Michael N. Fried

 

 

Contact Information

Office

       Program for Science and Technology Education

Ben-Gurion University of the Negev

P.O.B. 653, Beer-Sheva 84105 ISRAEL

Tel. 08-647-9657

e-mail: mfried@bgu.ac.il

Home

Kibbutz Revivim

D. N. Halutsa

85515

Tel. 08-656-2494

 

 

Education:

B.A.   1982 - St. John’s College, Annapolis, Maryland - Liberal Arts.

M.Sc. 1984 - SUNY at Stony Brook - Applied Mathematics.

Ph.D. 2000 - Tel Aviv University (Cohn Institute for the History and Philosophy of Science and Ideas) - History of Mathematics.

 

Synopsis of Research

My field of research is mathematics education where my main interest lies in what has been termed ‘humanistic mathematics’.  Research connected to ‘humanistic mathematics’ follows two distinct directions, one treating mathematics learning and teaching as genuinely human activities and the other treating the subject of mathematics, what students need to learn and teachers to teach, as itself human activity.  Related to the first is my work in the Learners Perspective Study, an international effort dedicated to exploring and identifying classroom practices by means of video technology. In the context of that study, I have investigated such subjects as student writing and notebooks and authority relations within the classroom.  My work in the history of mathematics and on the use of history of mathematics in the classroom follows, obviously, the second direction. Beside my interest in ‘humanistic mathematics’, I have also pursued purely pedagogical questions and take such issues very seriously.  I am also concerned with the nature of mathematics education research itself and its social implications.

 

Scientific Publications:

Books:

English

1.   Fried, Michael N. & Dreyfus, Tommy (Eds) (2014). Mathematics & Mathematics Education: Searching for Common Ground.  New York: Springer (Advances in Mathematics Education). (402 pp.).

2.   Fried, Michael N. (2011) Edmund Halley's Reconstruction of the Lost Book of Apollonius' ConicsTranslation from Latin, Introduction and Commentary.  New York: Springer (140 pp.)

3.   Fried, Michael N. (2002). Apollonius of Perga’s Conics, Book IVTranslation, Introduction, and Diagrams. Santa Fe, NM, USA: Green Lion Press (100 pp.)

4.   Fried, Michael N. & Unguru, Sabetai (2001). Apollonius of Perga’s Conica: Text, Context, Subtext. Leiden, The Netherlands: Brill Academic Publishers (499 pp.)

Hebrew

1.   BookhZehavaZeltser, Igor; Toovy, Jacob; Satianov, Pavel; Fried, Michael N. (2002). The Holistic Approach to Teaching Geometry.  Beer ShevaMateh Malam (186 pp).

 

Journal Articles:

1.     Unguru, Sabetai & Fried, Michael, (1996). On the Synthetic-Geometric Character of Apollonius’s Conica. Mathesis, 12, pp.148-223

2.     Unguru, Sabetai, & Fried, Michael, (1996). Apollonius of Perga, Hieronimus of Grimstrup, and Richard of New York: On This (History) and That (Neo-Historicism). Zmanim, 55, 42-53 (Hebrew).

3.     Satianov, Pavel; Fried, Michael; Miriam Amit, (1999). Broken-Line Functions on Unbroken Domains. Mathematics Teacher, 92, pp.574-577.

4.     Amit, Miriam; Fried, Michael N.; Satianov, Pavel, (2001).  The Equation of a Triangle.  Mathematics Teacher, 94, pp.362-364.

5.     Fried, Michael N., (2001).  Can Mathematics Education and History of Mathematics Coexist? Science & Education, 10(4), pp.391-408.

6.     Amit, Miriam & Fried, Michael N., (2002).  High-Stake Assessment as a Tool for Promoting Mathematical Literacy and the Democratization of Mathematics Education.  Journal of Mathematical Behavior, 21, pp.499-514.

7.     Fried, Michael N. (2003). Mathematics for All as Humanistic Mathematics. Humanistic Mathematics Network Journal, 27 (Internet Journal), http://www2.hmc.edu/www_common/hmnj/index.html.

8.     Fried, Michael N., (2003).  The Use of Analogy in Book VII of Apollonius’ Conica.  Science in Context, 16(3), pp.349-365.

9.     Fried, Michael N.& Amit, Miriam (2003).  Some Reflections on Mathematics Classroom Notebooks and Their Relationship to the Public and Private Nature of Student Practices.  Educational Studies in Mathematics, 53, pp. 91-112.

10.  Fried, Michael N. (2004). Steiner and Euclid: The Emergence of Mathematics as the Science of Patterns. Convergence (Internet Journal of the Mathematics Association of America (MAA)), http://convergence.mathdl.org.

11.  Amit, Miriam; Fried, Michael N.; Satianov, Pavel (2004). Area of Convex Regions as a Unifying Theme for the Review of Some Topics in First-Year College Courses International Journal of Mathematical Education in Science and Technology, 35(1), pp.135-143.

12.  Fried, Michael N. (2004). A Note on the Opposite Sections and Conjugate Sections in Apollonius of Perga’s Conica. The St. John’s Review, 47(1), pp.91-114.

13.  Amit, Miriam & Fried, Michael N. (2005).  Authority and Authority Relations in Mathematics Education: A View from an 8th Grade Classroom.  Educational Studies in Mathematics, 58, pp.145-168.

14.  Eshach, Haim & Fried, Michael N. (2005). Should Science be Taught in Early Childhood? Journal of Science Education and Technology, 14(3), 315-336.

15.  Fried, Michael N. & Amit, Miriam (2005). A Spiral Task as a Model for In-Service Teacher Education. Journal of Mathematics Teacher Education, 8(5), 419-436.

16.  Amit, Miriam; Fried, Michael N.; Abu-Naja, Mohammed (2007).  The Mathematics Club for Excellent Students as Common Ground for Bedouin and Other Israeli Youth.  The Montana Mathematics Enthusiast, 4 (Special Issue on International Perspectives on Social Justice in Mathematics Education), pp. 75-90.

17.  Fried, Michael N. (2007).  Didactics and History of Mathematics: Knowledge and Self-Knowledge.  Educational Studies in Mathematics, 66(2), 203-223.

18.  Unguru, Sabetai & Fried, Michael N. (2007).  Apollonius, Davidoff, Rorty, and Zeuthen: From A to Z, or, What Else Is There?  Sudhoffs Archiv, 91(1), 1-19.

19.  Satianov, Pavel & Fried, Michael N. (2007). Does a Cube Have an Equation?  Teaching Mathematics and Its Applications, 26(4), 187-195.

20.  Fried, Michael N., (2008).  History of Mathematics in Mathematics Education: A Saussurean Perspective.  The Montana Mathematics Enthusiast, 5(2), 185-198.

21.  Fried, Michael N. (2008).  ICMI, the History of Mathematics, and the Future of Mathematics Education.  International Journal for the History of Mathematics Education, 8(3), 103-108.

22.  Fried, Michael N. & Amit, M. (2008). The Co-Development and Interrelation of Proof and Authority: The Case of Yana and Ronit.  Mathematics Education Research Journal 20(3), 54-77.

23.  Eisenberg, T. & Fried, Michael N. (2009).  Dialogue on Mathematics Education: Two Points of View on the State of the Art.  Zentralblatt für Didaktik der Mathematik 41(1), 143-150.

24.  Fried, Michael N. (2009).  Similarity and Equality in Greek Mathematics: Semiotics, History of Mathematics and Mathematics Education. For the Learning of Mathematics, 29(1), 2-7.

25.  Fried, Michael N. (2010).  Some Reflections on Hernández and López’s Reflections on the Chain rule.  The Montana Mathematics Enthusiast, 7(2), 333-338.

26.  Fried, Michael N. & Goldberg, Mayer (2010).  A Pumping Lemma for Invalid Reduction of Fractions.  College Mathematics Journal (Mathematics Association of America), 44(5), 357-364.

27.  Fried, Michael N. (2011).  Theories for, in, and of Mathematics Education: Review Essay of Bharath Sriraman and Lyn English (Eds.).  Theories of Mathematics Education: Seeking New Frontiers. Interchange, 42(1), 81-95.

28.  Fried, Michael N. (2011).  Signs for You and Signs for Me: The Double Aspect of Semiotic Perspectives.  Educational Studies in Mathematics, 77(3), 389-397.

29.  Fried, Michael N. (2014).  Equality in Euclid and Apollonius: What It Means to be Exactly the Same. (In Danish)  AIGIS Supplementum III  (Internet Journal)  http://aigis.igl.ku.dk/CMT80/Forside.htmlhttp://aigis.igl.ku.dk/CMT80/Forside.html

30.  Fried, Michael N. (2014). Similarity and Equality in Euclid and Apollonius.  St. John’s Review, 55(2), pp.17-40

31.  Fried, Michael N. (2014). The Discipline of History and the “Modern Consensus in the Historiography of Mathematics.” Journal of Humanistic Mathematics, 4(2), 124-136.

32.  Fried, Michael N. and Jahnke, Hans Niels (2015).  Otto Toeplitz’s 1927 Paper on the Genetic Method in the Teaching of Mathematics. Science in Context, 28 (2), pp.285-295 (Included is an annotated translation by Fried and Jahnke of Toeplitz, “The Problem of University Courses on Infinitesimal Calculus and Their Demarcation from Infinitesimal Calculus in High Schools,” same issue, pp.297-310)

33.  Fried, Michael N. (2018). Ways of Relating to Mathematics of the Past.  Journal of Humanistic Mathematics, 8(1), 3-23. 

 

Chapters in Anthologies and Articles in Encyclopedias  

1.     Fried, Michael N. (Accepted).  Authority, new developments.  In S. Lerman (Ed.) Encyclopedia of Mathematics Education.  Springer

2.     Fried, Michael N. (Acepted).  Conic Sections.  In Sander Goldberg (ed.) Oxford Classical Dictionary

3.     Fried, Michael N., Perl, Hannah, Arcavi, Abraham. (2018).  Highlights in the Development of Education and Mathematics Education in the State of Israel.  In  Nitsa Movshovitz-Hadar (Ed.)  K-12 Mathematics Education in Israel: Issues and Innovations, pp.3-19.  Singapore: World Scientific Publishing Co.

4.     Fried, Michael N. and Amit, Miriam (2016). Reform as an Issue for Mathematics Education Research: Thinking about Change, Communication, and Cooperation.  In L. English and D. Kirshner, Handbook of International Research in Mathematics Education, 3rd Edition, pp.257-274. 

5.     Fried, Michael N. (2015). Musings about Models and Modeling in Mathematics.  In C. Bergsten and B. Sriraman, Refractions of Mathematics Education, pp.77-87.  Charlotte, NC: Information Age Publishing, Inc.

6.     Fried, Michael N. (2014). History of Mathematics and Mathematics Education.  In Michael Matthews (ed.), History, Philosophy and Science Teaching Handbook, Volume I, pp.669-705. New York: Springer.

7.     Fried, Michael N. (2014).  Mathematicians, Historians of Mathematics, Mathematics Teachers, and Mathematics Education Researchers: The Tense but Ineluctable Relations of Four Communities.  In M. N. Fried & T. Dreyfus (Eds.) Mathematics & Mathematics Education: Searching for Common Ground, pp. 94-98. New York: Springer.

8.     Fried, Michael N. (2014).  Mathematics and Mathematics Education: Beginning a Dialogue in an Atmosphere of Increasing Estrangement.  In M. N. Fried & T. Dreyfus (Eds.) Mathematics & Mathematics Education: Searching for Common Ground, pp. 25-33. New York: Springer.

9.     Fried, Michael N. (2014).  Mathematics & Mathematics Education: Searching for Common Ground.  In M. N. Fried & T. Dreyfus (Eds.) Mathematics & Mathematics Education: Searching for Common Ground, pp. 3-22. New York: Springer.

10.  Fried, Michael N. (2013).  Apollonius of Perga. In R. S. Bagnall, K. Brodersen, C. B. Champion, A. Erskine, & S. R. Huebner (eds.), The Encyclopedia of Ancient History. Wiley-Blackwell., pp.553-554

11.  Fried, Michael N. (2013).  Conic sections. In R. S. Bagnall, K. Brodersen, C. B. Champion, A. Erskine, & S. R. Huebner (eds.), The Encyclopedia of Ancient History. Wiley-Blackwell. pp.1707-1708

12.  Fried, Michael N. (2012).  Euclid’s Book on the Regular Solids: Its Place in the Elements and Its Educational Value.  In B. Sriraman (Ed.), Crossroads in the History of Mathematics and Mathematics Education, pp. 173-196.  Charlotte, NC: Information Age Publishing.

13.  Fried, Michael N. (2012).  Authority.  In S. Lerman (Ed.) Encyclopedia of Mathematics Education. pp.51-54. New York: Springer Reference

14.  Fried, Michael N. (2011).  A Note on Tolerance: Locke, Mill, and Lessing.  In Joseph P. Cohen (Ed.), Fruits of Friendship: Seven Essays in Honor of Laurence Berns., pp. 65-76.  Annapolis, MD: Free State Press, Inc

15.  Fried, Michael N. (2008).  Between Public and Private: Where Our Mathematical Selves Reside.  In L. Radford, G. Schubring, and F. Seeger (eds.), Semiotics in Mathematics Education: Epistemology, History, and Culture, pp.121-138.  Rotterdam, The Netherlands: Sense Publishers.

16.  Amit, Miriam & Fried, Michael N. (2008).  The Complexities of Change: Aspects of Reform and Reform Research in Mathematics Education.  In Lyn English (ed.), Handbook of International Research in Mathematics Education, 2nd Edition, pp.385-414.  New York: Routledge.

17.  Amit, Miriam & Fried, Michael N. (2006).  Mathematics Education in Israel: An Overview.  In D. Clarke, C. Keitel, Y. Shimizu (ed.). Mathematics Classrooms in 12 Classrooms: The Insiders’ Perspective, pp. 345-349.  Rotterdam, The Netherlands: Sense Publishers.

18.  Fried, Michael N. & Amit, Miriam (2006).  The Israeli Classroom: A Meeting Place for Dichotomies.  In D. Clarke, C. Keitel, Y. Shimizu (ed.). Mathematics Classrooms in 12 Classrooms: The Insiders’ Perspective, pp. 209-220.  Rotterdam, The Netherlands: Sense Publishers.

19.  Amit, Miriam & Fried, Michael N. (2002). Curriculum Reforms in Mathematics Education. In Lyn English (ed.), Handbook of International Research in Mathematics Education, pp.355-382. Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc., Publishers.

                                         

Book Reviews

1.    Review of A. Watson & J. Mason. Mathematics as Constructive Activity, Lawrence Erlbaum, 2005,  Zentralblatt für Didaktik der Mathematik,  38 (2), 209-211.

  1. Review of Alice F. Artzt, Eleanor Armour-Thomas, and Frances R. Curcio. Becoming a Reflective Mathematics Teacher: A Guide for Observations and Self-Assessment, Lawrence Erlbaum Associates, 2008. Mathematical Thinking and Learning, 11(3), 183-186.
  2. Review of M. Menghini,  F. Furinghetti, L. Giacardi, L. and F. Azarello, (Eds.). The First Century of the International Commission on Mathematical Instruction (1908-2008): Reflecting and Shaping the World of Mathematics Education. Instituto della Enciclopedia Italiana, 2008. Zentralblatt für Didaktik der Mathematik,  41 (4), 521-524.
  3. Review of Nathalie Sinclair. The History of the Geometry Curriculum in the United States. Information Age Publishing, Inc., 2008.  Mathematical Thinking and Learning, 12(3), 253-257.
  4. Review of Steven Strogatz.  The Calculus of Friendship.  Princeton: Princeton University Press, 2009. Mathematical Thinking and Learning, 14(1), 81-83.
  5. Review of Reviel Netz. Ludic Proof: Greek Mathematics and the Alexandrian Aesthetic. Cambridge University Press, 2009.  ISIS 102(4), 753-754.
  6. Review of Wolff-Michael Roth & Luis Radford.  A Cultural-Historical Perspective on Mathematics Teaching and Learning. Rotterdam, The Netherlands: Sense Publishers (Semiotic Perspectives on the Teaching and Learning of Mathematics Series), 2011.  Mathematical Thinking and Learning, 15(1), 83-88.
  7. Review of Erna Yackel, Koeno Gravemeijer, & Anna Sfard (Editors). A Journey in Mathematics Education Research: Insights from the Work of Paul Cobb.  Springer (Mathematics Education Library, Volume 48), 2011.  Mathematical Thinking and Learning, 15(3), 228-233.
  8. Review of Nerida F. Ellerton and M. A. (Ken) Clements.  Abraham Lincoln’s Cyphering Book and Ten Other Extraordinary Cyphering Books. Springer, 2014.  Mathematical Thinking and Learning, 17(4), 327-332.

10.   Review of Alexander Karp and Gert Schubring (Eds.).  Handbook on the History of Mathematics Education. Springer, 2014.  Research in Mathematics Education, 17(3), 251-256.

11.  Review of Snezana Lawrence and Mark McCartney (Eds.).  Mathematicians & Their Gods: Interactions between Mathematics and Religious Beliefs.  Oxford University Press, 2015.  Mathematical Thinking and Learning, 19(3), 202-207

 

Scientific Reports

1.     Fried, Michael N. & Jahnke, Hans Niels.  (2013).  Otto Teoplitz “The Problem of University Infinitesimal Calculus and Their Demarcation from Infinitesimal Calculus in High Schools”  Schriftenreihe der Fakultät für Mathematik.   Preprint series, number SM-UDE-773 (21 pages)

2.     Unguru, Sabetai & Fried, Michael N., (1998). Apollonius of PergaHieronimus of Grimstrup, and Richard of New York: Gloomy Thoughts on History and Neohistoricism  Max-Plank-Institute furWissenschaftsgeschichtePreprint series, number 86 (15 pages).

 

Unrefereed Professional Articles in Hebrew

1.     Fried, Michael N. (2003).  Music and Mathematics.  Aleh, 30, 50-60.

2.     Fried, Michael (1991).  Uses for Number Bases.  Aleh, 9, 69-71.

3.     Fried, Michael (1990).  A Transparency Setup for Composite Functions.  Aleh, 6, 67-70.

4.     Fried, Michael (1990).  A Different Point of View on the Point of Intersection of Two Straight lines.  Misparim, 3, 68-69. 

 

Other

  Mathematical problem solutions and citations

 Solutions published:

1.     School Science and Mathematics Journal, 117(7-8), 2017: problem 5451

2.     School Science and Mathematics Journal, 114(4), 2014: problem 5286

3.     School Science and Mathematics Journal, 110(4), 2010: problem 5093

4.     School Science and Mathematics Journal, 110(2), 2010: problem 5084

5.     School Science and Mathematics Journal, 110(1), 2010: problem 5075

 Solutions cited:

1.     School Science and Mathematics Journal, 117(7-8), 2017: problem 5446

2.     School Science and Mathematics Journal, 117(5), 2017: problem 5440

3.     School Science and Mathematics Journal, 117(3-4), 2017: problem 5432

4.     School Science and Mathematics Journal, 114(3), 2014: problem 5277

5.     School Science and Mathematics Journal, 111(5), 2011: problem 5134, 5136

6.     School Science and Mathematics Journal, 111(6), 2011: problem 5142

7.     School Science and Mathematics Journal, 110(1), 2010: problem 5074.

8.     School Science and Mathematics Journal, 109(9), 2009: problem 5069, 5068.

9.     School Science and Mathematics Journal, 109(4), 2009: problem 5044.

10.  School Science and Mathematics Journal, 109(3), 2009: problem 5033.

11.  School Science and Mathematics Journal, 109(1), 2009: problem 5027

12.  School Science and Mathematics Journal, 108(8), 2008: problem 5027

13.  School Science and Mathematics Journal, 108(7), 2008: problem 5016 

 

Invited Lectures and Presentations at Meetings and Seminars-Not Followed by Published Proceedings

  1. Reading Greek Mathematics: The Case of Halley’s Reconstruction of Book VIII of Apollonius’ Conics. Workshop in History of Greek Mathematics.  Stanford University, Palo Alto, CA, USA, October 2017.
  2. The Problems and Prospects of Incorporating History of Mathematics into Mathematics Education.  Weizmann Institute, June, 2017.
  3. On Apollonius of Perga’s Conica, Book I, proposition 11.  Program in Classical Philosophy, Princeton University, February 2017
  4. History of Mathematics, Mathematics Education, and the Liberal Arts.  Invited lecture.  ICME-13 conference, Hamburg, Germany, July 2016. 

5.     The Power of a Point: Euclid's Elements and Steiner's Geometrical Reflections—Special Lecture Series for the 50th Anniversary of the Santa Fe Campus of St. John’s College. St. John’s College, Santa Fe, New Mexico, USA. January, 2015.

6.     Our Relationship to the Mathematical Past.  MAA-AMS Joint Conference—Short Course on Historiography.  Baltimore, Maryland, USA, March 2014

7.     Similarity and Equality in Euclid and Apollonius.  Summer Lecture Series. St. John’s College, Santa Fe, New Mexico, July 2013

8.     The Varieties of Relationships to the Mathematics of the Past.  Plenary lecture at the History and Pedagogy of Mathematics North American Branch Conference.  West Point Military Academy, West Point, NY, USA, November, 2013.

9.     Mathematics and Mathematics Education: Saving a Marriage.  Plenary lecture at the international symposium Mathematics & Mathematics Education: Searching for Common Ground: A Symposium in Honor of Ted Eisenberg. Ben-Gurion University of the Negev. Beer Sheva, Israel, May, 2012

10.  Public and Private Aspects of Mathematics and General Education.  Graduate School of Education, Rutgers University, New Jersey, USA, September, 2011.

11.  Some Theoretical Difficulties in Incorporating History of Mathematics in Mathematics Education.  Robert B. Davis Institute for Learning, Rutgers University, New Jersey, USA, September, 2011.

12.  Postures towards Mathematics of the Past: Mathematicians, Mathematician-Historians, Historians of Mathematics.  Talk given at the Cohn Institute for the History and Philosophy of Science and Ideas. Tel Aviv University, Tel Aviv, Israel. January 2011. 

13.  Similarity in Greek Geometry: A Historico-Educational Account.  Talk given at the Mathematics Department of the University of Montana.  Missoula, Montana, USA, September, 2010.

14.  History of Mathematics: Problems and Prospects (Plenary talk).  The 6th European Summer University on History and Epistemology in Mathematics Education, Vienna, Austria. July, 2010.

15.  Ptolemy and Classical Mathematical Astronomy.  Concordia Astronomy Club, Monroe Township, New Jersey, USA, January 28, 2010.

16.  Euclid's Elements and the Regular Solids.  Weizmann Institute. Rehovot, Israel.  February, 5, 2009.

17.  Euclid’s Book on the Regular Solids: Its Place in the Elements and Its Educational Value.  Cohn Institute at 25—Celebration Colloquium. Cohn Institute for the History and Philosophy of Science and Ideas. Tel Aviv University, Tel Aviv, Israel.  May, 11, 2008.  

18.  History of Mathematics and the Future of Mathematics Education.  Centennial of the International Commission on Mathematical Instruction (ICMI).  Academia dei Lincei, Rome, Italy, March 9, 2008.

19.  Between Public and Private: Where Students’ Mathematical Selves Reside. The Semiotic Approach to Mathematics, the History of Mathematics and Mathematics Education.  Melle, Germany, July 16-18, 2007.

20.  Proof and Authority.  Robert B. Davis Institute for Learning, Rutgers University, USA, January 23, 2007.

21.  The Co-Development of the Idea of Proof and Students’ Sense of Authority.  Department of Education in Technology and Science, Technion, Haifa, Israel,  November 21, 2006.

22.  Equality and Similarity in Greek Mathematics: Semiotics, History of Mathematics and Mathematics Education. The Promises and Problems of a Semiotic Approach to Mathematics, the History of Mathematics and Mathematics Education. Bielefeld, Germany, July 13-15, 2006

23.  The Problem of Mathematics Education and History of Mathematics from a Saussurean Point of View.  Semiotic and Socio-Cultural Evolution of Mathematical Concepts: Discussion Group of the PME28 (paper available at the website: http://www.math.uncc.edu/~sae/) Bergen University College, Bergen, Norway, 2004.

24.  A Note on the Opposite Sections and Conjugate Sections in Apollonius of Perga’s Conica.  Classical Mathematics and Its Transformation.  St. John’s College, Annapolis, Maryland, 2004.

25.  The Peculiar Nature of Apollonius’ Opposite Sections.  Edelstein Center - Hebrew University, June, 2002

26.  Music and Mathematics.  Plenary talk at Symposium of the Administration for Rural Education and Youth Aliya.  Kfar Yarok, 2002. 

27.  The Use of Analogy in Book VII of Apollonius’ Conica.  International Workshop on History of Mathematics in the Last 25 Years.  The Cohn Institute for the History and Philosophy of Ideas-The Van Leer Jerusalem Institute.  Tel Aviv and Jerusalem, Israel, 2001.

28.  Landmarks in the Development of the Function Concept.  Conference Concluding Five Years of Activity of Tomorrow 98.  Shfayim, 2001.

29.  The Elementary Character of Book IV of Apollonius’ Conica. 5th International Conference on Ancient Mathematics.  European Cultural Center of Delphi. Delphi, Greece, 2000

30.  Different Aspects Holistic Approach to Geometry Teaching Viewed Over the Course of Six Years. (with  Zeltser, Igor; Peri, Judith; Satianov, Pavel; Ceaushu, Carola; Amit, Miriam) 5th Annual Conference for the Advancement of Mathematics Education in Israel.  Ahvah Teachers College. 1998

 

Awards, Citations, Honors, Fellowships

1.     1979, 1980, 1981, 1982 - St. John’s College, Annapolis, Maryland - Best Musical Composition.

2.     1982 - The City of Annapolis, Maryland - The Baird Prize for Creative Work.

3.     2002-2005 – Guastalla Fellowship for the Advancement of Science EducationSacta-Rashi Foundation

        

 

Professional Activities

     Positions in academic administration

1.   2015-present - Chair of the Program for Science and Technology Education

     Professional functions outside universities/institutions

1.     2017-present – Member of Advisory Board of the International Study Group on the Relations Between the History and Pedagogy of Mathematics (ICMI Affiliate)

2.     2015-present—Member of the Academic Council of Kaye College, Beer Sheva

3.     2007-2008 - Member of the Scientific Committee for the International Study Group on the Relations between the History and Pedagogy of Mathematics (ICMI Affiliate)

 

     Significant professional consulting

1.     2009-present-Scientific advisor for development Open University Course: History of Mathematics: From Ancient Greece to Euler (no.20472).

      

     Editor or member of editorial board of scientific or professional journal

1.     2012-2013: Guest Editor with Victor Katz, Uffe Jankvist, & Stuart Rowlands: Special History of Mathematics issue of Science & Education

2.     2008-present: Editorial Board Member: Educational Studies in Mathematics

3.     2008-present: Book Review Editor: Mathematical Thinking and Learning

 

     Membership in professional/scientific societies

1.   2017-present - International Study Group on the Relations Between the History and Pedagogy of Mathematics

2.   2006-present-Israel Mathematical Union

3.   2002-2008 -International Group for the Psychology of Mathematics Education

4.   2000-2002 - Member of the Israel Society for the History and Philosophy of Science, The Van Leer Jerusalem Institute

5.   1984-1985 - Member of the Mathematical Association of America (MAA)

 

Organizational Activities

1.   Organizer and member of the scientific committee of the international symposium Mathematics & Mathematics Education: Searching for Common Ground: A Symposium in Honor of Ted Eisenberg. April 29- May 3, 2012. Ben- Gurion University of the Negev. Beer Sheva, Israel.  
Funded by: 
The Center for Advanced Mathematics at Ben Gurion University
Israel Science Foundation 
The Trump Foundation 
Ministry of Education 
Ben Gurion University Faculty Humanities and Social Sciences 
Ben Gurion University Faculty of the Natural Sciences

2.   Scientific Committee of conference Between Culture and Pedagogy.  March 25-26, 2014  Kaye College, Beer Sheva, Israel
Funded by:
Mofet Institute
Kaye College
Israel National Commission for UNESCO

3.   Organizer of history of mathematics session of the joint session of the Israel Mathematics Union (IMU) and American Mathematics Society (AMS).  June 17-18, 2014.  Tel Aviv University, Tel Aviv, Israel

 

 

Educational activities

          (a) Courses taught

 

1.     Topics from the History of Science and Mathematics: From Antiquity to the Early Modern Period - Graduate Level - Graduate Program for Science and Technology Education, Ben-Gurion University of the Negev

2.     History and Philosophy of Science-An Introduction – (Taught together with Professor Ute Deichmann) Graduate Level-Faculty of the Humanities and Social Sciences, Ben-Gurion University of the Negev

3.     Geometry for Science Teaching - Graduate level - Graduate Program for Science and Technology Education, Ben-Gurion University of the Negev

4.     Themes in Mathematics Teaching - Graduate level - Graduate Program for Science and Technology Education, Ben-Gurion University of the Negev

5.     Advanced Topics in Mathematics Teaching - Graduate level - Graduate Program for Science and Technology Education, Ben-Gurion University of the Negev

6.     Central Ideas in Mathematics - Graduate level - Graduate Program for Science and Technology Education

7.     Foundations of Mathematics for Students of History and Philosophy of Science - Graduate level - Cohn Institute for the History and Philosophy of Science and Ideas at Tel-Aviv University

8.     Ordinary Differential Equations - Undergraduate level - Rockland Community College

9.     Applied Combinatorics - Undergraduate/Graduate level - SUNY at Stony Brook

10.  General Discrete Mathematics - Undergraduate level - SUNY at Stony Brook