Some Extensions and Analysis of Flux and
Stress Theory

Reuven Segev

Department of Mechanical Engineering
Ben-Gurion University

Structures of the Mechanics of Complex Bodies
October 2007
Centro di Ricerca Matematica, Ennio De Giorgi
Scuola Normale Superiore

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 1/34



Forces and Cauchy Stresses on Manifolds

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 2/34



Cauchy Stress Theory on Manifolds
Reminder:

@ The classical Cauchy theory for the existence of stress uses the metric
structure of the Euclidean space.

@ How would you generalize the notion of stress and Cauchy’s postulate
so the theory can be formulated on a general manifold?
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Added Benefit

@ Such a stress object will unify the classical Cauchy stress and
Piola-Kirchhoff stress.

@ If you consider a material body as a manifold, all configurations of the
body, in particular, the current configuration and any reference
configuration, are equivalent charts in terms of the manifold structure

of the body.

@ The transformation from the Cauchy stress to the Piola-Kirchhoff stress
will be just a transformation rule for two different representations of the

same stress object.
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In Classical Continuum Mechanics

The force on a body # in the material manifold R® is given by

Pg:/b%dv+/t@dA.
B 04

b is the body force on %;
ty is the surface force on 4.
The force system { (b, t5)} is considered as a set function.
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Cauchy’s Postulates for the dependence on %4.

@ The body force by does not depend on the body, i.e., by (x) = b(x).

@ The surface force at a point on the boundary of a control volume
depends on the normal to the boundary at that point, i.e.,

ta(x) = Zx(n(x)).
@ X, is assumed to be continuous.

@ There is a vector field s on the material manifold, the ambient force or
self force (usually taken as zero), such that

Ig = /bgdt}—k/@dﬂz /sdv.
2 bV i

Cauchy’s Theorem: X, is linear. J
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Obstacles to the Generalization to Manifolds:

@ You cannot integrate vector fields on manifolds.
@ You do not have a unit normal if you do not have a
Riemannian metric. ¥/

Basic modifications:

@ Use integration of forms on manifolds to integrate scalar
fields.v/

@ Write the force in terms of power expanded for various
velocity fields so you integrate a scalar field.

@ Use dependence on the tangent space instead of direction
of the normal.¢/

@ Use restriction of forms for Cauchy’s formula.v’
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Preliminaries for Continuum Mechanics on Manifolds

% s the material manifold, dim % = m;
2% abody is an m-dimensional submanifold on %/.
A is the physical space manifold, dim .Z = p.

A configuration of a body # is an embedding

K: B — M.

A velocity is a mapping
w: B — T suchthat, 7 ,o0w =« isa configuration.
& Alternatively, if
K (Tw) W=x"(TH) — U
is the pullback, a velocity at x may be regarded as a section
w: U — W.
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Velocity Fields
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Bundles and Pullbacks

H

\\\‘E\\—a bundle
\\\(e.g., TH)

i

space manifold
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Sections of Bundles

Boiae] E—abundle
N (e, TA)
’ B
i\’bjection
57-[\\

secti0n< o

space manifold
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Force Densities

Foplw) = / bos(w) + / t(w),
B 0B

for linear
m—1

bap(x): We — ANT:%, and tgz(y): W, — )\ T,0%.

e by is asection of

m m

LW, \(T#)) = (T2, W),

e (4 isasection of
m—1 m—1

L(W, \ (To®)) = A\ (Toz, W)

*
— W -valued forms.
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Vector Valued Forms
o 7 € L(Wy, /\k(TxP)), P C % a submanifold, k < dim(P).
@ §y: (TyP)" — W;, alternating, multi-linear.

k
Fx € /\(Tﬂ/ , W; ), a(co-)vector valued form.

@ The requirement

Fa(v1, .. 00) () = y(u)(v1,...,00),

for any collection of k vectors vy, . ..,v, and u € Wy, generates an
isomorphism
k k

L(Wy, \(T:P)) = N\(Tx%, W).
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What Will Cauchy’s Theorem and Formula Look Like?

For scalars, the flux form was an
(m — 1)-form J on an m-dimensional
manifold. By restriction, the Cauchy
formula, T4 = 1*(J), induces an ‘
(m — 1)-form on T,0.A.
Tx0A

@ For the case of force theory, t»(w) is an (m — 1)-form, the flux of
power, where tz(x): Wy — N Ti0A.

@ The natural generalization: at each point x there is a linear mapping
o¢: Wy — /\”’_1 T:% , called the stress at x, such that
tz(w) = 1*(o(w)). In other words,

tg =1" o0, isthe required Cauchy formula.
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The Cauchy Postulates: Notes.

The dependence of t4(x) on the subbody
% through the tangent space to 4 is as-
sumed to be continuous in the tangent
space and point x. This aspect, that we
neglected before, should be meaningful.

@ The collection of hyperplanes, G,,_1(T% )-—the Grassmann bundle,
i.e., (Gu-1(T%)) is the manifold of (m — 1)-dimensional subspaces
of T, % .

@ The mapping that assigns the surface forces to hyperplanes will be
referred to as the Cauchy section. At each point it is a mapping

m—1

2ot Gy (Te%) — L(Wy, N\ (Gu1(Te%)) 7).
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The Cauchy Postulates: The Cauchy Section

More precisely, consider the diagram

5 ()

(W) =5 G (T%) —— N (Gua(TZ))

T lnc

7T

w — w
Then, the Cauchy section is a section

m—1

2 Gu1(T%) — L(mg(W), N\ (Gua(T%))").

@ Itis assumed that X is smooth.
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The Cauchy Postulates: Boundedness

We need the analog of the boundedness assumption

/5+/ng S/s,

B 04 B
where eventually we get T = *(J) and [ 14 = [d].
9% %

@ We write the scalar boundedness assumption for the power, so
B =b(w) and 15 = tyz(w).
@ We anticipate that t 4 = (* o 0. Hence, the bounded expression is

/b(w)—k/@(w) _ /b(w)—l—/t*(a(w)) — /b(w)+/d(a(w)) .
B 0% B 0% B B

Thus, the expression should be bounded by the values of both w and its
derivative—the first jet j!(w).
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Consequences of the (Generalized) Cauchy Theorem

Since t»(w) = 1*(0(w)), the total power is given as

Fop(w) = / b(w) + / top(w) = / b(w) + / d(o(w)).
B 0% B PB

@ The density of F»(w) depends linearly on the values of w and its
derivative.

@ For manifolds, there is no way to separate the value of the derivative of
a section from the value of the section. Hence j! (w)—the first jet of w
is a single invariant quantity that contains both the value and the value
of the derivative.

Thus, the expression should be bounded by the values of both w and its
derivative—the first jet j' (w).
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Variational Stresses
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Jets

Wi
A jet of a section at x is an ! ()«
invariant quantity containing
the values of both the section >w
and its derivative.
e
JH (W), —the collection of all L W),
possible values of jets at
x—the jet space.
J1(W)—the collection of jet
spaces, the jet bundle.
(w
W) 3
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Variational Stresses

Fop(w) = /(b(w) +d(o(w))).

B

We obtained

@ The value of the power density at a point is linear in the jet of w.

@ Hence, there is a section S, such that

Se: ] /\ T;% suchthat Sy(j'(w)y) = b(w) +d(c(w)).

@ We will refer to such a section S of L(J* (W), N"(T*%)) as a variational
stress density. It produces power from the jets (gradients) of the velocity fields.

@ Thus,
Fo(w) = [ (b@) +d( /s
B
Conclusion:
A Cauchy stress o and a body force b induce a variational stress density S. J
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Variational Stress Densities:

@ Variational stress densities are sections of the vector bundle
L(JY (W), N"(T*%)), i.e, at each point, is assigns an m-covector to a
jet at that point, linearly.

@ If S is a variational stress density, then the power of the force F it
represents over the body %, while the the generalized velocity is w, is
given by

Fo(w) = /S(jl(w)).
B

This expression makes sense as S(j!(w)), is an m-form whose value at
apointx € Zis S(x) (j' (w)(x)).

@ The local representation of S is through the arrays S, and 575- The single

component of the m-form S(j(w)) in this representation is

S + Sjﬁwﬁ; .
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Linear Connections

vertical vertial component horizontal component

W,

no connection I'—the connection mapping
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The Case where a Connection is Given:

@ If a connection is given on the vector bundle W, the jet bundle is
isomorphic with the Whitney sum W &4 L(T%, W) by
' (w) — (w, Vw), where V denotes covariant derivative.

@ A variational stress may be represented by sections (So, S1) of

L(W,?\(T*%)) Su L(L(T%, W) /m\

so the power is given by (see Segev (1986))

w) = /So(w) +/51(Vw).
2 2

We will refer to the section Sy of L(L(T%, W), \"(T*%)) as the
variational stress tensor.

@ With an appropriate definition of the divergence, a force may be written
in terms of a body force and a surface force.
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Problem: Relation Between Variational and Cauchy
Stresses

@ Can we extract the generalized Cauchy stress o from the variational
stress S invariantly?
o There is a linear p,: L(J* (W), A™(T* %)) — L(W, \"*(T* %)) that
gives a Cauchy stress o = p,(S) to any given variational stress S.
@ Locally, if o is represented by 0; such that U"Bfwﬁ is the i-th component
of the (m — 1)-from o (w), locally p, is given by
(xi, Sa, S{B) — (xi, Uﬁf)

where, '
og = (—1)7'STy,  (no sum over i).

e Can you write a generalized definition of the divergence that applies even
without a connection? v/ Locally, the divergence Div S is given by

i
(Stx,i Sa ) .
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The Vertical Subbundle of the Jet Bundle:

o Let 7r}: J*(W) — W be the natural projection on the jet bundle that
assign to any 1-jet at x € 4 the value of the corresponding O-jet, i.e.,
the value of the section at x.

@ We define V] (W), the vertical sub-bundle of J' (W), to be the vector
bundle over Z such that

where 0 is the zero section of W.

@ There is a natural isomorphism

I'*: ViY(W) — L(T%,W).
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The Vertical Subbundle VJ!(W):

VL (W)

\

V(W) = L(T3,W)
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The Vertical Component of a Variational Stress:
o Letiy: V(W) — JH(W) be the inclusion mapping of the sub-bundle.
@ Consider the linear injection, 1, = ty o (I")~': L(T%, W) — J'(W).
@ Thus we have a linear surjection
m m
LG' W), \(T'9)) — L(L(T7, W), \(T°2))
given by 15:(S) = So .
@ For a variational stress S, we will refer to
m

ST =u1;(S) e L(L(T#%, W), \(T*%))

as the vertical component of S. (The symbol of the variational stress).
e If the variational stress is represented locally by (S,, S{S), then, ST is
represented locally by S*i‘ =Si.
@ Clearly, one cannot define invariantly (without a connection) a
“horizontal” component to the stress.
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Variational Fluxes:

@ Since the jet of a real valued function ¢ on % can be identified with a
pair (¢, d¢) in the trivial case where W = 2 x R, the jet bundle can
be identified with the Whitney sum W © 2 T*% .

e V(W) can be identified with T*% and the vertical component of the
variational stress is valued in L(T*%, \" (T*8)). We will refer to
sections of L(T*% , \" (T*%)) as variational fluxes.

@ There is a natural isomorphism

m—1

ine \(T"%B) — L(T*%,?\(T*,@))

given by ip (w)(¢) = ¢ AN w.
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The Cauchy Stress Induced by a Variational Stress:

@ Consider the contraction natural vector bundle morphism

c: L(L(T%,W),?\(T*%)) @z W — L(T*OZ/,/m\(T*%’))

given by

c(B,w)(¢) = Bw® ¢),
forBe L(L(T%, W), N"(T*#)), w € W, and ¢ € T*%, where
(w® ¢)(v) = p(v)w. We also write w1 B for ¢(B, w).

@ Forasection ST of L(L(T%,W), N"(T*%)) and a vector field w,
w1 St is a variational flux.

@ Consider the mapping
m m—1
iov: L(IL(T%, W), N\(T*#)) — L(W, \ (T*%))
such that i, 0 S*(w) = i }(ws St). Itis linear and injective.
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Cauchy Stresses and Variational Stresses (Contd.)

 pr =iy o1 s L(JH(W), N"™(T*B)) — L(W, N" " }(T*%)) is a linear
mapping (no longer injective) that gives a Cauchy stress to any given
variational stress.

@ Locally, o is represented by p; such that Uﬁfwﬁ is the i-th component of
the (m — 1)-from o (w).

@ Locally p, is given by

(¥, S, Sg) + (x', )

where,

o5 = (_1)"_1S+;;, (no sum over i).
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The Divergence of a Variational Stress:

@ For a given variational stress S and a generalized velocity w, consider
the difference, an m-form,

d(p(8)(w)) = S(j' (w)).

@ Locally, the difference is represented by

(Sfx,i - Sa)w"‘

@ This shows that the difference depends only on the values of w and not
its derivative.

@ Define the generalized divergence of the variational stress S to be the
section Div(S) of the vector bundle L(W, \"(T* %)) satisfying

Div(8)(w) = d(po(S)(w)) — S(' (w)) = do(w) - S(j" (w)),
o = ps(S), for every generalized velocity field w.
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The Principle of Virtual Power:

@ Given a variational stress S, the expression for the power is

F@w):/swuwy
%

@ Using the previous constructions and Stokes’ theorem we have
_%mg:/@wm»—/mwgmy
0B Y

where, 0 = p,(S) is the the Cauchy stress induced by the variational
stress S, and 3, is the restriction of (m — 1)-forms on % to 0.%.

@ Thus we have for t z(w) = 13, (c(w)) = 1% (po(S)(w)) and
Div S + by = 0, a force for each subbody # of the form

Fa(w) = [ba@)+ [ ta(w),
0A B
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Conclusions:

@ The mapping relating the values of variational stress fields and Cauchy
stresses

m—1

L(]%W),?\(T*%)) — LW, \ (T*%)),

is linear, surjective, but not injective.
e However, the mapping between the fields

p:S—(o,b), 0=ps0S, b=—-DivS,
is injective.

o The inverse, p~!

: (0,b) — S, is given by
5(x)(A) = by(wy) +do(w)x,

for any vector field w whose jet at x is A.
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