Some Extensions and Analysis of Flux and Stress Theory

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Structures of the Mechanics of Complex Bodies October 2007
Centro di Ricerca Matematica, Ennio De Giorgi Scuola Normale Superiore

The Global Point of View

C^{n}-Functionals

Review of Basic Kinematics and Statics on Manifolds

$$
T_{\kappa} \mathscr{Q}
$$

- The mechanical system is characterized by its configuration space-a manifold \mathscr{Q}.
- Velocities are tangent vectors to the manifold-elements of $T \mathscr{Q}$.
- A Force at the configuration κ is a linear mapping $F: T_{\kappa} \mathscr{Q} \rightarrow \mathbb{R}$.

> Can we apply this framework to Continuum Mechanics?

Problems Associated with the Configuration Space

in Continuum Mechanics

- What is a configuration?
- Does the configuration space have a structure of a manifold?
- The configuration space for continuum mechanics is infinite dimensional.

Configurations of Bodies in Space

- A mapping of the body into space;
- material impenetrability-one-to-one;
- continuous deformation gradient (derivative);
- do not "crash" volumes-invertible derivative.

Manifold Structure for Euclidean Geometry

- If the body is a subset of \mathbb{R}^{3} and space is modeled by \mathbb{R}^{3}, the collection of differentiable mappings $C^{1}\left(\mathscr{B}, \mathbb{R}^{3}\right)$ is a vector space
- However, the subset of "good" configurations is not a vector space, e.g., $\kappa-\kappa=0-n o t ~ o n e-t o-o n e . ~$
- We want to make sure that the subset of configurations \mathscr{Q} is an open subset of $C^{1}\left(\mathscr{B}, \mathbb{R}^{3}\right)$, so it is a trivial manifold.

The C^{0}-Distance Between Functions

- The C^{0}-distance between functions measures the maximum difference between functions.
- A configuration is arbitrarily close to a "bad" mapping.

The C^{1}-Distance Between Functions

- The C^{1} distance between functions measures the maximum difference between functions and their derivative

$$
|u-v|_{C^{1}}=\sup \{|u(x)-v(x)|,|D u(x)-D v(x)|\} .
$$

- A configuration is always a finite distance away from a "bad" mapping.

Conclusions for \mathbb{R}^{3}

- If we use the C^{1}-norm, the configuration space of a continuous body in space is an open subset of $C^{1}\left(\mathscr{B}, \mathbb{R}^{3}\right)$-the vector space of all differentiable mapping.
- \mathscr{Q} is a trivial infinite dimensional manifold and its tangent space at any point may be identified with $C^{1}\left(\mathscr{B}, \mathbb{R}^{3}\right)$.
- A tangent vector is a velocity field.

For Manifolds

- Both the body \mathscr{B} and space \mathscr{U} are differentiable manifolds.
- The configuration space is the collection $\mathscr{Q}=\operatorname{Emb}(\mathscr{B}, \mathscr{U})$ of the embeddings of the body in space. This is an open submanifold of the infinite dimensional manifold $C^{1}(\mathscr{B}, \mathscr{U})$.
- The tangent space $T_{\kappa} \mathscr{Q}$ may be characterized as

$$
T_{\kappa} \mathscr{Q}=\{w: \mathscr{B} \rightarrow T \mathscr{Q} \mid \tau \circ w=\kappa\}, \quad \text { or alternatively, } \quad T_{\kappa} \mathscr{Q}=C^{1}\left(\kappa^{*} T \mathscr{U}\right) .
$$

Representation of C^{0}-Functionals by Integrals

- Assume you measure the size of a function using the C^{0}-distance, $\|w\|=\sup \{|w(x)|\}$.
- A linear functional $F: w \mapsto F(w)$ is continuous with respect to this norm if $F(w) \rightarrow 0$ when $\max |w(x)| \rightarrow 0$.
- Riesz representation theorem: A continuous linear functional F with respect to the C^{0}-norm may be represented by a unique measure μ in the form

$$
F(w)=\int_{\mathscr{B}} w d \mu
$$

Representation of C^{1}-Functionals by Integrals

- Now, you measure the size of a function using the C^{1}-distance, $\|w\|=\sup \{|w(x)|,|D w(x)|\}$.
- A linear functional $F: w \mapsto F(w)$ is continuous with respect to this norm if $F(w) \rightarrow 0$ when both max $|w(x)| \rightarrow 0$ and $\max |D w(x)| \rightarrow 0$.
- Representation theorem: A continuous linear functional F with respect to the C^{1}-norm may be represented by measures σ_{0}, σ_{1} in the form

$$
F(w)=\int_{\mathscr{B}} w d \sigma_{0}+\int_{\mathscr{B}} D w d \sigma_{1} .
$$

$$
F(w)=\int_{\mathscr{B}} \phi_{0} w d x+\int_{\mathscr{B}} \phi_{1} D w d x
$$

"self" force density

Non-Uniqueness of C^{1}-Representation by Integrals

- We had an expression in the form

$$
F(w)=\int_{\mathscr{B}} w d \sigma_{0}+\int_{\mathscr{B}} w^{\prime} d \sigma_{1} .
$$

- If we were allowed to vary w and w^{\prime} independently, we could determine σ_{0} and σ_{1} uniquely.
- This cannot be done because of the condition $w^{\prime}=D w$.

Unique Representation of a Force System

- Assume we have a force system, i.e., a force $F_{\mathscr{P}}$ for every subbody \mathscr{P} of \mathscr{B}.
- We can approximate pairs of non-compatible functions w and w^{\prime}, i.e., $w^{\prime} \neq D w$, by piecewise compatible functions.

- This way the two measures are determined uniquely.
- One needs consistency conditions for the force system.

Generalized Cauchy Consistency Conditions

- Additivity:

$$
F_{\mathscr{P}_{1} \cup \mathscr{P}_{2}}\left(\left.w\right|_{\mathscr{P}_{1} \cup \mathscr{P}_{2}}\right)=F_{\mathscr{P}_{1}}\left(\left.w\right|_{\mathscr{P}_{1}}\right)+F_{\mathscr{P}_{2}}\left(\left.w\right|_{\mathscr{P}_{2}}\right) .
$$

- Continuity: If $\mathscr{P}_{i} \rightarrow A$, then $F_{\mathscr{P}_{i}}\left(\left.w\right|_{\mathscr{P}_{1}}\right)$ converges and the limit depends on A only.

- Uniform Boundedness: There is a $K>0$ such that for every subbody \mathscr{P} and every w,

$$
\mid F_{\mathscr{P}}\left(\left.w\right|_{\mathscr{P}}\right) \leq K\left\|w_{\mathscr{P}}\right\| .
$$

Main Tool in Proof: Approximation of measurable sets by bodies with smooth boundaries.

Generalizations

- All the above may be formulated and proved for differentiable manifolds.
- This formulation applies to continuum mechanics of order $k>1$ (stress tensors of order k). One should simply use the C^{k}-norm instead of the C^{1}-norm.
- The generalized Cauchy conditions also apply to continuum mechanics of order $k>1$. This is the only formulation of Cauchy conditions for higher order continuum mechanics.

Locality and Continuity in Constitutive Theory

Global Constitutive Relations

(Elasticity for Simplicity)

- \mathscr{Q}, the configuration space of a body \mathscr{B}.
- $C^{0}\left(\mathscr{B}, L\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)\right)$, the collection of all stress fields over the body.
- $\Psi: \mathscr{Q} \rightarrow C^{0}\left(\mathscr{B}, L\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)\right)$, a global constitutive relation.

Locality and Materials of Grade-n

Germ Locality: If two configurations κ_{1} and κ_{2} are equal on a subbody containing X, then the resulting stress fields are equal at X.

Material of Grade- n or n-Jet Locality: If the first n derivatives of κ_{1} and κ_{2} are equal at X, then, $\Psi\left(\kappa_{1}\right)(X)=\Psi\left(\kappa_{2}\right)(X)$. (Elastic = grade 1.)

Body \mathscr{B}

Body \mathscr{B}

n-Jet Locality and Continuity

Basic Theorem: If a constitutive relation $\Psi: \mathscr{Q} \rightarrow C^{0}\left(\mathscr{B}, L\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)\right)$ is local and continuous with respect to the C^{n}-norm, then, it is n-jet local. In particular, if Ψ is continuous with respect to the C^{1}-topology, the material is elastic.

