Nano-porous structures: sensors, electro-optic devices, super-capacitors

We have developed innovative technologies employing nano-porous materials for varied sensing, optical, and electronic applications. In particular: a technology for deposition of nano-structured Au films utilizing Au-thiocyanate has been shown to produce transparent electrodes, conductive nanowire assemblies, and physiological pressure sensors. Another research direction employs graphene-oxide (GO) and GO/gold constructs for gas sensing applications and super-capacitor designs

Recent Publications

  1. Porous Au nanotubes for enhanced methanol oxidation catalysis", Xiuxiu Yin, Nagappa Teradal, Raz Jelinek, ChemistrySelect, 2018, in press.
  2. Freestanding Gold/Graphene-Oxide/MnO2 Microsupercapacitor Displaying High Areal Energy Density", Ahiud Morag, James Becker, Raz Jelinek, ChemSusChem, 2017, 10, 2736-2741.
  3. Catalytic Au “nano-wool balls", Xiuxiu Yin, Nagappa Teradal, Ahiud Morag, Raz Jelinek, ChemCatChem, 2017, 9, 2473–2479.
  4. ”Porous graphene oxide chemi-capacitor vapor sensor array, Nagappa Teradal, Ahiud Morag, Sharon Marx, Raz Jelinek, Journal of Materials Chemistry C, 2017, 5, 1128-1135.
  5. ”Bottom-up” transparent electrodes, Ahiud Morag, Raz Jelinek, Journal of Colloids and Interface Science, 2016, 482, 267-289.
  6. High surface area electrodes by template-free self-assembled hierarchical porous gold architecture, A. Morag, T. Golub, J. Becker, Raz Jelinek, Journal of Colloids and Interface Science, 2016, 472, 84-89.
  7. Conductive and SERS-active nano-crystalline gold film spontaneously assembled at a liquid/liquid interface, X. Yin, Y. Peretz, P.G. Oppenheimer, L. Zeiri, A. Masarwa, N. Froumin, Raz Jelinek, RSC Advances, 2016, 6, 33326-33331.
  8. Directed self-assembly of graphene oxide on an elecrtospun polymer fiber template, TP Vinod, X. Yin, J. Jopp, Raz Jelinek, Carbon, 2015, 95, 888-894.
  9. Enhanced Photocatalysis by Hybrid Au/ZnO Nanoparticles Assembled Through a One-Pot Method, J. Manna, TP Vinod, K. Flomin, Raz Jelinek, Journal of Colloids and Interface Science, 2015, 460, 428-434.
  10. Flexible high-sensitivity piezoresistive sensor comprising of Au nanoribbon-coated polymer sponge, X. Yin, TP Vinod, Raz Jelinek, Journal of Materials Chemistry C, 2015, 3, 9247-9252.
  11. Single-step assembly of large-area, transparent conductive patterns induced through edge adsorption of template-confined Au-thiocyanate, Xiuxiu Yin, T. P. Vinod, Dimitry Mogiliansky, Raz Jelinek, Advanced Materials Interfaces, 2015, 2, 1400430.
  12. Transparent, conductive polystyrene in three dimensional configurations, Alexander Trachtenberg, T.P. Vinod, Raz Jelinek, Polymer, 2014, 55, 5095-5101.
  13. Flexible conductive surfaces via "bottom-up" gold nanotechnology, T.P. Vinod and Raz Jelinek, ACS Applied Materials and Interfaces, 2014, 6, 3341-3346.
  14. Nonplanar Conductive Surfaces via “Bottom-Up” Nanostructured Gold Coating, T. P. Vinod, Raz Jelinek, ACS Appl. Mater. Interfaces, 2014, 6 (5), 3341–3346.
  15. Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template, T. P. Vinod, Shlomo Zarzhitsky, Ahiud Morag, Leila Zeiri, Yael Levi-Kalisman, Hanna Rapaport, Raz Jelinek, Nanoscale, 2013, 5, 10487-10493.
  16. Transparent, conductive gold nanowire network assembled from soluble Au thiocyanate, Ahiud Morag, Vladimir Ezersky, Natalya Froumin, Dimitry Mogiliansky, Raz Jelinek, Chem. Comm., 2013, 49 (76), 8552-8554.
  17. Patterned transparent conductive Au films through direct reduction of gold thiocyanate, Ahiud Morag, Natalya Froumin, Dimitry Mogiliansky, Vladimir Ezersky, Edith Beilis, Shachar Richter, Raz Jelinek, Advanced Functional Materials, 2013, 23, 5663-5668.