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[bookmark: _Toc366318573]The project's goal
In sequence of vulnerabilities of DNS protocol a lot of 'patches' and different security defences were developed and they are not always included in basic DNS implementations. So it requires using a network tool that would examine the existence of such defences in a specific DNS implementation. It will be useful for network administrators to check their networks' security. The goal of this project is to develop PC based software that will implement checking the existence of common security defences and even to check specific problematic parameters of the defences.
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Almost every transaction on the Internet involves the Domain Name
System (DNS). DNS is a hierarchical distributed naming system for computers, services, or any resource connected to the Internet or a private network. It associates various kinds of information with domain names assigned to each of the participating entities. A Domain Name Service resolves queries for these names into IP addresses for the purpose of locating computer services and devices worldwide. By providing a worldwide, distributed keyword-based redirection service, the Domain Name System is an essential component of the functionality of the Internet. However it is not secured enough. 

When certain steps are taken, it is feasible to "spoof" (the activity of attempting to subvert the DNS process by getting a chosen answer accepted) the current deployed majority of resolvers with carefully crafted and timed DNS packets.  Once spoofed, a caching server will repeat the data it wrongfully accepted, and make its clients contact the wrong, and possibly malicious, servers. 
So what are criteria for accepting answer? DNS data is to be accepted by a resolver if and only if:

   1.  The question section of the reply packet is equivalent to that of a question packet currently waiting for a response.

   2.  The ID field of the reply packet matches that of the question packet.

   3.  The response comes from the same network address to which the question was sent.

   4.  The response comes in on the same network address, including port number, from which the question was sent.

   In general, the first response matching these four conditions is accepted. 
If a third party succeeds in meeting the four conditions before the response from the authentic nameserver does so, it is in a position to feed a resolver fabricated data.  

All conditions mentioned above can theoretically be met by a third party, with the difficulty being a function of the resolver implementation and zone configuration.

[bookmark: _Toc366318576]Forcing a Query

Formally, there is no need for a nameserver to perform service except for its operator, its customers, or more generally its users. Recently, open recursing nameservers have been used to amplify denial-of-service attacks.

Providing full service enables the third party to send the target resolver a query for the domain name it intends to spoof.  On receiving this query, and not finding the answer in its cache, the resolver will transmit queries to relevant authoritative nameservers. This opens up a window of opportunity for getting fake answer data accepted.

Queries may however be forced indirectly, for example, by inducing a mail server to perform DNS lookups.

Some operators restrict access by not recursing for unauthorized IP addresses, but only respond with data from the cache.  This makes spoofing harder for a third party as it cannot then force the exact moment a question will be asked.  It is still possible however to determine a time range when this will happen, because nameservers helpfully publish the decreasing time to live (TTL) of entries in the cache, which indicate from which absolute time onwards a new query could be sent to refresh the expired entry.

The time to live of the target domain name's RR determines how often a window of opportunity is available, which implies that a short TTL makes spoofing far more viable.

Now we will expand all the DNS resolver criteria for accepting answer we mentioned above: 




Matching the Question Section
DNS packets, both queries and responses, contain a question section. Incoming responses should be verified to have a question section that is equivalent to that of the outgoing query. When recursive service is supported the question section in query is the same as in attacker's DNS request. So this section is not an obstacle for the attacker at all. 

Matching the ID Field

The DNS ID field is 16 bits wide, meaning that if full use is made of all these bits, and if their contents are truly random, it will require on average 32768 attempts to guess.  Anecdotal evidence suggests there are implementations utilizing only 14 bits, meaning on average 8192 attempts will suffice. Until recently nameservers simply incremented the query ID by one on each outgoing request. In this case an attacker asks the nameserver to look up a name in a zone for a nameserver he controls. Eventually the name server sends to attacker’s nameserver a query – the query ID is discovered.

Additionally, if the target nameserver can be forced into having multiple identical queries outstanding, the "Birthday Attack" phenomenon means that any fake data sent by the attacker is matched against multiple outstanding queries, significantly raising the chance of success.
 
So this section is a serious obstacle for the attacker but there are defective implementations of nameservers which mitigate the task in drastic way and even good implementations are not immune completely for the attack.

Matching the Source Address of the Authentic Response
Many zones have two or three authoritative nameservers, which make matching the source address of the authentic response very likely with even a naive choice having a double digit success rate.

Most recursing nameservers store relative performance indications of authoritative nameservers, which may make it easier to predict which nameserver, would originally be queried - the one most likely to respond the quickest.

Generally, this condition requires at most two or three attempts before it is matched.

Matching the Destination Address and Port of the Authentic Response
Note that the destination address of the authentic response is the source address of the original query.

The actual address of a recursing nameserver is generally known; the port used for asking questions is harder to determine.  Most current resolvers pick an arbitrary port at startup (possibly at random) and use this for all outgoing queries.  In quite a number of cases, the source port of outgoing questions is fixed at the traditional DNS assigned server port number of 53.
If the source port of the original query is random, but static, any authoritative nameserver under observation by the attacker can be used to determine this port.  This means that matching these conditions often requires no guess work.

If multiple ports are used for sending queries, this enlarges the effective ID space by a factor equal to the number of ports used.

Less common resolving servers choose a random port per outgoing query.  If this strategy is followed, this port number can be regarded as an additional ID field, again containing up to 16 bits.

If the maximum ports range is utilized, on average, around 32256 source ports would have to be tried before matching the source port of the original query, as ports below 1024 may be unavailable for use, leaving 64512 options.

It is in general safe for DNS to use ports in the range 1024-49152 even though some of these ports are allocated to other protocols. DNS resolvers will not be able to use any ports that are already in use.  If a DNS resolver uses a port, it will release that port after a short time and migrate to a different port.  

It should be noted that a firewall will not prevent the matching of this address, as it will accept answers that (appear to) come from the correct address, offering no additional security.

[bookmark: _Toc366318577]Have the Response Arrive before the Authentic Response

Once any packet has matched the previous four conditions (plus possible additional conditions), no further responses are generally accepted. This means that the third party has a limited time in which to inject its spoofed response.  For calculations, we will assume a window in order of at most 100 ms (depending on the network distance to the authentic authoritative nameserver).

This time period can be far longer if the authentic authoritative nameservers are (briefly) overloaded by queries, perhaps by the attacker.

[bookmark: _Toc366318578]Dan Kaminsky attack

To summarize the situation till 2008:

This attack was limited for one RR only and the option for attack is available only for data that is not in cache. 
After one failure attacker need to wait TTL (although it is known because it is a part of RR). 
 

But after a presentation of Dan Kaminsky in summer 2008 this picture changed. He found an approach that's dramatically more effective than previous one, and it caused quite a furor in the security community. 

Till now the intention was to poison the final answer, the A record with the IP address, but what Dan discovered is that we can go up one level and hijack the authority records instead.

Before undertaking the attack, the attacker configures a nameserver that's authoritative for the example.com zone, including whatever resource records he likes: A records, MX for email, etc. There's nothing stopping anybody from configuring his own nameserver to be authoritative for any domain, but it's pointless because the root servers won't point to it: it's got answers, but nobody ever asks it a question.

In this step attacker client requests a random name within the target domain (www.12345678.example.com) – any subdomain of it, something unlikely to be in cache even if other lookups for this domain have been done recently. 
As before, the attacker sends a stream of forged packets to the victim, but instead of records as part of an answer field, it delegates to another nameserver via Authority records.

The authority data may well contain the real nameserver hostnames, but the glue RR points those nameservers at attacker IP. This is the crucial poisoning, because a Query ID match means that the victim believes that attacker's nameservers are authoritative for example.com. As a result the attacker now owns the entire zone.

This is a devastating attack: by owning the entire target domain, the attacker controls essentially everything with respect to that resolving nameserver. He can redirect web visitors to his own server, he can route email to his own servers via serving up bogus MX records.

The attacker will typically set a very high TTL in the poisoning responses so that the victim will keep the fake data in cache as long as possible.
The attacker can issue a flurry of queries instead of single one, each for a different random name under the main domain and try to attack time after time. 

Assuming that the attacker can generate 50 forged replies for each random name query before the real reply arrives from the real nameserver this appears to be a very small chance, but when repeated over and over — and run from automated tools — success by the attacker is likely. It's been reported that success can commonly be achieved in 10 seconds.

In summary 2 issues were renewed by Kaminsky:
After one failure attacker don’t need to wait TTL. He just requests another random name within the target domain (www.87654321.example.com) that causes DNS server to get out additional query every time, there is not more any meaning for window of opportunity, it is available always. This approach negates the assuming that longer TTL rise security. Dan proved that TTL is not security factor at all.

Possibility of owning the entire target domain, instead of single a record picked up the whole issue of DNS attack to another level. It is not a particular problem more; it is matter of functioning of Internet in whole.

So 16 bits of the Query ID give not enough options, this fact makes the attack possible. But it's simply not possible to increase the ID in the short term because it would break DNS on the internet: the fields are what they are, and they can't be changed casually. 

So an additional source of randomness is required and the solution is randomizing the source port. Rather than use just a single UDP port, which is trivial to discover, a much larger range of ports is allocated by the nameserver and then used randomly when making outbound queries. There are =65536 options for port (but ports below 1024 may be unavailable).

[bookmark: _Toc366318579]Proposed solutions for the DNS poisoning attacks:
These and other developments have made the security and trustworthiness of DNS of renewed importance.  Although the DNS community is working hard on finalizing and implementing a cryptographically enhanced DNS protocol, which is called DNSSEC (Domain Name System Security Extensions), steps should be taken to make sure that the existing use of DNS is as secure as possible within the bounds of the relevant standards.

In 2009 the RFC 5452 was published and mentioned few advices:
Resolver implementations MUST:

Use an unpredictable source port for outgoing queries from the range of available ports (53, or 1024 and above) that is as large as possible and practicable; The nameserver would keep track of which source port was used for each query: replies arriving on the wrong port would be discarded just as if the Query ID failed to match. 

Use multiple different source ports simultaneously in case of multiple outstanding queries;

Use an unpredictable query ID for outgoing queries, utilizing the full port range available (0-65535);

Resolvers that have multiple IP addresses SHOULD use them in an unpredictable manner for outgoing queries;

Resolvers should use any cryptographic verification of response validity if available;

For proper unpredictability high quality random generator should be used. If the random generator is weak an attacker who witnesses several sequential “random” values can easily predict the next ones;

In case the resolver detects an attempt to being spoofing (too many packets fail the criteria/ too loaded traffic) it may abandon the UDP query and re-issue it over TCP (it is more resistant because sequence numbers);

If recursive DNS servers are behind NAT or stateful firewall all the ports/entries may be consumed when operating under high query load. To avoid it NAT and stateful firewall should purge outgoing DNS query entries 10-17 seconds after the last query on that mapping;

[bookmark: _Toc366318580]DNSSEC solution

The Domain Name System Security Extensions (DNSSEC) have been proposed as a solution to the vulnerabilities of the DNS protocol, and in particular to cache poisoning attacks. DNSSEC is a set of extensions to DNS which provide to DNS clients (resolvers) origin authentication of DNS data, authenticated denial of existence, and data integrity, but not availability or confidentiality. The implementation and deployment of DNSSEC would therefore provide a robust way of protecting against DNS cache poisoning attacks (as well as other attacks to the DNS) because all the responses are signed and their authenticity can be verified. For example, DNS cache poisoning attacks (as we know them today) would not work because forged responses can be identified and discarded. DNSSEC seems to be the panacea for the vulnerabilities of DNS.  Unfortunately, although DNSSEC was proposed back in January 1997, all these years have not been enough for it to be adopted and deployed in a large-scale. One reason is significant interoperability and performance concerns; another reason may be the existence of several 'patches', adding more unpredictable identifiers. Such 'patches' are trivial to deploy and involve no or negligible overhead, hence, administrators may prefer to deploy them instead of deploying DNSSEC. However, there are lots of impairments in such 'patches'. They can’t present the ultimate solution to the DNS security problem. 

[bookmark: _Toc366318581]The 'patches' solution

We will expand all patches that are known, their contribution to DNS protocol security and their vulnerabilities. It should be noted that even when all measures suggested below are implemented, protocol users are not protected against third parties with the ability to observe, modify, or inject packets in the traffic of a resolver.

[bookmark: _Toc366318582]1) Source port randomness

The most widely and easily deployed `patch' is clearly source port randomization. The field of the source port is 16 bit long and if it's randomized it makes the complexity of the attack. 
However it is a very common that DNS resolvers located behind firewall/NAT devices In this case the resolver may still be vulnerable to the poisoning attack.
The Firewall/NAT devices mapping the source IP and port addresses, to its own IP address and to a port it allocates. 
Sometimes it is easy to circumvent port randomization, in the resolver-behind-NAT scenario.
NAT devices implement different mechanisms for randomization of source ports.
We will refer to the following common (random) ports allocation algorithms:
(1) Random allocation: where NAT selects ports at random from a pool of available ports until all ports are exhausted; 
(2) Per-destination sequential allocation where the NAT selects the first port to each destination at random and subsequent packets to that destination are allocated consecutive mappings; 
(3) Port preserving allocation, where the NAT preserves the original port in the outgoing packets, and allocates sequentially upon collision;
(4) Restricted random allocation, where the NAT maintains a mapping table that is smaller than the pool of available ports.









Figure 1. Attack scenario and network configuration



Description of possible attacks:
In this kind of attack we will use a compromised host (zombie) on the local network which will be located behind the NAT as shown in figure 1. 
In the first phase we will try to discover the exact algorithm the NAT uses. 
According to the result, the attack techniques will be matched to the NAT mapping algorithm.
For algorithms 1-3 we will use the attacks from this paper [8]. 
The fourth algorithm is robust against such attacks.

[bookmark: 13b7a579d774aeb3__Toc311926887]Attack algorithm 1 
Matches for NATs implementing random port allocation. The attack relies on the fact that the NAT implements outbound refresh mapping for UDP connections. Namely, the NAT maintains the mappings from an internal (source): pair to an external port NAT port, for T seconds since a packet was last sent from SIP :Sport (on the internal side of the NAT) to the external network, using this mapping. We further assume that the NAT device selects an external port at random for each outgoing packet. The NAT device silently drops outgoing packets, sent from : to :, when all external ports for: are currently mapped to other sources; this is the typical expected NAT behavior. The detailed explanation of the algorithm and its scheme:


Figure 2. DNS attack algorithm 1


The zombie, at address 10.6.6.6, sends UDP packets to 1.2.3.4:53, i.e., to the DNS port (53) of the name server of the attacked domain, whose domain name is ns.V.com, from each port p in the set of available
ports. To handle faults, the payload of each packet contains the sending port p. The NAT allocates to each packet it forwards to ns.V.com a random permutation over ports; the allocation of each external port  to a specific internal port p is held for T seconds, unless refreshed. Since none of these packets is a legitimate DNS packet, the authoritative name server ns.V.com ignores all of them, and does not send back any response.
2. After step 1 completed, Eve sends a packet with a spoofed source address 1.2.3.4:53, to external port 666 of the NAT (i.e., to 7.7.7.7:666). Since 7.7.7.7:666  is currently mapped to the internal IP address 10.6.6.6 and some port , the NAT relays the packet to this IP and port. Thereby, the zombie learns the mapping of external port 666 to the internal port ; this will be crucial in the continuation of the attack, where we  will force the query of the resolver to be sent using external port 666 (the 'trap'). 

3. After receipt of the packet on port  in step 2, the zombie waits until the mappings established in step 1 are about to expire, i.e., until t3 = t1+T (where t1 is the time of step 1). At t3, the zombie sends additional empty UDP packets, to all ports, except port . As a result, the NAT refreshes the mappings on all of these ports; only the mapping for port 666 times out, and hence this becomes the trap: i.e., the only available external port of the NAT, which can be allocated for UDP packets whose destination is 1.2.3.4:53.

4. Following to step 3, the attacker knows that the external port 666 of the NAT is the only port which can be allocated to the UDP packets sent from the internal network to the authoritative name server, at 1.2.3.4:53. The zombie sends a single DNS query to the resolver, for a random domain name r.V.com; the use of a random 'subdomain' r allows to evade the caching of the resolver and ensures that the resolver issues a DNS query for this domain name. The resolver then sends a query to ns.V.com, from some 'random' (more precisely, unpredictable to attacker) port which we denote p, and using some random identifier .

5. Next, Eve sends a forged response per each  values of the ID field. If one of these responses matches all of the validation fields in the query, the resolver accepts the poisoned records [r.V.com A 6.6.6.6] and [V.com NS r.V.com]. Namely, from this point on, the resolver considers 6:6:6:6 as a valid IP address for the authoritative DNS server of ns.V.com. The resolver also forwards the response [r.V.com A 6.6.6.6] to the zombie, which detects the successful attack, and informs Eve (this phase is not shown in the figure).

6. The resolver receives a legitimate 'non-existing domain' (NXDOMAIN) response from the real name server, at 1.2.3.4. If the attack succeeded this response is ignored, since the query is not pending any more. Otherwise, the resolver forwards the NXDOMAIN response to the zombie, who will inform Eve; they will repeat the attack from step 1 (as soon as the ports expire on the NAT).
7. Finally, steps 7 and 8 illustrate subsequent poisoning of 'real' domain name within the V.com domain. Since, following step 5, the resolver uses the 'poisoned' mappings [ns.V.com A 6.6.6.6], all subsequent requests for this domain are sent to 6:6:6:6.

Attack algorithm 2
Matches for NATs implementing per-destination port allocation. In practice, due to efficiency considerations, NAT devices often do not select a random external port for every outgoing packet, but, depending on the NAT device, select the first port (for a tuple defined by<:;:; protocol >) at random, and subsequent ports are increased sequentially (for that tuple), until NAT refreshes its mapping for that tuple (if no packets arrived, e.g., after 30seconds).
[image: ]Figure 3. DNS attack algorithm 2


Zombie opens the ports (to the destination IP address of the authoritative DNS), i.e., sends k UDP packets from sequentially increasing ports Ports[1],...,Ports[]. All k packets have 1.2.3.4:53 as the destination IP address and UDP port respectively (i.e., the name server of the attacked domain, whose domain name is ns.V.com). The NAT assigns a randomly selected port Ports[x] to the first packet (in the sequence of k packets) that it receives, the rest  packets are assigned consecutive (sequentially increasing) external ports.

Eve sends UDP packets, to sequentially increasing (by a factor of k) external ports of the NAT, with spoofed source IP 1.2.3.4:53. The payload of each packet contains the destination port number. The zombie receives exactly one packet from Eve on port Ports[], and with payload containing  (i.e., packet that was sent to port with index Ports[] of the NAT).

3. Next the zombie calculates the port that will be assigned by the NAT to the DNS query of the local resolver: Ports[ + ], and sends it to Eve in the payload (from some (random) source port Ports[$] to a destination port 666, on which Eve is configured to be listening). Since the destination IP address of the packet sent to Eve is different from that of the authoritative name server, NAT will select an external port at random, and not consecutively, i.e., some Ports[$] with high probability Ports[$]Ports[x + k + 1].

4. The zombie then issues a DNS query to the local resolver, asking for a random domain name r.V.com. Since this domain name most likely does not exist in the cache, the resolver sends a DNS query from some (random) port Ports[d] containing a random identifier, to the authoritative name server ns.V.com. Note that the destination in the query of the local resolver is the same as the one that was used in the UDP packets of the zombie (i.e., the authoritative name server), the NAT will allocate the next available (consecutive) port to the query of the resolver, i.e., Ports[x + k + 1], following the sequence of ports assigned to the packets of zombie.

5. As soon as Eve receives the packet containing the external port of the NAT that is mapped to the internal port of the resolver, she will generate and transmit P packets with different values in the ID field, with spoofed source IP address (ostensibly originating from ns.V.com). The destination port in all the packets is Ports[ + ], and the response contains: [r.V.com A 6.6.6.6] and [V.com NS r.V.com]. Since this port was allocated by the NAT to the query sent by the resolver, the NAT will forward all these DNS responses to the resolver.

6. Eventually when the authentic response 'non-existing domain' (NXDO-MAIN) of the real name server at 1.2.3.4 arrives, the resolver will ignore it if one of the maliciously crafted packets (sent by attacker) matched and gets accepted. The remaining steps are identical to steps (7) and (8), presented algorithm 1. Again we succeeded to overcome random source port entropy.
Attack algorithm 3

Matches for NATs implementing port preserving allocation .Port preserving NAT leaves the original source port without modification when possible. When two clients (with different source IP addresses) send a packet (each) with the same source port, NAT preserves the port of the first packet and assigns the next available port to the second packet when collision occurs, assigning the lower or higher next available port depends of  NAT implementation. 
The challenge in this case is to ensure that the query of the local resolver falls in the range of the ports occupied by the zombie. Attacker and zombie can coordinate in advance on the range size and initial and final indices of the packets sent by the zombie to the authoritative DNS.
The number k of UDP packets, that the zombie sends, should be sufficiently large, to increase the probability that the DNS packet of the local resolver falls in the occupied range. The probability that the source port in a DNS query of the resolver will be in the range of ports occupied by the UDP packets of the zombie is , where  is the number of ports occupied by the zombie, and  is the total number of ports. 
To evade detection, part of the attack can be carried out by the puppets. Specifically, the puppets can be used to make  queries to the local resolver, to occupy sufficiently large range of ports, causing the query of the local resolver to be mapped to a predictable port.

The steps of the attack are as follows:
1. Zombie sends k UDP packets, with sequentially increasing ports destined to the authoritative DNS: Ports[] () where . The idea is to occupy a range (of size ) of ports. NAT assigns  consecutive ports, preserving the original source ports.

2. Attacker sends  packets to the zombie, such that each packet contains the destination port in payload. This step is essential since the NAT may have already allocated some of the ports to other clients’ packets, and the packets of the zombie will be allocated to higher ports (we choose this NAT implementation for the attack, the second option – lower port is of the same difficulty). Therefore, attacker needs to send to receive the last port that was allocated by the NAT to the packets of zombie.

3. Upon receipt of a first packet from Eve (the rest are ignored) the zombie sends to attacker the port number Ports[], of the last packet, in the payload.

4.  As soon as Eve receives the packet from zombie, she transmits  DNS responses with all the possible IDs, destined to the NAT 7.7.7.7 : . NAT will forward the responses to the local resolver, since  is mapped to . The local resolver accepts and stores the response.
5.  Zombie makes a DNS query to the local resolver asking for a random subdomain in domain V.com; this domain name most likely will not be in cache and as a result, the resolver will issue a DNS query from some random port d, containing a random identifier, to the authoritative name server ns.V.com. If NAT has already allocated port d, it will select (sequentially) the next available port, and will assign this port as the external port of the DNS query. Since zombie occupied  the next available port is . The next steps, (5)-(7), are identical to steps (6)-(8) in attack presented in algorithm 2. The probability that the source port in the DNS query of the local resolver will have already been allocated by NAT to the packets sent by zombie is proportional to If the port in the DNS request of the resolver falls within the range defined by , the port will be mapped to next available port, i.e., . This is the destination port that Eve will use in its spoofed responses.

Attack algorithm 4
According to the paper [8] there is no applicable way of attacking this kind of source port mapping algorithm.

[bookmark: _Toc366318583]2) Choosing random IP address in case DNS server has more than one IP address
Majority of top level domains use 5-7 authority name servers (important domains like COM use 13 authority servers). In such cases the resolver should send the query to the authority server with the shortest response time and avoid querying non-responsive servers. But there are no exact instructions for implementation the server selection algorithm so there are a lot of implementations, not always efficient. 
The technique we will use enables the attacker to predict the target name server's IP, for resolvers which avoid querying unresponsive name servers. It exploits the fact that when the target name server is not responsive, i.e., queries time-out, the resolver does not send subsequent queries to it, but only periodically, probes the target server until it becomes responsive (interval up to 15 minutes). 
In our example the technique exploits large DNS responses which result in fragmentation, fragmented IP traffic has been exploited for denial of service attacks in the past. It performed the attack against a 404.gov domain, whose non-existing domain responses exceed 1500 bytes and thus get fragmented en-route.
a) A DNS request for $123.404.gov (where $123 is a random prefix) is issued.
b) The attacker sends a forged second fragment, for all the possible name servers (a total of 2 spoofed fragments) except one which the attacker wants the resolver to use for its queries during the poisoning phase. 
Because the 404.gov domain has just three name servers this ensures that only one IP address results in a valid response, and the other two result in malformed DNS packets. 
c) The spoofed second fragment is reconstructed with the authentic first fragment resulting in a malformed DNS packet which leaves the fragments reassembly buffer. This malformed DNS response is then discarded by the resolver, when the authentic second fragment arrives it does not have a match and is also discarded after a timeout.
d) The resolver sends two queries to each server and when two queries to that server result in a timeout the name server is marked as non-responsive.
e) Name server sends the query to the second name server and the same technique is applied. As a result of ‘wrecking’ the responses from all name servers except one, the resolver is forced to direct all its queries for 404.gov domain to the last name server.
The fragments of a datagram are associated with each other by their protocol number, the value in their IP-ID field (ID field in IP header), and by the source/destination address pair. Therefore the attacker is required to hit the correct IP-ID value, which is used by the name server in its DNS response.
Many domains, as well as 404.gov, use per-destination sequential incrementing IP-ID values (or even globally sequential incrementing IP-ID, e.g., Windows OS). 
The IP-ID allocation algorithm does not have a significant impact on these attacks against Unbound (and alike) resolvers, as the number of ‘misses’ - valid responses arriving to the resolver from some IP, does not prevent the attack since two failed (timed-out) queries suffice for Unbound to mark the server as non-responsive for 15 minute interval.
Hitting the correct IP-ID, when the name server performs a per-destination sequential allocation or a random allocation is more complex because there is a limitation of buffer where fragments are saved up to reassembling. If the buffer is full and a new fragment arrived old ones are discarded. 

[bookmark: _Toc366318584]Protection against birthday paradox attacks
Birthday paradox attack is when attacker causes resolver to issue multiple queries for same domain in order to increase the probability of a match with one of multiple fake responses.  
The first strategy we offer to detect existence of such protection is measuring times that take to response to DNS resolver from 2 PCs simultaneously. 
In case DNS resolver supports the protection against birthday paradox attacks it will detect that 2 queries are actually the same question and will send to DNS server the single query. After it receives the answer it will transmit it to 2 PCs almost simultaneously or with negligible time difference.
 In case DNS resolver doesn’t support the protection against birthday paradox attacks DNS server 2 queries, it will care to each question according to its location in queue. So also the answers will reach the PCs with much more time difference. 
To be sure the result doesn't depend on network topology, partial load or PC's resources we will collect statistics about networking and delays for these specific PCs before the testing. 
The second strategy we offer is to sniff traffic between DNS resolver and server (by establishing our own DNS server as detailed in Implementation Chapter and asking the questions about this domain only) and actually to check if single or multiple queries were sent to DNS server.
[bookmark: _Toc366318585]Prepending a random prefix to a DNS query
Prepending a random prefix to a DNS query can make it more difficult for the attacker to guess the query. The DNS query is composed of subdomains, at most 63 bytes each, separated by dots; the total number of characters cannot exceed 255 bytes. So, prepending a random string $1 to query abc.tld, results in $1.abc.tld and increases the query by the size of $1.
A naive implementation of this protection mechanism can be foiled by the attacker. The attacker that wishes to poison an entry for some top level domain, e.g., com, can issue a maximal size DNS query, i.e., 255 bytes, consisting of numbers, that will not allow prepending any more characters: 1-36.1-36.1-36.1-33.com (the `1-36' denotes a string containing all numbers between 1 and 36).
As a result, the attacker circumvents the 0x20 protection (which does not apply to numbers) and further avoids the addition of a random prefix to DNS request (since the query is already of maximal size). 
The size of queries to top level domains should be restricted, to prevent circumventing the query randomization defenses by attackers.
[bookmark: _Toc366318586]Case toggling
Dagon recently proposed the 0x20-bit encoding, which uses a random combination of lower- and upper-case letters to write domain name queries, and works independently from the presence of NAT/PAT placed in front of DNS resolvers. Unfortunately, the amount of additional entropy introduced by the 0x20-bit encoding is a function of the length of the queried domain name. For example, for short popular domain names like hp.com, hi5.com, cnn.com, etc., the 0x20-bit encoding only adds 5 or 6 bits of entropy. This makes poisoning attacks a little harder, but surely not infeasible. Several other popular domain names from the top 500 global domains according to Alexa (alexa.com) contain even less than 6 alphabetic characters that can be used for the 0x20-bit encoding (e.g., 163.com, 56.com, 126.com, etc., for which 0x20-bit encoding offers only 3 additional bits of entropy).
 
 



[bookmark: _Toc366318587]Testing tool description:

[bookmark: _Toc363298851]The scheme of the security test is as next:
No
Asking the user (zombie) permission to check existence of NAT between DNS resolver and server 
Yes
Exit the program
Check existence of NAT
Existss
Not exist
Exit the program
"Random"
Start "Random" attack
Testing NAT's algorithm for port allocation
Testing
"Preserving" algorithm
Start "Preserving" attack
"Per destination" algorithm
Start "Per destination" attack
*Asking the user to find out the NAT's algorithm for port allocation or to assume "Random" allocation




















*The assuming of "Random" port allocation when we don't manage to detect the kind of NAT (algorithm 1).



[bookmark: _Toc366318588]Final project implementation
[bookmark: _Toc366318589]The topology of the attack:
DNS server
Web server
DNS resolver
Zombie
NAT 






At first we established virtual environment for this topology, which was allocated at a server within the university's LAN.
Five virtual machines were configured: Linux based, version Ubuntu 12.04, and on each one of them we installed 'Wireshark'. This tool was very helpful.
Later, after writing the initial code we established a real environment at a lab in the university according to the same topology. 
Zombie (192.168.200.208): 	
Zombie is a PC, part of the internal network which corporates with an external attacker.
It's necessary when there is a NAT between DNS resolver and DNS server.
All of its DNS queries are configured to be directed to the DNS resolver.
DNS resolver (192.168.210. 208): 
We configured the DNS resolver by Bind9. Source port is configured to be random. We choose 'Bind' because it is one of the most popular DNS program.
All of its DNS queries are configured to be directed to the DNS server.
NAT (internal : 192.168.200.150; external: 132.72.108.168): 
The NAT is a router configured by Ubuntu's iptables version 1.4.12. We configured the NAT in two ways: preserving and per destination port allocation algorithms (according to the paper).
DNS server (132.72.108.140): 	
We configured the DNS resolver by bind9.  The server is located in the external network (not behind the NAT).
Attacker (132.72.108.141): 
The Attacker is a PC, which executes the main part of the attack and it sends spoofed packets to the DNS resolver. The Attacker is located in the external network(not behind the NAT).
















[bookmark: _Toc366318590]Tool's main parts of the flow
Zombie
Attacker
UDP packet with payload of Zombie's IP address
Is there NAT between DNS resolver to DNS server?
If IP in payload is identical to source IP of the received packet – there is no NAT on the way. Otherwise there is NAT. 
NO
Usual Kaminsky attack
Sending N UDP packets from ports which increase by factor of K
Attack for per destination port allocation algorithm
Attack for preserving port allocation algorithm

Zombie
Attacker
UDP packet with source port x
Which port allocation algorithm NAT uses?
UDP packet with source port x + K
UDP packet with source port x + 2K
By collecting all source ports of received packets () and all intervals between sequential ports= we will  estimate E[].
If | E[]|-> 1 apparently NAT uses per destination algorithm.
If | E[]|-> k apparently NAT uses preserving algorithm.






Attacker
Per destination port allocation algorithm of NAT
Zombie
UDP packet with source port x
UDP packet with source port x + 1
DNS server
UDP packet with source port x + K
NAT
Step  a
UDP packet with payload "start"
Step  b
UDP packet with source port 1
UDP packet with source port 1 + K
UDP packet with source port 1 + 2K
UDP packet with source port 1 + xK
UDP packet with source port 1 + K
Step  c
UDP packet with next port NAT will allocate for query to DNS server in payload 
Now usual Kaminsky attack is possible – port is not random















Steps of attack for Per-destination port allocation
Step a: Sending packets to DNS server create mapping in NAT mapping table: random port for the first packet to DNS server and sequential ports for the following packets with the same destination. 
Step b: It is a sign for the attacker to start the attack.
Step c: Attacker sends to NAT packets from spoofed IP address of DNS server. Payload of the packets is destination port of the packet. The goal is to target the exist mapping of the NAT for DNS server as destination. One of  packets succeeds and transfers to Zombie.
Step d: Now attacker may compute the next port NAT will allocate for query to DNS server by the next formula:
The port that was in payload of the attacker's packet + the last port Zombie opened (x+K) – the port on which the packet from attacker was received +1 = next port allocated by NAT
Now after we detected the so we called "random" port we may run the usual Kaminsky's attack to poison entries in DNS resolver's cache.










UDP packet with highest port that the Zombie received will send in payload to the Attcker and will be allocate to the next query with high possibility
UDP packet with source port 1024+ L
Attacker
Preserving port allocation algorithm of NAT
Zombie
X UDP packet from spoofed  source IP 
K UDP packet from different source port 
DNS server
NAT
Step  a
UDP packet with payload "start"
Step  b
Now usual Kaminsky attack is possible – port is not random
Step  c











UDP packet with source port 1024



	












Steps of attack for Preserving port allocation 
Step a: The Zombie initiates the attack. It Sending packets to attacker to create mappings in NAT mapping table: the bigger K more ports will be occupied .So, the probability that random port of query DNS resolver sends to DNS server will have collision and will be allocated to lowest available port is higher. 
Step b: Zombie sending a sign for the Attacker to start the attack.
Then the attacker sending L UDP packets to the NAT from 1024 and so on. If the port allocated in the mapping table of the NAT, it will pass it to the zombie. At the end of this step, the Zombie knows the highest port that was allocated in collision case, and there is a high probability that the next query to the server will allocates to the next one.
Step c: Zombie sends the highest port from the lowers (that were allocated with collisions). we'll assume that this highest port is H. So with probability of   next query to DNS server will have ports' collision and will be allocated by NAT to port H+1.
Now after we detected the so we called "random" port we may run the usual Kaminsky attack to poison entries in DNS resolver's cache. We may run such attack sometimes until success.












Step  c
The Attacker send a UDP packets from the spoofed IP of the DNS server To renew one connection. External IP is P and internal is R(P) 
Sleep 5 seconds
Renew connections: DNS packets from on all available ports except R(P) (~6 sec)
Attacker
Assuming Random port allocation algorithm of NAT
Zombie
DNS packet from on all available ports (~6 seconds)
DNS server
NAT
Step  a
UDP packet with payload "start"
Step  b
Now usual Kaminsky attack is possible – next port will be P and R(P)
Step  d
Sleep 15 seconds

Steps of attack for Random port allocation algorithm 
Step a: The Zombie initiates the attack. It is sending packets to server to create mappings in NAT mapping table of all available ports(1024-65536). This step will take ~6 seconds, because between every two packets we will wait 0.001 sec.
Step b: Zombie waits 5 seconds and sign for the Attacker to start the attack.
Then the Attacker send a UDP packet to the NAT from external port P, with spoofed IP of the DNS server. If the port allocated in the mapping table of the NAT, it will pass it to the zombie. In this step only the mapping P->R(P) is renewing.
Step c: Zombie again sends packets to server to renew mappings in NAT mapping table of all available ports(1024-65536) except from the external port R(P). This step will also take ~6 seconds, because between every two packets we will wait 0.001 sec.
Step d: Now the zombie waits 15 seconds. By this time the map of the port P ->R(P) will expire , and the rest won't (the usual timeout for NAT is 30 seconds) . So if everything Occurred as expected there is a high probability that the next DNS query will be map to R(P).

Now, after detection so called "random" port we may run the usual Kaminsky attack to poison entries in DNS resolver's cache. We may run such attack many times till success.


[bookmark: _Toc366318591]Configurations details:
Zombie's:
[image: ]We changes the file "resolv.conf" so that the local DNS sever will be the resolver:




DNS resolver's:
[image: ]Setting up this PC as a cache-only DNS server:








[image: ]as well changing the file:









We also verified, that source port randomization is active. We checked that the /var/log/daemon.log file does not contain messages of the following form:
 named[6106]: /etc/bind/named.conf.options:28: using specific
    query-source port suppresses port randomization and can be insecure.
[image: ]The file "resolv.conf" configures direct DNS queries to the server:



NAT's:	
We enabled  ip.v4 forwarding: 
[image: ]


[image: ]For "per destination port allocation" we configured etc/rc.local as following:









[image: ]And for "preserving port allocation" the configuring is almost the same:









DNS server's:
The configuration of the DNS server was similar to the DNS resolver's. The only change is that the next server in the hierarchy is one of the Ben Gurion University's (132.72.140.46):
[image: ]  
Attacker's: 
At the attacker side, a very important configuration was adding a spoofed IP address of the server's by the command: "ifconfig add eth0:1 192.168.160.240 netmask 255.255.255.0 up".
[image: ]





[bookmark: _Toc366318592]Function description of Zombie code
unsigned short csum(unsigned short *ptr, int nbytes) -  function that is generic checksum calculation function. 

void err(char *s) - function that deals with errors.

int main(int argc, char** argv) – this function manages all the attack.
Ask the user if he want to check the existence of NAT.
If he answers "no", Zombie exits the program, but if he answers "yes", Zombie continues.
Zombie->attacker "are you ready" to synchronize the attack
Attacker->zombie "y" (meaning: yes, I am)
Zombie sends UDP packet with its IP as payload so attacker may check if there is a NAT between Zombie and attacker. Attacker compares between payload and IP source of the received packet and returns the answer to Zombie: "nat"/"no nat".
The user asked if he want to check NAT's algorithm or to assume "Random"(algorithm number 1).
If he choose to assume random Zombie calls the function: random_attack().
Else, Zombie calls the function clarify_nat_algorithm() to check the port allocation algorithm NAT uses and calls the appropriate function:
void preserving_attack()/void
  per_destination_attack(sockfd_attacker) to execute the attack according to NAT's algorithm
	

void clarify_nat_algorithm() – if there is a NAT between Zombie to attacker, Zombie needs to check which port allocation algorithm NAT uses. So it sends N packets to attacker with the source port increased by factor of K. Attacker receives all these packets, checks the difference between sequential ports = and estimates E[].
If | E[]|-> 1 apparently NAT uses per destination algorithm.
If | E[]|-> k apparently NAT uses preserving algorithm.
Attacker returns to Zombie the type of algorithm "preserving"/per destination". 

void per_destination_attack(sockfd_attacker) - function that manages attack for NAT with per destination port allocation algorithm according to the next scheme:
Zombie initiates the attack
Zombie-> server: K packets that create the mapping in NAT for the particular destination (DNS server)
Zombie->attacker: "start"
attacker->Zombie: tries to "guess" the mapping location, sends packet for every K ports so only one packet targets and is transferred to zombie
Zombie->attacker: computes the next port that will be allocated in NAT for DNS server destination and sends it to Zombie.

void ProcessPacket(unsigned char* buffer, int size) – function that checks if the received packet is UDP and calls the appropriate subroutine.

void print_ip_header(unsigned char* Buffer, int Size) function that checks if the received UDP packet is from the attacker's spoofed IP. If so, it prints the IP header of the packet to file

void print_udp_packet(unsigned char *Buffer , int Size) - function that checks if the received UDP packet is from the DNS port 53. If so, it prints the UDP header of the packet to file and saves the destination port of the packet.

void PrintData (unsigned char* data , int Size) - function that prints the headers or payload of the packet to file and saves the payload of the packet (port the attacker sent).
void preserving_attack() - function that manages attack for NAT that uses preserving port allocation algorithm according to the next scheme: 
Zombie->Server: X packets that eventually will cause collisions at the NAT, from spoofed IP.
Zombie-> Server: K packet that also create mapping in NAT
Zombie->attacker: "start"  
Attacker->Zombie: L packets ,trying to find the highest port from the lower ports that was allocated by NAT. When there is a collision between already allocated port and new just arrived packet NAT allocates the lowest available port (start from 1024). The highest of them + 1 will be allocated to next query from DNS resolver to DNS server if the chosen by DNS resolver random port will collide with already occupied by us port.  The Zombie limits the waiting time interval receiving these packets from the Attacker by creating thread that calls the function thread_count_time().

void thread_count_time() -  function that counts interval time of 2 seconds between 2 arrivals from the attacker on preserving attack.
If the interval is greater than 1 second, it stops waiting for packets from the attacker.
void random_attack() - function that manages attack for NAT that uses random port allocation algorithm according to the next scheme: 
Zombie->server: packets from all available ports
Zombie sleeps for 5 seconds.
Attacker->Zombie: UDP packet to the NAT from external port P from spoofed IP of the server's. If the port allocated in the mapping table of the NAT, it will pass it to the zombie. In this step only the mapping P->R(P) is renewing.
Zombie->server: packets to attacker to renew mappings in NAT mapping table of all available ports (1024-65536), except from the external port R(P).
Zombie sleep for 15 seconds

[bookmark: _Toc366318593]Function description of attacker code
int main(int argc, char** argv) – function that manages all the attack.
Zombie->attacker "are you ready" to synchronize the attack
Attacker->Zombie "y" (meaning: yes, I am)
Zombie sends UDP packet with its IP as payload so attacker may check if there is a NAT between Zombie and attacker. Attacker compares between payload and IP source of the received packet and returns the answer to Zombie: "nat"/"no nat".
If there is a NAT between Zombie to Attacker, Zombie need to check which port allocation algorithm NAT uses. So it sends N packets to attacker with the source port increase by factor of K. Attacker receives all these packets, checks the difference between sequential ports = and estimates E[].
If | E[]|-> 1 apparently NAT uses per destination algorithm.
If | E[]|-> k apparently NAT uses preserving algorithm.
Attacker returns to Zombie the type of algorithm "preserving"/per destination". 
Attacker calls the appropriate function void preserving_attack()/void per_destination_attack(sockfd_attacker) to execute the attack according to NAT's algorithm


void preserving_attack() - function that manages attack for NAT that uses preserving port allocation algorithm according to the next scheme: 
Zombie->attacker: "start"  
Attacker->Zombie: L packets ,trying to find the highest port from the lower ports that was allocated by NAT. 
void per_destination_attack(int sockfd_zombie,  struct sockaddr_in zombie_addr ) - this function manages attack for NAT that uses per destination port allocation algorithm according to the next scheme:
Zombie initiates the attack
Zombie-> Server: K packet that create the mapping in NAT for the particular destination (DNS server)
Zombie->Attacker: "start"
Attacker->Zombie: tries to "guess" the mapping location, sends packet for every K ports so only one packet targets and is transferred to Zombie. Payload of each packet is destination port of the packet
Zombie->Attacker: computes the next port that will be allocated in NAT for DNS server destination and sends it to Zombie.

void ProcessPacket(unsigned char* buffer, int size) - function that checks if the received packet is UDP and calls the appropriate subroutine.

void print_ip_header(unsigned char* Buffer, int Size) - function that checks if the received UDP packet is from the Zombie's IP. If so, it prints the IP header of the packet to file.

void print_udp_packet(unsigned char *Buffer , int Size) - function that checks the destination port of the received UDP packet.
void PrintData (unsigned char* data , int Size) - this function parses the headers or payload of the packet and checks the payload of the packet is as expected.
void random_attack(int sockfd_zombie,  struct sockaddr_in zombie_addr )  - function that manages attack for NAT that uses random port allocation algorithm according to the next scheme: 
Zombie->attacker: "start"  
Attacker->Zombie: UDP packet from spoofed IP of the server's, and from port : SPOOFED_PORT.






[bookmark: _Toc366318594]The program parameters
[bookmark: _Toc366318595]Zombie's
#define K 1000 – Represent the number of packets that the Zombie sends to the attacker in "Per destination port allocation".
#define T 100 – how many packets will send to the from Zombie to the Attacker in order to clarify NAT algorithm. (Attacker will checks the difference between sequential ports  and estimates the average difference)
#define PORT 12345 – The port of the Attacker the connection between Attacker and Zombie.
#define SOURCE_PORT 12345 - The port of the  Zombie the connection between Attacker and Zombie.
#define D 20000 – the number of packets that will be send to the attacker on the preserving attack in the initial step.
[bookmark: _Toc366318596]Attacker's 
#define X 3 – The number of the packets that eventually will cause collision in the NAT.
#define L 8000 – The number of the packets that the attacker will send to the Zombie in the preserving attack, from 1024 and higher. 
#define SOURCEPORT 12345 - The port of the Attacker the connection between Attacker and Zombie.
#define DESTPORT 12345 - The port of the Zombie for the connection between Attacker and Zombie.
#define K 10000                 //number of packets sends i0n "preserving"
#define F 150                     //deviation factor of the average differences
#define T 100 - how many packets will send from Zombie to the Attacker in order to clarify NAT algorithm. (Attacker will checks the difference between sequential ports and estimates the average difference)
#define MIN_PORT 20000 – The attacker expect packets around this port and up. If he gets lower port from the Zombie it know that a collision occurred.
#define SPOOFED_PORT 9895 – the port that the attacker send to the Zombie  with spoofed IP of the server in the Random attack.

























[bookmark: _Toc366318597]Challenges and lessons learned:
Establishing an environment: all the configuration detailed above and in addition configuring the network. In this step we worked a lot with Wireshark and learned a lot of Linux's commands and tools.
Dealing with client and server communication problems: how to send and receive packets by UDP sockets.
We learned a lot about DNS protocol, its vulnerabilities and patches.
"Raw sockets" issue:
The Zombie and the attacker both are needed to receive information from each other on unknown ports because of the NAT existence between them. This is a rare situation, because usually the server's side has a limited number of ports to listen to. In order to listen to unknown ports (that means every possible port) and to do it in the most efficient way we used "Raw sockets" and therefore we had written the code in C.
The "Raw sockets" is a good solution, because it is a type of socket that allows access to the underlying transport provider. Rather than going through the normal layers of encapsulation/decapsulation that the TCP/IP stack on the kernel does, this socket takes packets, bypasses the normal TCP/IP processing, and sends them to the application level that is ready to receive them.
This solution is not trivial and isn't widespread. It took us time to understand that this is the most smart and efficient way. We had to switch our code from Java to C, because "Raw sockets" are not supported in Java. 
We also had a challenge of dealing with processing the packets and decapsulating them on our own.
In addition, we have had to use "Raw sockets" for sending a packet from a spoofed IP, because the OS switches the source address of the packet to the defined IP address of the interface. The usage of "Raw sockets" enables the query to be from the "spoofed IP":
When sending a packet from a spoofed IP, the OS does not allow it, unless there is a configured interface with such an IP. 

[image: ]




Creating an algorithm for detection NAT's port allocation algorithm that was absent in the original paper.
We indeed planned the entire tool for checking DNS resistance against the existing attack. However, in the final version, we implemented only part of this tool because of environment problems and security limitations of Ben Gurion University.












[bookmark: _Toc366318598]Problems of the tool in the Lab conditions:
In our work on the project we encountered loss of packets when there are a lot of packets sent (above 6000).
We could see on "Wireshark" that the packets are sent from the Zombie's PC but don't reach the NAT.
This problem is an obstacle with regard to Preserving and Random attacks. In both cases, we need to reserve ports in NAT and that there will be no "holes" at the range of ports we are trying to catch in the NAT's table. Otherwise, the next mapping of the query will be mapped to one of these "holes" and not to the planned port.
This problem causes preserving to succeed only with the probability of K/65536, when K is the number of packets that the Zombie sends instead of the whole range of ports, and that the Random attack will not succeed at all.
In addition, the DNS protocol generates traffic all the time to maintain the connection to the servers. This causes fails of the attack if this kind of DNS packet is sent after the initiating of the attack and right before the Zombie suffices to send the query.
 











[bookmark: _Toc366318599]Possible problems of the tool in the "real world"
Blocking packets with spoofed IPs by ISPs
Different behavior of the network because of the existence of additional users which create traffic and open ports in NAT
Achieving a Zombie PC for participating in the attack
Severe time limitation for successful attack execution due to:
small timeout of NAT's mapping table
attacker's far location from the internal network
Existence of NAT's and DNS server's and resolver's mechanism for detection of DOS attacks. 
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inet addr:192.168.160.173 Bcast:192.168.160.255 Mask:255.255.255.0
inets addr: fe80::5054:ff:fef2:4673/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:751200 errors: dropped:0 overruns:o frame:o
TX packets:69177 errors:@ dropped:0 overruns:@ carrier:o
collisions:0 txqueuelen:1000
RX bytes:60332471 (6.3 MB) TX bytes:16381849 (16.3 MB)

Link encap:Ethernet HWaddr 52:54:00:

inet addr:192.168.160.240 Bcast:192.168.160.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:





