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Abstract

Belief propagation is a widely used incomplete optimization
algorithm, whose main theoretical properties hold only under
the assumptions that beliefs are not equal. Nevertheless, there
is much evidence that equality between beliefs does occur. A
method to overcome belief equality by using unary function-
nodes is assumed to resolve the problem.
We focus on Min-sum, the belief propagation version for
solving constraint optimization problems. We prove that on a
single cycle graph, belief equality can be avoided only when
the algorithm converges to the optimal solution. In any other
case, the unary function methods will not prevent equality,
rendering some existing results in need of reassessment. We
differentiate between belief equality, which includes equal
beliefs in a single message, and assignment equality, that pre-
vents a coherent selection of assignments to variables. We
show the necessary and satisfying conditions for both.

Introduction
The belief propagation algorithm (Pearl 1988; Yanover,
Meltzer, and Weiss 2006) is an incomplete inference algo-
rithm for solving problems that can be represented by graph-
ical models. One major problem for which it can be applied
is constraint optimization (Dechter 2003), a general model
for centralized and distributed problem solving, which has a
wide range of applications in artificial intelligence and multi
agent systems (Ramchurn et al. 2010; Farinelli, Rogers, and
Jennings 2014).

In belief propagation, each node in the graph acts as an
agent within a distributed algorithm. In the standard syn-
chronous version, this means that in each iteration of the al-
gorithm it receives messages from all its neighboring nodes,
performs computations, and sends messages to its neighbors.
The agents maintain (and propagate) beliefs regarding the
differences in the costs1 which they will incur for assigning
various possible value assignments to their variables.

Min-sum (often named Max-sum, e.g., Farinelli et al.
(2008b); Rogers et al. (2011); Zivan et al. (2017); Cohen,
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1In this paper, without loss of generality, we will use costs and
not utilities. Thus, the problem that the algorithm aims to solve is
a minimization problem and violating a constraint incurs a finite
cost.

Galiki, and Zivan (2020)) is a version of belief propagation
that has drawn considerable attention (Ruozzi and Tatikonda
2013; Rogers et al. 2011; Chen et al. 2018), including being
proposed for multi-agent applications such as sensor sys-
tems (Teacy et al. 2008; Stranders et al. 2009) and task al-
location for rescue teams in disaster areas (Ramchurn et al.
2010). For convenience of presentation, we will focus on this
version of belief propagation. However, the results that we
present apply to other versions of belief propagation as well.

Belief propagation is known to converge to the optimal
solution when solving problems represented by an acyclic
graph. On problems represented by graphs that include cy-
cles, the beliefs may fail to converge, and the resulting as-
signments that are considered optimal under those beliefs
may be of low quality (Yanover, Meltzer, and Weiss 2006;
Farinelli et al. 2008b; Zivan et al. 2017). This occurs be-
cause cyclic information propagation leads to computation
of inaccurate and inconsistent information (Pearl 1988).

On graphs with a single cycle, it is known that belief
propagation is not guaranteed to converge. However, when
it does converge, the result is the optimal solution (Weiss
2000; Forney et al. 2001). Moreover, the conditions for con-
vergence of belief propagation on a single cycle, are known:
Forney et al. (2001) show the resemblance between the op-
eration of the algorithm on a single cyclic graph and a chain
of assignments (a route), which incurs costs with respect to
the constraints along the chain. Every propagated belief is a
result of a sum of costs, which are the result of the selection
of value assignments in this route. Given enough iterations
the route converges to a periodic traversal of the lowest cost
sequence of assignments. The algorithm converges to the op-
timal solution if and only if this periodic route is consistent,
i.e., nodes in the chain representing the same variable are not
assigned different values. If it does include different value
assignments to nodes representing the same variable, the al-
gorithm will oscillate.

Recent work by Zivan, Lev, and Galiki (2020) tries to gen-
eralize the conditions for convergence of belief propagation,
presented for single-cycle graphs (Forney et al. 2001; Weiss
2000), to the general case where graphs include multiple cy-
cles. To do so, they proposed using a backtrack cost tree
(BCT), which reveals the components that were summed in
order to generate a propagated belief. They prove that after
enough iterations, the bottom layers of all BCTs of a belief

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

3924



included in a single message are identical. Furthermore, they
show several other results regarding convergence in these
cases.

There is a major setback in all the claims stated above:
they are proven under the assumption that there is no equal-
ity between beliefs, i.e., the cost of different values that can
be assigned to a single variable are never the same, so the
best assignment at a particular stage is always clear. How-
ever, there is much theoretical and empirical evidence that
when this assumption is not enforced, equal beliefs occur
many times. Thus, there is a clear motivation to enforce no
equality, in order for the results that were obtained under
the no equality assumption to stand. Two attempts to en-
force no equality were published: Value Propagation, com-
monly used within complete inference algorithms such as
DPOP (Petcu and Faltings 2005), but also used for ver-
sions of Max-sum, e.g., Rogers et al. (2011); Zivan et al.
(2017). However, this method is useful when the algorithm
converges, and does not overcome pathologies that are trig-
gered by belief equality during the algorithm’s run, e.g.,
when solving graph coloring problems (Zivan et al. 2017).
The second attempt to avoid belief equality was presented by
Farinelli et al. (2008a). They proposed the use of unary con-
straints with randomly selected costs, which are smaller by
orders of magnitude from the problem’s constraints’ costs.
These are intended to reduce the probability of belief equal-
ity below a negligible threshold. We shall demonstrate in this
paper that, while this method is effective when the algorithm
converges to the optimal solution, e.g., when it is used for
solving acyclic graphs, it does not prevent belief equality
when there is as much as a single cycle in the graph, and the
algorithm oscillates.

In this paper we extend the theory on belief propagation
in general, and particularly on Min-sum, by making the fol-
lowing contributions:

1. We establish the conditions that lead to belief and assign-
ment equality of Min-sum on graphs with a single cycle.

2. We prove that the unary constraint tie breaking method
presented by Farinelli et al. (2008a) does not prevent ties
even in a single cycle graph.

Our results are the first theoretical indication that ties can-
not be avoided using the standard methods, when applying
Min-sum to graphs that include cycles. This indicates that
new theoretical analysis is needed to tackle such settings.
Our empirical results demonstrate that when the algorithm
does not converge to the optimal solution, the rate of occur-
rences of assignment equality is high.

The rest of the paper is organized as follows: We first
provide background on graphical models, belief propagation
and the existing theoretical knowledge regarding its conver-
gence properties. Next, we present preliminaries followed
by our theoretical results. Our empirical evaluation in which
we examine how often is it that the algorithm does not con-
verge and what is the rate of the existence of assignment
equality in the cases where it does not converge. We con-
clude with our conclusions and suggestions for future work.

Background
In this section we present background on the graphical mod-
els to which our results apply, as well as the preliminaries of
constraint optimization problems (COPs) and the version of
belief propagation used for solving it – the Min-sum algo-
rithm. We will also discuss the conditions for convergence
on single cycle graphs, as presented in Forney et al. (2001).

Graphical Models
Graphical models, such as Bayesian networks or constraint
networks, are a widely used representation framework for
reasoning and solving optimization problems. The graph
structure is used to capture dependencies between variables
(Marinescu and Dechter 2009). Our work extends the theory
established in Weiss (2000), which considered the maximum
a posteriori (MAP) assignment, which is solved using the
Max-product version of belief propagation. The relation be-
tween MAP and constraint optimization is well established
(Marinescu and Dechter 2009; Farinelli et al. 2008a), and
thus, results that consider Max-product for MAP apply to
Max/Min-sum for solving constraint optimization problems,
as well as the other way round (Ruozzi and Tatikonda 2013).
Without loss of generality, we will focus on constraint opti-
mization, since it is more common in AI literature. Our re-
sults apply to any version of problem represented by a graph-
ical model and solved by belief propagation, as do the results
of Weiss (2000).

Constraint Optimization
A COP is a tuple ⟨X ,D,R⟩. X is a finite set of
variables {X1, X2, . . . , Xm}. D is a set of domains
{D1, D2, . . . , Dm} such that each domain Di contains the
finite set of values that can be assigned to variable Xi. We
denote an assignment of value x ∈ Di to Xi by an ordered
pair ⟨Xi, x⟩. R is a set of relations (constraints), and each
constraint Rj ∈ R defines a non-negative cost for every
possible value combination of a set of variables, and is of
the form Rj : Dj1 ×Dj2 × . . . ×Djk → R+ ∪ {0}. A bi-
nary constraint refers to exactly two variables and is of the
form Rij : Di×Dj → R+∪{0}.2 For each binary constraint
Rij there is a corresponding cost table Tij with dimensions
|Di| × |Dj | in which the cost in every entry ex,y is the cost
incurred when Xi is assigned x and Xj is assigned y. A bi-
nary COP is a COP in which all constraints are binary. The
cost of a partial assignment PA is the sum of all applica-
ble constraints to PA over the value assignments in PA. A
complete assignment (or a solution) is a partial assignment
that includes all the COP’s variables.An optimal solution is
a complete assignment with minimal cost. For simplicity, we
concentrate only on binary COPs.

Min-Sum Belief Propagation
Min-sum operates on a factor-graph, which is a bipartite
graph in which the nodes represent variables and constraints

2We say that a variable is involved in a constraint if it is one of
the variables the constraint refers to.
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(Kschischang, Frey, and Loeliger 2001). Each variable-
node, representing a variable of the original COP, is con-
nected to all function-nodes which represent the constraints
that involve it. Similarly, a function-node is connected to all
variable-nodes which are involved in the constraint it rep-
resents. Variable-nodes and function-nodes take an active
role in Min-sum, i.e., they can send and receive messages,
and can perform computation. Min-sum can work in dis-
tributed settings, where each node’s role is performed by an
autonomous agent, or in centralized settings in which the
role of all nodes is managed by a single entity.

A message sent to – or from – variable-node X (for sim-
plicity, we use the same notation for a variable and the
variable-node representing it) is a vector of size |DX | in-
cluding a cost for each value in DX . Before the first itera-
tion, all nodes assume that all messages they previously re-
ceived (in iteration 0) include vectors of zeros. A message
sent from a variable-node X to a function-node F in itera-
tion i ≥ 1 is formalized as follows:

Qi
X→F =

∑
F ′∈FX ,F ′ ̸=F

Ri−1
F ′→X − α

where Qi
X→F is the message variable-node X intends to

send to function-node F in iteration i, FX is the set of
function-node neighbors of variable-node X and Ri−1

F ′→X is
the message sent to variable-node X by function-node F ′

in iteration i − 1. α is a constant that is reduced from all
costs included in the message (i.e., for each x ∈ DX ) in or-
der to prevent the costs carried by messages from growing
arbitrarily large during the algorithm’s run.

A message Ri
F→X sent from a function-node F to a

variable-node X in iteration i, includes for each value x ∈
DX :

Ri
F→X = minPA−X

cost(⟨X,x⟩, PA−X)

where PA−X is a possible combination of value assign-
ments to variables involved in F not including X . The term
cost(⟨X,x⟩, PA−X) represents the cost of a partial assign-
ment a = {⟨X,x⟩, PA−X}, which is:

f(a) +
∑

X′∈XF ,X′ ̸=X,⟨X′,x′⟩∈a

(Qi−1
X′→F )x′

where f(a) is the original cost in the constraint represented
by F for the partial assignment a, XF is the set of variable-
node neighbors of F , and (Qi−1

X′→F )x′ is the cost that was
received in the message sent from variable-node X ′ in iter-
ation i − 1, for the value x′ that is assigned to X ′ in a. X
selects its value assignment x̂ ∈ DX following iteration k
as follows:

x̂ = argmin
x∈DX

∑
F∈FX

(Rk
F→X)x

Split Constraint Factor Graphs
A constraint in a factor graph is commonly represented
by a single function-node. However, it is possible to split
a constraint and represent it by two (or more) function-
nodes (Ruozzi and Tatikonda 2013; Cohen, Galiki, and Zi-
van 2020). Such Split Constraint Factor Graphs (SCFGs)

are used as an enhancement method for Min-sum. This is
achieved by having each constraint that was represented by
a single function-node in the original factor graph, repre-
sented by two function-nodes. The SCFG is equivalent to the
original factor graph, if the sum of the cost tables of the two
function-nodes representing each constraint in the SCFG is
equal to the cost table of the single function-node represent-
ing the same constraint in the original factor graph. By tun-
ing the similarity between the two function-nodes represent-
ing the same constraint one can determine the level of asym-
metry in the SCFG (Cohen, Galiki, and Zivan 2020).

Single Cycle Factor Graphs
For a single cycle factor graph, we know that if belief prop-
agation converges, it is to the optimal solution (Forney et al.
2001; Weiss 2000). Moreover, when the algorithm does not
converge – it periodically changes its set of assignments. Ex-
plaining this behavior, Forney et al. (2001) show the simi-
larity of the performance of the algorithm on a cycle to its
performance on a tree, whose nodes are similar to the nodes
in the cycle, but whose length is equal to the number of it-
erations performed by the algorithm. One can consider a se-
quence of messages starting at the first node of the chain
and heading towards its other end. Each message carries be-
liefs accumulated from costs added by function-nodes. Each
function-node adds a cost to each belief, which is the con-
straint value of a pair of value assignments to its neighbor-
ing variable-nodes. Each such sequence of cost accumula-
tion (route) must at some point become periodic, and the
minimal belief would be generated by the minimal periodic
route. If this periodic route is consistent, i.e., the set of as-
signments implied by the costs in it contain a single value
assignment for each variable, the algorithm converges and
the implied assignment is the optimal solution; otherwise, it
does not (Forney et al. 2001). Our results demonstrate that
there are cases where ties cannot be avoided. Specifically,
when the algorithm oscillates, under some conditions, the
minimal repeated route that the algorithm follows includes
more than one value in each variable’s domains and the be-
liefs for these values are become equal periodically. This
phenomenon cannot be avoided using the unary constraint
method proposed in Farinelli et al. (2008b).

Preliminaries
Our analysis will include insights regarding the construction
of beliefs from costs incurred by constraints on a single cy-
cle graph. Let us address the problem in which there are n
variable nodes in a single cycle graph. We shall mark the
state of the algorithm at time t (that is, after t iterations)
as s⃗t. This state includes the value assignments selected by
all variable-nodes in the graph at time t. The value assign-
ments are selected according to the R messages sent to the
variable-nodes by their function-node neighbors.

For every pair of constrained variables, Xi and Xj , for
each x ∈ Di, x′ ∈ Dj , we will denote the cost incurred
according to the constraint for assigning x to Xi and x′ to
Xj as C(Xi=x,Xj=x′). This is the cost specified by the cor-
responding cost entry in the cost table held by the function-
node representing the constraint between Xi and Xj .
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Forney et al. (2001) proved that when belief propagation
is applied to a single cycle graph, there is a time t0 and a pos-
itive integer v such that for any t ≥ t0, the state st = st+v ,
i.e., starting at time t0 the algorithm produces the same state
every v iterations. Forney et al. (2001) further proves that if
the algorithm converges, i.e., v = 1, then the single repeated
state is the optimal solution. Intuitively, its optimality fol-
lows from the optimality of belief propagation on trees in
general and specifically on chains. If we select an arbitrary
long chain representing the solving process of belief prop-
agation on the single cycle graph, then it would include the
assignment that is derived from the repeated set periodically
for any number of times that we chose. Thus, if this assign-
ment was not optimal, that would mean that there is a dif-
ferent assignment that is an optimal solution for this chain,
and thus, the optimality of the algorithm on chain structured
graphs would be contradicted.

Definition 1. A Backtrack Cost Tree (BCT) for a belief bk
is a hierarchical structure that specifies the constraint costs
that were summed in order to generate bk in iteration k.
bk generated by the sum of costs (beliefs) that were sent
in R messages. Thus, if bk is a belief sent in message R
in iteration k, then for k > 1, it is the sum of beliefs that
were sent in messages in iteration k − 2 and an additional
cost C(Xi=x,Xj=x′) that is an entry in the cost table of the
function-node sending the R message that includes bk. Sim-
ilarly and recursively, each belief bk−2 that was sent in a
message in iteration k− 2 and was used to generate bk, was
generated by summing beliefs sent in iteration k−4 (assum-
ing k > 3) and an entry in the cost table of the function-node
sending the message including bk−2. This backtrack process
continues until we reach iteration 1 and all the costs that
were summed in order to generate bk are revealed.

In a single cycle graph, each BCT is a chain. We highlight
the table cost entries that are summed in a BCT by using the
next definition.

Definition 2. The route of a BCT (bk) in a single cycle
graph be the ordered list of table cost entries C(Xi=x,Xj=x′)

that are summed by the algorithm in order to generate belief
bk. We will denote the route r of BCT (bk) by rbk .

We will say that the route visits a table cost entry, when
this entry is added to the route.

For each route there is a corresponding assignment that
is implied by it. That is, if the k’th cost in the route is
C(Xi=x,Xj=x′), this implies that the k and k+1 value assign-
ments in the implied assignment are Xi = x and Xj = x′

respectively.

Definition 3. Let the route of the BCT of the minimal belief
in a message, be the minimal route and its corresponding
assignment be the minimal assignment.

Following Forney et al. (2001) we know that there is a
time t0 such that for any time t > t0, the minimal route
includes the minimal normalized sequence of entries that re-
peats itself periodically. When this list’s periodic interval is
the size of the function nodes in the graph, this means that
the algorithm has converged and the minimal assignment is

the optimal solution (since this means the assignment of ev-
ery variable is always the same, whenever we “visit” it in
our sequence).

We will refer to the set of cost table entries C(Xi=x,Xj=x′)

that are included in the minimal route following t0 as the set
M .

The following observation will assist in establishing our
results.

Observation 1. In any given route r, for every two
consecutive cost table entries in r, C(Xi=x,Xj=x′) and
C(Xj=y,Xs=y′), x′ = y.

This observation is inferred directly from the definition of
messages above, discussing how the R messages in Min-
sum are created. See example in Figure 2.

The implication of this observation is that the number of
possible routes of length m, assuming the variables’ domain
size is d, is dn and not d2n. It also helps to follow the flow of
the algorithm and – given some route – to predict what the
next table cost entry in this route will be.

Conditions for Belief and Value Assignment
Equality

In order to study the cause for the belief equality phe-
nomenon, i.e., messages that include an identical cost for
at least two value assignments, we analyze the components
from which these beliefs were composed. That is, we inves-
tigate what entries in the constraints’ cost tables are summed
in the process that generates the equal beliefs. Since we can
use the unary constraint method proposed in Farinelli et al.
(2008b), we assume that belief equality is possible if and
only if the components of the routes of a BCT are identical.
In any other case – when the components being added up are
not identical – we assume there is a difference in the out-
come, and therefore there is some a minimal belief in each
message.

Observation 2. In the minimal route, following t0, the order
of the route elements (table cost entry elements) is fixed.

This observation is straightforward from each entry being
equivalent to a value CXi=x,Xj=y , and each element being
sufficiently different such that a particular value of belief
can only be produced by a single set of table cost entry val-
ues (and, as noted above, Forney et al. (2001) shows that
following t0, there is a fixed periodic minimal route).

Lemma 1. When the algorithm does not converge, then
there must be at least one function-node F with two cost
table entries in M .

Proof. If this is not true then there is a single value assign-
ment for each variable and that means that the algorithm
does converge.

Proposition 1. When the algorithm does not converge, and
assuming there are no tied beliefs, then any two entries in
M , which belong to the cost table of the same function-node
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cannot be on the same row or column of the cost table, i.e.,
cannot imply the same value assignments. 3

Proof. Assume that the proposition is false. For a function-
node Fi,j representing the constraint between Xi and Xj ,
consider the message that is sent from Fi,j to Xj . In this
message there is a minimal belief which corresponds to the
assignment Xi = x. Thus, the relevant entries to extend
this route are the entries in the vector C(Xi=x,Xj=·), from
which only one is minimal. Thus, if there are more than one
C(Xi=x,Xj=·) entries included in M , this contradicts the the
minimal route property.

Since we have the algorithm working in both directions,
a similar claim rules out two entries with the same value
assigned to Xj .

Proposition 2. In the periodic cycle that begins after t0, in
every cycle of size vn, each table cost entry that is included
in M is visited exactly once.

Proof. Assume the proposition does not hold. Thus,
there must be an entry e in some function table (e.g.,
CXi=x,Xj=y), that the route includes more than one entry
that come right after it, i.e., that there are two entries e′

and e′′ such that, in the route, the entry that comes right
after e will e′ or e′′ alternately (e.g., e′ = CXj=j,Xk=z;
e′′ = CXj=j,Xk=z′ ). However, this will mean that e′ and e′′

are both included in M and have the same value assignment
for one of their variables. This contradicts Proposition 1.

An immediate corollary from proposition 2 is that the
number of entries that are visited in each function-node cost
table in a periodic cycle of the minimal route of size v is
exactly v.

Immediate Convergence In the following part of our dis-
cussion we will assume that t0 = 0, i.e., that the algorithm
immediately converges to a minimal route.
Theorem 1. When the algorithm runs on a single cycle
graph and does not converge (i.e., v > 1), and t0 = 0, for
any natural number k, after kvn iterations the beliefs sent
to all value assignments within the minimal assignment are
equal.

Proof. From Proposition 2 we know that following t0, in ev-
ery vn iterations, the minimal route visits each of the entries
in M exactly once. Since v > 1, we know that multiple val-
ues of M are visited for each function node which are not in
the same line or row, i.e., each time a different value is mini-
mal. Thus, if t0 = 0 then in the first vn iterations each of the
entries in M will be visited exactly once by BCTs that fol-
low the minimal route every vn iterations. This means that
all the possible values in the function node which were min-
imal at some point in the route (i.e., were part of M ) to be
composed of the same elements – reaching equality.

An immediate corollary from Theorem 1 is that when v >
1 and t0 = 0, for any natural number k, after kvn iterations

3As Figure 1 shows, the yellow cells – which are the cells in M
in every function-node – are not in the same row or column with
each other.

F12F31

F23

F12 a b c
a 121 354 132
b 96 89 12
c 784 49 215

F23 a b c
a 65 456 222
b 60 0 111
c 77 100 16

F31 a b c
a 95 262 554
b 102 11 124
c 88 200 2

1

2

1

3

3

2

1

3 2

Figure 1: A cycle with 3 nodes, where each variable has a
domain of size 3.

1 F12 2 3F23 F31 1

1 F12 2 3F23 F31 1

R1=b,2=b= 49
R1=b,2=b= 49 R2=b,3=b= 65

R2=b,3=b= 65
R3=b,1=b= 67

R3=b,1=b= 67
R1=b,2=b= 79 R1=b,2=b =79

R2=b,2=b= 79R1=b,2=c= 79
R1=b,2=c= 90

33 11 33 11

BCT

Route

00

Figure 2: BCT and Route of the belief sent to variable-node
1 for value b, according to the graph in Figure 1.

each variable-node will have assignment equality between v
values in its domain.

Example 1. In the following example we will use the rather
simple case where we have a graph with three nodes, with
each variable each with a domain of size 3, i.e., n = 3 and
d = 3. Figure 1 presents the instance of the cycle graph that
we will discuss, including the function-node cost tables.

We highlight in yellow the entries in the cost tables that
are included in the set M , i.e. visited repeatedly in the min-
imal route, following time t0. In this example, each of the
highlighted costs is the lowest in its row and its column,
Thus, these will be selected right away by the algorithm and
therefore t0 = 0.

As proven in Theorem 1, the cost of all beliefs correspond-
ing to values in the minimal route, which are the coordinates
of all the entries in M will be equal after visiting each of the
members in M once. Since we have 2n nodes in the single
cycle factor-graph, the number of iterations required to visit
the six members in M is 12.

Figure 2 presents the BCT and corresponding route for
the belief sent at the 12’th iteration to variable-node 1 for
its value b. The BCT accumulates the members of M in the
order that is displayed in the route. During the following 12
iterations each of the entries in the route will be visited again
in the same order. The same entries (only in a different order)
will be also visited by the BCT and route of the belief sent to
variable-node 1 for its value c. Thus, every 12 iterations we
will have belief equality.

If we replace the entry in F12 of the cost for 1 = b, 2 = b
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1 F12 2 3F23 F31 1

1 F12 2 3F23 F31 1

R1=b,2=b= 33
R1=b,2=b= 33 R2=b,3=b= 33

R2=b,3=b= 33
R3=b,1=b= 44

R3=b,1=b= 44
R1=b,2=b= 77 R1=b,2=b =77

R2=b,2=b= 77R1=b,2=c= 77
R1=b,2=c= 88

33 11 33 11

BCT

Route

00

Figure 3: BCT and Route of the belief sent to variable-node
1 for value b, after changing the graph in Figure 1, so that
the entry ⟨b, b⟩ of F12 is equal to 33.

(that is currently 89) to a number smaller than 34 the solu-
tion 1 = b, 2 = b, 3 = b is optimal and the set M includes
the entries ⟨b, b⟩ in each of the function-nodes. In this case
there is no belief equality. Figure 3 presents the BCT and
minimal route that Min-sum converges to after replacing the
entry ⟨b, b⟩ in F12 from 89 to 33. Notice that the accumulated
cost of the route in this case is 88, which is smaller than 90.
If we replace this entry by 42 then we have a “tail” (defined
and detailed below), since in the first message sent from F12

to variable-node 1, the entry 2 = b, 1 = b will be selected
although it is not a part of M . This tail prevents belief equal-
ity, but does not prevent assignment equality since the same
entry is selected while generating the tail in the other direc-
tion, in the second message sent from F12 to variable-node
2.

Non-Immediate Convergence We now turn to discuss the
case where t0 > 0, i.e., the algorithm does not start right
away to follow a periodic path, but will take several itera-
tions to reach it (Weiss 2000; Forney et al. 2001).
Definition 4. For each route r, we will call the part that
comes before t0 the tail of the route and we will denote it by
tailr.

When a variable-node in a single cycle graph selects a
value assignment for its variable, it sums the beliefs received
in the R messages sent to it in the last iteration. Thus, at ev-
ery time t ∈ N, for each value x in its domain it receives
two beliefs, and for each of them there is a route. One route
is accumulated in messages arriving in the clockwise direc-
tion which we denote by rcwx , and the other is accumulated in
a counterclockwise direction, denoted by rccwx . These routes
have tails which we will denote by tailcwx and tailccwx re-
spectively.

We will show that when the algorithm does not converge
and does not start at t0, the existence of belief equality and
assignment equality is dependent on the similarity between
these tails.
Theorem 2. When Min-sum is applied to a single cycle
graph, belief equality in some message will occur if and only
if all the following conditions hold:
1. t− t0, i.e., the number of iterations since convergence to

a periodic pattern, is kvn, for any k ∈ N.

2. v > 1.
3. There is a variable Xi such for some two values x, x′

in its domain which belong to the minimal assignment,
receive beliefs through routs rx and rx′ which have tails
(tailrx and tailrx′ , respectively) composed of the same
entries and therefore their sum is equal.

Proof. Assume the three conditions hold. Then, according
to Theorem 1 the routes of the beliefs corresponding to the
value assignments in the minimal assignment following t0
are equal. Thus, if their tails are equal as well, the theorem
holds.

Assume that the beliefs in a message belonging to the
minimal assignment are equal, then according to our as-
sumption that constraint values are different (due to unary
constraints), the value assignments are equal only if their
routes include exactly the same entries. Following t0 this can
happen only when v > 1 and every kvn iterations (since for
each of the routes the entry it visits following t0 is differ-
ent). Obviously, in order for the complete routes to be equal
to each other, i.e., to be composed of the same components,
the third condition must hold as well.

Similarly to the conditions of belief equality established
above, the following theorem establishes the conditions for
assignment equality.

Theorem 3. Assignment equality occurs if and only if the
following three condisions hold:

1. t− t0, i.e., the number of iterations since convergence to
a periodic pattern, is kvn, for any k ∈ N.

2. v > 1.
3. There is a variable Xi such for some two values x, x′ in

its domain which belong to the minimal assignment, the
following equation holds:∑

e∈tailcwx

e+
∑

e∈tailccwx

e =
∑

e∈tailccw
x′

e+
∑

e∈tailcw
x′

e

Proof. Assume the three conditions hold. Then, according
to Theorem 1 the routes of all beliefs intended for the value
assignments in the minimal assignment following t0 are
equal. Thus, if the sum of the tails of the two routes for each
value assignment is equal to the sum of the tail of all other
value assignments within the minimal assignment, then the
theorem holds.

Assume that the sum of beliefs received by a variable-
node, for each of the possible value assignments that belong
to the minimal assignment are equal, then according to our
assumption, they are equal only if the union of their routes
include exactly the same entries. Following t0 this can hap-
pen only when v > 1 and every kvn iterations (for similar
reasons to the ones described in the proof for Theorem 2). In
order to have assignment equality we must have that the sum
of the tails of the routes from which the beliefs correspond-
ing to one value assignment in the domain, which belongs to
the minimal assignment, will be equal to the sum of the tails
of the routes of the beliefs of every other value assignment
in the domain that belongs to the minimal assignment. This
is condition three.
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The significance of the theoretical properties we estab-
lish is in the understanding that the element that determines
whether Min-sum will generate belief or assignment equal-
ity, is a property of the problem, and that methods that the
unary constraint method cannot overcome this property. This
is because the equalities are generated by the same constraint
values being accumulated in different routes by the algo-
rithm. Thus, as long as there is no alternative method for
avoiding ties during the run of the algorithm, one cannot as-
sume that on graphs that include cycles, equalities can be
avoided.

Experimental Evaluation
Following our theoretical proofs, we wanted to gain a per-
spective on how common is assignment equality in Min-sum
when applied to a single cycle factor-graph. To do so, we
created simulations in which we varied the size of the cycle
and the size of the domain, and generated random instances
in which each entry in the cost table of a constraint was a
natural number selected uniformly from the range [1, 100].
To simulate Farinelli et al. (2008a)’s method of avoiding
equalities, we assigned random unary constraints, selected
uniformly from the range [10−8, 10−4]. Since our claims
mainly deals with cases which do not converge, for each
pair of domain size and cycle size (the number of variable-
nodes in the cycle) we generated random instances, solving
them using Min-sum, until we had 100 instances on which
Min-sum did not converge to an optimal solution. Table 1
presents for each such combination the number of instances
generated in order to find 100 instances on which Min-sum
did not converge, and in Table 2 we can see the number of
times among these 100 instances that Min-sum generated as-
signment equalities. The results presented in Table 1 demon-
strates clear trends: the probability that the algorithm will
converge decreases as the cycle size grows; and the proba-
bility of convergence grows when the domain size grows.

The results presented in Table 2 are much more stable. It is
clear that among the instances on which Max-sum does not
converge, the rate of instances on which assignment eqauli-
ties was generated was high. For the smallest cycles with
only three variable-nodes, we see some relation between the
size of the domain and the number of instances in which
Min-sum generated assignment equality. Surprisingly, we
see that for larger cycles, this rate is less dependent on the
size of the domains. We also ran this test for cycles with 10
variable nodes and domain size of 10 and received on 91%
of the instances that did not converge, assignment equality.
Our conclusion is that in most cases, the tails generated be-
fore the algorithm starts its periodical path (i.e., before t0)
are symmetric.

Conclusion
Belief propagation is a well known and widely used algo-
rithm for solving combinatorial optimization problems that
can be represented by a graphical model. The theoretical
knowledge regarding this algorithm is limited to specific
graph structures such as acyclic graphs and graphs with a
single cycle. Yet, even this limited knowledge is based on the

Cycle size

3 4 5

Domain size

2 2240 5297 10000+

3 837 1424 2205

4 734 762 1447

5 414 535 912

Table 1: Number of instances solved until 100 instances on
which Min-sum does not converge were found.

Cycle size

3 4 5

Domain size

2 96 98 96

3 97 96 96

4 81 94 99

5 84 92 96

Table 2: Number of instances among the 100 that did not
converge in which assignment equality was generated.

assumption that ties between beliefs do not exist. In order
to avoid belief equality, the unary constraints method, that
assigns every possible value assignment with a randomly
selected very small cost, was proposed by Farinelli et al.
(2008b). This method intends to reduce the probability of
ties beneath a negligible threshold.

When the algorithm converges, such as in the case where
the algorithm solves a tree-structured graph, this does indeed
work. However, we prove that even when graphs include a
single cycle, this method cannot prevent belief and assign-
ment equalities. Thus, ties cannot be avoided, and our results
establish the conditions for such equalities in a graph with a
single cycle. Moreover, our simulations indicate that these
equalities are a key reason for lack of convergence. We sus-
pect that this phenomenon occurs in more elaborate graphs
as well, with more than one cycle. This understanding im-
plies that some of the theoretical knowledge that was based
on the assumption that ties can be avoided in belief propa-
gation, needs to be reevaluated.

Thus, this work opens up a wide field of research. Firstly,
existing results must be re-examined to see how the exis-
tence of ties affects them. Second, additional methods for
avoiding ties should be suggested and can be considered
novel. In our future research, we plan to investigate whether
the results we presented in this paper also apply when meth-
ods that are known to immensely improve the performance
of Min-sum on graphs with multiple cycles, such as damping
and splitting, are used.
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