Some Extensions and Analysis of Flux and Stress Theory

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Structures of the Mechanics of Complex Bodies October 2007
Centro di Ricerca Matematica, Ennio De Giorgi Scuola Normale Superiore

Forces and Cauchy Stresses on Manifolds

Cauchy Stress Theory on Manifolds

Reminder:

- The classical Cauchy theory for the existence of stress uses the metric structure of the Euclidean space.
- How would you generalize the notion of stress and Cauchy's postulate so the theory can be formulated on a general manifold?

Added Benefit

- Such a stress object will unify the classical Cauchy stress and Piola-Kirchhoff stress.
- If you consider a material body as a manifold, all configurations of the body, in particular, the current configuration and any reference configuration, are equivalent charts in terms of the manifold structure of the body.
- The transformation from the Cauchy stress to the Piola-Kirchhoff stress will be just a transformation rule for two different representations of the same stress object.

In Classical Continuum Mechanics

The force on a body \mathscr{B} in the material manifold \mathbb{R}^{3} is given by

$$
F_{\mathscr{B}}=\int_{\mathscr{B}} b_{\mathscr{B}} \mathrm{d} V+\int_{\partial \mathscr{B}} t_{\mathscr{B}} \mathrm{d} A .
$$

$b_{\mathscr{B}}$ is the body force on \mathscr{B};
$t_{\mathscr{B}}$ is the surface force on \mathscr{B}.
The force system $\left\{\left(b_{\mathscr{B}}, t_{\mathscr{B}}\right)\right\}$ is considered as a set function.

Cauchy's Postulates for the dependence on \mathscr{B}.

- The body force $b_{\mathscr{B}}$ does not depend on the body, i.e., $b_{\mathscr{B}}(x)=b(x)$.
- The surface force at a point on the boundary of a control volume depends on the normal to the boundary at that point, i.e., $t_{\mathscr{B}}(x)=\Sigma_{x}(\boldsymbol{n}(x))$.
- Σ_{x} is assumed to be continuous.
- There is a vector field s on the material manifold, the ambient force or self force (usually taken as zero), such that

$$
I_{\mathscr{B}}=\int_{\mathscr{B}} b_{\mathscr{B}} \mathrm{d} v+\int_{\partial \mathscr{B}} t_{\mathscr{B}} \mathrm{d} a=\int_{\mathscr{B}} \mathrm{sd} v .
$$

Cauchy's Theorem: Σ_{x} is linear.

Obstacles to the Generalization to Manifolds:

- You cannot integrate vector fields on manifolds.
- You do not have a unit normal if you do not have a Riemannian metric. $\boldsymbol{\checkmark}$

Basic modifications:

- Use integration of forms on manifolds to integrate scalar fields. \boldsymbol{V}
- Write the force in terms of power expanded for various velocity fields so you integrate a scalar field.
- Use dependence on the tangent space instead of direction of the normal. \downarrow
- Use restriction of forms for Cauchy's formula. $\sqrt{ }$

Preliminaries for Continuum Mechanics on Manifolds

\mathscr{U} is the material manifold, $\operatorname{dim} \mathscr{U}=m$;
\mathscr{B} a body is an m-dimensional submanifold on \mathscr{U}.
\mathscr{M} is the physical space manifold, $\operatorname{dim} \mathscr{M}=\mu$.
A configuration of a body \mathscr{B} is an embedding

$$
\kappa: \mathscr{B} \rightarrow \mathscr{M} .
$$

A velocity is a mapping
$w: \mathscr{B} \rightarrow T \mathscr{M}$ such that, $\tau_{\mathscr{M}} \circ w=\kappa$ is a configuration.

- Alternatively, if

$$
\kappa^{*}\left(\tau_{\mathscr{M}}\right): W=\kappa^{*}(T \mathscr{M}) \rightarrow \mathscr{U}
$$

is the pullback, a velocity at κ may be regarded as a section

$$
w: \mathscr{U} \rightarrow W .
$$

Velocity Fields

Bundles and Pullbacks

Sections of Bundles

Force Densities

$$
F_{\mathscr{B}}(w)=\int_{\mathscr{B}} b_{\mathscr{B}}(w)+\int_{\partial \mathscr{B}} t_{\mathscr{B}}(w)
$$

for linear

$$
b_{\mathscr{B}}(x): W_{x} \rightarrow \bigwedge^{m} T_{x} \mathscr{U}, \quad \text { and } \quad t_{\mathscr{B}}(y): W_{y} \rightarrow \bigwedge^{m-1} T_{y} \partial \mathscr{B} .
$$

- $b_{\mathscr{B}}$ is a section of

$$
L\left(W, \bigwedge^{m}(T \mathscr{B})\right)=\bigwedge^{m}\left(T \mathscr{B}, W^{*}\right)
$$

- $t_{\mathscr{B}}$ is a section of

$$
L\left(W, \bigwedge^{m-1}(T \partial \mathscr{B})\right)=\bigwedge^{m-1}\left(T \partial \mathscr{B}, W^{*}\right)
$$

- W^{*}-valued forms.

Vector Valued Forms

- $\gamma_{x} \in L\left(W_{x}, \wedge^{k}\left(T_{x} P\right)\right), P \subset \mathscr{U}$ a submanifold, $k \leq \operatorname{dim}(P)$.
- $\tilde{\gamma}_{x}:\left(T_{x} P\right)^{n} \rightarrow W_{x}^{*}$, alternating, multi-linear.

$$
\tilde{\gamma}_{x} \in \bigwedge^{k}\left(T_{x} \mathscr{U}, W_{x}^{*}\right), \quad \text { a (co-)vector valued form. }
$$

- The requirement

$$
\tilde{\gamma}_{x}\left(v_{1}, \ldots, v_{k}\right)(u)=\gamma_{x}(u)\left(v_{1}, \ldots, v_{k}\right)
$$

for any collection of k vectors v_{1}, \ldots, v_{k}, and $u \in W_{x}$, generates an isomorphism

$$
L\left(W_{x}, \bigwedge^{k}\left(T_{x} P\right)\right)=\bigwedge^{k}\left(T_{x} \mathscr{U}, W_{x}^{*}\right)
$$

What Will Cauchy's Theorem and Formula Look Like?

For scalars, the flux form was an ($m-1$)-form J on an m-dimensional manifold. By restriction, the Cauchy formula, $\tau_{\mathscr{B}}=\iota^{*}(J)$, induces an ($m-1$)-form on $T_{x} \partial \mathscr{B}$.

- For the case of force theory, $t_{\mathscr{B}}(w)$ is an $(m-1)$-form, the flux of power, where $t_{\mathscr{B}}(x): W_{x} \rightarrow \bigwedge^{m-1} T_{x}^{*} \partial \mathscr{B}$.
- The natural generalization: at each point x there is a linear mapping $\sigma_{x}: W_{x} \rightarrow \bigwedge^{m-1} T_{x}^{*} \mathscr{U}$, called the stress at x, such that $t_{\mathscr{B}}(w)=\iota^{*}(\sigma(w))$. In other words,

$$
t_{\mathscr{B}}=\iota^{*} \circ \sigma, \quad \text { is the required Cauchy formula. }
$$

The Cauchy Postulates: Notes.

The dependence of $t_{\mathscr{B}}(x)$ on the subbody \mathscr{B} through the tangent space to \mathscr{B} is assumed to be continuous in the tangent space and point x. This aspect, that we neglected before, should be meaningful.

- The collection of hyperplanes, $G_{m-1}(T \mathscr{U})$--the Grassmann bundle, i.e., $\left(G_{m-1}(T \mathscr{U})\right)_{x}$ is the manifold of $(m-1)$-dimensional subspaces of $T_{x} \mathscr{U}$.
- The mapping that assigns the surface forces to hyperplanes will be referred to as the Cauchy section. At each point it is a mapping

$$
\Sigma_{x}: G_{m-1}\left(T_{x} \mathscr{U}\right) \rightarrow L\left(W_{x}, \bigwedge^{m-1}\left(G_{m-1}\left(T_{x} \mathscr{U}\right)\right)^{*}\right) .
$$

The Cauchy Postulates: The Cauchy Section

More precisely, consider the diagram

$$
\begin{array}{ccc}
\pi_{G}^{*}(W) & \xrightarrow{\pi_{G}^{*}(\pi)} & G_{m-1}(T \mathscr{U}) \longleftarrow \\
\uparrow & & \Lambda^{m-1}\left(G_{m-1}(T \mathscr{U})\right)^{*} \\
W & \xrightarrow{\pi} & \mathscr{U}
\end{array}
$$

Then, the Cauchy section is a section

$$
\Sigma: G_{m-1}(T \mathscr{U}) \rightarrow L\left(\pi_{G}^{*}(W), \bigwedge^{m-1}\left(G_{m-1}(T \mathscr{U})\right)^{*}\right) .
$$

- It is assumed that Σ is smooth.

The Cauchy Postulates: Boundedness

We need the analog of the boundedness assumption

$$
\left|\int_{\mathscr{B}} \beta+\int_{\partial \mathscr{B}} \tau_{\mathscr{B}}\right| \leq \int_{\mathscr{B}} s,
$$

where eventually we get $\tau_{\mathscr{B}}=\iota^{*}(J)$ and $\int_{\partial \mathscr{B}} \tau_{\mathscr{B}}=\int_{\mathscr{B}} d J$.

- We write the scalar boundedness assumption for the power, so $\beta=b(w)$ and $\tau_{\mathscr{B}}=t_{\mathscr{B}}(w)$.
- We anticipate that $t_{\mathscr{B}}=\iota^{*} \circ \sigma$. Hence, the bounded expression is

$$
\left|\int_{\mathscr{B}} b(w)+\int_{\partial \mathscr{B}} t_{\mathscr{B}}(w)\right|=\left|\int_{\mathscr{B}} b(w)+\int_{\partial \mathscr{B}} i^{*}(\sigma(w))\right|=\left|\int_{\mathscr{B}} b(w)+\int_{\mathscr{B}} d(\sigma(w))\right| .
$$

Thus, the expression should be bounded by the values of both w and its derivative-the first jet $j^{1}(w)$.

Consequences of the (Generalized) Cauchy Theorem

 Since $t_{\mathscr{B}}(w)=\iota^{*}(\sigma(w))$, the total power is given as$$
F_{\mathscr{B}}(w)=\int_{\mathscr{B}} b(w)+\int_{\partial \mathscr{B}} t_{\mathscr{B}}(w)=\int_{\mathscr{B}} b(w)+\int_{\mathscr{B}} d(\sigma(w)) .
$$

- The density of $F_{\mathscr{B}}(w)$ depends linearly on the values of w and its derivative.
- For manifolds, there is no way to separate the value of the derivative of a section from the value of the section. Hence $j^{1}(w)$-the first jet of w is a single invariant quantity that contains both the value and the value of the derivative.

Thus, the expression should be bounded by the values of both w and its derivative-the first jet $j^{1}(w)$.

Variational Stresses

Jets

A jet of a section at x is an invariant quantity containing the values of both the section and its derivative.

$J^{1}(W)_{x}$-the collection of all possible values of jets at x-the jet space. $J^{1}(W)$-the collection of jet spaces, the jet bundle.

Variational Stresses

We obtained

$$
F_{\mathscr{B}}(w)=\int_{\mathscr{B}}(b(w)+d(\sigma(w))) .
$$

- The value of the power density at a point is linear in the jet of w.
- Hence, there is a section S, such that

$$
S_{x}: J^{1}(W)_{x} \rightarrow \bigwedge^{m} T_{x}^{*} \mathscr{U} \quad \text { such that } \quad S_{x}\left(j^{1}(w)_{x}\right)=b(w)+d(\sigma(w))
$$

- We will refer to such a section S of $L\left(J^{1}(W), \wedge^{m}\left(T^{*} \mathscr{U}\right)\right)$ as a variational stress density. It produces power from the jets (gradients) of the velocity fields.
- Thus,

$$
F_{\mathscr{B}}(w)=\int_{\mathscr{B}}(b(w)+d(\sigma(w)))=\int_{\mathscr{B}} S\left(j^{1}(w)\right)
$$

Conclusion:

A Cauchy stress σ and a body force b induce a variational stress density S.

Variational Stress Densities:

- Variational stress densities are sections of the vector bundle $L\left(J^{1}(W), \wedge^{m}\left(T^{*} \mathscr{U}\right)\right)$, i.e, at each point, is assigns an m-covector to a jet at that point, linearly.
- If S is a variational stress density, then the power of the force F it represents over the body \mathscr{B}, while the the generalized velocity is w, is given by

$$
F_{\mathscr{B}}(w)=\int_{\mathscr{B}} S\left(j^{1}(w)\right)
$$

This expression makes sense as $S\left(j^{1}(w)\right)$, is an m-form whose value at a point $x \in \mathscr{B}$ is $S(x)\left(j^{1}(w)(x)\right)$.

- The local representation of S is through the arrays S_{α} and S_{β}^{j}. The single component of the m-form $S\left(j^{1}(w)\right)$ in this representation is

$$
S_{\alpha} w^{\alpha}+S_{\beta}^{j} w_{, j}^{\beta} .
$$

Linear Connections

no connection
vertial component horizontal component

Γ-the connection mapping

The Case where a Connection is Given:

- If a connection is given on the vector bundle W, the jet bundle is isomorphic with the Whitney sum $W \oplus_{\mathscr{B}} L(T \mathscr{B}, W)$ by
$j^{1}(w) \mapsto(w, \nabla w)$, where ∇ denotes covariant derivative.
- A variational stress may be represented by sections $\left(S_{0}, S_{1}\right)$ of

$$
L\left(W, \bigwedge_{\bigwedge}^{m}\left(T^{*} \mathscr{U}\right)\right) \oplus_{\mathscr{B}} L\left(L(T \mathscr{U}, W), \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right)
$$

so the power is given by (see Segev (1986))

$$
F_{\mathscr{B}}(w)=\int_{\mathscr{B}} S_{0}(w)+\int_{\mathscr{B}} S_{1}(\nabla w)
$$

We will refer to the section S_{1} of $L\left(L(T \mathscr{U}, W), \wedge^{m}\left(T^{*} \mathscr{B}\right)\right)$ as the variational stress tensor.

- With an appropriate definition of the divergence, a force may be written in terms of a body force and a surface force.

Problem: Relation Between Variational and Cauchy Stresses

- Can we extract the generalized Cauchy stress σ from the variational stress S invariantly?
- There is a linear $p_{\sigma}: L\left(J^{1}(W), \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right) \rightarrow L\left(W, \wedge^{m-1}\left(T^{*} \mathscr{B}\right)\right)$ that gives a Cauchy stress $\sigma=p_{\sigma}(S)$ to any given variational stress S.
- Locally, if σ is represented by $\sigma_{\beta \hat{\imath}}$ such that $\sigma_{\beta \hat{\imath}} w^{\beta}$ is the i-th component of the $(m-1)$-from $\sigma(w)$, locally p_{σ} is given by

$$
\left(x^{i}, S_{\alpha}, S_{\beta}^{j}\right) \mapsto\left(x^{i}, \sigma_{\beta \hat{\imath}}\right)
$$

where,

$$
\sigma_{\beta \hat{\imath}}=(-1)^{i-1} S^{+}{ }_{\beta}^{i} \quad(\text { no sum over } i) .
$$

- Can you write a generalized definition of the divergence that applies even without a connection? $\boldsymbol{\checkmark}$ Locally, the divergence $\operatorname{Div} S$ is given by $\left(S_{\alpha, i}^{i}-S_{\alpha}\right)$.

The Vertical Subbundle of the Jet Bundle:

- Let $\pi_{0}^{1}: J^{1}(W) \rightarrow W$ be the natural projection on the jet bundle that assign to any 1 -jet at $x \in \mathscr{B}$ the value of the corresponding 0 -jet, i.e., the value of the section at x.
- We define $V J^{1}(W)$, the vertical sub-bundle of $J^{1}(W)$, to be the vector bundle over \mathscr{B} such that

$$
V J^{1}(W)=\left(\pi_{0}^{1}\right)^{-1}(0)
$$

where 0 is the zero section of W.

- There is a natural isomorphism

$$
I^{+}: V J^{1}(W) \rightarrow L(T \mathscr{U}, W)
$$

The Vertical Subbundle $V J^{1}(W)$:

The Vertical Component of a Variational Stress:

- Let $l_{V}: V J^{1}(W) \rightarrow J^{1}(W)$ be the inclusion mapping of the sub-bundle.
- Consider the linear injection, $\iota_{n}=\iota_{V} \circ\left(I^{+}\right)^{-1}: L(T \mathscr{U}, W) \rightarrow J^{1}(W)$.
- Thus we have a linear surjection

$$
\iota_{n}^{*}: L\left(J^{1}(W), \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right) \rightarrow L\left(L(T \mathscr{U}, W), \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right)
$$

given by $\iota_{n}^{*}(S)=S \circ \iota_{n}$.

- For a variational stress S, we will refer to

$$
S^{+}=\iota_{n}^{*}(S) \in L\left(L(T \mathscr{U}, W), \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right)
$$

as the vertical component of S. (The symbol of the variational stress).

- If the variational stress is represented locally by $\left(S_{\alpha}, S_{\beta}^{j}\right)$, then, S^{+}is represented locally by $S^{+}{ }_{\alpha}=S_{\alpha}^{i}$.
- Clearly, one cannot define invariantly (without a connection) a "horizontal" component to the stress.

Variational Fluxes:

- Since the jet of a real valued function φ on \mathscr{B} can be identified with a pair $(\varphi, d \varphi)$ in the trivial case where $W=\mathscr{B} \times \mathbb{R}$, the jet bundle can be identified with the Whitney sum $W \oplus_{\mathscr{B}} T^{*} \mathscr{U}$.
- $V J^{1}(W)$ can be identified with $T^{*} \mathscr{U}$ and the vertical component of the variational stress is valued in $L\left(T^{*} \mathscr{U}, \wedge^{m}\left(T^{*} \mathscr{B}\right)\right)$. We will refer to sections of $L\left(T^{*} \mathscr{U}, \wedge^{m}\left(T^{*} \mathscr{B}\right)\right)$ as variational fluxes.
- There is a natural isomorphism

$$
i_{\wedge}: \bigwedge^{m-1}\left(T^{*} \mathscr{B}\right) \rightarrow L\left(T^{*} \mathscr{U}, \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right)
$$

given by $i_{\wedge}(\omega)(\phi)=\phi \wedge \omega$.

The Cauchy Stress Induced by a Variational Stress:

- Consider the contraction natural vector bundle morphism

$$
c: L\left(L(T \mathscr{U}, W), \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right) \oplus_{\mathscr{B}} W \rightarrow L\left(T^{*} \mathscr{U}, \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right)
$$

given by

$$
c(B, w)(\phi)=B(w \otimes \phi)
$$

for $B \in L\left(L(T \mathscr{U}, W), \wedge^{m}\left(T^{*} \mathscr{B}\right)\right), w \in W$, and $\phi \in T^{*} \mathscr{U}$, where $(w \otimes \phi)(v)=\phi(v) w$. We also write $w\lrcorner B$ for $c(B, w)$.

- For a section S^{+}of $L\left(L(T \mathscr{U}, W), \wedge^{m}\left(T^{*} \mathscr{B}\right)\right)$ and a vector field w, $w\lrcorner S^{+}$is a variational flux.
- Consider the mapping

$$
i_{\sigma}: L\left(L(T \mathscr{U}, W), \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right) \rightarrow L\left(W, \bigwedge^{m-1}\left(T^{*} \mathscr{B}\right)\right)
$$

such that $\left.i_{\sigma} \circ S^{+}(w)=i_{\wedge}^{-1}(w\lrcorner S^{+}\right)$. It is linear and injective.

Cauchy Stresses and Variational Stresses (Contd.)

- $p_{\sigma}=i_{\sigma} \circ \iota^{*}: L\left(J^{1}(W), \wedge^{m}\left(T^{*} \mathscr{B}\right)\right) \rightarrow L\left(W, \wedge^{m-1}\left(T^{*} \mathscr{B}\right)\right)$ is a linear mapping (no longer injective) that gives a Cauchy stress to any given variational stress.
- Locally, σ is represented by $\sigma_{\beta \hat{\imath}}$ such that $\sigma_{\beta \hat{\imath}} w^{\beta}$ is the i-th component of the $(m-1)$-from $\sigma(w)$.
- Locally p_{σ} is given by

$$
\left(x^{i}, S_{\alpha}, S_{\beta}^{j}\right) \mapsto\left(x^{i}, \sigma_{\beta \hat{\imath}}\right)
$$

where,

$$
\sigma_{\beta \hat{\imath}}=(-1)^{i-1} S^{+}{ }_{\beta}^{i}, \quad(\text { no sum over } i) .
$$

The Divergence of a Variational Stress:

- For a given variational stress S and a generalized velocity w, consider the difference, an m-form,

$$
d\left(p_{\sigma}(S)(w)\right)-S\left(j^{1}(w)\right)
$$

- Locally, the difference is represented by

$$
\left(S_{\alpha, i}^{i}-S_{\alpha}\right) w^{\alpha}
$$

- This shows that the difference depends only on the values of w and not its derivative.
- Define the generalized divergence of the variational stress S to be the section $\operatorname{Div}(S)$ of the vector bundle $L\left(W, \bigwedge^{m}\left(T^{*} \mathscr{B}\right)\right)$ satisfying

$$
\operatorname{Div}(S)(w)=d\left(p_{\sigma}(S)(w)\right)-S\left(j^{1}(w)\right)=d \sigma(w)-S\left(j^{1}(w)\right)
$$

$\sigma=p_{\sigma}(S)$, for every generalized velocity field w.

The Principle of Virtual Power:

- Given a variational stress S, the expression for the power is

$$
F_{\mathscr{B}}(w)=\int_{\mathscr{B}} S\left(j^{1}(w)\right)
$$

- Using the previous constructions and Stokes' theorem we have

$$
F_{\mathscr{B}}(w)=\int_{\partial \mathscr{B}} i_{\mathscr{B}}^{*}(\sigma(w))-\int_{\mathscr{B}} \operatorname{Div}(S)(w)
$$

where, $\sigma=p_{\sigma}(S)$ is the the Cauchy stress induced by the variational stress S, and $\iota_{\mathscr{B}}^{*}$ is the restriction of $(m-1)$-forms on \mathscr{B} to $\partial \mathscr{B}$.

- Thus we have for $t_{\mathscr{B}}(w)=\iota_{\mathscr{B}}^{*}(\sigma(w))=\iota_{\mathscr{B}}^{*}\left(p_{\sigma}(S)(w)\right)$ and $\operatorname{Div} S+b_{\mathscr{B}}=0$, a force for each subbody \mathscr{B} of the form

$$
F_{\mathscr{B}}(w)=\int_{\partial \mathscr{B}} b_{\mathscr{B}}(w)+\int_{\mathscr{B}} t_{\mathscr{B}}(w)
$$

Conclusions:

- The mapping relating the values of variational stress fields and Cauchy stresses

$$
p_{\sigma}: L\left(J^{1}(W), \bigwedge^{m}\left(T^{*} \mathscr{U}\right)\right) \rightarrow L\left(W, \bigwedge^{m-1}\left(T^{*} \mathscr{U}\right)\right)
$$

is linear, surjective, but not injective.

- However, the mapping between the fields

$$
p: S \mapsto(\sigma, b), \quad \sigma=p_{\sigma} \circ S, \quad b=-\operatorname{Div} S
$$

is injective.

- The inverse, $p^{-1}:(\sigma, b) \mapsto S$, is given by

$$
S(x)(A)=b_{x}\left(w_{x}\right)+d \sigma(w)_{x}
$$

for any vector field w whose jet at x is A.

