,R3

))
, the collection of all stress fields over the body.

Ψ : Q → C0(B, L
(
R3,R3

))
, a global constitutive relation.
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Global Constitutive Relations
(Elasticity for Simplicity)

• Q, the configuration space of a body B.

• C0(B, L
(
R3,R3

))
, the collection of all stress fields over the body.

• Ψ : Q → C0(B, L
(
R3,R3

))
, a global constitutive relation.

space

Body B

configuration
κ

Body B

stress

stress fieldΨ

relation.
Global constitutive

σ = Ψ(κ)

Reuven Segev: Geometric Methods, March 2001
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Locality and Materials of Grade-n
Germ Locality: If two configurations κ1 and κ2 are equal on a
subbody containing X, then the resulting stress fields are
equal at X.
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Locality and Materials of Grade-n
Germ Locality: If two configurations κ1 and κ2 are equal on a subbody

containing X, then the resulting stress fields are equal at X.

P

X
P

X

Body B

stress

Ψ

space

Body B

κ2

κ1

Ψ(κ1)

Ψ(κ2)

Material of Grade-n or n-Jet Locality: If the first n derivatives of κ1 and
κ2 are equal at X, then, Ψ(κ1)(X) = Ψ(κ2)(X). (Elastic = grade 1.)

P

X
P

X

Body B

stress

Ψ

space

Body B

κ2

κ1

Ψ(κ1)

Ψ(κ2)
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Locality and Materials of Grade-n
Germ Locality: If two configurations κ1 and κ2 are equal on a subbody

containing X, then the resulting stress fields are equal at X.
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n-Jet Locality and Continuity
Basic Theorem: If a constitutive relation Ψ : Q → C0(B, L

(
R3,R3

))
is local and

continuous with respect to the Cn-norm, then, it is n-jet local. In
particular, if Ψ is continuous with respect to the C1-topology, the
material is elastic.
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κ2

P

X

space

Body B

restriction

P

X

P

X

Body B

stress

Ψ(κ′1)

Ψ(κ′2)

Ψ

P

X

space

Body B

X

space

Body B

Whitney’s
extension

Ψ

Body B

stress

Ψ(κ1)

Ψ(κ2)

κ1 |P
κ2 |P

κ′1
κ′2
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