Jeffrey M. Gordon 

Born 1949.      B.A. and M.A. Columbia Univ.       Ph.D. Brown Univ. (1976)

Department of Solar Energy and Environmental Physics
Jacob Blaustein Institutes for Desert Research
Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel

Tel: +972-8-6596923             e-mail:

Last updated: 24 March 2017

Current Principal Scientific Interests

A) Nanomaterial synthesis by highly concentrated solar and ultra-bright lamp light

B) Physics and characterization of ultra-efficient solar cells

C) Solar rectifying antennas

D) Advanced solar concentrator and illumination optics

E) Algal bioproductivity

F) Desalination physics


A three-part video from January 2010 for perspective on concentrator photovoltaics and solar energy innovations:


Space does not permit a full description of these projects­, and I earnestly invite correspondence.

The following publications - restricted to those since 2006 - are representative (PDF-format reprints are available upon request):


Nanomaterial synthesis by highly concentrated solar and ultra-bright lamp light

O. Brontvein, L. Houben, R. Popovitz-Biro, M. Levy, D. Feuermann, R. Tenne & J.M. Gordon (2017) “Synthesis and characterization of Pb@GaS core-shell fullerene-like nanoparticles and nanotubes”, Nano 12, 1750030.


O. Brontvein, A. Albu-Yaron, M. Levy, D. Feuermann, R. Popovitz-Biro, R. Tenne, A. Enyashin & J.M. Gordon (2015) “Solar synthesis of PbS-SnS2 superstructure nanoparticles”, ACS Nano 9, 7831-7839. – First synthesis of fullerene-like closed-cage misfit-layer nanostructures.


H. Lu, W.S. Woi, X. Tan, C.T. Gibson, X. Chen, C.L. Raston, J.M. Gordon & H.T. Chua (2015) “Synthesis of few-layer graphene by lamp ablation”, Carbon 94, 349-351. – A new uncomplicated one-step procedure for achieving the rapid, high-yield, non-toxic synthesis of few-layer graphene.


O. Brontvein, V. Jayaram, K.P.J. Reddy, J.M. Gordon & R. Tenne (2014) “Two-step synthesis of MoS2 nanotubes using shock waves with Lead as growth promoter”, Journal of Inorganic and General Chemistry 640, 1152-1158. – A novel shock tube procedure for nanomaterial synthesis.


H. Lu, B.C.Y. Chan, X. Wang, H.T. Chua, C.L. Raston, A. Albu-Yaron, M. Levy, R. Popovitz-Biro, R. Tenne, D. Feuermann & J.M. Gordon (2013) “High-yield synthesis of silicon carbide nanowires by solar and lamp ablation”, Nanotechnology 24, 335603.


O. Brontvein, D.G. Stroppa, R. Popovitz-Biro, A. Albu-Yaron, M. Levy, D. Feuermann, L. Houben, R. Tenne & J.M. Gordon (2012) “New high-temperature Pb-catalyzed synthesis of inorganic nanotubes”, Journal of the American Chemical Society 134, 16379-16386. – A new procedure - and deciphering of the intricate reaction pathway - for the high-yield synthesis of MoS2, MoSe2, WS2 and WSe2 nanotubes by highly concentrated solar radiation.


B.C.Y. Chan, X. Wang, L.K.W. Lam, J.M. Gordon, D. Feuermann, C.L. Raston & H.T. Chua (2012), “Light-driven high-temperature continuous-flow synthesis of TiO2 nano-anatase”, Chemical Engineering Journal 211-212, 195-199. – A fundamentally new reactor strategy for nanomaterial synthesis, conflating unorthodox lamp optics with spinning disk reactors.


A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro, M. Weidenbach, M. Bar-Sadan, L. Houben, A.N. Enyashin, G. Seifert, D. Feuermann, E.A. Katz & J.M. Gordon (2011), “MoS2 hybrid nanostructures: from octahedral to quasi-spherical shells within individual nanoparticles”, Angewandte Chemie International Edition 50, 1810-1814. – Read about the experimental discovery and the theory of fundamentally new and unanticipated nanoclusters, generated by immensely concentrated sunlight.


M. Levy, A. Albu-Yaron, R. Tenne, D. Feuermann, E.A. Katz, D. Babai & J.M. Gordon (2010) “Synthesis of inorganic fullerene-like nanostructures by concentrated solar and artificial light”, Israel Journal of Chemistry 50, 417-425. – Novel nanostructures from a variety of inorganic compounds as well as carbon.


I. Wiesel, H. Arbel, A. Albu-Yaron, R. Popovitz-Biro, J.M. Gordon, D. Feuermann & R. Tenne (2009) "Synthesis of WS2 and MoS2 fullerene-like nanoparticles from solid precursors", Nano Research 2, 416-424.


J.M. Gordon, E.A. Katz, D. Feuermann, A. Albu-Yaron, M. Levy & R. Tenne (2008) "Singular MoS2, SiO2 and Si nanostructures and synthesis by solar ablation", Journal of Materials Chemistry 18, 458-462.


A. Albu-Yaron, T. Arad, M. Levy, R. Popovitz-Biro, R. Tenne, J.M. Gordon, D. Feuermann, E.A. Katz, M. Jansen & C. Mühle (2006) "Synthesis of fullerene-like Cs2O nanoparticles by concentrated sunlight". Advanced Materials 18, 2993-2996.


Desalination physics

J.M. Gordon & H.T. Chua (2017) “The merits of plasmonic desalination”, Nature Photonics 11, 70.

J.M. Gordon & H.T. Chua (2016) “Thermodynamic perspective for the specific energy consumption of seawater desalination”, Desalination 386, 13-18. – Thermodynamically leveling the playing field for evaluating reverse-osmosis versus thermal technologies for seawater desalination.

N. Fraidenraich, O.C. Vilela, M.S. Viana & J.M. Gordon (2016) “Improved analytic modeling and experimental validation for brackish-water reverse-osmosis desalination”, Desalination 380, 60-65.

N. Fraidenraich, O.C. Vilela, G.A. Lima & J.M. Gordon (2009) "Reverse osmosis desalination: modeling and experiment", Applied Physics Letters 94, 124102.


Physics and characterization of ultra-efficient photovoltaics

W.L. Leong, Z.E. Ooi, D. Sabba, C. Yi, S.M. Zakeeruddin, M. Graetzel, J.M. Gordon, E.A. Katz & N. Mathews (2016) “Identifying fundamental limitations in halide perovskite solar cells”, Advanced Materials 28, 2439-2445. – New findings and insights for perovskite solar cells.

M. Piness-Sommer, A. Braun, E.A. Katz & J.M. Gordon (2016) “Ultra-compact combustion-driven high-efficiency thermophotovoltaic generators”, Solar Energy Materials and Solar Cells 157, 953-959. - Novel concept and evaluation for using conventional Si and Ge photovoltaics in advanced gas-combustion chambers for modular super-compact power generation.

J.M. Gordon, D. Feuermann & H. Mashaal (2015) “Micro-optical designs for angular confinement in solar cells”, Journal of Photonics for Energy 5, 05599.

A. Braun, E.A. Katz, D. Feuermann, B.M. Kayes & J.M. Gordon (2013) “Photovoltaic performance enhancement by external recycling of photon emission”. Energy & Environmental Science, 6, 1499-1503. – The first experimental demonstration that external photon recycling can generate a voltage enhancement - and thereby an efficiency boost - in solar cells.

A. Braun, E.A. Katz & J.M. Gordon (2013) “Basic aspects of the temperature coefficients of concentrator solar cell performance parameters”. Progress in Photovoltaics, 21, 1087-1094.

A. Braun, B. Hirsch, A Vossier, E.A. Katz & J.M. Gordon (2013) “Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance”. Progress in Photovoltaics 21, 202-208.

A. Braun, A. Vossier, E.A. Katz, N.J. Ekins-Daukes & J.M. Gordon (2012) “Multiple-bandgap vertical-junction architectures for ultra-efficienty concentrator solar cells”. Energy & Environmental Science 5, 8523-8527. – A new unconventional concentrator solar cell architecture for ultra-efficient photovoltaics with indirect bandgap semiconductors.

A. Braun, N. Szabó, K. Schwarzburg, T. Hannappel, E.A. Katz & J.M. Gordon (2011) “Current-limiting behavior in multijunction solar cells”. Applied Physics Letters 98, 223506.

A. Vossier, B. Hirsch, E.A. Katz & J.M. Gordon (2011) “On the ultra-miniaturization of concentrator solar cells”. Solar Energy Materials and Solar Cells 95, 1188-1192. – What should be the smallness limit for concentrator photovoltaics?

J.M. Gordon, D. Babai & D. Feuermann (2011) “A high-irradiance solar furnace for photovoltaic characterization and nanomaterial synthesis”. Solar Energy Materials and Solar Cells 95, 951-956.

A. Vossier, B. Hirsch & J.M. Gordon (2010) “Is Auger recombination the ultimate performance limiter in concentrator solar cells?” Applied Physics Letters 97, 193509.

A. Braun, B. Hirsch, E.A. Katz, J.M. Gordon, W. Guter & A. Bett (2009) "Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells". Solar Energy Materials and Solar Cells 93, 1692-1695. – Experimental findings on a basically new aspect of the tunnel junctions that comprise a key enabling technology for concentrator photovoltaics.

O. Korech, B. Hirsch, E.A. Katz & J.M. Gordon (2007) "High-flux characterization of ultrasmall multijunction concentrator solar cells". Applied Physics Letters 91, 064101.

E.A. Katz, J.M. Gordon, W. Tassew & D. Feuermann (2006) "Photovoltaic characterization of concentrator cells by localized irradiation", Journal of Applied Physics 100, 044514 (2006).

E.A. Katz, J.M. Gordon & D. Feuermann (2006) "Effects of ultra-high flux and intensity distribution in multi-junction solar cells". Progress in Photovoltaics 14, 297-303.


Solar rectifying antennas

H. Mashaal & J.M. Gordon (2014) “Basic limit for the efficiency of coherence-limited solar power conversion”. Optics Letters 39, 5130-5133. – The first universal generalization of the classic eponymous Landsberg limit, clarifying basic bounds for photovoltaics and solar heat engines, and deriving corresponding results for coherence-limited converters such as solar and infrared rectifying antennas.

H. Mashaal & J.M. Gordon (2013) “Efficiency limits for the rectification of solar radiation”. Journal of Applied Physics 113, 193509. – The first derivation of basic bounds for the rectification (AC to DC) efficiency of broadband signals, with an eye toward solar conversion.

H. Mashaal & J.M. Gordon (2013) “Solar and thermal aperture antenna coherence performance limits”, Ch. 4 in Rectenna Solar Cells (Eds. G. Moddel & S. Grover), Springer, NY.

H. Mashaal, A. Goldstein, D. Feuermann & J.M. Gordon (2012) “First direct measurement of the spatial coherence of sunlight”. Optics Letters 37, 3516-3518. – The first direct measurement of a fundamental coherence property of solar beam radiation essential to the new paradigm of harvesting direct sunlight with aperture antennas.

H. Mashaal & J.M. Gordon (2011) “Fundamental bounds for antenna harvesting of sunlight”. Optics Letters 36, 900-902. – On the tantalizing prospect of solar power conversion via aperture antennas.


Advanced solar concentrator and illumination optics

H. Mashaal, D. Feuermann & J.M. Gordon (2017) “Aplanatic Fresnel optics”, Optics Express 25, A274-A282. - Fundamentally new types of Fresnel optics for radiative transfer near the thermodynamic limit.

S.V. Boriskina, M.A. Green, K. Catchpole, E. Yablonovitch, M.C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M.H. Tahersima, V.J. Sorger, M.J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N.D. Bronstein, J.A. Rogers, A.P. Alivisatos, R.G. Nuzzo, J.M. Gordon, D.M. Wu, M.D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan & G. Chen (2016) “Roadmap on optical energy conversion”, Journal of Optics 18, 073004 (48 pp). - Panoramic review of the current state-of-the-art of optical energy conversion.

H. Mashaal, D. Feuermann & J.M. Gordon (2016) “Aplanatic lenses revisited: the full landscape”, Applied Optics 55, 2537-2542.

H. Mashaal, D. Feuermann & J.M. Gordon (2015) “Basic categories of dual-contour reflective-refractive aplanats”, Optics Letters 40, 4097-4910.

H. Mashaal, D. Feuermann & J.M. Gordon (2015) “New types of refractive-reflective aplanats for maximal flux concentration and collimation”, Optics Express 23, 1541-1548.

N. Fraidenraich, M. Filho, O.C. Vilela & J.M. Gordon (2013) “Exact analytic flux distributions for two-dimensional solar concentrators”. Applied Optics 52, 4596-4600.

N. Fraidenraich, C. Oliveira, A.F.V. da Cunha, J.M. Gordon & O.C. Vilela (2013) “Analytical modeling of direct steam generation solar power plants”. Solar Energy 98, 511-522.

P. Kotsidas, V. Modi & J.M. Gordon (2012) “Realizable planar gradient-index solar lenses”. Optics Letters 37, 1235-1237. – The discovery of planar single-element solar lenses that approach the fundamental limits for flux concentration and optical tolerance.

P. Kotsidas, V. Modi & J.M. Gordon (2011) “Gradient-index lenses for near-ideal imaging and concentration with realistic materials”. Optics Express 19, 15584-15595. – Opening new vistas in gradient-index optics for visible and solar light.

A. Goldstein, D. Feuermann, G.D. Conley & J.M. Gordon (2011) “Nested aplanats for practical maximum-performance solar concentration”. Optics Letters 36, 2836-2838. – Surmounting the practical limitations of pure-mirror optics for concentrator photovoltaics.

P. Kotsidas, V. Modi & J.M. Gordon (2011) “Nominally stationary high-concentration solar optics by gradient-index lenses”. Optics Express 19, 2325-2334. – Flux concentration values of thousands of suns can indeed be realistically attained without massive two-axis solar trackers.

A. Goldstein & J.M. Gordon (2010) “Tailored solar optics for maximal optical tolerance and concentration”. Solar Energy Materials and Solar Cells 95, 624-629. – Approaching the limit for optical tolerance in feasible solar concentrators for photovoltaics.

A. Goldstein & J.M. Gordon (2010) "Double-tailored nonimaging reflector optics for maximum-performance solar concentration". Journal of the Optical Society of America A 27, 1977-1984. – basic nonimaging optics at the service of concentrator photovoltaics.

J.M. Gordon (2010) "Aplanatic optics for solar concentration". Optics Express 18, A41-A52. – A principal class of solar concentrator optics, one case of which comprises SolFocus’ technology.

A. Braun & J.M. Gordon (2010) "Analytic solution for quasi-lambertian radiation transfer". Applied Optics 49, 817-822. – Solutions of practical interest you won’t find in the textbooks.

N. Ostroumov, J.M. Gordon & D. Feuermann (2009) "Panorama of dual-mirror aplanats for maximum concentration". Applied Optics 48, 4926-4931. – The fundamental classification of powerful classes of optical concentrators.

D. Feuermann & J.M. Gordon (2008) "High-irradiance reactors with unfolded aplanatic optics". Applied Optics 47, 5722-5727.


D. Nakar, A. Malul, D. Feuermann & J.M. Gordon (2008) "Radiometric characterization of ultra-high radiance xenon short-arc discharge lamps". Applied Optics 47, 224-229.

J.M. Gordon, D. Feuermann & P. Young (2008) "Unfolded aplanats for high-concentration photovoltaics". Optics Letters 33, 1114-1116. – A novel optical strategy for future generations of concentrator photovoltaics.

J.M. Gordon (2007) "Concentrator optics". Ch. 6 in Concentrating Photovoltaics. Edited by A. Luque & V. Andreev (Springer, Heidelberg) pp. 113-132.

O. Korech, J.M. Gordon, E.A. Katz, D. Feuermann & N. Eisenberg (2007) "Dielectric micro-concentrators for efficiency enhancement in concentrator solar cells". Optics Letters 32, 2789-2791.

A. Malul, D. Nakar, D. Feuermann & J.M. Gordon (2007) "Light recycling characteristics of ultrabright lamps". Optics Express 15, 14194-14201.

D. Feuermann, J.M. Gordon & T.W. Ng (2006) "Near-field dielectric optics near the thermodynamic limit". Optical Engineering 45, 080504.

D. Nakar, D. Feuermann & J.M. Gordon (2006) "Aplanatic near-field optics for efficient light transfer". Optical Engineering 45, 030502.


Surgery with ultra-bright non-coherent light

J.M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament & S. Mizrahi (2006) "Fiberoptic surgery by ultrabright lamp light". Journal of Biomedical Optics 11, 050509.

J.M. Gordon, R. Shaco-Levy, D. Feuermann, M. Huleihil & S. Mizrahi (2006) "Photothermally induced delayed tissue death". Journal of Biomedical Optics 11, 030504.

D. Feuermann, J.M. Gordon & T.W. Ng (2006) "Photonic surgery with noncoherent light". Applied Physics Letters 88, 114104.


Algal bioproductivity

E. Greenwald, J.M. Gordon & Y. Zarmi (2012) “Physics of ultra-high bioproductivity in algal photobioreactors”. Applied Physics Letters 100, 143703. – First biophysical model toward explaining the basis for ultra-high yields of algae in properly crafted photobioreactors.

J.M. Gordon & J.E.W. Polle (2007) "Ultrahigh bioproductivity from algae". Applied Microbiology and Biotechnology 76, 969-975. – Unorthodox photobioreactor tactics for unprecedented boosts in algal bioproductivity.


Curriculum development: graduate courses

Nonimaging Optics, Zoological Physics, Radiative Transfer, Solar Energy

The inter-disciplinary research efforts portrayed above engender exciting challenges both at a fundamental level and in translating them into pragmatic realities. We extend an invitation to interested graduate students, post-doctoral fellows and visiting scientists to join us in these programs.