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Forces and Cauchy Stresses on Manifolds
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Cauchy Stress Theory on Manifolds

Reminder:

The classical Cauchy theory for the existence of stress uses the metric
structure of the Euclidean space.

How would you generalize the notion of stress and Cauchy’s postulate
so the theory can be formulated on a general manifold?
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Added Benefit

Such a stress object will unify the classical Cauchy stress and
Piola-Kirchhoff stress.

If you consider a material body as a manifold, all configurations of the
body, in particular, the current configuration and any reference
configuration, are equivalent charts in terms of the manifold structure
of the body.

The transformation from the Cauchy stress to the Piola-Kirchhoff stress
will be just a transformation rule for two different representations of the
same stress object.
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In Classical Continuum Mechanics
The force on a body B in the material manifold R3 is given by

FB =
∫
B

bB dV +
∫

∂B

tB dA.

bB is the body force on B;

tB is the surface force on B.

The force system {(bB , tB)} is considered as a set function.
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Cauchy’s Postulates for the dependence on B.

The body force bB does not depend on the body, i.e., bB(x) = b(x).

The surface force at a point on the boundary of a control volume
depends on the normal to the boundary at that point, i.e.,
tB(x) = Σx(n(x)).

Σx is assumed to be continuous.

There is a vector field s on the material manifold, the ambient force or
self force (usually taken as zero), such that

IB =
∫
B

bBdv +
∫

∂B

tBda =
∫
B

sdv.

Cauchy’s Theorem: Σx is linear.
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Obstacles to the Generalization to Manifolds:

You cannot integrate vector fields on manifolds.
You do not have a unit normal if you do not have a
Riemannian metric. "

Basic modifications:
Use integration of forms on manifolds to integrate scalar
fields."
Write the force in terms of power expanded for various
velocity fields so you integrate a scalar field.
Use dependence on the tangent space instead of direction
of the normal."
Use restriction of forms for Cauchy’s formula."
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Preliminaries for Continuum Mechanics on Manifolds
U is the material manifold, dim U = m;
B a body is an m-dimensional submanifold on U .
M is the physical space manifold, dim M = µ.

A configuration of a body B is an embedding

κ : B →M .

A velocity is a mapping

w : B → TM such that, τM ◦w = κ is a configuration.

� Alternatively, if

κ∗(τM ) : W = κ∗(TM )→ U

is the pullback, a velocity at κ may be regarded as a section

w : U → W.
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Velocity Fields
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Velocity Fields
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Bundles and Pullbacks
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Bundles and Pullbacks
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space manifold

E—a bundle

Ex

π

projection
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M

(e.g., TM )
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Sections of Bundles
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Sections of Bundles
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Force Densities

FB(w) =
∫
B

bB(w) +
∫

∂B

tB(w),

for linear

bB(x) : Wx →
m∧

TxU , and tB(y) : Wy →
m−1∧

Ty∂B.

• bB is a section of

L
(
W,

m∧
(TB)

)
=

m∧(
TB, W

∗)
,

• tB is a section of

L
(
W,

m−1∧
(T∂B)

)
=

m−1∧ (
T∂B, W

∗)
— W

∗
-valued forms.
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Vector Valued Forms

γx ∈ L
(
Wx,

∧k(TxP)
)
, P ⊂ U a submanifold, k ≤ dim(P).

γ̃x : (TxP)n → W
∗
x , alternating, multi-linear.

γ̃x ∈
k∧
(TxU , W

∗
x ), a (co-)vector valued form.

The requirement

γ̃x(v1, . . . ,vk)(u) = γx(u)(v1, . . . ,vk),

for any collection of k vectors v1, . . . ,vk, and u ∈ Wx, generates an
isomorphism

L
(
Wx,

k∧
(TxP)

)
=

k∧
(TxU , W∗x ).
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What Will Cauchy’s Theorem and Formula Look Like?

For scalars, the flux form was an
(m− 1)-form J on an m-dimensional
manifold. By restriction, the Cauchy
formula, τB = ι∗(J), induces an
(m− 1)-form on Tx∂B.

14
'

&

$

%

Cauchy’s Formula and the Restriction of Forms

The (m− 1)-form J on U (m
components) induces by restric-
tion an (m− 1)-form τ on ∂B.

—τ is given by

τ(v, u) = J(v, u). Tx∂B

∂B

x
u v

The induced form τ has a single component as it is an (m− 1)-form
on the (m− 1)-dimensional manifold ∂B. The mapping that assigns τ

to J is the restriction and it is denoted as

τ = ι∗(J).

This equation is the required generalization of Cauchy’s formula.

Reuven Segev: Geometric Methods, March 2001

For the case of force theory, tB(w) is an (m− 1)-form, the flux of
power, where tB(x) : Wx →

∧m−1 T∗x ∂B.
The natural generalization: at each point x there is a linear mapping
σx : Wx →

∧m−1 T∗xU , called the stress at x, such that
tB(w) = ι∗

(
σ(w)

)
. In other words,

tB = ι∗ ◦ σ, is the required Cauchy formula.
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The Cauchy Postulates: Notes.

The dependence of tB(x) on the subbody
B through the tangent space to B is as-
sumed to be continuous in the tangent
space and point x. This aspect, that we
neglected before, should be meaningful.

44
'

&

$

%

The Cauchy Postulates: Notes.

The dependence of tB(x) on the
subbody B through the tangent
space to B is assumed to be contin-
uous in the tangent space and point
x. This aspect, that we neglected
before, should be meaningful.

Tx∂B

∂B

x
u vy

• The collection of hyperplanes, Gm−1(TU )—the Grassmann
bundle, i.e.,

(
Gm−1(TU )

)
x is the manifold of

(m− 1)-dimensional subspaces of TxU .

• The mapping that assigns the surface forces to hyperplanes will be
referred to as the Cauchy section. At each point it is a mapping

Σx : Gm−1(TxU ) → L
(
Wx,

m−1∧ (
Gm−1(TxU )

)∗).
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The collection of hyperplanes, Gm−1(TU )-–the Grassmann bundle,
i.e.,

(
Gm−1(TU )

)
x is the manifold of (m− 1)-dimensional subspaces

of TxU .

The mapping that assigns the surface forces to hyperplanes will be
referred to as the Cauchy section. At each point it is a mapping

Σx : Gm−1(TxU )→ L
(
Wx,

m−1∧ (
Gm−1(TxU )

)∗).
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The Cauchy Postulates: The Cauchy Section

More precisely, consider the diagram

π∗G(W)
π∗G(π)
−−−→ Gm−1(TU ) ←−−− ∧m−1(Gm−1(TU )

)∗x yπG

W π−−−→ U

Then, the Cauchy section is a section

Σ : Gm−1(TU )→ L
(
π∗G(W),

m−1∧ (
Gm−1(TU )

)∗).

It is assumed that Σ is smooth.
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The Cauchy Postulates: Boundedness
We need the analog of the boundedness assumption∣∣∣∣∣∣

∫
B

β +
∫

∂B

τB

∣∣∣∣∣∣ ≤
∫
B

s,

where eventually we get τB = ι∗(J) and
∫

∂B

τB =
∫
B

dJ.

We write the scalar boundedness assumption for the power, so
β = b(w) and τB = tB(w).

We anticipate that tB = ι∗ ◦ σ. Hence, the bounded expression is∣∣∣∣∣∣
∫
B

b(w) +
∫

∂B

tB(w)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
B

b(w) +
∫

∂B

ι∗
(
σ(w)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
B

b(w) +
∫
B

d
(
σ(w)

)∣∣∣∣∣∣ .

Thus, the expression should be bounded by the values of both w and its
derivative—the first jet j1(w).
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Consequences of the (Generalized) Cauchy Theorem
Since tB(w) = ι∗

(
σ(w)

)
, the total power is given as

FB(w) =
∫
B

b(w) +
∫

∂B

tB(w) =
∫
B

b(w) +
∫
B

d
(
σ(w)

)
.

The density of FB(w) depends linearly on the values of w and its
derivative.

For manifolds, there is no way to separate the value of the derivative of
a section from the value of the section. Hence j1(w)—the first jet of w
is a single invariant quantity that contains both the value and the value
of the derivative.

Thus, the expression should be bounded by the values of both w and its
derivative—the first jet j1(w).
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Variational Stresses
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Jets

A jet of a section at x is an
invariant quantity containing
the values of both the section
and its derivative.

J1(W)x —the collection of all
possible values of jets at
x—the jet space.

J1(W)—the collection of jet
spaces, the jet bundle.
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Jets

A jet of a section at x is an
invariant quantity containing
the values of both the section
and its derivative.

J1(W)x—the collection of all
possible values of jets at x—the
jet space.

J1(W)—the collection of jet
spaces, the jet bundle.

Bx
J1(W)

J1(W)x

x B

w

j1(w)x

Wx

W

Reuven Segev: Geometric Methods, March 2001R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 20 / 34



Variational Stresses
We obtained

FB(w) =
∫
B

(
b(w) + d

(
σ(w)

))
.

The value of the power density at a point is linear in the jet of w.

Hence, there is a section S, such that

Sx : J1(W)x →
m∧

T∗xU such that Sx
(
j1(w)x

)
= b(w) + d

(
σ(w)

)
.

We will refer to such a section S of L
(
J1(W),

∧m(T∗U )
)

as a variational
stress density. It produces power from the jets (gradients) of the velocity fields.

Thus,

FB(w) =
∫
B

(
b(w) + d

(
σ(w)

))
=

∫
B

S
(
j1(w)

)
.

Conclusion:
A Cauchy stress σ and a body force b induce a variational stress density S.
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Variational Stress Densities:

Variational stress densities are sections of the vector bundle
L
(
J1(W),

∧m(T∗U )
)
, i.e, at each point, is assigns an m-covector to a

jet at that point, linearly.

If S is a variational stress density, then the power of the force F it
represents over the body B, while the the generalized velocity is w, is
given by

FB(w) =
∫
B

S(j1(w)).

This expression makes sense as S(j1(w)), is an m-form whose value at
a point x ∈ B is S(x)

(
j1(w)(x)

)
.

The local representation of S is through the arrays Sα and Sj
β. The single

component of the m-form S
(
j1(w)

)
in this representation is

Sαwα + Sj
βwβ

,j .
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Linear Connections
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Linear Connections

vertical

Γ—the connection mapping

vertial component horizontal component

U

W

Wx

y
x

π

w Tπ

Γ

U

W

Wx Wy

y
x

Tπ

π

w

no connection

Reuven Segev: Geometric Methods, March 2001
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The Case where a Connection is Given:
If a connection is given on the vector bundle W, the jet bundle is
isomorphic with the Whitney sum W⊕B L

(
TB, W

)
by

j1(w) 7→ (w,∇w), where ∇ denotes covariant derivative.
A variational stress may be represented by sections (S0, S1) of

L
(
W,

m∧
(T∗U )

)
⊕B L

(
L
(
TU , W

)
,

m∧
(T∗B)

)
so the power is given by (see Segev (1986))

FB(w) =
∫
B

S0(w) +
∫
B

S1(∇w).

We will refer to the section S1 of L
(
L
(
TU , W

)
,
∧m(T∗B)

)
as the

variational stress tensor.
With an appropriate definition of the divergence, a force may be written
in terms of a body force and a surface force.
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Problem: Relation Between Variational and Cauchy
Stresses

Can we extract the generalized Cauchy stress σ from the variational
stress S invariantly?
There is a linear pσ : L

(
J1(W),

∧m(T∗B)
)
→ L

(
W,

∧m−1(T∗B)
)

that
gives a Cauchy stress σ = pσ(S) to any given variational stress S.
Locally, if σ is represented by σβı̂ such that σβı̂wβ is the i-th component
of the (m− 1)-from σ(w), locally pσ is given by

(xi, Sα, Sj
β) 7→ (xi, σβı̂)

where,
σβı̂ = (−1)i−1S+i

β, (no sum over i).

Can you write a generalized definition of the divergence that applies even
without a connection? " Locally, the divergence Div S is given by(
Si

α,i − Sα

)
.
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The Vertical Subbundle of the Jet Bundle:

Let π1
0 : J1(W)→ W be the natural projection on the jet bundle that

assign to any 1-jet at x ∈ B the value of the corresponding 0-jet, i.e.,
the value of the section at x.

We define VJ1(W), the vertical sub-bundle of J1(W), to be the vector
bundle over B such that

VJ1(W) = (π1
0)
−1(0),

where 0 is the zero section of W.

There is a natural isomorphism

I+ : VJ1(W)→ L
(
TU , W

)
.
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The Vertical Subbundle VJ1(W):

V J1(W) ∼= L(TB, W)

V J1(W)
J1(W)

J0(W) = W

π1
0

B
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The Vertical Component of a Variational Stress:
Let ιV : VJ1(W)→ J1(W) be the inclusion mapping of the sub-bundle.
Consider the linear injection, ιn = ιV ◦ (I+)−1 : L

(
TU , W

)
→ J1(W).

Thus we have a linear surjection

ι∗n : L
(
J1(W),

m∧
(T∗B)

)
→ L

(
L
(
TU , W

)
,

m∧
(T∗B)

)
given by ι∗n(S) = S ◦ ιn.
For a variational stress S, we will refer to

S+ = ι∗n(S) ∈ L
(
L
(
TU , W

)
,

m∧
(T∗B)

)
as the vertical component of S. (The symbol of the variational stress).

If the variational stress is represented locally by (Sα, Sj
β), then, S+ is

represented locally by S+i
α = Si

α.
Clearly, one cannot define invariantly (without a connection) a
“horizontal” component to the stress.
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Variational Fluxes:

Since the jet of a real valued function ϕ on B can be identified with a
pair (ϕ, dϕ) in the trivial case where W = B × R, the jet bundle can
be identified with the Whitney sum W⊕B T∗U .

VJ1(W) can be identified with T∗U and the vertical component of the
variational stress is valued in L

(
T∗U ,

∧m(T∗B)
)
. We will refer to

sections of L
(
T∗U ,

∧m(T∗B)
)

as variational fluxes.

There is a natural isomorphism

i∧ :
m−1∧

(T∗B)→ L
(
T∗U ,

m∧
(T∗B)

)
given by i∧(ω)(φ) = φ ∧ω.
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The Cauchy Stress Induced by a Variational Stress:

Consider the contraction natural vector bundle morphism

c : L
(
L
(
TU , W

)
,

m∧
(T∗B)

)
⊕B W → L

(
T∗U ,

m∧
(T∗B)

)
given by

c(B, w)(φ) = B(w⊗ φ),

for B ∈ L
(
L
(
TU , W

)
,
∧m(T∗B)

)
, w ∈ W, and φ ∈ T∗U , where

(w⊗ φ)(v) = φ(v)w. We also write wy B for c(B, w).
For a section S+ of L

(
L
(
TU , W

)
,
∧m(T∗B)

)
and a vector field w,

wy S+ is a variational flux.
Consider the mapping

iσ : L
(
L
(
TU , W

)
,

m∧
(T∗B)

)
→ L

(
W,

m−1∧
(T∗B)

)
such that iσ ◦ S+(w) = i−1

∧ (wy S+). It is linear and injective.
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Cauchy Stresses and Variational Stresses (Contd.)

pσ = iσ ◦ ι∗ : L
(
J1(W),

∧m(T∗B)
)
→ L

(
W,

∧m−1(T∗B)
)

is a linear
mapping (no longer injective) that gives a Cauchy stress to any given
variational stress.

Locally, σ is represented by σβı̂ such that σβı̂wβ is the i-th component of
the (m− 1)-from σ(w).

Locally pσ is given by

(xi, Sα, Sj
β) 7→ (xi, σβı̂)

where,

σβı̂ = (−1)i−1S+i
β, (no sum over i).
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The Divergence of a Variational Stress:
For a given variational stress S and a generalized velocity w, consider
the difference, an m-form,

d
(
pσ(S)(w)

)
− S

(
j1(w)

)
.

Locally, the difference is represented by(
Si

α,i − Sα

)
wα

This shows that the difference depends only on the values of w and not
its derivative.
Define the generalized divergence of the variational stress S to be the
section Div(S) of the vector bundle L

(
W,

∧m(T∗B)
)

satisfying

Div(S)(w) = d
(
pσ(S)(w)

)
− S

(
j1(w)

)
= dσ(w)− S

(
j1(w)

)
,

σ = pσ(S), for every generalized velocity field w.
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The Principle of Virtual Power:
Given a variational stress S, the expression for the power is

FB(w) =
∫
B

S
(
j1(w)

)
.

Using the previous constructions and Stokes’ theorem we have

FB(w) =
∫

∂B

ι∗B
(
σ(w)

)
−

∫
B

Div(S)(w),

where, σ = pσ(S) is the the Cauchy stress induced by the variational
stress S, and ι∗B is the restriction of (m− 1)-forms on B to ∂B.
Thus we have for tB(w) = ι∗B

(
σ(w)

)
= ι∗B

(
pσ(S)(w)

)
and

Div S + bB = 0, a force for each subbody B of the form

FB(w) =
∫

∂B

bB(w) +
∫
B

tB(w).
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Conclusions:

The mapping relating the values of variational stress fields and Cauchy
stresses

pσ : L
(
J1(W),

m∧
(T∗U )

)
→ L

(
W,

m−1∧
(T∗U )

)
,

is linear, surjective, but not injective.
However, the mapping between the fields

p : S 7→ (σ, b), σ = pσ ◦ S, b = −Div S,

is injective.
The inverse, p−1 : (σ, b) 7→ S, is given by

S(x)(A) = bx(wx) + dσ(w)x,

for any vector field w whose jet at x is A.
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