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The front of a fluid that displaces a less viscous fluid in shear-dominated flows is known to be stable.
We show that in predominantly extensional flows on a sphere, a similar front of a strain-rate-softening fluid
can become unstable and evolve fingerlike patterns comprised of rifts and tongues. The number of rifts and
tongues declines with time and is selected by competition between interfacial hoop stress, geometric
stretching, momentum dissipation, and spatial curvature. Our results elucidate fracture dynamics in
complex fluids under extension and are applicable to a wide range of systems, including planetary-scale ice
shelves as in snowball epochs and icy moons.

DOI: 10.1103/PhysRevLett.123.214502

Instability of the moving interface of a fluid that
displaces another fluid in a quasitwo dimensional geometry
is a fundamental problem in a range of phenomena.
Numerous studies have addressed the case where the flow
is shear dominated [1–9] and analogous to flow within a
gap between two solid surfaces (Hele-Shaw cell). When the
gap is uniform, the interface of a more viscous displacing
fluid is known to be stable [10]. Similar flows over a solid
plane and with a free surface, as in viscous gravity currents,
are also dominated by shear and have stable interfaces
[11–13]. However, when traction is absent from both the
top and bottom fluid surfaces, the flow becomes predomi-
nantly extensional and the evolution of the interface can
change radically. In particular, an initially circular interface
of a strain-rate-softening fluid displacing an inviscid fluid
in a planar geometry can develop tearing patterns with
sharp tips (Fig. 1), separated by a number of tongues [14].
Over time, the number of tongues declines by the joining of
adjacent tongues into wider ones and the simultaneous
relief of the tears’ propagation. Such an instability is not
observed when the displacing fluid is Newtonian [15,16].
This tearing instability is of prime importance to the

understanding of fracture dynamics in complex fluids under
extension. It may also be important to the understanding
of the formation and evolution of ice rifts, which are
fractures that split the fronts of ice shelves across their
entire thickness [17]. Glacier ice deforms viscously over
the bedrock like a strain-rate-softening fluid [18] and can
spread across the grounding line into the oceans as a
floating ice shelf. When not confined by lateral boundaries,
the spreading is predominantly extensional and the ice shelf
can split into a number of tongues separated by rifts [19].
Such rifts extend the ice-ocean interface where melting
occurs and may trigger calving of icebergs [20] and
possibly disintegration of ice shelves [21], which are the
main mechanisms of mass loss in Antarctica [22]. On a

planar geometry, the tearing instability is driven by hoop
stresses and inhibited by geometric stretching and momen-
tum dissipation [23]. However, the presence of extensional

FIG. 1. Snapshots (plan view) from a laboratory experiment in
planar geometry, in which aqueous solution of Xanthan gum
(blue) was discharged axisymmetrically and at constant flux into
a tank that contained a deep layer of salt solution (transparent)
[14]. The Xanthan solution was completely floating while
displacing the denser salt solution. It was also substantially more
viscous than the salt solution (≈105 times more viscous at zero
strain rate), resulting in a nearly zero traction along the bottom
interface of the displacing Xanthan solution, and consequently in
an extensionally dominated stress field in the displacing fluid.
The time sequence shows that the fluid-fluid interface evolved
from a high number of tears and tongues to a lower number.
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flows in nonplanar geometries, such as ice shelves on
a planetary scale, raises the question of whether spatial
curvature can inhibit the tearing instability or modify it. For
example, during snowball epochs [24] ice caps covered
Earth’s surface completely or excluding an equatorial ocean
and challenged the survival of photosynthetic life [25–27].
Icy moons such as Europa and Enceledus have oceans
covered by ice shells [28], which appear active in forming
rifts, as implied from evidence of atmospheric water-vapor
plumes [29] and elongated surface terrain [30]. Therefore,
the scope of implications that rift patterns may have on a
planetary scale could be wide and of prime interest, yet
the role of spatial curvature on the stability of extensional
flows remains unexplored thus far.
We explore the impact of spatial curvature by consid-

ering the stability of extensional flows on a sphere. The
flow is of a thin, annular cap of power-law fluid
that deforms without traction along its boundaries. The
fluid cap of uniform thickness h is centered at the north
pole of a sphere of radius a ≫ h, that has horizontal
coordinates ϕ for longitude and r ¼ aθ for the geodesic
distance from the north pole, where 0 ≤ θ ≤ π=2 is the
latitude [Fig. 2(a)]. Therefore, in the limit of zero mean
curvature (a−1 → 0) the annular spherical cap converges
to an annular disk and the solution should converge to
that of a planar geometry [23]. The annular fluid cap
has a fixed inner arc at rG ¼ aθG and a moving outer arc
rNðϕ; tÞ ¼ aθNðϕ; tÞ. The fluid is discharged at rG at

constant flux Q axisymmetrically with respect to the pole.
This configuration is similar to flow in a sphericalHele-Shaw
cell of small aspect ratio (a ≫ h) [9], but with no-stress
instead of no-slip boundary conditions along thewalls of the
cell. Consequently, to leading order the flow is uniform in the
radial (locally vertical) direction and essentially takes place
in the surface of a two-dimensional sphere. For lowReynolds
number flow, we use the Stokes equations of motion

∇ · σ ¼ 0; ∇ · v ¼ 0; ð1Þ
where v ¼ vr̂þ uϕ̂ is the plan velocity field with latitudinal
(r̂ ¼ θ̂) and azimuthal components v and u respectively, σ ¼
−pI þ 2μe is the full stress tensor,p is the pressure field, I is
the identity tensor, e ¼ 1

2
ð∇vþ∇vTÞ is the rate-of-strain

tensor, and μ is the strain-rate-dependent viscosity of a
power-law fluid

μ ¼ m

�
1

2
e∶e

�1
2
½1=n−1�

; ð2Þ

where m is a constant coefficient, and n is a constant
exponent representing a strain-rate-softening (shear-
thinning) fluid when n > 1, a strain-rate-hardening (shear-
thickening) fluid when 0 < n < 1, and a Newtonian fluid
when n ¼ 1. The boundary conditions at the inner boundary
rG of the annular cap are kinematic

v ¼ Q
2πha sinðr=aÞ ; u ¼ 0; ð3Þ

and at the outer boundary rNðϕ; tÞ the tangential and normal
stresses are zero. Finally, the velocity of the fluid front equals
the material velocity at that front

drN
dt

¼ vðrNÞ: ð4Þ
The dimensionless form of this model (Supplemental
Material [31]) involves only the exponent n and θG as
dimensionless groups. This implies dynamical similarity
among a range of spatiotemporal scales, and particularly
between laboratory-scale experiments (Fig. 1, [14]) and rifts
in ice shelves. The geodesic distance r is scaled with rG, so
that the annular cap dimensionless boundaries are at 1 and
R≡ rN=rG, implying that the dimensionless form of (4) is
dR=dt ¼ vðRÞ, where v is dimensionless.
We now consider the linear stability of small perturba-

tions with respect to an axisymmetric base-state solution,
denoted with the subscript 0

u0 ¼ 0; v0 ¼
θG

sin ðθGrÞ
;

μ0 ¼
�
θ2G

j cot ðθGrÞj
sin ðθGrÞ

�
1=n−1

: ð5aÞ

Therefore, the base-flow latitudinal velocity decreases with
r and consequently so does the base-flow rate of strain,
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FIG. 2. (a) The spherical-cup geometry under consideration,
together with the annular flow domain bounded between the inner
geodesic distance rG (brown solid line) and the outer one rN
(Green solid line), showing the base-state flow field (arrows) and
viscosity μ0 (color) for n ¼ 3, θG ¼ 10°, and θN ¼ 60°. (b)–(d)
The secondary flow velocity (arrows), streamlines (lines), and
viscosity μ1 (color) for a stable mode k ¼ 4 with θG ¼ 10°, θN ¼
60° (b), and for two unstable modes with k ¼ 3 and θG ¼ 10°,
θN ¼ 19° (c) and θG ¼ 30°, θN ¼ 55° (d).
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resulting in the growth of the base-flow viscosity of a strain-
rate-softening fluid (n > 1) with r [Fig. 2(a)]. The corre-
sponding position of the base-flow front grows in time like

R0 ¼
1

θG
cos−1½cos θG − θ2Gt�: ð5bÞ

Perturbations about the base flow (5), denotedwith subscript
1, have the form

F ¼ F0ðrÞ þ F1ðr;ϕ; tÞ; ð6aÞ

R ¼ R0ðtÞ þ R1ðϕ; tÞ; ð6bÞ

where Fi ≡ ðui; vi; pi; eiÞ for i ¼ 0, 1. The geometric
perturbation of the interface is R1 ¼ εeikϕþGt, where
ε ≪ 1, k is an integer azimuthal wave number, G is the
growth rate, and F1=R1 is function of r only, of order one.
Substitution in the evolution equation for the front implies
that the growth rate is

G ¼
�∂v0
∂r þ v1

R1

�����
r¼R0

ð7Þ

to leading order. The first contribution is from the base-state
stretching due to the curved geometry, which is always
negative and therefore suppressing the perturbation growth
independently of n and k. The second contribution from the
secondary flow v1=R1 can be interpreted by combining the
two boundary conditions of zero tangential and normal
stresses at the leading front to

∂σ1rϕ
∂ϕ ðR0Þ ¼

θG
sinðθGR0Þ

∂2R1

∂ϕ2
σ0ϕϕðR0Þ; ð8Þ

which implies that the base-flow hoop stress σ0ϕϕ coupled
with the perturbed geometry of the interface leads to a
perturbation shear stress and consequently to a latitudinal
force on the interface. Having σ1rϕ ¼ μ0e1rϕ, Eq. (8) can be
solved for v1, implying (Supplemental Material [31]) that
the growth rate (7) has the three contributions

G ¼ ∂v0
∂r þ σ0ϕϕ

μ0
þ sin2ðθGR0Þ

k2θ2GR1

∂
∂r

�
θG

sinðθGrÞ
∂u1
∂ϕ

�
; ð9Þ

representing, respectively, the stabilizing geometric stretch-
ing, the destabilizing hoop stress, and momentum dissipa-
tion. Among these three contributions only the latter
depends on the wave number k and the fluid exponent n.
We obtain the full solution to the growth rate by solving (1)
to order ε (Supplemental Material [31]) for a range
of n; k; R0 and θG [e.g., Figs. 2(b) through 2(d)].
Consequently for any fixed inner boundary θG, we find that
unstable modes rise only for strain-rate-softening (n > 1)
fluids [Fig. 3(a)]. In addition, among the unstable modes

the most-unstable wave number depends weakly on n
and declines monotonically with the width of the cap
δ≡ R0 − 1. Also, the most-unstable wave number at the
equator θN ¼ π=2 grows with θG.
The weak dependence of the most-unstable wave number

on n implies that it can be predicted to a good accuracy in
the plastic limit n → ∞. To achieve that we first obtain a
closed-form solution of the growth rate in the limit δ ≪ 1
and kδθG= sin θG ∼ 1, in which the cap width is much
smaller than its inner geodesic distance and the wave
number is high. In this limit the full perturbation model
simplifies to (Supplemental Material [31])

viv1 −
2ð2 − nÞ

n
K2v001 þ K4v1 ¼ 0; K ≡ kδ

θG
sin θG

;

ð10aÞ
where prime is a derivative with respect to ξ≡ ðr − 1Þ=δ,
together with the boundary conditions at the inner boun-
dary ξ ¼ 0

FIG. 3. (a) State-space diagram of the most-unstable wave
numbers (color) for any n and width of the spherical cap (top
axis) between θG ¼ 10° to θN ¼ 90°, obtained from the full
perturbation model. The neutral-stability curves for θG ¼ 10°
(cyan line), 45° (purple line), and 75° (green line) are shown with
respect to a normalized width (bottom axis) based on the plastic
limit (12b). (b) The most unstable wave numbers for all cap width
and for n ¼ 3 [gray dashed line in (a)], computed by the full
model for θG ¼ 10; 45; 75°, and compared with the prediction of
the thin-film approximation based on (11) (black line) and in the
plastic limit (12b) (red line). (See Supplemental Material [31].)
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v1 ¼ v01 ¼ 0; ð10bÞ

and at the outer boundary ξ ¼ 1

v001 þ K2v1 ¼ 4K2θ2G
cot θG
sin θG

R1;

v0001 ¼ K2

�
4

n
− 1

�
v01: ð10cÞ

Therefore, the growth rate has the closed form

G ¼ θ2G
cot θG
sin θG

ð2n − 1Þsin2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1
n K2

q
− ðn − 1Þcosh2 Kffiffi

n
p

sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1
n K2

q
þ ðn − 1Þcosh2 Kffiffi

n
p

;

ð11Þ

which becomes in the plastic limit

Gplastic ¼ −θ2G
cot θG
sin θG

cos ð2KÞ; ð12aÞ

implying that the most-unstable wave number kplastic is
given in that limit by 2K ¼ π, so that

kplastic ¼
π=2
δ

sin θG
θG

: ð12bÞ

Although (12b) applies in the limit δ ≪ 1, K ∼ 1, and
n → ∞, it predicts quite well the most-unstable wave
numbers obtained by the full solution for any n and δ
and θG [Fig. 3(b)].
The physical mechanism underlying the instability is

fundamentally similar to that in polar geometry [23].
Specifically, the base-flow hoop stress at the interface
interacts with the geometric perturbation of the interface
to generate tangential stress at the front (8). The resulting
perturbation shear stress drives flow that converges into
bulges in the perturbed interface and diverges from inter-
facial troughs. This flow pattern leads to the growth of the
geometric perturbation, which intensifies the converging
flow, leading to the development of the initial bulges into
tongues. While the instability is independent of the fluid
exponent n and the wave number, the stabilizing momen-
tum dissipation depends on both n and k. Specifically, at
large wave numbers (K ≫ π=2) an array of eddies stabil-
izes the flow [Fig. 2(b)], while at small wave numbers
(K ≪ π=2) long streamlines that stretch between troughs
and bulges provide a long dissipation path [Figs. 2(c)
and 2(d)]. For strain-rate-softening fluids, the dissipation
weakens as n > 1 grows, allowing the instability to emerge.
The instability can persist even when friction along the
base of the annular cap is included, although the growth
rate is increasingly suppressed with the growth of friction
(Supplemental Material [31]).

The curved geometry, represented by the mean spatial
curvature a−1 or by θG in the dimensionless form, has two
major impacts on the instability. The first is on the most-
unstable wave number. Compared to planar geometry, the
most-unstablewave number for a givenwidth δ declineswith
the mean curvature like sin θG=θG (12b). Correspondingly,
the growth rate of a specific mode k and width δ (12a)
depends on both the mean curvature and the Gaussian
curvatures θ2G [Fig. 4(a)]. Consequently, the spatial curvature
inhibits or triggers specific most-unstable modes, thereby
modifying the resulted pattern of tongues. The second
impact is on the transition time to a certain wave number.
The predicted most-unstable wave number (12b) declines
with the instantaneous annulus width δ, which grows with
time (5b). This implies that the transition time to a wave
number k is

tplastic ¼ 2π
a2h
Q

�
cos

rG
a
− cos

�
rG
a
þ π=2

k
sin

rG
a

��
ð12cÞ

in dimensional form, and can change in curved geometry
by more than factor 10 with respect to planar geometry
[Fig. 4(b)]. We do not expect such a prediction to be valid
in general at any finite time since it is based on a linear
theory, whereas the experiments in the polar limit imply
that the late-time evolution is highly nonlinear (Fig. 1).
Nevertheless, the prediction corresponding to (12c) in the
planar-geometry limit was found consistent with some
experimental results [23]. Therefore, although based on a
linear theory, (12c) may provide a good prediction of
the transition time to thewave number k also at the presence
of curved geometry.
As already mentioned, the model involves two dimen-

sionless numbers representing the fluid exponent and the
cap curvature. Therefore, the results above have implica-
tion to flows in a wide range of materials and spatiotem-
poral scales. One possible application is inhibiting or
triggering tongue formation in complex fluids and con-
trolling the time evolution of the fingering pattern by

0 1 2

Polar limit

G
=10

G
=45

G
=75

15101520
0.001

0.01

0.1

1

2

 h a2

Polar limit

G
=10

G
=45

G
=75

(b)(a)

-1

0

1

FIG. 4. The impact of spatial curvature on the instability is
shown by (a) the plastic-limit growth rate (12a), and (b) the
corresponding transition time to each mode k (12c) for
θG ¼ 10; 45; 75°, and compared with the prediction [23] of the
zero-curvature limit θG → 0 (red line).
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modifying the spatial curvature, fluid properties, and the
traction along the path of the flow. Another possible
application is related to the dynamics of rifts in uncon-
fined ice shelves. Predicting the evolution of rifts may lead
to deeper understanding of how the length of the ice-ocean
interface evolves and consequently the magnitude of
glacier melting, and how rift formation and closure
may trigger or inhibit iceberg calving. On a planetary
scale ice sheets could have significantly larger unconfined
shelves, implying that the impact of rifts could be on a
much larger scale. Moreover, large spatial curvature
implies that rifts would persist longer and that their
number would decline more slowly. For example, in
the last glacial maximum, the Antarctic grounding line
was closer to circular [32], with potentially large uncon-
fined ice shelves. Therefore, a grounding line at rG ¼
2500 km and an unconfined ice shelf of width δ ¼ 10 km
implies that 380 latitudinal rifts constitute the shelf (12b),
making its front much longer than an otherwise smooth
shelf. Therefore, accounting for rift formation may imply
a significantly larger melting and possibly calving activity
along the ice-ocean interface. In a snowball epoch, a likely
thicker polar ice suggests that the flow within the ice caps
was from high latitudes to low [33,34], implying an
extensional ice flow where the ice is supported by an
ocean. This suggests that latitudinal rifts could potentially
form in a snowball ice sheet, and provide refuge pockets
for living organisms that utilise sunlight. As indicated
above, the decline in the number of rifts could slow down
significantly due to the spatial curvature, which could
increase the persistence of rifts as refuge pockets.
Furthermore, in Europa it is conceivable that the ice
flow over its ocean is latitudinal, from the poles towards
the equator [35]. Although the resulted extensional flow is
within a completely closed ice shell that could have
important impact on the instability mechanism, it may
still drive the formation of latitudinal rifts. Therefore,
this mechanism may provide an alternative explanation to
the observed water-vapor plumes and elongated terrain
along the surface of icy moons.
Experimental validation of the results we present is

challenging. The major difficulties rise due to the spheri-
cal geometry combined with the requirement to eliminate
traction on the displacing fluid and avoid surface tension
effects. While on plane geometry the issue of traction is
resolved by using a less viscous ambient fluid of higher
density [14], accomplishing such ambient conditions
on spherical geometry without radial gravitational field
is not trivial. Possible experimental approaches are to
generate a gravity current over a sphere [36] with a
constant source of polymer solution, or use a spherical
Hele-Shaw cell. In both cases traction along the solid
surfaces could be reduced using superhydrophobic sur-
faces [37] or perforated surfaces through which lubricat-
ing fluids are introduced.
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