Some Extensions and Analysis of Flux and Stress Theory

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Structures of the Mechanics of Complex Bodies October 2007 Centro di Ricerca Matematica, Ennio De Giorgi Scuola Normale Superiore

Generalized Bodies

The Material Structure Induced by an Extensive Property

Organisms

- *Material points, bodies and subbodies* are primitive concepts in continuum mechanics. These notions are somehow related to the conservation of mass.
- In growing bodies, material points are added and removed from the body.
- Examples: fingerprints, birthmarks are distinguishable.
- An *organism* has a body structure although mass is not preserved. Can formalize this idea?
- Assume we have an extensive property.

The Material Structure Induced by an Extensive Property

In the classical case we have the flux vector field *h*. It can be integrated to give us a material structure.

A material point is identified with an integral line (a flow line). This procedure may induce material structure associated with any extensive property, e.g., color and energy.

- $\frac{h}{\rho}$ will be the velocity field of the material points.
- Can we generalize the same idea for the general manifold case where the flow (m 1)-form replaces the vector field?

The Case where a Volume Element is Specified

It is not necessary to have a metric structure in order that the flux form *J* be represented by a vector field.

Assume that you have a *volume element* θ (*m*-form) on \mathcal{U} . This may be thought of as the density of the property *p* if it is positive or another positive property, e.g., mass.

Given J and θ, find a vector v such that for every pair of tangent vectors, *u*, *w*,

$$\theta(v, u, w) = J(u, w)$$
 written as $J = v \lrcorner \theta$.

- For a given θ there is a unique such vector *v*—*the kinematic flux*—a generalization of the velocity field.
- The vector field *v* depends linearly on the flux *J*.

R. Segev (Ben-Gurion Univ.)

The Flux Bundle

Let us examine how the kinematic flux v varies as we vary the volume element.

Since the space of *m*-forms at x is 1-dimensional, as we vary the volume element the resulting vectors v remain on a line (1-D subspace of the tangent space).

- Another characterization: If a surface element (say the one defined by the vectors u, w) contains the line, the flux through it vanishes.
- This is analogous to the situation with the velocity field.
- A collections of subspaces is referred to as a *distribution*. This distribution is the *flux bundle*.

Generalized Body Points

Integral manifolds of the distribution, the 1-dimensional flux bundle in this case, are submanifolds whose tangent space at a point is the corresponding line of the flux bundle at that point.

In general such integral manifolds need not exist (higher dimensions), however they always exist for 1-dimensional bundles as is the case here.

- Each integral line manifold is identified with a *body point*.
- Actual formulation is done on space-time manifold to allow time dependent fluxes. There β is included in τ and dJ = s.

Frames in Space-Time

Property-Induced Fibration and Frame

Space Formulation VS. Space-Time Formulation

Space Formulation $\dim \mathscr{U} = 3$

Balance

surface term source term flux form variables field equation $\beta + dI = s$

dim $\mathscr{B} = 3$ $\int \beta + \int \tau = \int s$ 2-form on a 3-D manifold 3-form on a 3-D manifold *I*—3 components

—time dependent

Flow Potentials

- Although we do not have vector velocity fields, we have material points.
- In addition, we have analogs for the flow potentials.
- In the case s = 0 we obtain (say the 4-D case) dJ = 0.
- Assume that *A* is any (m 2)-form on \mathscr{U} . Then, J = dA satisfies the differential balance equation—*A* is a *flow potential*. Since in general,

$$\int_{\partial M} \iota^* \omega = \int_M d\omega$$

for every control region \mathscr{B}

$$\int_{\mathscr{B}} dJ = \int_{\partial \mathscr{B}} \iota^*(J) = \int_{\partial \mathscr{B}} \iota^*(dA) = \int_{\partial (\partial \mathscr{B}) = \varnothing} \iota^*(\iota^*(A)) = 0.$$

Summary: The Structure on Space-Time manifold Associated with an Extensive Property

- Balance laws are formulated in terms of forms.
- The flux vector field is replaced by a flux (m 1)-form in the *m*-dimensional space.
- Flow lines still make sense using the flux bundle.
- Generalized body points may be associated with an arbitrary extensive property—*organisms*.
- A particularly compact formulation in space-time.
- A positive extensive property induces a material frame.

Stresses for Generalized Bodies

Forces for Generalized Bodies

- Force densities are linear mappings on the values of the generalized velocities.
- In the case where a material structure is induce by an extensive property and a volume element is given, the induced generalized velocity *w* depends linearly on the flux form *J*.
- It would be a natural generalization to replace generalized velocities by flux forms as fields on which forces operate to produce power.
- The physical dimension of forces will not be power per unit velocity but power per per unit flux of the property *p*.
- For the spacetime formulation $F_{\mathscr{B}}(J) = \int t_{\mathscr{B}}(J), \quad \mathscr{B} \subset \mathscr{E}.$

•
$$t_{\mathscr{B}}(e): \bigwedge^{m-1} T_e^* \mathscr{E} \to \bigwedge^{m-1} T_e^* \partial \mathscr{B}.$$

Stresses for Generalized Bodies

- Consider the energy extensive property. It has a flux density term $\int_{\partial \mathscr{B}} \tau^{(e)}$ and a corresponding flux form $J^{(e)}$ such that $\tau^{(e)} = \iota^* \circ J^{(e)}$.
- On the other hand the flux density of energy may be written in terms of the boundary force as *t*_𝔅(*J*).
- Cauchy's theorem implies that $t_{\mathscr{B}} = \iota^* \circ \sigma$ so the energy flux density is $\tau^{(e)} = \iota^* \circ J^{(e)} = \iota^* \circ \sigma(J)$. Hence,

$$J^{(e)} = \sigma(J)$$

The Cauchy stress is the linear mapping that transforms the flux of the property p into the flux of energy.

- $\sigma_e: \bigwedge^{m-1} T_e^* \mathscr{E} \to \bigwedge^{m-1} T_e^* \mathscr{E}$. The stress at a point (event) is a linear transformation on the space of (m-1)-forms.
- May be applied to "resources" other then energy?

Local Representation of Stress-Tensors

- Denote by {êⁱ} the basis of the *m*-dimensional space of (*m* − 1)-forms. Denote its dual basis by {ê_j}.
- Since the stress at a point is a linear transformation on the space of (m-1)-forms it may be represented in the form $\hat{\sigma}_i^{\ j} \hat{e}_j \otimes \hat{e}^i$.
- If we had a volume element θ we would have an isomorphism $\bigwedge^{m-1}(T^*\mathscr{U}) \leftrightarrow T\mathscr{U}$ of (m-1)-forms and vectors, such that $J \leftrightarrow v$ are given by $\theta(v, u, w) = J(u, w)$.
- Thus, with a volume element and due to the following structure,

one may represent a stress σ by a linear transformation $\tilde{\sigma}$ on $T\mathscr{U}$.

• Surprisingly, $\tilde{\sigma}$ is independent of the volume element θ . In fact, you can construct a natural isomorphism $\sigma \leftrightarrow \tilde{\sigma}$ without a volume element.

Maxwell Stress-Energy Tensor without a Metric

- Maxwell 2-form: g, a flow potential for J, i.e., J = dg.
- Faraday 2-form: f such that df = 0.
- Assume a volume element and set *w* = *i*_θ(*J*) to be the vector field representing the flux form.
- define the stress-energy tensor as the section σ of $L(\bigwedge^{m-1}(T^*\mathscr{U}), \bigwedge^{m-1}(T^*\mathscr{U}))$ by

$$\sigma(J) = (w \lrcorner \mathfrak{g}) \land \mathfrak{f} - (w \lrcorner \mathfrak{f}) \land \mathfrak{g}.$$

• The power is

$$d\sigma(J) = (w \lrcorner \mathfrak{f}) \land J + (\mathscr{L}_w \mathfrak{g}) \land \mathfrak{f} - (\mathscr{L}_w \mathfrak{f}) \land \mathfrak{g}.$$

—a generalization of the Lorentz force $(w \sqcup \mathfrak{f}) \land J$. (\mathscr{L} is the Lie derivative.) The two additional terms cancel in the traditional situation.