Extensions of Flux Theory

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Department of Mechanical and Aerospace Engineering U.C.S.D.
February 2009

Objects of Interest

- *Fluxes and stresses* as fundamental objects of continuum mechanics.
- Geometric aspects: Formulations that do not use the traditional geometric and kinematic assumptions. For example, Euclidean structure of the physical space, mass conservation. Materials with micro-structure (sub-structure), growing bodies.
- Analytic aspects: Irregular bodies and flux fields. Fractal bodies.

Flux Theory?

Derive the existence of the flux vector field **j**, e.g., the heat flux vector field or the electric current density, and its properties from global balance laws, e.g., balance of energy or conservation of charge.

Relevant Operations:

• Total Flux (Flow) Calculation:

$$\int_A \mathbf{j} \cdot \mathbf{n} \, \mathrm{d}A.$$

• *Gauss-Green Theorem:*

$$\int_{\partial B} \mathbf{j} \cdot \mathbf{n} \, \mathrm{d}A = \int_{B} \operatorname{div} \mathbf{j} \, \mathrm{d}V.$$

Questions Regarding the Operations

• Total Flux Calculation:

$$\int_A \mathbf{j} \cdot \mathbf{n} \, \mathrm{d}A.$$

- ► How irregular can *A* be?
- Gauss-Green Theorem:

$$\int_{\partial B} \mathbf{j} \cdot \mathbf{n} \, \mathrm{d}A = \int_{B} \mathrm{div} \, \mathbf{j} \, \mathrm{d}V.$$

- ► How irregular can *B* be?
- ► How irregular can *j* be?

Examples:

Balanced Extensive Properties

In terms of scalar extensive property p with density ρ in space, one assumes for every "control region" $B \subset \mathcal{U} \cong \mathbb{R}^3$:

- Consider β , interpreted as the *time derivative* of the density ρ of the property, so for any control region B in space, $\int_B \beta dV$ is the rate of change of the total content of the property inside B.
- For each control region *B* there is a *flux density* τ_B such that $\int_{\partial B} \tau_B dA$ is the *total flux (flow)* of the property out of *B*.
- There is a function s on \mathcal{U} such that for each region B

$$\int_{B} \beta \, dV + \int_{\partial B} \tau_{B} \, dA = \int_{B} s \, dV.$$

Here, s is interpreted as the *source density* of the property p (e.g., s=0 for mass and electric charge).

Fluxes: Traditional Cauchy Postulate and Theorem

Cauchy's postulate and theorem are concerned with the dependence of τ_B on B.

- It uses the metric properties of space.
- $\tau_B(x)$ is assumed to depend on B only through the unit normal to the boundary at x.
- The resulting Cauchy theorem asserts the existence of the flux vector j such that $\tau_B(x) = j \cdot n$.

Assumptions Again:

In terms of a scalar extensive property with density ρ in space, one assumes that there are operators $T(\partial B)$, the *total flux operator*, and S(B) the *total content* operator, such that for every "control region" $B \subset \mathcal{U} \cong \mathbb{R}^3$ (we take s=0):

• Balance:
$$T(\partial B) + S(B) = 0$$

• *Regularity*:
$$S(B) = \int_B \beta_B \, dV$$
, and $T(\partial B) = \int_{\partial B} \tau_B \, dA$

• *Locality (pointwise)*:
$$\beta_B(x) = \beta(x)$$
, and $\tau_B(x) = \tau(x, n)$

• *Continuity*: $\tau(\cdot, \mathbf{n})$ is continuous.

Note: It follows from the balance and regularity assumptions that

- $|\partial B| \to 0$ implies $T(\partial B) \to 0$,
- $|B| \to 0$ implies $T(\partial B) \to 0$

 $|\cdot|$ being either the area or volume depending on the context.

The Results:

Cauchy's Theorem

asserts that $\tau(x, n)$ depends linearly on n. There is a vector field j such that

$$\tau = \mathbf{j} \cdot \mathbf{n}.$$

Considering smooth regions and flux vector fields such that Gauss-Green theorem may be applied, the balance may be written in the form of a differential equation as

$$\operatorname{div} \mathbf{j} + \beta = s.$$

Traditional Proof:

- Consider the infinitesimal tetrahedron. Since the area is in an order of magnitude larger than the volume, the volume terms are negligible.
- Thus, $\sum_i A_i \tau(\mathbf{n}_i) = 0$.
- Also, $\sum_i A_i n_i = 0$.
- Hence,

$$\tau\left(\frac{A_1}{A_4}n_1 + \frac{A_2}{A_4}n_2 + \frac{A_3}{A_4}n_3\right) = \frac{A_1}{A_4}\tau(n_1) + \frac{A_2}{A_4}\tau(n_2) + \frac{A_3}{A_4}\tau(n_3)$$

Contributions in Continuum Mechanics

- Noll: 1957, 1973, 1986,
- Gurtin & Williams: 1967,
- Gurin & Martins: 1975,
- Gurtin, Williams & Ziemer: 1986,
- Silhavy: 1985, 1991, . . ., 2007,
- Noll & Virga: 1988,
- Degiovanni, Marzocchi & Musesti: 1999, . . .
- Fosdick & Virga: 1989.
- Segev: 1986, 1991, 1999, 2000, 2002.

The Proposed Formulation

Uses *Geometric Integration Theory* by Whitney (1957).

- Building blocks: r-dimensional oriented cells in E^n .
- Formal vector space of *r*-cells: polyhedral *r*-chains.
- Complete w.r.t a norm: Banach space of *r*-chains.
- Elements of the dual space: *r*-cochains.

Relevance to Flux Theory

- The total flux operator on regions is modelled mathematically by a cochain.
- Cauchy's flux theorem is implied by a representation theorem for cochains by forms.

Features of the Proposed Formulation

- It offers a common point of view for the analysis of the following aspects: *class of domains, integration, Stokes' Theorem, and fluxes*.
- Allows irregular domains and flux fields.
- The co-dimension not limited to 1. Allows membranes, strings, etc. Not only the boundary is irregular, but so is the domain itself.
- Compatible with the formulation on general manifolds where no particular metric is given.

Outline

- Cells and polyhedral chains
- Algebraic cochains
- Norms and the complete spaces of chains
- The representation of cochains by forms:
 - Multivectors and forms
 - Integration
 - Representation
 - Coboundaries and differentiable balance equations

Cells and Polyhedral Chains

Oriented Cells

• A *cell*, σ , is a non empty bounded subset of E^n expressed as an intersection of a finite collection of half spaces.

• The *plane of* σ is the smallest affine subspace containing σ .

• The *dimension* r of σ is the dimension of its plane. Terminology: an r-cell.

• The boundary $\partial \sigma$ of an r-cell σ contains a number of (r-1)-cells α

Oriented Cells (continued)

Recall: An orientation of a vector space is determined by a choice of a
basis. Any other basis will give the *same orientation* if the determinant
of the transformation is positive. A vector space can have 2 orientations.

 An *oriented r*-cell is an *r*-cell with a choice of one of the two orientations of the vector space associated with its plane.

• The orientation of $\sigma' \in \partial \sigma$ is determined by the orientation of σ :

► Choose independent $(v_2, ..., v_r)$ in σ' .

• Order them such that given v_1 in the plane of σ which points out of σ' , (v_1, \ldots, v_r) are positively oriented relative to σ .

Polyhedral Chains: Algebra into Geometry

• A polyhedral r-chain in E^n is a formal linear combination of r-cells

$$A=\sum a_i\sigma_i.$$

- The following operations are defined for polyhedral chains:
 - The polyhedral chain 1σ is identified with the cell σ .
 - ▶ We associate multiplication of a cell by -1 with the operation of inversion of orientation, i.e., $-1\sigma = -\sigma$.
 - ▶ If σ is cut into $\sigma_1, \ldots, \sigma_m$, then σ and $\sigma_1 + \ldots + \sigma_m$ are identified.
 - Addition and multiplication by numbers in a natural way.
- The space of polyhedral r-chains in E^n is now an *infinite-dimensional* vector space denoted by $\mathscr{A}_r(E^n)$.
- The boundary of a polyhedral r-chain $A = \sum a_i \sigma_i$ is $\partial A = \sum a_i \partial \sigma_i$. Note that ∂ is a linear operator $\mathscr{A}_r(E^n) \longrightarrow \mathscr{A}_{r-1}(E^n)$.

Polyhedral Chains: Illustration

A Polyhedral Chain as a Function

Total Fluxes as Cochains

Basic Idea:

Regard the flux through a 2-dimensional chain as the action of a linear operator—a *co-chain*—on that chain.

A *cochain*: Linear $T: \mathscr{A}_r \to \mathbb{R}$. We write $T(B) = T \cdot B$.

Algebraic implications:

- additivity,
- interaction antisymmetry.

$$T \cdot (-\sigma) = -T \cdot \sigma$$
, $T \cdot (\sigma_1 + \sigma_2) = T \cdot \sigma_1 + T \cdot \sigma_2$

Norms and the Complete Space of Chains: Analysis into Geometry

The Norm Induced by Boundedness

Boundedness:
$$|T_{\partial B}| \leq N_2 |\partial B|$$
, $|T_{\partial B}| \leq N_1 |B|$. Setting $A = \partial B$, ...

As a cochain: $|T \cdot A| \leq N_2 |A|$, $|T \cdot \partial D| \leq N_1 |D|$, $A \in \mathscr{A}_r$, $D \in \mathscr{A}_{r+1}$.

Thus, for any $D \in \mathscr{A}_{r+1}$, $|T \cdot A| = |T \cdot A - T \cdot \partial D + T \cdot \partial D|$
and $A \in \mathscr{A}_r$: $\leq |T \cdot A - T \cdot \partial D| + |T \cdot \partial D|$
 $\leq N_2 |A - \partial D| + N_1 |D|$
 $\leq C_T (|A - \partial D| + |D|)$,

Basic Idea (revised)

Regard the flux as a *continuous linear functional* on the space of chains w.r.t. a norm

$$|T\cdot A|\leqslant C_T\|A\|,$$

where the *flat norm* (smallest) is given as

$$||A|| = |A|^{\flat} = \inf_{D} \{|A - \partial D| + |D|\}.$$

Flat Chains

- The *mass* of a polyhedral *r*-chain $A = \sum a_i \sigma_i$ is $|A| = \sum |a_i| |\sigma_i|$.
- The *flat norm*, $|A|^{\flat}$, of a polyhedral *r*-chain:

$$|A|^{\flat} = \inf\{|A - \partial D| + |D|\},\,$$

using all polyhedral (r + 1)-chains D.

- Taking D = 0, $|A|^{\flat} \leqslant |A|$.
 - ▶ If $A = \partial B$, taking D = B gives $|A|^{\flat} \leq |B|$. Hence, $|\partial B|^{\flat} \leq |B|$.
- Completing $\mathscr{A}_r(E^n)$ w.r.t. the flat norm gives a Banach space denoted by $\mathscr{A}_r^{\flat}(E^n)$, whose elements are *flat r*-chains in E^n .
- Flat chains may be used to represent continuous and smooth submanifolds of E^n and even irregular surfaces.
- The *boundary of a flat* (r+1)-chain $A = \lim^b A_i$, is the a flat r-chain $\partial A = \lim \partial A_i$. The boundary operator is continuous and linear.

Flat Chains, an Example (Illustration - I):

Example: The Staircase

The dashed lines are for reference only.

$$|A_i|^{\flat} \leqslant 2^{i-1}2^{-2i} = 2^{-i}/2 \implies (B_i)$$
 a convergent series.

Note,
$$|B_i - B_j| = \left| \sum_{k=j+1}^i A_k \right| \le \sum_{k=j+1}^i |A_k| \le \sum_{k=j+1}^\infty |A_k| \le \sum_{k=j+1}^\infty 2^{-k}/2, \quad \forall \quad i > j.$$

Example: the Van Koch Snowflake

 A_i contains 4^i triangles of side length 3^{-i} . Each time the length increases by $2 \cdot 3^{-i} \cdot 4^i = 2 \left(\frac{4}{3}\right)^i$. Hence, $|B_i| \to \infty$.

The Representation of Cochains by Forms

Objectives:

- Create an algebraic language to treat chains and cochains,
- A representation theorem for cochains in terms of fields and integration.

Multivectors

- A *simple r-vector* in V is an expression of the form $v_1 \wedge \cdots \wedge v_r$, where $v_i \in V$.
- An *r-vector* in *V* is a formal linear combination of simple *r*-vectors, together with:

$$(1) v_1 \wedge \cdots \wedge (v_i + v_i') \wedge \cdots \wedge v_r = v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_r + v_1 \wedge \cdots \wedge v_i' \wedge \cdots \wedge v_r;$$

(2)
$$v_1 \wedge \cdots \wedge (av_i) \wedge \cdots \wedge v_r = a(v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_r);$$

(3)
$$v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_j \wedge \cdots \wedge v_r$$

$$= -v_1 \wedge \cdots \wedge v_j \wedge \cdots \wedge v_i \wedge \cdots \wedge v_r.$$

- The r-vector vanishes if the vectors are linearly dependent.
- The collection, V_r , of r-vectors is a vector space and dim $V_r = \frac{n!}{(n-r)!r!}$.
- Given a basis $\{e_i\}$ of V, the r-vectors $\{e_{\lambda_1...\lambda_r} = e_{\lambda_1} \wedge \cdots \wedge e_{\lambda_r}\}$, such that $1 \leq \lambda_1 < \cdots < \lambda_r \leq n$, form a basis of V_r .

The Representation of Polyhedral Chains by Multivectors

- Given an oriented r-simplex σ in E^n , with vertices $\{p_0 \dots p_r\}$, the r-vector of σ , $\{\sigma\}$, is $\{\sigma\} = v_1 \wedge \dots \wedge v_r/r!$, where the v_i are defined by $v_i = p_i p_0$ and are ordered such that they belong to σ 's orientation.
 - $\{\sigma\}$ represents the *plane*, *orientation* and *size* of σ —the relevant aspects.
- The *r-vector of a polyhedral r-chain* $\sum a_i \sigma_i$, is

$$\{\sum a_i\sigma_i\}=\sum a_i\{\sigma_i\}.$$

Why an *r*-covector?

For the 3-dimensional example, we want to measure the flux through any infinitesimal cell σ , $\{\sigma\} = v \wedge u$.

- Denote by $T(\sigma)$ the flux through that infinitesimal element.
- As $T(\sigma)$ depends only the plane, orientation and area, we expect

$$T(\sigma) = \widehat{T}(\{\sigma\}).$$

• Balance: \widehat{T} is linear

$$\widehat{T}(\sigma) = \tau \cdot \{\sigma\},\,$$

where τ is a linear mapping of multi-vectors to real numbers—an r-covector.

Rough Proof

Consider the infinitesimal tetrahedron X, A, B, C generated by the three vectors u, v, w.

- Use right-handed orientation.
- Balance implies:

the three vectors
$$u, v, w$$
.

— Use right-handed orientation.

— Balance implies:

 $T(v, u) + T(v, w) + T(u, v + w) - T(u + v, w) = 0$.

— Same for
$$X$$
, B , C , E and X , C , D , E

$$T(w,u) + T(u+v,w) + T(v,u) - T(v,w+u) = 0$$

$$T(w,u) - T(v+w,u) - T(v,w) + T(v,w+u) = 0.$$

Add up to obtain: T(u, v + w) = T(u, v) + T(u, w).

Or Using Multi-Vectors

- Consider the infinitesimal tetrahedron D generated by the three vectors u, v, w and let $A = \partial D$.
- $|A|^{\flat} \leqslant |A \partial D| + |D| \to 0$, as the volume of the tetrahedron decreases.
- Thus, $\lim T(\{A\}) = 0$.
- Use right-handed orientation.

Thus:
$$T(u \wedge v) + T(v \wedge w) + T(w \wedge u) + T((w - v) \wedge (v - u)) = 0$$
.
Using: $(w - v) \wedge (v - u) = w \wedge v - w \wedge u + v \wedge u = -u \wedge v - v \wedge w - w \wedge u$,

we conclude:
$$T(u \wedge v + v \wedge w + w \wedge u) = T(u \wedge v) + T(v \wedge w) + T(w \wedge u).$$

Reminder: Dual Spaces of Vector Spaces

- For a vector space \mathcal{W} , \mathcal{W}^* —the *dual space*—is the collection of all linear mappings, $T: \mathcal{W} \longrightarrow \mathbb{R}$ (also *linear functionals, covectors*).
- In our case, flat chains are in $\mathscr{A}_r^{\flat}(E^n)$, and the total fluxes, being continuous linear functionals of chains, are $T \in \mathscr{A}_r^{\flat}(E^n)^*$.
- For an infinite dimensional vector space on which a norm ||w|| is defined, one also requires that T is continuous. The condition for continuity (assuming linearity) is

$$|T(w)| \leqslant C_T ||w||.$$

- This provides a procedure for generating new mathematical objects. Define a vector space and a norm and consider its dual space.
- *Representation Theorems*: represent the action of the linear functionals on vectors by known mathematical operations (inner products, integration).

Multi-Covectors

- An *r-covector* is an element of V^r —the dual space of V_r .
- r-covectors can be expressed using covectors:

$$V^r = (V^*)_r$$

 $(V^*)_r$ is the space of *multi-covectors*, i.e., constructed as V_r using elements of the dual space V^* :

$$\tau = f_{\lambda_1 \cdots \lambda_r} e^{\lambda_1} \wedge \cdots \wedge e^{\lambda_r}, \quad \lambda_i < \lambda_{i+1}.$$

• *r*-covectors may be identified with *alternating multilinear* mappings:

$$V^r = L_A^r(V, \mathbb{R}), \quad \text{by} \quad \tau(v_1 \wedge v_2 \wedge \cdots \wedge v_r) = \bar{\tau}(v_1, \ldots, v_r).$$

• This is a simple example of a representation theorem for functionals.

Riemann Integration of Forms Over Polyhedral Chains

- An r-form in $Q \subset E^n$ is an r-covector valued mapping in Q.
- An *r*-form is continuous if its components are continuous functions.
- The *Riemann integral* of a continuous r-form τ over an r-simplex σ is defined as

$$\int_{\sigma} \tau = \lim_{k \to \infty} \sum_{\sigma_i \in \mathcal{S}_k \sigma} \tau(p_i) \cdot \{\sigma_i\},\,$$

where $S_i \sigma$ is a sequence of *simplicial subdivisions* of σ with mesh \to 0, and each p_i is a point in σ_i .

• The Riemann integral of a continuous r-form over a *polyhedral r-chain* $A = \sum a_i \sigma_i$, is defined by $\int_A \tau = \sum a_i \int_{\sigma_i} \tau$.

Lebesgue Integral of Forms over Polyhedral Chains

- An r-form in E^n is bounded and measurable if all its components are bounded and measurable.
- The *Lebesgue integral* of an r-form τ over an r-cell σ is defined by

$$\int_{\sigma} \tau = \int_{\sigma} \tau(p) \cdot \frac{\{\sigma\}}{|\sigma|} dp,$$

where the integral on the right is a Lebesgue integral of a real function.

• This is extended by linearity to domains that are polyhedral chains by

$$\int_A \tau = \sum a_i \int_{\sigma_i} \tau,$$

for $A = \sum_i a_i \sigma_i$.

The Cauchy Mapping

• The Cauchy mapping, D_T , for the cochain T, gives $D_T(p, \alpha)$, at the point p in the direction α defined by the cell σ , defined as:

$$D_T(p,\alpha) = \lim_{i \to \infty} T \cdot \frac{\sigma_i}{|\sigma_i|}, \quad \alpha = \frac{\sigma_i}{|\sigma_i|}$$

where all σ_i contain p, have r-direction α and $\lim_{i\to\infty} \operatorname{diam}(\sigma_i) = 0$.

• The Cauchy mapping for a given cochain *T*, of *r*-directions is analogous to the dependence of the flux density on the unit normal.

The Representation Theorem

Whitney:

• The analog to Cauchy's flux theorem. For each flat r-cochain T there is an r-form $\tau = \tau_T$ that represents T by

$$T \cdot A = \int_A \tau_T$$
,

for every flat *r*-chain *A*.

Coboundaries and Balance Equations

• The *coboundary* dT of an r-cochain T is the (r + 1)-cochain defined by

$$dT \cdot A = T \cdot \partial A$$
.

A very general form of "Stokes' theorem".

• Thus, *d* is the *dual of the boundary operator*:

- The coboundaries of flat cochains are flat, as the boundary operator is continuous.
- Hence, there is a flat cochain *S* satisfying the global balance equation:

$$S \cdot A + T \cdot \partial A = 0$$
, $\forall A$, \Longrightarrow $dT + S = 0$.

A very general form of the balance equation.

The Local Balance Equation

• If τ_T is a form that represents the total flux operator T, then, by the representation theorem applied to dT, there is a form representing dT

$$d_0 \tau = \tau_{dT}$$
.

• Thus, $dT \cdot B = T \cdot \partial B \quad \text{is represented by} \quad \int_{B} d_0 \tau = \int_{\partial B} \tau_T.$

• Let β be the *r*-form representing the rate of content operator *S* so

$$T(\partial B) + S(B) = 0$$
 is represented by $\int_{\partial B} au_T + \int_B eta = 0.$

One obtains the local expression

$$d_0\tau + \beta = 0.$$

Stokes' Theorem for Differentiable Forms on Polyhedral Chains

ullet The *exterior derivative* of a *differentiable r*-form au is an (r+1)-form d au defined by

$$d\tau(p)\cdot (v_1\wedge\cdots\wedge v_{r+1})=\sum_{i=1}^{r+1}(-1)^{i-1}\nabla_{v_i}\tau(p)\cdot (v_1\wedge\cdots\wedge\widehat{v}_i\wedge\cdots\wedge v_{r+1})$$

where \hat{v}_i denotes a vector that has been omitted, and ∇_{v_i} is a directional derivative operator.

• Stokes' theorem for polyhedral chains, based on the fundamental theorem of differential calculus, states that

$$\int_{A} d\tau = \int_{\partial A} \tau$$

for every differentiable r-form τ and an (r+1)-polyhedral chain A.

The Local Balance Equation for Differentiable Cochains

- Reminder:
 - ▶ If τ_T is a form that represents the total flux operator T, then, by the representation theorem applied to dT, there is a form representing dT

$$d_0 \tau = \tau_{dT}$$
.

One obtains the local expression

$$d_0\tau + \beta = 0.$$

• If τ_T is differentiable, then, $d_0\tau = d\tau$, the exterior derivative.

Thanks