Jeffrey M. Gordon 
Professor

Born 1949.      B.A. and M.A. Columbia Univ.       Ph.D. Brown Univ. (1976)

Department of Solar Energy and Environmental Physics
Jacob Blaustein Institutes for Desert Research
Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel

Tel: +972-8-6596923             e-mail: jeff@bgu.ac.il

Last updated: 11/11/2017

Current Principal Scientific Interests

A) Nanomaterial synthesis by highly concentrated solar and ultra-bright lamp light

B) Desalination physics

C) Physics and characterization of ultra-efficient solar cells

D) Solar rectifying antennas

E) Advanced solar concentrator and illumination optics

F) Algal bioproductivity

 

A 2016 seminar on concentrator photovoltaics - amalgamating the optics, solid-state physics, electrical engineering and commercial realization:

https://www.youtube.com/watch?v=m5dP_BPOdjA

 

A 2016 seminar on solar rectifying antennas - a novel and fundamentally distinct paradigm for solar power conversion:

https://www.youtube.com/watch?v=YouROxDo5-I

 

Space does not permit a full description of these projects­, and I earnestly invite correspondence.

The following publications - restricted to those since 2006 - are representative (PDF-format reprints are available upon request):

 

Nanomaterial synthesis by highly concentrated solar and ultra-bright lamp light

O. Brontvein, L. Houben, R. Popovitz-Biro, M. Levy, D. Feuermann, R. Tenne & J.M. Gordon (2017) “Synthesis and characterization of Pb@GaS core-shell fullerene-like nanoparticles and nanotubes”, Nano 12, 1750030.

 

O. Brontvein, A. Albu-Yaron, M. Levy, D. Feuermann, R. Popovitz-Biro, R. Tenne, A. Enyashin & J.M. Gordon (2015) “Solar synthesis of PbS-SnS2 superstructure nanoparticles”, ACS Nano 9, 7831-7839. – First synthesis of fullerene-like closed-cage misfit-layer nanostructures.

 

H. Lu, W.S. Woi, X. Tan, C.T. Gibson, X. Chen, C.L. Raston, J.M. Gordon & H.T. Chua (2015) “Synthesis of few-layer graphene by lamp ablation”, Carbon 94, 349-351. – A new uncomplicated one-step procedure for achieving the rapid, high-yield, non-toxic synthesis of few-layer graphene.

 

O. Brontvein, V. Jayaram, K.P.J. Reddy, J.M. Gordon & R. Tenne (2014) “Two-step synthesis of MoS2 nanotubes using shock waves with Lead as growth promoter”, Journal of Inorganic and General Chemistry 640, 1152-1158. – A novel shock tube procedure for nanomaterial synthesis.

 

H. Lu, B.C.Y. Chan, X. Wang, H.T. Chua, C.L. Raston, A. Albu-Yaron, M. Levy, R. Popovitz-Biro, R. Tenne, D. Feuermann & J.M. Gordon (2013) “High-yield synthesis of silicon carbide nanowires by solar and lamp ablation”, Nanotechnology 24, 335603.

 

O. Brontvein, D.G. Stroppa, R. Popovitz-Biro, A. Albu-Yaron, M. Levy, D. Feuermann, L. Houben, R. Tenne & J.M. Gordon (2012) “New high-temperature Pb-catalyzed synthesis of inorganic nanotubes”, Journal of the American Chemical Society 134, 16379-16386. – A new procedure - and deciphering of the intricate reaction pathway - for the high-yield synthesis of MoS2, MoSe2, WS2 and WSe2 nanotubes by highly concentrated solar radiation.

 

B.C.Y. Chan, X. Wang, L.K.W. Lam, J.M. Gordon, D. Feuermann, C.L. Raston & H.T. Chua (2012), “Light-driven high-temperature continuous-flow synthesis of TiO2 nano-anatase”, Chemical Engineering Journal 211-212, 195-199. – A fundamentally new reactor strategy for nanomaterial synthesis, conflating unorthodox lamp optics with spinning disk reactors.

 

A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro, M. Weidenbach, M. Bar-Sadan, L. Houben, A.N. Enyashin, G. Seifert, D. Feuermann, E.A. Katz & J.M. Gordon (2011), “MoS2 hybrid nanostructures: from octahedral to quasi-spherical shells within individual nanoparticles”, Angewandte Chemie International Edition 50, 1810-1814. – Read about the experimental discovery and the theory of fundamentally new and unanticipated nanoclusters, generated by immensely concentrated sunlight.

 

M. Levy, A. Albu-Yaron, R. Tenne, D. Feuermann, E.A. Katz, D. Babai & J.M. Gordon (2010) “Synthesis of inorganic fullerene-like nanostructures by concentrated solar and artificial light”, Israel Journal of Chemistry 50, 417-425. – Novel nanostructures from a variety of inorganic compounds as well as carbon.

 

I. Wiesel, H. Arbel, A. Albu-Yaron, R. Popovitz-Biro, J.M. Gordon, D. Feuermann & R. Tenne (2009) "Synthesis of WS2 and MoS2 fullerene-like nanoparticles from solid precursors", Nano Research 2, 416-424.

 

J.M. Gordon, E.A. Katz, D. Feuermann, A. Albu-Yaron, M. Levy & R. Tenne (2008) "Singular MoS2, SiO2 and Si nanostructures and synthesis by solar ablation", Journal of Materials Chemistry 18, 458-462.

 

A. Albu-Yaron, T. Arad, M. Levy, R. Popovitz-Biro, R. Tenne, J.M. Gordon, D. Feuermann, E.A. Katz, M. Jansen & C. Mühle (2006) "Synthesis of fullerene-like Cs2O nanoparticles by concentrated sunlight". Advanced Materials 18, 2993-2996.

 

Desalination physics

D.T. Bui, K.J. Chua & J.M. Gordon (2017) “Water harvesting from air”, Science, in press (issue of 24 Nov. 2017).

J.M. Gordon & H.T. Chua (2017) “The merits of plasmonic desalination”, Nature Photonics 11, 70.

D.T. Bui, M.K. Ja, J.M. Gordon, K.C. Ng & K.J. Chua (2017) “A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification”, Energy 132, 106-115.

J.M. Gordon & H.T. Chua (2016) “Thermodynamic perspective for the specific energy consumption of seawater desalination”, Desalination 386, 13-18. – Thermodynamically leveling the playing field for evaluating reverse-osmosis versus thermal technologies for seawater desalination.

N. Fraidenraich, O.C. Vilela, M.S. Viana & J.M. Gordon (2016) “Improved analytic modeling and experimental validation for brackish-water reverse-osmosis desalination”, Desalination 380, 60-65.

N. Fraidenraich, O.C. Vilela, G.A. Lima & J.M. Gordon (2009) "Reverse osmosis desalination: modeling and experiment", Applied Physics Letters 94, 124102.

 

Physics and characterization of ultra-efficient photovoltaics

W.L. Leong, Z.E. Ooi, D. Sabba, C. Yi, S.M. Zakeeruddin, M. Graetzel, J.M. Gordon, E.A. Katz & N. Mathews (2016) “Identifying fundamental limitations in halide perovskite solar cells”, Advanced Materials 28, 2439-2445. – New findings and insights for perovskite solar cells.

M. Piness-Sommer, A. Braun, E.A. Katz & J.M. Gordon (2016) “Ultra-compact combustion-driven high-efficiency thermophotovoltaic generators”, Solar Energy Materials and Solar Cells 157, 953-959. - Novel concept and evaluation for using conventional Si and Ge photovoltaics in advanced gas-combustion chambers for modular super-compact power generation.

J.M. Gordon, D. Feuermann & H. Mashaal (2015) “Micro-optical designs for angular confinement in solar cells”, Journal of Photonics for Energy 5, 05599.

A. Braun, E.A. Katz, D. Feuermann, B.M. Kayes & J.M. Gordon (2013) “Photovoltaic performance enhancement by external recycling of photon emission”. Energy & Environmental Science, 6, 1499-1503. – The first experimental demonstration that external photon recycling can generate a voltage enhancement - and thereby an efficiency boost - in solar cells.

A. Braun, E.A. Katz & J.M. Gordon (2013) “Basic aspects of the temperature coefficients of concentrator solar cell performance parameters”. Progress in Photovoltaics, 21, 1087-1094.

A. Braun, B. Hirsch, A Vossier, E.A. Katz & J.M. Gordon (2013) “Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance”. Progress in Photovoltaics 21, 202-208.

A. Braun, A. Vossier, E.A. Katz, N.J. Ekins-Daukes & J.M. Gordon (2012) “Multiple-bandgap vertical-junction architectures for ultra-efficienty concentrator solar cells”. Energy & Environmental Science 5, 8523-8527. – A new unconventional concentrator solar cell architecture for ultra-efficient photovoltaics with indirect bandgap semiconductors.

A. Braun, N. Szabó, K. Schwarzburg, T. Hannappel, E.A. Katz & J.M. Gordon (2011) “Current-limiting behavior in multijunction solar cells”. Applied Physics Letters 98, 223506.

A. Vossier, B. Hirsch, E.A. Katz & J.M. Gordon (2011) “On the ultra-miniaturization of concentrator solar cells”. Solar Energy Materials and Solar Cells 95, 1188-1192. – What should be the smallness limit for concentrator photovoltaics?

J.M. Gordon, D. Babai & D. Feuermann (2011) “A high-irradiance solar furnace for photovoltaic characterization and nanomaterial synthesis”. Solar Energy Materials and Solar Cells 95, 951-956.

A. Vossier, B. Hirsch & J.M. Gordon (2010) “Is Auger recombination the ultimate performance limiter in concentrator solar cells?” Applied Physics Letters 97, 193509.

A. Braun, B. Hirsch, E.A. Katz, J.M. Gordon, W. Guter & A. Bett (2009) "Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells". Solar Energy Materials and Solar Cells 93, 1692-1695. – Experimental findings on a basically new aspect of the tunnel junctions that comprise a key enabling technology for concentrator photovoltaics.

O. Korech, B. Hirsch, E.A. Katz & J.M. Gordon (2007) "High-flux characterization of ultrasmall multijunction concentrator solar cells". Applied Physics Letters 91, 064101.

E.A. Katz, J.M. Gordon, W. Tassew & D. Feuermann (2006) "Photovoltaic characterization of concentrator cells by localized irradiation", Journal of Applied Physics 100, 044514 (2006).

E.A. Katz, J.M. Gordon & D. Feuermann (2006) "Effects of ultra-high flux and intensity distribution in multi-junction solar cells". Progress in Photovoltaics 14, 297-303.

 

Solar rectifying antennas

H. Mashaal & J.M. Gordon (2014) “Basic limit for the efficiency of coherence-limited solar power conversion”. Optics Letters 39, 5130-5133. – The first universal generalization of the classic eponymous Landsberg limit, clarifying basic bounds for photovoltaics and solar heat engines, and deriving corresponding results for coherence-limited converters such as solar and infrared rectifying antennas.

H. Mashaal & J.M. Gordon (2013) “Efficiency limits for the rectification of solar radiation”. Journal of Applied Physics 113, 193509. – The first derivation of basic bounds for the rectification (AC to DC) efficiency of broadband signals, with an eye toward solar conversion.

H. Mashaal & J.M. Gordon (2013) “Solar and thermal aperture antenna coherence performance limits”, Ch. 4 in Rectenna Solar Cells (Eds. G. Moddel & S. Grover), Springer, NY.

H. Mashaal, A. Goldstein, D. Feuermann & J.M. Gordon (2012) “First direct measurement of the spatial coherence of sunlight”. Optics Letters 37, 3516-3518. – The first direct measurement of a fundamental coherence property of solar beam radiation essential to the new paradigm of harvesting direct sunlight with aperture antennas.

H. Mashaal & J.M. Gordon (2011) “Fundamental bounds for antenna harvesting of sunlight”. Optics Letters 36, 900-902. – On the tantalizing prospect of solar power conversion via aperture antennas.

 

Advanced solar concentrator and illumination optics

H. Mashaal, D. Feuermann & J.M. Gordon (2017) “Aplanatic Fresnel optics”, Optics Express 25, A274-A282. - Fundamentally new types of Fresnel optics for radiative transfer near the thermodynamic limit.

G.A. Salazar, N. Fraidenraich, C.A.A. de Oliveira, O.C. Vilela, M. Hongn, J.M. Gordon (2017), Energy 138, 1148-1156.

S.V. Boriskina, M.A. Green, K. Catchpole, E. Yablonovitch, M.C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M.H. Tahersima, V.J. Sorger, M.J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N.D. Bronstein, J.A. Rogers, A.P. Alivisatos, R.G. Nuzzo, J.M. Gordon, D.M. Wu, M.D. Wisser, A. Salleo, J. Dionne, P. Bermel, J.J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan & G. Chen (2016) “Roadmap on optical energy conversion”, Journal of Optics 18, 073004 (48 pp). - Panoramic review of the current state-of-the-art of optical energy conversion.

H. Mashaal, D. Feuermann & J.M. Gordon (2016) “Aplanatic lenses revisited: the full landscape”, Applied Optics 55, 2537-2542.

H. Mashaal, D. Feuermann & J.M. Gordon (2015) “Basic categories of dual-contour reflective-refractive aplanats”, Optics Letters 40, 4097-4910.

H. Mashaal, D. Feuermann & J.M. Gordon (2015) “New types of refractive-reflective aplanats for maximal flux concentration and collimation”, Optics Express 23, 1541-1548.

N. Fraidenraich, M. Filho, O.C. Vilela & J.M. Gordon (2013) “Exact analytic flux distributions for two-dimensional solar concentrators”. Applied Optics 52, 4596-4600.

N. Fraidenraich, C. Oliveira, A.F.V. da Cunha, J.M. Gordon & O.C. Vilela (2013) “Analytical modeling of direct steam generation solar power plants”. Solar Energy 98, 511-522.

P. Kotsidas, V. Modi & J.M. Gordon (2012) “Realizable planar gradient-index solar lenses”. Optics Letters 37, 1235-1237. – The discovery of planar single-element solar lenses that approach the fundamental limits for flux concentration and optical tolerance.

P. Kotsidas, V. Modi & J.M. Gordon (2011) “Gradient-index lenses for near-ideal imaging and concentration with realistic materials”. Optics Express 19, 15584-15595. – Opening new vistas in gradient-index optics for visible and solar light.

A. Goldstein, D. Feuermann, G.D. Conley & J.M. Gordon (2011) “Nested aplanats for practical maximum-performance solar concentration”. Optics Letters 36, 2836-2838. – Surmounting the practical limitations of pure-mirror optics for concentrator photovoltaics.

P. Kotsidas, V. Modi & J.M. Gordon (2011) “Nominally stationary high-concentration solar optics by gradient-index lenses”. Optics Express 19, 2325-2334. – Flux concentration values of thousands of suns can indeed be realistically attained without massive two-axis solar trackers.

A. Goldstein & J.M. Gordon (2010) “Tailored solar optics for maximal optical tolerance and concentration”. Solar Energy Materials and Solar Cells 95, 624-629. – Approaching the limit for optical tolerance in feasible solar concentrators for photovoltaics.

A. Goldstein & J.M. Gordon (2010) "Double-tailored nonimaging reflector optics for maximum-performance solar concentration". Journal of the Optical Society of America A 27, 1977-1984. – basic nonimaging optics at the service of concentrator photovoltaics.

J.M. Gordon (2010) "Aplanatic optics for solar concentration". Optics Express 18, A41-A52. – A principal class of solar concentrator optics, one case of which comprises SolFocus’ technology.

A. Braun & J.M. Gordon (2010) "Analytic solution for quasi-lambertian radiation transfer". Applied Optics 49, 817-822. – Solutions of practical interest you won’t find in the textbooks.

N. Ostroumov, J.M. Gordon & D. Feuermann (2009) "Panorama of dual-mirror aplanats for maximum concentration". Applied Optics 48, 4926-4931. – The fundamental classification of powerful classes of optical concentrators.

D. Feuermann & J.M. Gordon (2008) "High-irradiance reactors with unfolded aplanatic optics". Applied Optics 47, 5722-5727.

 

D. Nakar, A. Malul, D. Feuermann & J.M. Gordon (2008) "Radiometric characterization of ultra-high radiance xenon short-arc discharge lamps". Applied Optics 47, 224-229.

J.M. Gordon, D. Feuermann & P. Young (2008) "Unfolded aplanats for high-concentration photovoltaics". Optics Letters 33, 1114-1116. – A novel optical strategy for future generations of concentrator photovoltaics.

J.M. Gordon (2007) "Concentrator optics". Ch. 6 in Concentrating Photovoltaics. Edited by A. Luque & V. Andreev (Springer, Heidelberg) pp. 113-132.

O. Korech, J.M. Gordon, E.A. Katz, D. Feuermann & N. Eisenberg (2007) "Dielectric micro-concentrators for efficiency enhancement in concentrator solar cells". Optics Letters 32, 2789-2791.

A. Malul, D. Nakar, D. Feuermann & J.M. Gordon (2007) "Light recycling characteristics of ultrabright lamps". Optics Express 15, 14194-14201.

D. Feuermann, J.M. Gordon & T.W. Ng (2006) "Near-field dielectric optics near the thermodynamic limit". Optical Engineering 45, 080504.

D. Nakar, D. Feuermann & J.M. Gordon (2006) "Aplanatic near-field optics for efficient light transfer". Optical Engineering 45, 030502.

 

Surgery with ultra-bright non-coherent light

J.M. Gordon, R. Shaco-Levy, D. Feuermann, J. Ament & S. Mizrahi (2006) "Fiberoptic surgery by ultrabright lamp light". Journal of Biomedical Optics 11, 050509.

J.M. Gordon, R. Shaco-Levy, D. Feuermann, M. Huleihil & S. Mizrahi (2006) "Photothermally induced delayed tissue death". Journal of Biomedical Optics 11, 030504.

D. Feuermann, J.M. Gordon & T.W. Ng (2006) "Photonic surgery with noncoherent light". Applied Physics Letters 88, 114104.

 

Algal bioproductivity

E. Greenwald, J.M. Gordon & Y. Zarmi (2012) “Physics of ultra-high bioproductivity in algal photobioreactors”. Applied Physics Letters 100, 143703. – First biophysical model toward explaining the basis for ultra-high yields of algae in properly crafted photobioreactors.

J.M. Gordon & J.E.W. Polle (2007) "Ultrahigh bioproductivity from algae". Applied Microbiology and Biotechnology 76, 969-975. – Unorthodox photobioreactor tactics for unprecedented boosts in algal bioproductivity.

 

Curriculum development: graduate courses

Nonimaging Optics, Zoological Physics, Radiative Transfer, Solar Energy

The inter-disciplinary research efforts portrayed above engender exciting challenges both at a fundamental level and in translating them into pragmatic realities. We extend an invitation to interested graduate students, post-doctoral fellows and visiting scientists to join us in these programs.