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Abstract

New four coordinates are introduced which are related to the usual space-time

coordinates. For these coordinates, the Euclidean four dimensional length

squared is equal to the interval squared of the Minkowski space. The Lorentz

transformation, for the new coordinates, becomes an SO(4) rotation. New

scalars (invariants) are derived.

A second approach to the Lorentz transformation is presented. A mixed

space is generated by interchanging the notion of time and proper time in

inertial frames. Within this approach the Lorentz transformation is a 4 di-

mentional rotation in an Euclidean space, leading to new possibilities and

applications.

Keywords: Special relativity, Euclidean 4-space-time, mixed space,

Lorentz transformation.

I. INTRODUCTION

One of the main problems of special relativity is whether there exists a physical four

dimensional space-time or are space and time different entities for which Minkowski space

∗To be published in Foundations of Physics 2003
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is a convenient coordinate system. In this paper an alternative coordinate system will be

derived.

Let us introduce the following notation

x0 = ct, x1 = x, x2 = y, x3 = z, x5 = cτ, (1)

where c is the light velocity, t is the time, x, y, z are the space coordinates and τ is the

proper time. Special relativity is based on the invariance of the interval squared

(
∆x5

)2
=
(
∆x0

)2
−
(
∆x1

)2
−
(
∆x2

)2
−
(
∆x3

)2
, (2)

with respect to Lorentz transformations. Minkowski has proposed to look at the coordinates

x0, x1, x2, x3 as the four dimensional space time, where the interval, Eq.(2), was serving as

the distance. This approach has led to the revolutionary successes of Einstein’s relativity.

However there are many problems related to Minkowski’s space-time. The metric is non-

Euclidean and when many particles are concerned there is a problem of defining a common

time.

Let us mention the possibility that a mathematically defined space is not necessarily

equivalent to a physical space. For example, we may find for some problems toroidal coor-

dinates to be convenient. This does not mean that the world is a torus.

Let us pose the following fundamental question, what are the necessary conditions for

a space to be physical? As physics is mostly concerned with measurement I would suggest

the following condition:

Definition 1 A physical space is such that one can repeat a measurement in it.

Otherwise we are dealing with an abstract space. Abstract space has the meaning of

convenient coordinates. One can not repeat measurements for the same space-time coor-

dinates, as time flows constantly forward during experiments. Therefore, according to the

above definition, space-time is not a physical space but only an abstract space in which

convenient coordinates can be defined. Time can not be included into physical spaces. Is

this the reason why time in quantum mechanics is a parameter and not an observable?
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Lorentz transformations are conveniently described in Minkowski’s space with the length

defined by Eq.(2). A more meaningful name would be the Minkowski coordinates. One

may also consider the Euclidean space (Euclidean coordinates) described by the coordinates

x0, x1, x2, x3 with the distance squared

(dl)2 =
(
dx0

)2
+
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
, (3)

in which events transform according to the Lorentz transformation, even though this descrip-

tion will lack the elegance of the tensor calculus that characterizes the Minkowski space.

We shall suggest in Sec. 2 another four dimensional space (or rather coordinates) for

which the invariant interval will be Euclidean. But before that, let us first rewrite Eq.(2) in

the following way

−
(
dx0

)2
+
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx5

)2
= 0. (4)

Now one may appreciate the notation used in Eq.(1) and consider Eq.(4) as defining a 5-

dimensional hyperplane in the 5-dimensional space with coordinates x0, x1, x2, x3, x5. Eq.(4)

is more general then Eq.(2). Eq.(2) defines a subspace in the 5-dimensional hyperspace for

which the projection in the x5 coordinate is constant. Therefore there are events in the

5-dimensional hyperspace which are beyond special relativity.

If in the 5-dimensional space we restrict ourselves to a constant projection in the x0

coordinate, the resulting subspace of the x1, x2, x3, x5 coordinates can be Euclidean

(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx5

)2
=
(
dx0

)2
. (5)

Montanus [1], [2] has suggested to look at the 4 coordinates x1, x2, x3, x5 as forming the

four dimensional space-time, and suggested to look at the left hand side of Eq.(5) as the

Euclidean distance squared in this space. It is consistent with the Lorentz transformation

only when Eq.(5) is exactly satisfied. There exists an invariant in this space, namely the

square of the four-velocity

vµ =
dxµ

dt
=
cdxµ

dx0
= vµ, (µ = 1, 2, 3, 5), (6)
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which is according to Eq.(4)

vµv
µ =

(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

+

(
dx5

dt

)2

= c2. (7)

It is interesting to note that the 4-velocity addition for vµ is linear, but it happens in 4-space

dimensions ( it is non-linear in Minkowski’s subspace of 3 space dimensions). The fourth

space dimension corrected the seemingly impossible situation in 3 dimensions.

Montanus [3] has suggested to look at vµ of Eq.(6) as a SO(4) four vector with respect

to rotations in the x1, x2, x3, x5 4-space. Differentiating Eq.(7) one may find

aµv
µ = 0, aµ =

dvµ

dt
, aµ = aµ, (8)

therefore also aµ can be considered as a SO(4) four vector with respect to rotations in

the x1, x2, x3, x5 4-space, always orthogonal to vµ. In this way Montanus was successful to

develop a SO(4) tensor calculus for the x1, x2, x3, x5 4-space. It is not completely consistent

with Lorentz invariance, as the x5 coordinate may change, in contrary to the requirements

of the Lorentz invariance. SO(4) rotations will leave in Eq.(4) the time interval invariant.

On the other hand Eq.(7) (contrary to Eq.(5), which acted on a 5-dimensional hyperplane)

acts in 4-dimensional space and is consistent with Lorentz invariance, in the sense that the

absolute value of the 4-velocity is the same in each inertial frame and equal to the velocity

of light.

The SO(4) tensor calculus which is based on the invariance of time interval in Eq.(5)

may be applied to Feynman path integrals in which trajectories are defined for a fixed time

interval.

It is interesting to note that Eq.(7) is a restriction in the x1, x2, x3, x5 4-space, i.e. it

defines a subspace in which Lorentz transformations may occur for one particle states.

In the next section we shall find Euclidean four coordinates for which SO(4) rotations

will be consistent with the Lorentz transformations.
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II. EUCLIDEAN METRIC

Let us introduce the qλ coordinates defined by

dqλ =
dx5

dx0
dxλ =

dτ

dt
dxλ, λ = 0, 1, 2, 3, 5, (9)

where the xλ (λ = 0, 1, 2, 3, 5), were defined in Eq.(1). Multiplying Eq.(4) by (dx5/dx0)
2
we

obtain

(
dx5

)2
=
(
dq0

)2
=
(
dq1

)2
+
(
dq2

)2
+
(
dq3

)2
+
(
dq5

)2
. (10)

Now the Lorentz transformation can be defined as a rotation in the four dimensional

space q1, q2, q3, q5 and can be described with the help of the group of proper rotations, the

SO(4) group.

We shall consider the action (being a scalar), in order to show that such a procedure is

feasible.

A. The action

Let us start from the relation between the Lagrangian L and the Hamiltonian (energy)

H

L = p·dx
dt

−H. (11)

Remembering that the action S is related to the Lagrangian via

dS

dt
= L, (12)

we obtain

dS = p·dx−H
c
d (ct) . (13)

If p is the relativistic momentum, dS is a scalar under Lorentz transformation. It is obtained

as the scalar product of two four vectors in Minkowski’s space, which will be denoted as
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pµ ≡
(
p0,p

)
, xµ ≡

(
x0,x

)
, p0 =

H

c
, x0 = ct (14)

and we shall distinguish them as Minkowski space four vectors.

Let us now consider Eq.(4) and use it for a free particle of rest mass m moving with a

velocity v. Let us divide both sides of Eq.(2) by (the Lorentz invariant) dx5 and multiply

both sides by mc, one obtains

mcdx5 = mc
dx0

dx5
dx0 −mc dx

dx5
· dx =Edt − p·dx = −dS, (15)

where E and p are the free particle total energy and momentum respectively given by the

well known relations:

E =
mc2

γ
, p =

mdx

γdt
=
mv

γ
, γ =

dx5

dx0
=

√
1− v2

c2
. (16)

We shall bring Eq.(15) to a Euclidean form. First we rewrite Eq.(15) as

mc
dx0

dx5
dx0 = mc

dx

dx5
· dx+mcdx5 (17)

then multiply both sides by
(

dx5

dx0

)2
and obtain

mcdx5 = mc
dx

dx0
· dx
dx0

dx5+mc

(
dx5

dx0

)2

dx5, (18)

where the left hand side is Lorentz invariant. Dividing by the invariant dx5, Eq.(18) can be

rewritten as

(
mc
dx0

dx5

)
dx5

dx0
= mc

dx

dx0
· dx
dx0

+mc
dx5

dx0

dx5

dx0
, (19)

or

E

c

dx5

dx0
=
dx5

dx0
p· dx
dx0

+

(
mc
dx5

dx0

)
dx5

dx0
= π̃µỹ

µ. (20)

The left hand side of Eq.(20) is a Lorentz scalar, while the right hand side is a scalar

product of two SO(4) Euclidean vectors, which we shall denote (using this time square

brackets) in the following way

6



π̃µ ≡
[
dx5

dx0
p, mc

dx5

dx0

]
= [mv, mcγ] = π̃µ, (21)

ỹµ ≡
[
dx

dx0
,
dx5

dx0

]
=
[
v

c
, γ

]
, µ = 1, 2, 3, 5, (22)

please note the difference of notation (and order) in comparison with the notation of

Minkowski vectors of Eq.(14).

There are some new interesting features related to the Euclidean 4-space treatment. First

in Eq.(20) we found that E
c

dx5

dx0 is a scalar. We can see it clearly in the invariant equation

π̃µπ̃
µ =

(
dx5

dx0

)2

p2 +m2c2
(
dx5

dx0

)2

=

(
E

c

dx5

dx0

)2

. (23)

In order to define a least action principle for the Euclidean 4-space treatment, let us note

that in Eq.(15) the action is proportional to the proper time. We may use this relation and

require that

Definition 2 The least action principle is the Fermat-like principle of least proper time.

B. Special case

Let us consider the special case with

dx5

dx0
= const, (24)

from Eq.(9) we have

qλ =
dx5

dx0
xλ, λ = 1, 2, 3, 5. (25)

Let pj be a Lorentz 4-vector (j = 0, 1, 2, 3), then the corresponding SO(4) vector will be

p̃λ (λ = 1, 2, 3, 5)

p̃λ =
dx5

dx0
pλ, λ = 1, 2, 3, 5, (26)

where p5 has to be properly defined. One may consider the equality of scalar products as a

way of defining p5. For this purpose one should introduce the metric. For the Lorentz group

the metric is
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gjk =




1

−1

−1

−1



, (27)

while for the SO(4) group the metric is simply the unit matrix. Thus equality of scalar

products lead to (repeated indices mean a summation)

S = gjkp
jpk = p̃λp̃

λ, p̃λ = p̃
λ, j, k = 0, 1, 2, 3, λ = 1, 2, 3, 5. (28)

From Eqs. (2) and (9) one may infer that

(p5)2 = gjkp
jpk = S, ⇒ p5 = ±

√
gjkpjpk. (29)

1. An example

Let us consider a particle of mass m moving with a constant velocity v. The energy

momentum (Lorentz) four vector is

p0 =
E

c
, p1 = px, p2 = py, p3 = pz , gjkp

jpk = m2c2 = (p4)2, p4 = ±mc, (30)

The transition to the SO(4) four vector goes as follows

dx5

dx0
=

√
1− v2

c2
(31)

and the SO(4) four vector is

p̃λ =

√
1− v2

c2
pλ, λ = 1, 2, 3, 5. (32)

On the basis of Eqs.(9-10) one may define

p̃0 = p5. (33)

Now the scalar products take the form
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pkp
k = p5p5, k = 0, 1, 2, 3, (34)

p̃λp̃
λ = p̃0p̃0, λ = 1, 2, 3, 5, (35)

Explicitly Eq.(34) is the well known relation

(
E

c

)2

− p2 = m2c2, (36)

while Eq.(35) is equivalent to it, but in Euclidean relativity it takes the form

(
1− v2

c2

)(
p2 +m2c2

)
= m2c2. (37)

C. The Euclidean 4-velocity

In the Euclidean 4-space q1, q2, q3, q5, the SO(4) 4-velocity ṽλ can be defined as follows

ṽλ =
dqλ

dτ
=
dτ

dt

dxλ

dτ
=
dxλ

dt
, λ = 1, 2, 3, 5, (38)

where the last result was obtained using Eq.(9). Thus the projection of the Euclidean

4-velocity on the 3-dimensional space q1, q2, q3, is the nonrelativistic velocity v = dx/dt

ṽλ ≡ [v, c
dτ

dt
]. (39)

The SO(4) invariant 4-velocity squared is equal to

ṽλṽ
λ = v2 + c2

(
dτ

dt

)2

, (40)

which for free particles, using Eq.(31), is equal to

ṽλṽ
λ = v2 + c2

(
1− v2

c2

)
= c2. (41)

Thus all free particles move with the velocity of light in the the 4-space q1, q2, q3, q5.
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D. The action in the Euclidean 4-space

Let us define the Euclidean 4-momenta

π̃λ =
mcdq̃λ
dx5

. (42)

The action S for a free particle satisfies

mcdx5 =
mcdq̃λ
dx5

dq̃λ = π̃λdq̃
λ = −dS. (43)

The contributions of the electromagnetic field can be included by introducing the Eu-

clidean electromagnetic 4-potentials Ãλ

Ãλ =
dx0

dx5
Aλ, λ = 1, 2, 3, 5, . (44)

The action may be now recasted in a form, similar to that of the minimal coupling

interaction

−dS =
(
π̃λ −

e

c
Ãλ

)
dq̃λ. (45)

III. MIXED SPACES

The Lorentz transformation has been derived in a four dimensional space-time with non-

Euclidean metric. This causes some calculational and conceptual problems, especially when

applied to quantum field theory. [4] [5] In this section a different approach is presented by

using the mixed interval method. In this method the Lorentz transformation is described

by 4-rotations in a four dimensional Euclidean space which we will call the ”mixed space”.

These results have a different structure from results which one would have obtained by using

the Lorentz transformation in the Minkowski space. Below we define the mixed space.

Let us consider two inertial reference systems S and S′ with coordinate axes XY Z and

X ′Y ′Z ′ and time axes T and T ′ respectively. Let x1y1z1t1, x2y2z2t2, be two events in S

and x′1y
′
1z

′
1t

′
1, x′2y

′
2z

′
2t

′
2, the corresponding events in S

′. Let us denote:
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(∆r)2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)2

= (∆x)2 + (∆y)2 + (∆z)2 ,

(∆r′)
2
= (x′2 − x′1)

2
+ (y′2 − y′1)

2
+ (z′2 − z′1)

2
(46)

= (∆x′)
2
+ (∆y′)

2
+ (∆z′)

2
,

and

∆t = t2 − t1, ∆t′ = t′2 − t′1. (47)

Lorentz invariance requires the invariance of the interval s12, where

s212 = c
2 (∆t)2 − (∆r)2 = c2 (∆t′)

2 − (∆r′)
2
, (48)

and c is the velocity of light. The four dimensional geometry described by the quadratic

forms of Eq.(48) is non-Euclidean. Let us define the ”mixed interval” m12 :

m2
12 = c

2 (∆t)2 + (∆r′)
2
= c2 (∆t′)

2
+ (∆r)2 , (49)

which is a different way of expressing Eq.(48) and the Lorentz invariance. Eq.(49) is equiva-

lent to Eq.(48). Eq.(49) is given in the mixed spaces XY ZT ′ and X ′Y ′Z ′T , it has difficulties

of interpretation, but have the advantage that the four-dimensional geometry of its quadratic

forms is Euclidean.

A. The Lorentz Transformation

Let us derive the Lorentz transformation for the case where system S′ moves along the

X(X ′) axis with velocity v with respect to system S. If at times t = t′ = 0, the two systems

coincide, the transformation corresponding to Eq.(49) is a simple rotation in the XT ′ (X ′T )

plane: 


x′

y′

z′

ct



=




cosα 0 0 sinα

0 1 0 0

0 0 1 0

− sinα 0 0 cosα







x

y

z

ct′




(50)
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and the inverse relation is:


x

y

z

ct′



=




cosα 0 0 − sinα

0 1 0 0

0 0 1 0

sinα 0 0 cosα







x′

y′

z′

ct




(51)

The angle α can be evaluated from the motion of the origin of the coordinates of system S′

with respect to S, in this case x′ = 0, x = vt and from Eq.(51) we obtain:

x = vt = x′ cosα − ct sinα,

from which we find:

sinα = −v
c

(52)

and from Eq.(52):

cosα =

√
1− v2

c2
. (53)

The form of the Lorentz transformation in the Minkowski space of Eq.(48) can be obtained

by extracting ct′ from Eq.(50):

ct′ = x tanα + ct/ cosα,

and substituting it into the first of Eqs. (50):

x′ = x cosα+ ct′ sinα = x cosα+ (x tanα + ct/ cosα) sinα = x/ cosα+ ct tanα.

Thus we obtain:


x′

y′

z′

ct′



=




1/ cos α 0 0 tanα

0 1 0 0

0 0 1 0

tanα 0 0 1/ cos α







x

y

z

ct




(54)
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=




(
1− v2

c2

)−1
2 0 0 −vc

(
1− v2

c2

)−1
2

0 1 0 0

0 0 1 0

−vc
(
1− v2

c2

)−1
2 0 0

(
1− v2

c2

)−1
2







x

y

z

ct




(55)

The above procedure can be generalized to a general transformation as given by Eq.(49),

which is a rotation in a four dimensional Euclidean space and will be given in Sec. 4.

B. Velocity, acceleration and higher order time derivative additions

The advantage of the mixed interval and the mixed space shows up when we deal with

time derivatives in calculating the laws of velocity addition, acceleration addition and higher

order time derivatives additions. For simplicity let us consider Eq.(51) and let us take its

n-th time derivative for n ≥ 2:

dn

dtn




x

y

z

ct′



=




cosα 0 0 sinα

0 1 0 0

0 0 1 0

− sinα 0 0 cosα



dn

dtn




x′

y′

z′

ct




=




cosα 0 0 sinα

0 1 0 0

0 0 1 0

− sinα 0 0 cosα



dn

dtn




x′

y′

z′

0



, n ≥ 2 (56)

as dnt
dtn

= 0 for n ≥ 2, and where sinα and cosα are given in Eqs. (52) and (53) respectively.

For n larger than one, we can consider from Eq.(56) only the three dimensional relation:

dn

dtn



x

y

z



=



cosα 0 0

0 1 0

0 0 1



dn

dtn



x′

y′

z′



, n ≥ 2. (57)
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The transition to time derivatives in the prime system can be achieved by solving Eq.(56)

for n = 1, for which the last equation is:

d (ct′)

dt
= sinα

dx′

dt
+ c cosα = sinα

dx′

dt′
dt′

dt
+ c cosα,

from which we can extract

η′ ≡ dt′

dt
=

cosα

1− sinα dx′

cdt′
. (58)

From Eq.(58) obtain

d

dt
=
dt′

dt

d

dt′
= η′

d

dt′
(59)

Using Eqs. (57-59) we obtain for the accelerations the simple relation:

d2

dt2



x

y

z



=



cosα 0 0

0 1 0

0 0 1



d

dt
η′
d

dt′



x′

y′

z′




=



cosα 0 0

0 1 0

0 0 1






η′
dη′

dt′
d

dt′



x′

y′

z′



+ (η′)

2 d
2

dt′2



x′

y′

z′






. (60)

Next derivation leads to:

d3

dt3



x

y

z



=



cosα 0 0

0 1 0

0 0 1






η′
d

dt′

(
η′
dη′

dt′

)
d

dt′



x′

y′

z′




+ 3(η′)
2 dη

′

dt′
d2

dt′2



x′

y′

z′



+ (η′)

3 d
3

dt′3



x′

y′

z′







(61)

and so on.
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C. Generalizations

In the following we will describe the Lorentz transformation in terms of orthogonal

matrices, therefore there will be no need to distinguish between covariant and contravariant

indices. We will use the notation:

x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z, x4 ≡ ict ≡ ix0. (62)

Roman letters will be used in three dimensional summation indices , and Greek letters in

four dimensional indices. Repeated indices convention for summation will be understood.

Let us introduce the following notation, suitable for the mixed space operations:

xa ≡ xa, x0 ≡ x′0, x′a ≡ x′a, x′0 ≡ x0, a = 1, 2, 3. (63)

The Lorentz transformation is a rotation in the mixed space and is represented with the

orthogonal matrix R

x′µ = Rµλxλ, µ, λ = 0, 1, 2, 3 (64)

From Eq.(64) one can find the Lorentz transformation in Minkowski’s space if he notes that:

x′a = Rabxb +Ra0x
′
0, x0 = R0axa +R00x

′
0, a, b = 1, 2, 3, (65)

which can be solved, in a similar way which led to Eq.(54), and we get for the Lorentz

transformation in Minkowski’s space:

x′µ = Lµλxλ, µ, λ = 1, 2, 3, 4,

Lab = Rab −Ra0R0b/R00, La4 = −iRa0/R00, (66)

L4a = −iR0a/R00, L44 = 1/R00,

where L is an orthogonal matrix. In this way one can parametrize the Lorentz transformation

L of the Minkowski space, in terms of the four dimensional rotation matrix R of Eq.(64).

One can check that Eq.(54) is a particular case of Eq.(65). Using Eqs. (63) and (64) one

can define tensors in the mixed space.
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IV. SUMMARY AND CONCLUSIONS

Two four dimensional spaces for which the invariant interval is Euclidean were intro-

duced. In the first case 4 new coordinates were introduced, while in the second case mixed

space was used.

The new coordinates are related to the Minkowski coordinates as in Eq.(9)

dqλ =
dτ

dt
dxλ, λ = 1, 2, 3, 5,

and satisfy Eq.(10)

(cdτ )2 =
(
dq1

)2
+
(
dq2

)2
+
(
dq3

)2
+
(
dq5

)2
.

Now Lorentz invariance is a pure rotation in the q1, q2, q3, q5 space and a tensor calculus can

be developed according to the SO(4) group. An interesting scalar of this group is
(

E
c

dτ
dt

)2

as given by Eq.(23). The SO(4) 4-velocity as given by Eq.(39) is

ṽλ ≡ [v, c
dτ

dt
],

where v is the nonrelativistic velocity v = dx/dt. For free particles ṽλṽλ = c2, i.e. they are

moving in the Euclidean 4-space with the velocity of light.

The least action principle for the q1, q2, q3, q5 space was discussed and derived in subsec-

tion 2.4, Eq.(43) and Eq.(45).

The above results seem to be very intriguing, more work in this direction is now in

progress.

Using the mixed space presentation we have shown that new possibilities exist for the

treatment of the Lorentz transformation. Equation (49) allowed us to use a mixed 4 space-

time as a basis for an Euclidean metric and to obtain in a simple way, not only the Lorentz

transformation but also the addition formulas for accelerations and higher order time deriva-

tives. Moreover, for accelerations and higher order time derivatives, the transformation fol-

lows a simple, three dimensional procedure (Eqs. (57-61)). Using Eqs. (65) and (66) one

16



can connect the parameters of the group [6] of four dimensional rotations SO(4) and the

equivalent parameters of the group of Lorentz transformations. This procedure allows to

introduce new parametrization of the Lorentz transformations in terms of the parameters of

pure 4-rotations.

The introduction of the mixed spaces may open new outlooks and interpretations of

transformed spaces and simplified procedures for the evaluation of the transformation for-

mulae. It may give meaning to such notions as events in future or past times, or two time

equations, as the mixed intervals are described with times belonging to events in different

frames.

At present this work is being continued in order to explore the full potential of the

presented methods.
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