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Objects of Interest

Fluxes and stresses as fundamental objects of continuum mechanics.

Geometric aspects: Formulations that do not use the traditional
geometric and kinematic assumptions. For example, Euclidean
structure of the physical space, mass conservation. Materials with
micro-structure (sub-structure), growing bodies.

Analytic aspects: Irregular bodies and flux fields. Fractal bodies.
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Flux Theory?
.

.

. ..

.

.

Derive the existence of the flux vector field j, e.g., the heat flux vector field or
the electric current density, and its properties from global balance laws, e.g.,

balance of energy or conservation of charge.

Relevant Operations:

Total Flux (Flow) Calculation:∫
A

j · n dA.

Gauss-Green Theorem:∫
∂B

j · n dA =
∫

B
div j dV.
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Questions Regarding the Operations

Total Flux Calculation: ∫
A

j · n dA.

I How irregular can A be?

Gauss-Green Theorem:∫
∂B

j · n dA =
∫

B
div j dV.

I How irregular can B be?
I How irregular can j be?
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Examples:
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Balanced Extensive Properties
In terms of scalar extensive property p with density ρ in space, one assumes
for every “control region” B ⊂ U ∼= R3:

Consider β, interpreted as the time derivative of the density ρ of the
property, so for any control region B in space,

∫
B βdV is the rate of

change of the total content of the property inside B.

For each control region B there is a flux density τB such that
∫

∂B τBdA
is the total flux (flow) of the property out of B.

There is a function s on U such that for each region B∫
B

β dV +
∫
∂B

τB dA =
∫
B

s dV.

Here, s is interpreted as the source density of the property p (e.g., s = 0
for mass and electric charge).
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Fluxes: Traditional Cauchy Postulate and Theorem

Cauchy’s postulate and theorem
are concerned with the depen-
dence of τB on B.

depen- n

Tx∂B

∂B

x

It uses the metric properties of space.

τB(x) is assumed to depend on B only through the unit normal to the
boundary at x.

The resulting Cauchy theorem asserts the existence of the flux vector j
such that τB(x) = j · n.

R. Segev (Ben-Gurion Univ.) Extensions of Flux Theory M.A.E.@U.C.S.D., Feb. 2009 7 / 45



Assumptions Again:
In terms of a scalar extensive property with density ρ in space, one assumes
that there are operators T(∂B), the total flux operator, and S(B) the total
content operator, such that for every “control region” B ⊂ U ∼= R3 (we take
s = 0):

Balance: T(∂B) + S(B) = 0
Regularity: S(B) =

∫
B βB dV, and T(∂B) =

∫
∂B τB dA

Locality (pointwise): βB(x) = β(x), and τB(x) = τ(x, n)
Continuity: τ(·, n) is continuous.

Note: It follows from the balance and regularity assumptions that

|∂B| → 0 implies T(∂B) → 0,

|B| → 0 implies T(∂B) → 0
| · | being either the area or volume depending on the context.
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The Results:
.
Cauchy’s Theorem
..

.

. ..

.

.

asserts that τ(x, n) depends linearly on n. There is a vector field j such that

τ = j · n.

Considering smooth regions and flux vector fields such that Gauss-Green
theorem may be applied, the balance may be written in the form of a
differential equation as

div j + β = s.
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Traditional Proof:

Consider the infinitesimal
tetrahedron. Since the area is in
an order of magnitude larger
than the volume, the volume
terms are negligible.

Thus, ∑i Aiτ(ni) = 0 .

Also, ∑i Aini = 0.
Hence,

A1

n1

A2

A3

A4

n4

n2n3

τ

(
A1

A4
n1 +

A2

A4
n2 +

A3

A4
n3

)
=

A1

A4
τ(n1) +

A2

A4
τ(n2) +

A3

A4
τ(n3)
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The Proposed Formulation

Uses Geometric Integration Theory by Whitney (1957).

Building blocks: r-dimensional oriented cells in En.

Formal vector space of r-cells: polyhedral r-chains.

Complete w.r.t a norm: Banach space of r-chains.

Elements of the dual space: r-cochains.

.
Relevance to Flux Theory
..

.

. ..

.

.

The total flux operator on regions is modelled mathematically by a
cochain.

Cauchy’s flux theorem is implied by a representation theorem for
cochains by forms.
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Features of the Proposed Formulation

It offers a common point of view for the analysis of the following
aspects: class of domains, integration, Stokes’ Theorem, and fluxes.
Allows irregular domains and flux fields.

The co-dimension not limited to 1. Allows membranes, strings, etc.
Not only the boundary is irregular, but so is the domain itself.

Compatible with the formulation on general manifolds where no
particular metric is given.
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Outline

Cells and polyhedral chains

Algebraic cochains

Norms and the complete spaces of chains
The representation of cochains by forms:

I Multivectors and forms
I Integration
I Representation
I Coboundaries and differentiable balance equations
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Cells and Polyhedral Chains
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Oriented Cells

A cell, σ, is a non empty bounded
subset of En expressed as an
intersection of a finite collection of
half spaces.

The plane of σ is the smallest affine
subspace containing σ.

The dimension r of σ is the
dimension of its plane.
Terminology: an r-cell.

The boundary ∂σ of an r-cell σ
contains a number of (r− 1)-cells.

An oriented 2-cell
The plane of the cell

e2

e1
v1

v2

+-oriented
σ
−σ
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Oriented Cells (continued)

Recall: An orientation of a vector space is determined by a choice of a
basis. Any other basis will give the same orientation if the determinant
of the transformation is positive. A vector space can have 2 orientations.

An oriented r-cell is an r-cell with a
choice of one of the two
orientations of the vector space
associated with its plane.
The orientation of σ′ ∈ ∂σ is
determined by the orientation of σ:

I Choose independent (v2, . . . , vr)
in σ′.

I Order them such that given v1 in
the plane of σ which points out of
σ′, (v1, . . . , vr) are positively
oriented relative to σ.

An oriented 2-cell
The plane of the cell

e2

e1
v1

v2

+-oriented
σ
−σ
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Polyhedral Chains: Algebra into Geometry

A polyhedral r-chain in En is a formal linear combination of r-cells

A = ∑ aiσi.

The following operations are defined for polyhedral chains:
I The polyhedral chain 1σ is identified with the cell σ.
I We associate multiplication of a cell by −1 with the operation of

inversion of orientation, i.e., −1σ = −σ.
I If σ is cut into σ1, . . . , σm, then σ and σ1 + . . . + σm are identified.
I Addition and multiplication by numbers in a natural way.

The space of polyhedral r-chains in En is now an infinite-dimensional
vector space denoted by Ar(En).
The boundary of a polyhedral r-chain A = ∑ aiσi is ∂A = ∑ ai∂σi. Note
that ∂ is a linear operator Ar(En) −→ Ar−1(En).
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Polyhedral Chains: Illustration

A = A1 + A2

A1

A2

∂A = ∂A1 + ∂A2 ∂A

=

∂ : Ar → Ar−1
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A Polyhedral Chain as a Function

σ1 σ2

a

· · · · · ·

A = ∑ aiσi ∂A = ∑ ai∂σi
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Total Fluxes as Cochains
.
Basic Idea:..

.

. ..

.

.

Regard the flux through a 2-dimensional chain as the action of a linear
operator—a co-chain—on that chain.

A cochain: Linear T : Ar → R. We write T(B) = T · B.
Algebraic implications:

additivity,
interaction antisymmetry.

σ1
σ2

σ1 + σ2
σ T · σT · (−σ)

T · (−σ) = −T · σ, T · (σ1 + σ2) = T · σ1 + T · σ2
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Norms and the Complete Space of Chains:
Analysis into Geometry
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The Norm Induced by Boundedness
Boundedness: |T∂B| 6 N2 |∂B|, |T∂B| 6 N1 |B|. Setting A = ∂B, . . .
As a cochain: |T ·A| 6 N2 |A|, |T · ∂D| 6 N1 |D|, A ∈ Ar, D ∈ Ar+1.

Thus, for any D ∈ Ar+1,
and A ∈ Ar:

|T ·A| = |T ·A− T · ∂D + T · ∂D|
6 |T ·A− T · ∂D|+ |T · ∂D|
6 N2 |A− ∂D|+ N1 |D|
6 CT (|A− ∂D|+ |D|) ,

.
Basic Idea (revised)..

.

. ..

.

.

Regard the flux as a continuous linear functional on the space of chains w.r.t.
a norm

|T ·A| 6 CT∥A∥,

where the flat norm (smallest) is given as

∥A∥ = |A|♭ = inf
D
{|A− ∂D|+ |D|}.
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Flat Chains

The mass of a polyhedral r-chain A = ∑ aiσi is |A| = ∑ |ai||σi|.
The flat norm, |A|♭, of a polyhedral r-chain:

|A|♭ = inf{|A− ∂D|+ |D|},

using all polyhedral (r + 1)-chains D.
I Taking D = 0, |A|♭ 6 |A|.
I If A = ∂B, taking D = B gives |A|♭ 6 |B|. Hence, |∂B|♭ 6 |B|.

Completing Ar(En) w.r.t. the flat norm gives a Banach space denoted
by A ♭

r (En), whose elements are flat r-chains in En.

Flat chains may be used to represent continuous and smooth
submanifolds of En and even irregular surfaces.

The boundary of a flat (r + 1)-chain A = lim♭ Ai, is the a flat r-chain
∂A = lim ∂Ai. The boundary operator is continuous and linear.
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Flat Chains, an Example (Illustration - I):
Ai

di

L1i

L2i

L

D

|Ai| = 2L,
|Ai|♭ 6 (L + 2)di → 0.

Ai

di

L1i

L2i

di

D

|Ai| = 2di,
|Ai|♭ 6 2di + d2

i → 0.
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Example: The Staircase

B0 A1 A2

A3 B3

The dashed lines are for reference only.

|Ai|♭ 6 2i−12−2i = 2−i/2 =⇒ (Bi) a convergent series.
Note,

∣∣∣Bi − Bj

∣∣∣ =
∣∣∣∑i

k=j+1 Ak

∣∣∣ ≤ ∑i
k=j+1 |Ak| ≤ ∑∞

k=j+1 |Ak| 6 ∑∞
k=j+1 2−k/2, ∀ i > j.
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Example: the Van Koch Snowflake
Ai contains 4i triangles of side length 3−i. Each time the length increases by

2 · 3−i · 4i = 2
( 4

3

)i
. Hence, |Bi| → ∞.

B0 A1 A2 A3 B3

|Ai|♭ 6 4i
√

3
2 3−i3−i =

√
3

2

( 2
3

)i
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The Representation of Cochains by Forms

.
Objectives:
..

.

. ..

.

.

Create an algebraic language to treat chains and cochains,

A representation theorem for cochains in terms of fields and integration.
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Multivectors

A simple r-vector in V is an expression of the form v1 ∧ · · · ∧ vr, where
vi ∈ V.

An r-vector in V is a formal linear combination of simple r-vectors,
together with:

(1) v1 ∧ · · · ∧ (vi + v′i) ∧ · · · ∧ vr

= v1 ∧ · · · ∧ vi ∧ · · · ∧ vr + v1 ∧ · · · ∧ v′i ∧ · · · ∧ vr;
(2) v1 ∧ · · · ∧ (avi) ∧ · · · ∧ vr = a(v1 ∧ · · · ∧ vi ∧ · · · ∧ vr);
(3) v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vr

= −v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vr.
The r-vector vanishes if the vectors are linearly dependent.

The collection, Vr, of r-vectors is a vector space and dim Vr = n!
(n−r)!r! .

Given a basis {ei} of V, the r-vectors {eλ1 ...λr = eλ1 ∧ · · · ∧ eλr}, such
that 1 ≤ λ1 < · · · < λr ≤ n, form a basis of Vr.
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The Representation of Polyhedral Chains by Multivectors

Given an oriented r-simplex σ in En, with vertices {p0 . . . pr}, the
r-vector of σ, {σ}, is {σ} = v1 ∧ · · · ∧ vr/r!, where the vi are defined
by vi = pi − p0 and are ordered such that they belong to σ’s
orientation.
{σ} represents the plane, orientation and size of σ—the relevant
aspects.

The r-vector of a polyhedral r-chain ∑ aiσi, is

{∑ aiσi} = ∑ ai{σi}.

v1
v2

v3

1
2 (v1 ∧ v2 + v2 ∧ v3)
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Why an r-covector?

For the 3-dimensional example, we
want to measure the flux through any
infinitesimal cell σ, {σ} = v ∧ u.

e

y

he

one v

u

u

v + v
′

v
′

v

u

hat infinitesimal element.

σ

Denote by T(σ) the flux through that infinitesimal element.
As T(σ) depends only the plane, orientation and area, we expect

T(σ) = T̂({σ}).

Balance: T̂ is linear
T̂(σ) = τ · {σ},

where τ is a linear mapping of multi-vectors to real numbers—an
r-covector.
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Rough Proof

Consider the infinitesimal tetra-
hedron X, A, B, C generated by
the three vectors u, v, w.

— Use right-handed orientation.

— Balance implies:

T(v, u)+ T(v, w)+ T(u, v + w)−T(u + v, w) = 0.

X

A

B

v

D

u

E

w

v + w

v + w
C

— Same for X, B, C, E and X, C, D, E

T(w, u) + T(u + v, w) + T(v, u)− T(v, w + u) = 0
T(w, u)− T(v + w, u)− T(v, w) + T(v, w + u) = 0.

— Add up to obtain: T(u, v + w) = T(u, v) + T(u, w).
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Or Using Multi-Vectors

Consider the infinitesimal
tetrahedron D generated by the
three vectors u, v, w and let
A = ∂D.

|A|♭ 6 |A− ∂D|+ |D| → 0, as
the volume of the tetrahedron
decreases.

Thus, lim T({A}) = 0.

— Use right-handed orientation.

Thus: T(u∧ v)+ T(v∧w)+ T(w∧u)+ T((w− v)∧ (v−u)) = 0.

Using: (w− v)∧ (v−u) = w∧v−w∧u + v∧u = −u∧ v− v∧w−w∧u,

we conclude: T(u ∧ v + v ∧w + w ∧ u) = T(u ∧ v) + T(v ∧w) + T(w ∧ u).

u

v

w

v− u

w− v

u− w
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Reminder: Dual Spaces of Vector Spaces

For a vector space W , W ∗—the dual space—is the collection of all
linear mappings, T : W −→ R (also linear functionals, covectors).
In our case, flat chains are in A ♭

r (En), and the total fluxes, being
continuous linear functionals of chains, are T ∈ A ♭

r (En)∗.
For an infinite dimensional vector space on which a norm ∥w∥ is
defined, one also requires that T is continuous. The condition for
continuity (assuming linearity) is

|T(w)| 6 CT∥w∥.

This provides a procedure for generating new mathematical objects.
Define a vector space and a norm and consider its dual space.
Representation Theorems: represent the action of the linear functionals
on vectors by known mathematical operations (inner products,
integration).
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Multi-Covectors

An r-covector is an element of Vr—the dual space of Vr.

r-covectors can be expressed using covectors:

Vr = (V∗)r

(V∗)r is the space of multi-covectors, i.e., constructed as Vr
using elements of the dual space V∗:

τ = fλ1···λre
λ1 ∧ · · · ∧ eλr , λi < λi+1.

r-covectors may be identified with alternating multilinear mappings:

Vr = Lr
A(V,R), by τ(v1 ∧ v2 ∧ · · · ∧ vr) = τ̄(v1, . . . , vr).

This is a simple example of a representation theorem for functionals.
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Riemann Integration of Forms
Over Polyhedral Chains

An r-form in Q ⊂ En is an r-covector valued mapping in Q.

An r-form is continuous if its components are continuous functions.

The Riemann integral of a continuous r-form τ over an r-simplex σ is
defined as ∫

σ
τ = lim

k→∞
∑

σi∈Skσ

τ(pi) · {σi},

where Siσ is a sequence of simplicial subdivisions of σ with mesh→ 0,
and each pi is a point in σi.

The Riemann integral of a continuous r-form over a polyhedral r-chain
A = ∑ aiσi, is defined by

∫
A τ = ∑ ai

∫
σi

τ.
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Lebesgue Integral of Forms over Polyhedral Chains

An r-form in En is bounded and measurable if all its components are
bounded and measurable.

The Lebesgue integral of an r-form τ over an r-cell σ is defined by∫
σ

τ =
∫

σ
τ(p) · {σ}

|σ|
dp,

where the integral on the right is a Lebesgue integral of a real function.

This is extended by linearity to domains that are polyhedral chains by∫
A

τ = ∑ ai

∫
σi

τ,

for A = ∑i aiσi.

R. Segev (Ben-Gurion Univ.) Extensions of Flux Theory M.A.E.@U.C.S.D., Feb. 2009 37 / 45



The Cauchy Mapping

The Cauchy mapping, DT, for the cochain T, gives DT(p, α), at the
point p in the direction α defined by the cell σ, defined as:

DT(p, α) = lim
i→∞

T · σi

|σi|
, α =

σi

|σi|

where all σi contain p, have r-direction α and limi→∞ diam(σi) = 0.
The Cauchy mapping for a given cochain T, of r-directions is analogous
to the dependence of the flux density on the unit normal.
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The Representation Theorem
.
Whitney:
..

.

. ..

.

.

The analog to Cauchy’s flux theorem. For each flat r-cochain T there is
an r-form τ = τT that represents T by

T ·A =
∫

A
τT ,

for every flat r-chain A.
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Coboundaries and Balance Equations
The coboundary dT of an r-cochain T is the (r + 1)-cochain defined by

dT ·A = T · ∂A.

A very general form of “Stokes’ theorem”.
Thus, d is the dual of the boundary operator:

A ♭
r+1(En) ∂−−−→ A ♭

r (En)

A ♭
r+1(En)∗ d=∂∗←−−− A ♭

r (En)∗.

The coboundaries of flat cochains are flat, as the boundary operator is
continuous.
Hence, there is a flat cochain S satisfying the global balance equation:

S ·A + T · ∂A = 0, ∀A, =⇒ dT + S = 0.

A very general form of the balance equation.
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The Local Balance Equation
If τT is a form that represents the total flux operator T, then, by the
representation theorem applied to dT, there is a form representing dT

d0τ = τdT .

Thus,
dT · B = T · ∂B is represented by

∫
B

d0τ =
∫

∂B
τT .

Let β be the r-form representing the rate of content operator S so

T(∂B) + S(B) = 0 is represented by
∫

∂B
τT +

∫
B

β = 0.

One obtains the local expression

d0τ + β = 0.
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Stokes’ Theorem for Differentiable Forms
on Polyhedral Chains

The exterior derivative of a differentiable r-form τ is an (r + 1)-form dτ
defined by

dτ(p) · (v1∧ · · · ∧ vr+1) =
r+1

∑
i=1

(−1)i−1∇vi τ(p) · (v1∧ · · · ∧ v̂i∧ · · · ∧vr+1).

where v̂i denotes a vector that has been omitted, and ∇vi is a
directional derivative operator.

Stokes’ theorem for polyhedral chains, based on the fundamental
theorem of differential calculus, states that∫

A

dτ =
∫
∂A

τ

for every differentiable r-form τ and an (r + 1)-polyhedral chain A.
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The Local Balance Equation for Differentiable Cochains

Reminder:
I If τT is a form that represents the total flux operator T, then, by the

representation theorem applied to dT, there is a form representing dT

d0τ = τdT .
I One obtains the local expression

d0τ + β = 0.

If τT is differentiable, then, d0τ = dτ, the exterior derivative.
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Thanks
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