ERRATA

Erratum: Excitations, order parameters, and phase diagram of solid deuterium at megabar pressures

Lijing Cui, Nancy H. Chen, and Isaac F. Silvera

In Table I the (orthorhombic) space group identified as $Pmc2_1$ should be $Cmc2_1$. The latter is a special case of the former. The number of allowed modes and their symmetry is correct in the table. This correction does not affect the results.

Erratum: Disorder in two-dimensional Josephson junctions

Baruch Horovitz and Anatoly Golub

One of the regions in our disorder-temperature (s-t) phase diagram had a negative glass order parameter Δ, coexisting with a finite renormalized Josephson coupling z; this region was $s<t<\frac{1}{2}$ (see Fig. 2). While this is a formal solution of the replica symmetry breaking equations, we have realized now that this solution is unstable.

The average probability distribution of the Josephson phase $|\varphi_J(q)|^2$ is given by $\sim \exp[-|\varphi_J(q)|^2/2G_{a,a}(q)]$ [M. M'ezard and G. Parisi, J. Phys. I 1, 809 (1991), Appendix III] where $G_{a,a}(q)$ is the replica diagonal Green’s function. Thus a thermodynamic stability condition is that $G_{a,a}(q)>0$ for all q. In the coexistence phase we obtain (correcting a minor error in the entry for “coexistence” in Table I)

$$G_{a,a}(q) = \frac{4\pi(2t-1)}{q^2+z+\Delta} + \frac{4\pi(1+2s)}{q^2+z} + \frac{4\pi z(1-2s)}{(q^2+z)^2}.$$

For $\Delta>0$ we have $G_{a,a}(q)>0$ for all q and the coexistence phase is valid for $t<s<\frac{1}{2}$. However, for $\Delta<0$ the minimum of $G_{a,a}(q)$ is at $q=0$ and $G_{a,a}(0)>0$ yields the stability condition $1-2t<2(z+\Delta)/z$. From Eq. (46) we have

$$\frac{z+\Delta}{z} = e^{\left(\frac{2tv_0}{u_0}\right)^{2(1-2s)}} \left(\frac{2tv_0}{\Delta}\right)^{2(1-s)(1-2t)(1-2s)},$$

i.e., for weak coupling $v_0<\Delta$, and with $v_0/u_0\sim O(1)$ this shows $z+\Delta<z$ for all $s<t<\frac{1}{2}$, unless $t-s$ is very small, of order $1/\ln(\Delta/2tv_0)$. Thus, at $t=s$, up to nonuniversal $1/\ln(\Delta/2tv_0)$ terms, the coexistence phase becomes unstable and for $s<t<\frac{1}{2}$ is replaced by the Josephson phase where $\Delta=0$, $z\neq 0$. The phase boundary between the coexistence phase and the Josephson phase is therefore a continuous phase transition at the dashed line in Fig. 2, i.e., $s=t$, $s<\frac{1}{2}$ (rather than a first-order transition at the vertical line $t=\frac{1}{2}$, $s<\frac{1}{2}$). All other conclusions in the paper remain intact.

0163-1829/98/57(1)/656(1)/$15.00 © 1998 The American Physical Society