Extensions of Flux Theory

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Department of Mechanical and Aerospace Engineering U.C.S.D.
 February 2009

Objects of Interest

- Fluxes and stresses as fundamental objects of continuum mechanics.
- Geometric aspects: Formulations that do not use the traditional geometric and kinematic assumptions. For example, Euclidean structure of the physical space, mass conservation. Materials with micro-structure (sub-structure), growing bodies.
- Analytic aspects: Irregular bodies and flux fields. Fractal bodies.

Flux Theory?

Derive the existence of the flux vector field \mathbf{j}, e.g., the heat flux vector field or the electric current density, and its properties from global balance laws, e.g., balance of energy or conservation of charge.

Relevant Operations:

- Total Flux (Flow) Calculation:

$$
\int_{A} \boldsymbol{j} \cdot \boldsymbol{n} \mathrm{~d} A .
$$

- Gauss-Green Theorem:

$$
\int_{\partial B} \boldsymbol{j} \cdot \boldsymbol{n} \mathrm{~d} A=\int_{B} \operatorname{div} \boldsymbol{j} \mathrm{~d} V
$$

Questions Regarding the Operations

- Total Flux Calculation:

$$
\int_{A} \boldsymbol{j} \cdot \boldsymbol{n} \mathrm{~d} A
$$

- How irregular can A be?
- Gauss-Green Theorem:

$$
\int_{\partial B} \boldsymbol{j} \cdot \boldsymbol{n} \mathrm{~d} A=\int_{B} \operatorname{div} \boldsymbol{j} \mathrm{~d} V
$$

- How irregular can B be?
- How irregular can j be?

Examples:

Balanced Extensive Properties

In terms of scalar extensive property p with density ρ in space, one assumes for every "control region" $B \subset \mathscr{U} \cong \mathbb{R}^{3}$:

- Consider β, interpreted as the time derivative of the density ρ of the property, so for any control region B in space, $\int_{B} \beta \mathrm{~d} V$ is the rate of change of the total content of the property inside B.
- For each control region B there is a flux density τ_{B} such that $\int_{\partial B} \tau_{B} \mathrm{~d} A$ is the total flux (flow) of the property out of B.
- There is a function s on \mathscr{U} such that for each region B

$$
\int_{B} \beta \mathrm{~d} V+\int_{\partial B} \tau_{B} \mathrm{~d} A=\int_{B} s \mathrm{~d} V .
$$

Here, s is interpreted as the source density of the property p (e.g., $s=0$ for mass and electric charge).

Fluxes: Traditional Cauchy Postulate and Theorem

Cauchy's postulate and theorem are concerned with the dependence of τ_{B} on B.

- It uses the metric properties of space.
- $\tau_{B}(x)$ is assumed to depend on B only through the unit normal to the boundary at x.
- The resulting Cauchy theorem asserts the existence of the flux vector j such that $\tau_{B}(x)=\boldsymbol{j} \cdot \boldsymbol{n}$.

Assumptions Again:

In terms of a scalar extensive property with density ρ in space, one assumes that there are operators $T(\partial B)$, the total flux operator, and $S(B)$ the total content operator, such that for every "control region" $B \subset \mathscr{U} \cong \mathbb{R}^{3}$ (we take $s=0$):

- Balance:
- Regularity:
- Locality (pointwise):
- Continuity:

$$
\begin{aligned}
& \quad T(\partial B)+S(B)=0 \\
& S(B)=\int_{B} \beta_{B} \mathrm{~d} V, \text { and } T(\partial B)=\int_{\partial B} \tau_{B} \mathrm{~d} A \\
& \beta_{B}(x)=\beta(x), \text { and } \tau_{B}(x)=\tau(x, \boldsymbol{n}) \\
& \tau(\cdot, \boldsymbol{n}) \text { is continuous. }
\end{aligned}
$$

Note: It follows from the balance and regularity assumptions that

- $|\partial B| \rightarrow 0$ implies $T(\partial B) \rightarrow 0$,
- $|B| \rightarrow 0$ implies $T(\partial B) \rightarrow 0$
$|\cdot|$ being either the area or volume depending on the context.

The Results:

Cauchy's Theorem
asserts that $\tau(x, \boldsymbol{n})$ depends linearly on \boldsymbol{n}. There is a vector field \boldsymbol{j} such that

$$
\tau=j \cdot n .
$$

Considering smooth regions and flux vector fields such that Gauss-Green theorem may be applied, the balance may be written in the form of a differential equation as

$$
\operatorname{div} j+\beta=s
$$

Traditional Proof:

- Consider the infinitesimal tetrahedron. Since the area is in an order of magnitude larger than the volume, the volume terms are negligible.
- Thus, $\sum_{i} A_{i} \tau\left(\boldsymbol{n}_{i}\right)=0$.
- Also, $\sum_{i} A_{i} \boldsymbol{n}_{i}=0$.
- Hence,

$$
\tau\left(\frac{A_{1}}{A_{4}} \boldsymbol{n}_{1}+\frac{A_{2}}{A_{4}} \boldsymbol{n}_{2}+\frac{A_{3}}{A_{4}} \boldsymbol{n}_{3}\right)=\frac{A_{1}}{A_{4}} \tau\left(\boldsymbol{n}_{1}\right)+\frac{A_{2}}{A_{4}} \tau\left(\boldsymbol{n}_{2}\right)+\frac{A_{3}}{A_{4}} \tau\left(\boldsymbol{n}_{3}\right)
$$

Contributions in Continuum Mechanics

- Noll: 1957, 1973, 1986,
- Gurtin \& Williams: 1967,
- Gurin \& Martins: 1975,
- Gurtin, Williams \& Ziemer: 1986,
- Silhavy: 1985, 1991, ..., 2007,
- Noll \& Virga: 1988,
- Degiovanni, Marzocchi \& Musesti: 1999, ...
- Fosdick \& Virga: 1989.
- Segev: 1986, 1991, 1999, 2000, 2002.

The Proposed Formulation

Uses Geometric Integration Theory by Whitney (1957).

- Building blocks: r-dimensional oriented cells in E^{n}.
- Formal vector space of r-cells: polyhedral r-chains.
- Complete w.r.t a norm: Banach space of r-chains.
- Elements of the dual space: r-cochains.

Relevance to Flux Theory

- The total flux operator on regions is modelled mathematically by a cochain.
- Cauchy's flux theorem is implied by a representation theorem for cochains by forms.

Features of the Proposed Formulation

- It offers a common point of view for the analysis of the following aspects: class of domains, integration, Stokes' Theorem, and fluxes.
- Allows irregular domains and flux fields.
- The co-dimension not limited to 1 . Allows membranes, strings, etc. Not only the boundary is irregular, but so is the domain itself.
- Compatible with the formulation on general manifolds where no particular metric is given.

Outline

- Cells and polyhedral chains
- Algebraic cochains
- Norms and the complete spaces of chains
- The representation of cochains by forms:
- Multivectors and forms
- Integration
- Representation
- Coboundaries and differentiable balance equations

Cells and Polyhedral Chains

Oriented Cells

- A cell, σ, is a non empty bounded subset of E^{n} expressed as an intersection of a finite collection of half spaces.
- The plane of σ is the smallest affine subspace containing σ.
- The dimension r of σ is the dimension of its plane. Terminology: an r-cell.
- The boundary $\partial \sigma$ of an r-cell σ contains a number of $(r-1)$-cells, ${ }^{\prime}$

Oriented Cells (continued)

- Recall: An orientation of a vector space is determined by a choice of a basis. Any other basis will give the same orientation if the determinant of the transformation is positive. A vector space can have 2 orientations.
- An oriented r-cell is an r-cell with a choice of one of the two orientations of the vector space associated with its plane.
- The orientation of $\sigma^{\prime} \in \partial \sigma$ is determined by the orientation of σ :
- Choose independent $\left(v_{2}, \ldots, v_{r}\right)$ in σ^{\prime}.
- Order them such that given v_{1} in the plane of σ which points out of $\sigma^{\prime},\left(v_{1}, \ldots, v_{r}\right)$ are positively oriented relative to σ.

Polyhedral Chains: Algebra into Geometry

- A polyhedral r-chain in E^{n} is a formal linear combination of r-cells

$$
A=\sum a_{i} \sigma_{i}
$$

- The following operations are defined for polyhedral chains:
- The polyhedral chain 1σ is identified with the cell σ.
- We associate multiplication of a cell by -1 with the operation of inversion of orientation, i.e., $-1 \sigma=-\sigma$.
- If σ is cut into $\sigma_{1}, \ldots, \sigma_{m}$, then σ and $\sigma_{1}+\ldots+\sigma_{m}$ are identified.
- Addition and multiplication by numbers in a natural way.
- The space of polyhedral r-chains in E^{n} is now an infinite-dimensional vector space denoted by $\mathscr{A}_{r}\left(E^{n}\right)$.
- The boundary of a polyhedral r-chain $A=\sum a_{i} \sigma_{i}$ is $\partial A=\sum a_{i} \partial \sigma_{i}$. Note that ∂ is a linear operator $\mathscr{A}_{r}\left(E^{n}\right) \longrightarrow \mathscr{A}_{r-1}\left(E^{n}\right)$.

Polyhedral Chains: Illustration

$$
\partial A=\partial A_{1}+\partial A_{2} \quad \partial A
$$

$$
\partial: \mathscr{A}_{r} \rightarrow \mathscr{A}_{r-1}
$$

A Polyhedral Chain as a Function

Total Fluxes as Cochains

Basic Idea:

Regard the flux through a 2-dimensional chain as the action of a linear operator-a co-chain-on that chain.

A cochain: Linear $T: \mathscr{A}_{r} \rightarrow \mathbb{R}$. We write $T(B)=T \cdot B$. Algebraic implications:

- additivity,
- interaction antisymmetry.

$$
T \cdot(-\sigma)=-T \cdot \sigma, \quad T \cdot\left(\sigma_{1}+\sigma_{2}\right)=T \cdot \sigma_{1}+T \cdot \sigma_{2}
$$

Norms and the Complete Space of Chains: Analysis into Geometry

The Norm Induced by Boundedness

Boundedness: $\left|T_{\partial B}\right| \leqslant N_{2}|\partial B|,\left|T_{\partial B}\right| \leqslant N_{1}|B|$. Setting $A=\partial B, \ldots$ As a cochain: $|T \cdot A| \leqslant N_{2}|A|,|T \cdot \partial D| \leqslant N_{1}|D|, A \in \mathscr{A}_{r}, D \in \mathscr{A}_{r+1}$.

Thus, for any $D \in \mathscr{A}_{r+1}$, and $A \in \mathscr{A}_{r}$:

$$
\begin{aligned}
|T \cdot A| & =|T \cdot A-T \cdot \partial D+T \cdot \partial D| \\
& \leqslant|T \cdot A-T \cdot \partial D|+|T \cdot \partial D| \\
& \leqslant N_{2}|A-\partial D|+N_{1}|D| \\
& \leqslant C_{T}(|A-\partial D|+|D|),
\end{aligned}
$$

Basic Idea (revised)
Regard the flux as a continuous linear functional on the space of chains w.r.t. a norm

$$
|T \cdot A| \leqslant C_{T}\|A\|
$$

where the flat norm (smallest) is given as

$$
\|A\|=|A|^{b}=\inf _{D}\{|A-\partial D|+|D|\}
$$

Flat Chains

- The mass of a polyhedral r-chain $A=\sum a_{i} \sigma_{i}$ is $|A|=\sum\left|a_{i}\right|\left|\sigma_{i}\right|$.
- The flat norm, $|A|^{b}$, of a polyhedral r-chain:

$$
|A|^{b}=\inf \{|A-\partial D|+|D|\},
$$

using all polyhedral $(r+1)$-chains D.

- Taking $D=0,|A|^{b} \leqslant|A|$.
- If $A=\partial B$, taking $D=B$ gives $|A|^{b} \leqslant|B|$. Hence, $|\partial B|^{b} \leqslant|B|$.
- Completing $\mathscr{A}_{r}\left(E^{n}\right)$ w.r.t. the flat norm gives a Banach space denoted by $\mathscr{A}_{r}^{b}\left(E^{n}\right)$, whose elements are flat r-chains in E^{n}.
- Flat chains may be used to represent continuous and smooth submanifolds of E^{n} and even irregular surfaces.
- The boundary of a flat $(r+1)$-chain $A=\lim ^{b} A_{i}$, is the a flat r-chain $\partial A=\lim \partial A_{i}$. The boundary operator is continuous and linear.

Flat Chains, an Example (Illustration - I):

Example: The Staircase

The dashed lines are for reference only.

$$
\left|A_{i}\right|^{b} \leqslant 2^{i-1} 2^{-2 i}=2^{-i} / 2 \quad \Longrightarrow \quad\left(B_{i}\right) \text { a convergent series. }
$$

Note, $\left|B_{i}-B_{j}\right|=\left|\sum_{k=j+1}^{i} A_{k}\right| \leq \sum_{k=j+1}^{i}\left|A_{k}\right| \leq \sum_{k=j+1}^{\infty}\left|A_{k}\right| \leqslant \sum_{k=j+1}^{\infty} 2^{-k} / 2, \quad \forall \quad i>j$.

Example: the Van Koch Snowflake

A_{i} contains 4^{i} triangles of side length 3^{-i}. Each time the length increases by $2 \cdot 3^{-i} \cdot 4^{i}=2\left(\frac{4}{3}\right)^{i}$. Hence, $\left|B_{i}\right| \rightarrow \infty$.

$$
\left|A_{i}\right|^{b} \leqslant 4^{i} \frac{\sqrt{3}}{2} 3^{-i} 3^{-i}=\frac{\sqrt{3}}{2}\left(\frac{2}{3}\right)^{i}
$$

The Representation of Cochains by Forms

Objectives:

- Create an algebraic language to treat chains and cochains,
- A representation theorem for cochains in terms of fields and integration.

Multivectors

- A simple r-vector in V is an expression of the form $v_{1} \wedge \cdots \wedge v_{r}$, where $v_{i} \in V$.
- An r-vector in V is a formal linear combination of simple r-vectors, together with:
(1) $v_{1} \wedge \cdots \wedge\left(v_{i}+v_{i}^{\prime}\right) \wedge \cdots \wedge v_{r}$

$$
=v_{1} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{r}+v_{1} \wedge \cdots \wedge v_{i}^{\prime} \wedge \cdots \wedge v_{r}
$$

(2) $v_{1} \wedge \cdots \wedge\left(a v_{i}\right) \wedge \cdots \wedge v_{r}=a\left(v_{1} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{r}\right)$;
(3) $v_{1} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{j} \wedge \cdots \wedge v_{r}$

$$
=-v_{1} \wedge \cdots \wedge v_{j} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{r}
$$

- The r-vector vanishes if the vectors are linearly dependent.
- The collection, V_{r}, of r-vectors is a vector space and $\operatorname{dim} V_{r}=\frac{n!}{(n-r)!r!}$.
- Given a basis $\left\{e_{i}\right\}$ of V, the r-vectors $\left\{e_{\lambda_{1} \ldots \lambda_{r}}=e_{\lambda_{1}} \wedge \cdots \wedge e_{\lambda_{r}}\right\}$, such that $1 \leq \lambda_{1}<\cdots<\lambda_{r} \leq n$, form a basis of V_{r}.

The Representation of Polyhedral Chains by Multivectors

- Given an oriented r-simplex σ in E^{n}, with vertices $\left\{p_{0} \ldots p_{r}\right\}$, the r-vector of $\sigma,\{\sigma\}$, is $\{\sigma\}=v_{1} \wedge \cdots \wedge v_{r} / r!$, where the v_{i} are defined by $v_{i}=p_{i}-p_{0}$ and are ordered such that they belong to σ^{\prime} s orientation.
$\{\sigma\}$ represents the plane, orientation and size of σ-the relevant aspects.
- The r-vector of a polyhedral r-chain $\sum a_{i} \sigma_{i}$, is

$$
\left\{\sum a_{i} \sigma_{i}\right\}=\sum a_{i}\left\{\sigma_{i}\right\}
$$

Why an r-covector?

For the 3-dimensional example, we want to measure the flux through any infinitesimal cell $\sigma,\{\sigma\}=v \wedge u$.

- Denote by $T(\sigma)$ the flux through that infinitesimal element.
- As $T(\sigma)$ depends only the plane, orientation and area, we expect

$$
T(\sigma)=\widehat{T}(\{\sigma\})
$$

- Balance: \widehat{T} is linear

$$
\widehat{T}(\sigma)=\tau \cdot\{\sigma\}
$$

where τ is a linear mapping of multi-vectors to real numbers-an r-covector.

Rough Proof

Consider the infinitesimal tetrahedron X, A, B, C generated by the three vectors u, v, w.

- Use right-handed orientation.
—Balance implies:
$T(v, u)+T(v, w)+T(u, v+w)-T(u+v, w)=0$.

- Same for X, B, C, E and X, C, D, E

$$
\begin{aligned}
T(w, u)+T(u+v, w)+T(v, u)-T(v, w+u) & =0 \\
T(w, u)-T(v+w, u)-T(v, w)+T(v, w+u) & =0 .
\end{aligned}
$$

— Add up to obtain: $T(u, v+w)=T(u, v)+T(u, w)$.

Or Using Multi-Vectors

- Consider the infinitesimal tetrahedron D generated by the three vectors u, v, w and let $A=\partial D$.
- $|A|^{b} \leqslant|A-\partial D|+|D| \rightarrow 0$, as the volume of the tetrahedron decreases.
- Thus, $\lim T(\{A\})=0$.
- Use right-handed orientation.

Thus: $\quad T(u \wedge v)+T(v \wedge w)+T(w \wedge u)+T((w-v) \wedge(v-u))=0$.
Using: $\quad(w-v) \wedge(v-u)=w \wedge v-w \wedge u+v \wedge u=-u \wedge v-v \wedge w-w \wedge u$,
we conclude:

$$
T(u \wedge v+v \wedge w+w \wedge u)=T(u \wedge v)+T(v \wedge w)+T(w \wedge u) .
$$

Reminder: Dual Spaces of Vector Spaces

- For a vector space $\mathscr{W}, \mathscr{W}^{*}$-the dual space-is the collection of all linear mappings, $T: \mathscr{W} \longrightarrow \mathbb{R}$ (also linear functionals, covectors).
- In our case, flat chains are in $\mathscr{A}_{r}^{b}\left(E^{n}\right)$, and the total fluxes, being continuous linear functionals of chains, are $T \in \mathscr{A}_{r}^{b}\left(E^{n}\right)^{*}$.
- For an infinite dimensional vector space on which a norm $\|w\|$ is defined, one also requires that T is continuous. The condition for continuity (assuming linearity) is

$$
|T(w)| \leqslant C_{T}\|w\| .
$$

- This provides a procedure for generating new mathematical objects. Define a vector space and a norm and consider its dual space.
- Representation Theorems: represent the action of the linear functionals on vectors by known mathematical operations (inner products, integration).

Multi-Covectors

- An r-covector is an element of V^{r}-the dual space of V_{r}.
- r-covectors can be expressed using covectors:

$$
V^{r}=\left(V^{*}\right)_{r}
$$

$\left(V^{*}\right)_{r}$ is the space of multi-covectors, i.e., constructed as V_{r} using elements of the dual space V^{*} :

$$
\tau=f_{\lambda_{1} \cdots \lambda_{r}} e^{\lambda_{1}} \wedge \cdots \wedge e^{\lambda_{r}}, \quad \lambda_{i}<\lambda_{i+1} .
$$

- r-covectors may be identified with alternating multilinear mappings:

$$
V^{r}=L_{A}^{r}(V, \mathbb{R}), \quad \text { by } \quad \tau\left(v_{1} \wedge v_{2} \wedge \cdots \wedge v_{r}\right)=\bar{\tau}\left(v_{1}, \ldots, v_{r}\right) .
$$

- This is a simple example of a representation theorem for functionals.

Riemann Integration of Forms Over Polyhedral Chains

- An r-form in $Q \subset E^{n}$ is an r-covector valued mapping in Q.
- An r-form is continuous if its components are continuous functions.
- The Riemann integral of a continuous r-form τ over an r-simplex σ is defined as

$$
\int_{\sigma} \tau=\lim _{k \rightarrow \infty} \sum_{\sigma_{i} \in \mathcal{S}_{k} \sigma} \tau\left(p_{i}\right) \cdot\left\{\sigma_{i}\right\}
$$

where $\mathcal{S}_{i} \sigma$ is a sequence of simplicial subdivisions of σ with mesh $\rightarrow 0$, and each p_{i} is a point in σ_{i}.

- The Riemann integral of a continuous r-form over a polyhedral r-chain $A=\sum a_{i} \sigma_{i}$, is defined by $\int_{A} \tau=\sum a_{i} \int_{\sigma_{i}} \tau$.

Lebesgue Integral of Forms over Polyhedral Chains

- An r-form in E^{n} is bounded and measurable if all its components are bounded and measurable.
- The Lebesgue integral of an r-form τ over an r-cell σ is defined by

$$
\int_{\sigma} \tau=\int_{\sigma} \tau(p) \cdot \frac{\{\sigma\}}{|\sigma|} d p
$$

where the integral on the right is a Lebesgue integral of a real function.

- This is extended by linearity to domains that are polyhedral chains by

$$
\int_{A} \tau=\sum a_{i} \int_{\sigma_{i}} \tau
$$

for $A=\sum_{i} a_{i} \sigma_{i}$.

The Cauchy Mapping

- The Cauchy mapping, D_{T}, for the cochain T, gives $D_{T}(p, \alpha)$, at the point p in the direction α defined by the cell σ, defined as:

$$
D_{T}(p, \alpha)=\lim _{i \rightarrow \infty} T \cdot \frac{\sigma_{i}}{\left|\sigma_{i}\right|}, \quad \alpha=\frac{\sigma_{i}}{\left|\sigma_{i}\right|}
$$

where all σ_{i} contain p, have r-direction α and $\lim _{i \rightarrow \infty} \operatorname{diam}\left(\sigma_{i}\right)=0$.

- The Cauchy mapping for a given cochain T, of r-directions is analogous to the dependence of the flux density on the unit normal.

The Representation Theorem

Whitney:

- The analog to Cauchy's flux theorem. For each flat r-cochain T there is an r-form $\tau=\tau_{T}$ that represents T by

$$
T \cdot A=\int_{A} \tau_{T}
$$

for every flat r-chain A.

Coboundaries and Balance Equations

- The coboundary $d T$ of an r-cochain T is the $(r+1)$-cochain defined by

$$
d T \cdot A=T \cdot \partial A
$$

A very general form of "Stokes' theorem".

- Thus, d is the dual of the boundary operator:

$$
\begin{aligned}
& \mathscr{A}_{r+1}^{b}\left(E^{n}\right) \xrightarrow{\partial} \stackrel{\partial}{\longleftrightarrow} \mathscr{A}_{r}^{b}\left(E^{n}\right) \\
& \mathscr{A}_{r+1}^{b}\left(E^{n}\right)^{*} \stackrel{d=\partial^{*}}{\rightleftarrows} \mathscr{A}_{r}^{b}\left(E^{n}\right)^{*} .
\end{aligned}
$$

- The coboundaries of flat cochains are flat, as the boundary operator is continuous.
- Hence, there is a flat cochain S satisfying the global balance equation:

$$
S \cdot A+T \cdot \partial A=0, \quad \forall A, \quad \Longrightarrow \quad d T+S=0
$$

A very general form of the balance equation.

The Local Balance Equation

- If τ_{T} is a form that represents the total flux operator T, then, by the representation theorem applied to $d T$, there is a form representing $d T$

$$
d_{0} \tau=\tau_{d T}
$$

- Thus,

$$
d T \cdot B=T \cdot \partial B \quad \text { is represented by } \quad \int_{B} d_{0} \tau=\int_{\partial B} \tau_{T}
$$

- Let β be the r-form representing the rate of content operator S so

$$
T(\partial B)+S(B)=0 \quad \text { is represented by } \int_{\partial B} \tau_{T}+\int_{B} \beta=0
$$

- One obtains the local expression

$$
d_{0} \tau+\beta=0
$$

Stokes' Theorem for Differentiable Forms on Polyhedral Chains

- The exterior derivative of a differentiable r-form τ is an $(r+1)$-form $d \tau$ defined by
$d \tau(p) \cdot\left(v_{1} \wedge \cdots \wedge v_{r+1}\right)=\sum_{i=1}^{r+1}(-1)^{i-1} \nabla_{v_{i}} \tau(p) \cdot\left(v_{1} \wedge \cdots \wedge \widehat{v}_{i} \wedge \cdots \wedge v_{r+1}\right)$
where \widehat{v}_{i} denotes a vector that has been omitted, and $\nabla_{v_{i}}$ is a directional derivative operator.
- Stokes' theorem for polyhedral chains, based on the fundamental theorem of differential calculus, states that

$$
\int_{A} d \tau=\int_{\partial A} \tau
$$

for every differentiable r-form τ and an $(r+1)$-polyhedral chain A.

The Local Balance Equation for Differentiable Cochains

- Reminder:
- If τ_{T} is a form that represents the total flux operator T, then, by the representation theorem applied to $d T$, there is a form representing $d T$

$$
d_{0} \tau=\tau_{d T} .
$$

- One obtains the local expression

$$
d_{0} \tau+\beta=0
$$

- If τ_{T} is differentiable, then, $d_{0} \tau=d \tau$, the exterior derivative.

Thanks

