Bibliography

[Abdel-Kader and Fouda, 2014]  Abdel-Kader, M., Fouda, A. (2014). Mild steel plates impacted by hard projectiles. J. of Constructional Steel Research, 99: 57–71.

[Abdelshafy and Oyadiji, 2007]  Abdelshafy, M.H., Oyadiji S.O. (2007). Penetration behaviour of steel plates. In: Proc. of ASME Int. Design Engineering Technical  Conf. and 6th Int. Conf. on Multibody Systems, Nonlinear Dynamics, and Control (September 4–7, 2007, Las Vegas, NV), paper No. DETC2007-35229,  pp. 1131‑1139.

[Abdel-Wahed et al., 2010]  Abdel-Wahed, M.A., Salem, A.M., Zidan, A.S., Riad, A.M. (2010). Penetration of a small caliber projectile into single and multi-layered targets. In: Proc. of 4th European Conf. on Computational Mechanics (May 16-21, 2010, Paris, France).

[Abdullah et al., 1998]  Abdullah, S., Hetherington, J.G., Leeming, D. (1998). Penetration performance of segmented rods - comparison with continuous rods at high velocity. J. of Battlefield Technology, 1(1): 4 – 8.

[Abrate, 1998]  Abrate, S. (1998). Impact on Composite Structures. Cambridge University Press, Cambridge.

[ACE, 1946]  Fundamentals of protective structures. (1946). Rep. AT120 AT1207821. Army Corps of Engineers (ACE). Office of the Chief of Engineers.

[ACI 318-08, 2008]  ACI 318-08 (2008) Building code requirements for structural concrete and commentary. American Concrete Institute.

[ACI, 1978]  ACI Standard 318-77 (1978). Building code requirements for reinforced concrete. American Concrete Institute, Detroit, MI.

[Adeli and Amin, 1985]  Adeli, H., Amin, A.M. (1985). Local effects of impactors on concrete structures. Nuclear Engineering and Design, 88(3): 301–317.

[Adeli et al., 1986]  Adeli, H., Amin, A.M., Sierakowski, R.L. (1986). Earth penetration by solid impactors. The Shock and Vibration Digest, 18(9): 14–22

[Akella and Naik, 2015]  Akella, K., Naik, N.K. (2015).  Composite armour—a  review. J. of the Indian Institute of Science, 95(3): 297-312.

[Akella, 2017] Akella, K. (2017). Studies for improved damage tolerance of ceramics against ballistic impact using layers. Procedia Engineering, 173: 244 – 250.

[Alekseeva and Barantsev, 1976]  Alekseeva, E.V., Barantsev, R.G. (1976). Local Method of Aerodynamic Calculations in Rarefied Gas. Leningrad State University Press, Leningrad (in Russian).

[Aleksentseva, 2015]  Aleksentseva, S.E. (2015). Shock-Waves Processes of Interaction of High-Speed Elements with Condensed Matter. Doctor of Science Thesis, Samara State Technical University, Samara (in Russian).

[Al-Hachamee and Azeez, 2010]  Al-Hachamee, E.K.S., Azeez, H. (2010). Scabbing and perforation local effect of impactors on concrete structures. Engineering and Technology J., 28(9): 1757-1770.

[Allen et al., 1957a]  Allen, W.A., Mayfield, E.B., Morrison, H.L. (1957). Dynamics of a projectile penetrating sand. J. of Applied Physics, 28(3): 370‑376.

[Allen et al., 1957b]  Allen, W.A., Mayfield, E.B., Morrison, H.L. (1957). Dynamics of a projectile penetrating sand. Part II. J. of Applied Physics, 28(11): 1331‑1335.

[Almohandes et al., 1996]  Almohandes, A.A., Abdel‑Kader, M.S., Eleiche, A.M. (1996). Experimental investigation of the ballistic resistance of steel‑fiberglass reinforced polyester laminated plates. Composites. Part B, 27(5): 447‑458.

[Almusallam et al., 2013] Almusallam, T.H., Siddiqui, N.A., Iqbal, R.A., Abbas, H. (2013). Response of hybrid-fiber reinforced concrete slabs to hard projectile impact. Int. J. of Impact Engineering, 58: 17-30.

[Almusallam et al., 2015]  Almusallam, T.H., Abadel, A.A., Al-Salloum, Y.A., Siddiqui, N.A., Abbas, H. (2015). Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs. Int. J. of Impact Engineering, 81: 61-73.

[Aly and Li, 2008]  Aly, S.Y., Li, Q.M. (2008). Critical impact energy for the perforation of metallic plates. Nuclear Engineering and Design, 238(10): 2521-2528.

[Aly and Li, 2008a]  Aly, S.Y., Li, Q.M. (2008). Numerical investigation of penetration performance of non-ideal segmented-rod projectiles. Transactions of Tianjin University, 14(6): 391-395.

[Ambroso et al., 2005]  Ambroso, M.A., Kamien, R.D., Durian, D.J. (2005). Dynamics of shallow impact cratering. Physical Review E., 72, 041305.

[Amde et al., 1996]  Amde, A.M., Mirmiran, A., Walter, T.A. (1996). Local damage assessment of metal barriers under turbine missile impacts. J. of Structural Engineering, 122(1): 99-108.

[Amde et al., 1997]  Amde, A.M., Mirmiran, A., Walter, T.A. (1997). Local damage assessment of turbine missile impact on composite and multiple barriers. Nuclear Engineering and Design, 178(1/2): 145–156.

[Amirikian, 1950]  Amirikian, A. (1950). Design of protective structures. Rep. NT-3726, Bureau of Yards and Docks, Department of the Navy, Washington, DC.

[Anderson and Bodner, 1988]  Anderson, C.E,Jr., Bodner, S.R. (1988). Ballistic impact: the status of analytical and numerical modeling. Int. J. of Impact Engineering, 11(1): 33‑40.

[Anderson et al., 1992]  Anderson, C.E,Jr., Morris, B.L., Littlefield, D.L. (1992). A penetration mechanics database. Rep. No. 3593/001, Southwest Research Institute.

[Anderson et al., 1995]  Anderson, C.E,Jr., Walker, J.D., Bless, S.J., Sharron, T.R. (1995). On the velocity dependence of the L/D effect for long-rod penetrators. Int. J. of Impact Engineering, 17(1): 13-24.

[Anderson et al., 1996]  Anderson, C.E,Jr., Walker, J.D., Bless, S.J., Partom, Y. (1996). On the L/D effect for long-rod penetrators. Int. J. of Impact Engineering, 18(3): 247-264.

[Anderson et al., 1997]  Anderson, C.E,Jr., Subramanian, R., Walker, J.D., Normandia, M.J., Sharron, T.R. (1997). Penetration mechanics of seg-tel penetrators. Int. J. of Impact Engineering, 20(1–5): 13–26.

[Anderson et al., 1999]  Anderson, C.E,Jr., Hohler, V., Walker, J.D., Stilp, A.J. (1999). The influence of projectile hardness on ballistic performance. Int. J. of Impact Engineering, 22(6): 619‑632.

[Anderson, 2017]  Anderson, C.E,Jr. (2017). Analytical models for penetration mechanics: a review. Int. J. of Impact Engineering, 108: 3-26.

[Andries and Marshek, 1981]  Andries, G.C., Marshek, K.M. (1981). An experimental determination of kinetic friction for hardened dry steel pairs. Wear, 72(2): 187‑194.

[Ansari et al., 2010]  Ansari, R., Khan, S.H., Khan, A.H. (2010). Oblique impact of cylindro-conical projectile on thin aluminium plates. In: Proc. of Int. Conf. on Theoretical, Applied, Computational and Experimental Mechanics - ICTACEM 2010 (December 27-29, 2010, Kharagpur, India).

[Apshtein and Titow, 1996]  Apshtein, E., Titow, O. (1996). Area rule and volume rule for integral quantities. Acta Mechanica, 116(1-4): 45‑60.

[Aptukov and Belousov, 1991]  Aptukov, V.N., Belousov, V.L. (1991). Analysis of the optimal laminated target made up of discrete set of materials. In: Dulikracich, G.S., ed., Proc. of  3rd Int. Conf. on Inverse Design Concepts and Optimization in Engineering Science (October 23-25, 1991, Washington, DC), pp. 489-495.

[Aptukov and Fonarev, 2010]  Aptukov, V.N., Fonarev, A.V. (2010). Approximate estimation of penetration depth of a pile into soil under multiple impacts. Vestnik Permskogo Universiteta. Matematika. Mekhanika. Informatika, 2(2): 41-45 (in Russian).

[Aptukov and Khasanov, 2011]  Aptukov, V.N., Khasanov, A.R. (2011). Optimal deceleration of a rigid cylinder by an inhomogeneous target for normal impact with friction. Vestnik Permskogo Universiteta. Matematika. Mekhanika. Informatika, 3(7): 19-27 (in Russian).

[Aptukov and Khasanov, 2014]  Aptukov, V.N., Khasanov A.R. (2014). Optimization of parameters of layered plates dynamically penetrated by hard indenter taking into account friction and weakening effect of free surfaces. Vestnik Permskogo Universiteta., Mekhanika, 2: 48-75 (in Russian).

[Aptukov and Khasanov, 2017] Aptukov, V.N., Khasanov, A.R. (2017). Expansion of a cylindrical cavity in a compressible elastic-plastic medium. Vestnik Permskogo Natsional'nogo Issledovatel'skogo Politechnicheskogo Universiteta. Mechanika, No.1: 5-23 (in Russian).

[Aptukov and Pozdeev, 1982]  Aptukov, V.N., Pozdeev, A.A. (1982). Some minimax problems of the technology and strengths of constructions. Engineering Cybernetics, 20(1): 39‑46.

[Aptukov et al., 1985]  Aptukov, V.N., Petrukhin, G.I., Pozdeev, A.A. (1985). Optimal deceleration of a rigid body by an inhomogeneous plate for the case of normal impact. Mechanics of Solids, 20(1): 155‑160.

[Aptukov et al., 1986]  Aptukov, V.N., Belousov, V.L., Kanibolotskii, M.A. (1986). Optimization of the structure of a layered slab with the penetration of a rigid striker. Mechanics of Composite Materials, 22(2): 179‑183.

[Aptukov et al., 1992]  Aptukov, V.N., Murzakaev, A.V., Fonarev, A.V. (1992). Applied Theory of Penetration. Nauka, Moscow (in Russian).

[Aptukov et al., 1999]  Aptukov, V.N., Bartolomej, A.A., Irundin, C.V., Fonarev, A.V. (1999). Applied theory of penetration of a body into soil under multiple impact. The problem about spherical cavity expansion in ground. In: Osnovanija i Fundamenty v Geologicheskikh Uslovijakh Urala. Sbornik Nauchnykh Trudov. Perm, Perm State Technical University, pp. 9-19 (in Russian).

[Aptukov, 1985]  Aptukov, V.N. (1985). Optimal structure of inhomogeneous plate with continuous distribution of properties over the thickness. Mechanics of Solids, 20(3): 148‑151.

[Aptukov, 1990]  Aptukov, V.N. (1990). Penetration: Mechanical aspects and mathematical modeling (review). Strength of Materials, 22(2): 230-240.

[Aptukov, 1991a]  Aptukov, V.N. (1991). Optimal interaction of indenter with inhomogeneous plate. In: Dulikracich, G.S. ed. Proc. of  3rd Int. Conf. on Inverse Design Concepts and Optimization in Engineering Science (October 23-25, 1991, Washington, DC), pp. 481-488.

[Aptukov, 1991b]  Aptukov, V.N. (1991). Expansion of a spherical cavity in a compressible elasto‑plastic medium. I. The influence of mechanical characteristics, free surface, and lamination. Strength of Materials, 23(12): 1262‑1268.

[Aptukov, 1991c]  Aptukov, V.N. (1991). Expansion of a spherical cavity in a compressible elasto‑plastic medium. II. Effect of inertial forces. Temperature effects. Strength of Materials, 23(12): 1269‑1274.

[Arenz, 1969] Arenz, R.J. (1969). Influence of hypervelocity projectile size and density on the ballistic limit of dual-sheet structures. AIAA Paper, no. 69-376.

[Arnoux et al., 2011]  Arnoux, J.J., Sutter, G., List, G., Molinari, A. (2011). Friction experiments for dynamical coefficient measurement. Advances in Tribology, Article ID 613581, 6 pp.

[Asatryan et al., 1996]  Asatryan, V.L., Bagdoev, A.G., Vantsyan, A.A. (1996). Solution of a dynamic problem of penetration of rigid cone into initially elastic transversely isotropic medium. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 49(4): 77-85 (in Russian).

[Astarlioglu et al., 2013]  Astarlioglu, S., Krauthammer, T., Bui, L. (2013). Penetration resistance of normal-strength and ultra-high-performance concrete. Center for Infrastructure Protection and Physical Security (CIPPS), University of Florida, CIPPS–TR-007-2013, Contract No. S03-36 DTRA 00017, Tasks 5.1 and 5.2.

[Atkins, 1960] Atkins, W.W. (1960). Hypervelocity Penetration Studies. In: Proc. of the 4th Symp. on Hypervelocity Impact (Eglin Air Force Base, FL, APGC-TR-60-39, v.1.

[Attaway et al., 1998]  Attaway, S.W., Mello, F.J., Heinstein, M.W., Swegle, J.W., Ratner, J.A., Zadoks, R.I. (1998). PRONTO3D user’s instructions: a transientdynamic code for non-linear structural analysis. Rep. SAND98-1361. Sandia National Laboratories, Albuquerque, NM.

[Auten and Hammell, 2013]  Auten, J.R.Sr., Hammell, R.J. II (2014). Predicting the terminal ballistics of kinetic energy projectiles using artificial neural networks. In: Proc. of the Conf. for Information Systems Applied Research (November 7-9, 2013, San Antonio, TX).

[Auten and Hammell, 2014]  Auten, J.R.,Sr., Hammell, R.J., II (2014). Predicting the terminal ballistics of kinetic energy projectiles using artificial neural networks. J. of Information Systems Applied Research, 7(1): 23-32.

[Aversh’ev and Loktev, 2012] Aversh’ev, A.S., Loktev, A.A. (2012). Response of structures to high velocity impacts: a generalized algorithm. Vestnik Moskovskogo Gosudarstvennogo Stroitel'nogo Instituta, no.7: 51-59 (in Russian).

[Awerbuch and Bodner, 1974]  Awerbuch, J., Bodner, S.R. (1974). Analysis of the mechanics of perforation of projectiles in metallic plates. Int. J. of Solids and Structures, 10(6): 671‑684.

[Awerbuch, 1969]  Awerbuch, J. (1969). Projectile penetration in metals and composite materials. Master Thesis, Israel Institute of Thecnology, Haifa, Israel (in Hebrew).

[Awerbuch, 1970]  Awerbuch, J. (1970). A mechanical approach to projectile penetration. Israel J. of Technology, 8(4): 375‑383.

[Awoukeng-Goumtcha et al., 2014]  Awoukeng-Goumtcha, A., Taddei, L., Tostain, F., Roth, S. (2014). Investigations of impact biomechanics for penetrating ballistic cases. Bio-Medical Materials and Engineering, 24: 2331–2339.

[Awrejcewicz and Olejnik, 2005]  Awrejcewicz, J., Olejnik, P. (2005). Analysis of dynamic systems with various friction laws. Applied Mechanics Reviews, 58(6): 389-411.

[Babaei et al., 2011]  Babaei, B., Shokrieh, M.M., Daneshjou, K. (2011). The ballistic resistance of multi-layered targets impacted by rigid projectiles. Materials Science and Engineering A, 530(1): 208-217.

[Babaei, 2016] Babaei, H., Mostofi, T.M., Alitavoli, M. (2016). Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures, 107: 257–265.

[Babu et al., 2007]  Babu, M.G., Velmurugan, R., Gupta, N.K. (2007). Havy mass projectile impact on thin and moderately thick unidirectional fiber/epoxy laminates. Latin American J. of Solids and Structures, 4(3): 247-265.

[Backenbach and Bellman, 1961]  Backenbach, E.F., Bellman, R. (1961). Inequalities. Springer, Berlin-Götingen-Helderberg.

[Backman and Goldsmith, 1978]  Backman, M., Goldsmith, W. (1978). The mechanics of penetration of projectiles into targets. Int. J. of Engineering Science, 16(1): 1‑99.

[Backman and Finnegan, 1976]  Backman, M.E., Finnegan, S.A. (1976). Dynamics of the oblique impact and ricochet of non-deforming spheres against thin plates. Rep. NWC TP 5844. Naval Weapons Center, China Lake, CA.

[Bagdoev and Vantsyan, 1981a]  Bagdoev, A.G., Vantsyan, A.A. (1981). Penetration of slender bodies into elastic media. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 34(1): 3-14 (in Russian).

[Bagdoev and Vantsyan, 1981b]  Bagdoev, A.G., Vantsyan, A.A. (1981). Penetration of slender body into metals and soils. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 34(3): 25-38 (in Russian).

[Bagdoev and Vantsyan, 1983]  Bagdoev, A.G., Vantsyan, A.A. (1983). Penetration of slender body into elastic anisotropic media. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 36(6): 23-30 (in Russian).

[Bagdoev and Vantsyan, 1987]  Bagdoev, A.G., Vantsyan, A.A. (1987). Investigation of penetration of slender rigid body into transversely isotropic medium. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 40(4): 3-6 (in Russian).

[Bagdoev and Vantsyan, 1989]  Bagdoev, A.G., Vantsyan, A.A. (1989). Penetration of a thin body into a transversely isotropic medium with twisting. Mechanics of solids, 24(2): 182-184.

[Bagdoev and Vantsyan, 1989b] Bagdoev, A.G., Vantsyan, A.A. (1989). Penetration of slender rotating body into transversally-isotropic medium. Izvestija Akademii Nauk SSSR, Mekhanika Tvjordogo Tela, 2: 187-189 (in Russian).

[Bagdoev et al., 1988]  Bagdoev, A.G., Vantsyan, A.A., Grigoryan, M.S. (1988). Influence of anisotropic properties of metal laminated specimen on penetration. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 41(6): 28-34 (in Russian).

[Bagdoev et al., 1989]  Bagdoev, A.G., Vantsyan, A.A., Grigoryan, M.S. (1989). Investigation of singularity of stresses in anisotropic plastic medium for cone penetration. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 42(4): 52-57 (in Russian).

[Bagdoev et al., 1997]  Bagdoev, A.G., Vantsyan, A.A., Khachatryan, B.K., Khachatryan, L.A. (1997). Investigation of dynamic problem of penetration of rigid indentor into anisotropic medium on the basis of hypothesis of normal cross sections. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 50(1): 44-52 (in Russian).

[Bagdoev et al., 2012] Bagdoev, A.G., Vantsyan, A.A., Grigoryan, M.S. (2012). Taking into account of anisotropy of composite barriers and stochasticity of processes of penetration. In: Proc. 4th All-Russia Symp. "Mekhanika Kompositsionnykh Materialov i Konstruktsij" [Mechanics of Composite Material and Structures] (4-6 December, 2012, Moscow, Russia), 1, pp.16-29 (in Russian).

[Bagdoev, 1977] Bagdoev, A.G. (1977). The penetration of a slender body of revolution into an elastic medium. Izvestija Akademii Nauk Armjanskoj SSR. Mekhanika, 49(4): 17-37 (in Russian).

[Bai and Johnson, 1981] Bai, V.L., Johnson, W. (1981). The effects of projectile speed and medium resistance in ricochet off sand. J. of Mechanical Engineering Science, 23: 69-75.

[Baker et al., 1980] Baker, W.E., Kulesz, J.J., Westine, P.S., Cox, P.A., Wilbeck, J.S. (1980). A Manual for the prediction of blast and fragment loading on structures. Rep. No. DOE/TIC-11268, U.S. Department of Energy, Albuquerque Operation Office, Amarillo Area Office, Amarillo, TX.

[Baker and Persechino, 1993] Baker, J.R., Persechino, M.A. (1993). An analytical model of hole size in finite plates for both normal and oblique hypervelocity impact for all target thicknesses up to the ballistic limit. Int. J.of Impact Engineering, 14: 73-84.

[Baker et al., 1991]  Baker, W.E., Westine, P.S., Dodge, F.T. (1991). Similarity Methods in Engineering Dynamics: Theory and Practice of Scale Modeling. Elsevier, Amsterdam.

[Baker, 1995] Baker, J. R. (1995). Hypervelocity crater penetration depth and diameter - a linear function of impact velocity ? Int. J.of Impact Engineering, 17(1–3): 25–35.

[Balaban and Kurtoğlu, 2015]  Balaban, B., Kurtoğlu, İ. (2015). An investigation of AA7075-T651 plate perforation using different projectile nose shapes. In: Proc. of 10th European LS-DYNA Conf. (15-17 June, 2015, Würzburg, Germany).

[Balagansky and Merzhievsky, 2004]  Balagansky, I.A., Merzhievsky, L.A. (2004). Destructive Effects of Ammunition. Novosibirsk State Technical University Press, Novosibirsk (in Russian).

[Balakin and Balakina, 1976]  Balakin, V.A., Balakina, N.A. (1976). Surface melting of solid body caused by high-speed friction. In: Sreda i Trenie v Mekhanizmakh, 2. Taganrogskij Radiotekhnicheskij Institut, Taganrog, pp. 16-26 (in Russian).

[Balakin, 1980]  Balakin, V.A. (1980). Friction and Wear for High Sliding Speeds. Moscow, Mashinostroenie (in Russian).

[Balakin, 1981]  Balakin, V.A. (1981). Friction and wear of metals at high sliding speeds. In: Kragel’sky, I.V., Alisin, V.V., eds. Friction, wear, and lubrication: Tribology Handbook. Vol. 1, Mir, Moscow, Section 6.3, pp. 218-222.

[Balandin, 2001] Balandin, V.V. (2001). Experimental Study of Penetration of Axisymmetric Bodies into Soft Soils. Nizhegorodskij Gosudarstvennyj Universitet imeni N.I. Lobachevskigo, Nizhni Novgorod. Doctor Thesis (in Russian).

[Balon, 1979]  Balon, L.V. (1979). Electromagnetic Rail Brakes, Tranport, Moscow (in Russian).

[Banach, 1951]  Banach, S. (1951). Mechanics. Polish Mathematical Society, Warszawa-Wrocław.

[Bangash and Bangash, 2006]  Bangash, M.Y.H., Bangash, T. (2006). Explosion - Resistant Buildigs: Design, Analysis, and Case Studies. Springer, Heidelberg, Berlin.

[Bangash, 2009]  Bangash, M.Y.H. (2009). Shock, Impact and Explosion: Structural Analysis and Design. Springer, Berlin.

[Banichuk and Ivanova, 2007]  Banichuk, N.V., Ivanova, S.Yu. (2007). Shape optimization of rigid body penetrating into continuous medium. Problemy Prochnosti i Plastichnosti, 69: 47–58 (in Russian).

[Banichuk and Ivanova, 2008]  Banichuk, N.V., Ivanova, S.Yu. (2008). Shape optimization of rigid 3-D high-speed impactors penetrating into concrete shields. Mechanics Based Design of Structures and Machines, 36(3): 249–259.

[Banichuk and Ivanova, 2015] Banichuk N.V., Ivanova S.Yu. (2015). Shape optimization of truncated axisymmetric bodies moving translationally with rotation in elastic-plastic media. Problemy Prochnosti i Plastichnosti, 77(4): 367-378 (in Russian).

[Banichuk and Ivanova, 2016]  Banichuk, N.V., Ivanova, S.Yu. (2016) On the penetration of a rotating impactor into an elastic-plastic medium. Mechanics Based Design of Structures and Machines, 44(4): 440-450.

[Banichuk and Ivanova, 2016b]  Banichuk, N.V., Ivanova, S.Yu. (2016). The game approach to solution of an impactor shape and layered structure medium optimization problem for high speed perforation. Problemy Prochnosti i Plastichnosti, 78(4): 426-435 (in Russian).

[Banichuk and Ivanova, 2017a] Banichuk, N.V., Ivanova, S.Yu. (2017). Optimal Structural Design: Contact Problems and High-Speed Penetration. Walter de Gruyter GmbH, Berlin, Boston.

[Banichuk et al., 1969]  Banichuk, N.V., Petrov, V.M., Chernous’ko, F.L. (1969). The method of local variations for variational problems involving non-additive functionals. USSR Computational Mathematics and Mathematical Physics, 9(3): 66–76.

[Banichuk et al., 2007]  Banichuk, N.V., Ivanova, S.Yu., Ragnedda, F. (2007). On shapes of bodies penetrating at maximum depth into solid deformable medium. In: Proc. of the Conf. “Sovremennye Problemy Mekhaniki Sploshnoy Sredy" [Modern Problebs of Continuous Mechanics], (November 26-29, 2007, Rostov on Don, Russia), pp. 44-48. (in Russian)

[Banichuk et al., 2008a]  Banichuk, N.V., Ivanova, S.Yu., Makeyev, Y.V. (2008). On penetration of rigid non-axisymmetric bodies into elastic-plastic medium. Problemy Prochnosti i Plastichnosti, 70: 131–139 (in Russian).

[Banichuk et al., 2008b]  Banichuk, N.V., Ivanova, S.Yu., Makeev, E.V. (2008k). On penetration of nonaxisymmetric bodies into a deformable solid medium and their shape optimization. Mechanics of Solids, 43(4): 671–677.

[Banichuk et al., 2009]  Banichuk, N.V., Ragnedda, F., Serra, M. (2009). On body shapes providing maximum depth of penetration. Structural and Multidisciplinary Optimization, 38(5): 491–498.

[Banichuk et al., 2011]  Banichuk, N.V., Ivanova, S.Yu., Ragnedda, F., Serra, M. (2011). On shape of rigid shell with minimum mass and maximum resistance force moving in deformable media. Problemy Prochnosti i Plastichnosti, 73: 36-44 (in Russian).

[Banichuk et al., 2012]  Banichuk, N.V., Ivanova, S.Yu., Ragnedda, F., Serra, M. (2012). Multiobjective shape optimization of the rigid shell moving into a condensed media. Mechanics Based Design of Structures and Machines, 40(1): 73–82.

[Banichuk et al., 2012a]  Banichuk, N.V., Ivanova, S.Yu., Makeev E.V. (2012). Penetration of rigid strikers in layered plates and some problems of global multipurpose structural optimization, Problemy Prochnosti i Plastichnosti, 74: 124-133 (in Russian).

[Banichuk et al., 2012b]  Banichuk, N.V., Ivanova, S.Yu., Makeev, E.V. (2012). Nonlocal optimization of multi-layered spaced shields. In: Proceedings of the XL Summer School "Advanced Problems In Mechanics" – Conf. APM 2012 (July 2-8, St. Petersburg, Russia), pp. 35-42 .

[Banichuk et al., 2013a]  Banichuk, N.V., Ivanova, S.Yu., Ragnedda, F., Serra, M. (2013). Multiobjective approach for optimal design of layered plates against penetration of strikers. Mechanics Based Design of structures and Machines, 41(2): 189-201.

[Banichuk et al., 2013b]  Banichuk, N.V., Ivanova, S.Yu., Makeev, E.V., Turut'ko, A.I. (2013). Some analytical and computational estimates of parameters of optimal protective plate structure. Problemy Prochnosti i Plastichnosti, 75(3) 206-214 (in Russian).

[Baranov and Lopa, 1995]  Baranov, V.L., Lopa, I.V. (1995). Variational problem of minimization of drag force of penetrator. Izvestija Tul'skogo Gosudarsvennogo Universiteta. Serija Matematika, Mekhanika, Informatika, 1(2): 18-23 (in Russian).

[Baranov et al., 2013]  Baranov, V.L., Fetisov, I.V., Schitov, V.N. (2013). Nose shape optimization of indenter. Izvestija Tul'skogo Gosudarstvennogo Universiteta; Estestvennye Nauki, 2, part 2: 17-27 (in Russian).

[Baranov et al., 1991]  Baranov, A.V., Konanykhin, Y.P., Pasechnik, L.P., Sugak, S.G. (1991). Investigation of Dynamic Effect of Impactor on Multilayer Shields. Universitet Druzhby Narodov, Chernogolovka (in Russian).

[Baranov et al., 1995]  Baranov, V.L., Lopa, I.V., Hristov, H.I., Chivikov, Z.Ch. (1995). Variational problem of optimization of the nose shape of planetary penetrator. Aerospace Research in Bulgaria (Space Research Institute, Sofia), 12: 146-149.

[Baranov et al., 1996]  Baranov, V.L., Zubachev, V.I., Lopa, I.V., Schitov, V.N. (1996). Some Problems of Design of Bullets for Small Arms. Tula State University Press, Tula (in Russian).

[Baranov et al., 2004]  Baranov, V.L., Khromov, I.V., Schitov, V.N. (2004). Determining total drag force of rotating projectile penetrating into soil. Izvestija Tul'skogo Gosudarsvennogo Universiteta. Serija Problemy Spetsial'nogo Mashinostroenija, 7: 28-33 (in Russian).

[Barr et al., 1983]  Barr, P., Carter, P.G., Howe, W.D., Neilson, A.J., Richards, A.E. (1983). Experimental studies of the impact resistance of steel faced concrete composition. In: Trans. of 7th Int. Conf. on Structural Mechanics in Reactor Technology - SMiRT-7 (August 22-26, 1983, Chicago, IL), paper j8/4, pp. 395-402.

[Barr, 1990]  Barr, P., compiler. (1990) Guidelines for the Design and Assessment of Concrete Structures Subjected to Impact. UK Atomic Energy Authority, Safety and Reliability Directorate, UK.

[Bashurov et al., 1997]  Bashurov, V.V., Bebenin, G.V., Ioilev, A.G. (1997). Numerical simulation of rod particles hypervelocity impact effectiveness at various attack angles. Int. J. of Impact Engineering, 20(1-5): 79-88.

[Bashurov et al., 2011]  Bashurov, V.V., Bukharev, Yu.N., Tereshin, A.I., Tverskov, A.V. (2011) Numerical simulations of collision of spherical projectiles with barriers at impact velocity in the range, 1‑6 km/s, using SPH code. In: Bukharev, Yu.N., ed. Applied Problems of High-Speed Impact. Rossijskij Federal'nyj Jadernyj Tsentr, Vserossijskij Nauchno-Issledovatel'skij Institut Eksperimental'noj Fiziki (FGUP "RFJaTs-VNIIEF"), pp. 224-241] (in Russian).

[Baty et al., 2003]  Baty, R.S., Lundgren, R.G., Patterson, W.J. (2003). On pilot-hole assisted penetration. In: Proc. of 11th Int. Symp. on Interaction of the Effects of Munitions with Structures (May 5-9, 2003 Mannheim, Germany).

[Baumberger, 1996]  Baumberger T. (1996). Dry friction dynamics at low velocities. In: Persson, B., Tosatti, E., eds. Physics of Sliding Friction [Proc. of the NATO Advanced Research Workshop and Adriatico Research Conf. on Physics of Sliding Friction (June 20-23, 1995, Miramare, Trieste, Italy)]. Springer Science & Business Media.

[Bazhenov and Kotov, 2010]  Bazhenov, V.G., Kotov, V.L. (2010). Solution of problems of oblique penetration of axisymmetric projectiles into soft soil based on local interaction models. J. of Applied Mathematics and Mechanics, 74(3): 278–285.

[Bazhenov and Kotov, 2011]  Bazhenov, V.G., Kotov, V.L. (2011). Mathematic Modeling of Unsteady Processes of Impact and Penetration of Axisymmetric Bodies and Identification of Properties of Soils. Fizmatlit, Moscow (in Russian).

[Bazhenov et al., 2003]  Bazhenov, V.G., Bragov, A.M., Kotov, V.L., Kochetkov, A.V. (2003). An investigation of the impact and penetration of solids of revolution into soft earth. J. of Applied Mathematics and Mechanics, 67(4): 611-620.

[Bazhenov et al., 2013]  Bazhenov, V.G., Kotov, V.L., Linnik, E.Y. (2013). Models of calculation of axisymmetrical solids with the lowest drag during motion in soils. Doklady Physics, 58(3): 100-103.

[Bazhenov et al., 2014]  Bazhenov, V.G., Balandin, V.V., Grigoryan, S.S., Kotov, V.L. (2014). Analysis of models for calculating the motion of solids of revolution of minimum resistance in soil media. J. of Applied Mathematics and Mechanics, 78: 65–76.

[Bazhenov et al., 2015]  Bazhenov, V.G., Kotov, V.L., Linnik, E.Yu. (2015). Method of numerical calculation of optimal forms of bodies of revolution at movement in soil medium. Vestnik Permskogo Natsional'nogo Issledovatel'skogo Politekhnicheskogo Universiteta. Mekhanika, 2: 5–20 (in Russian).

[Bazilevsky and Ivanov, 1977] Bazilevsky, A.T., Ivanov, B.A. (1977). Overview of progress in mechanics craters formation. In: Mekhanika Obrazovanija Voronok pri Udare I Vzryve, Mir, Moscow, pp. 172-227 (in Russian).

[Bellman et al., 1958]  Bellman, R.E., Glicksberg, I., Gross, O.A. (1958). Some Aspects of the Mathematical Theory of Control Processes. RAND Corporation, Santa Monica, California.

[Ben‑Dor et al., 1997a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1997). Shape optimization of high velocity impactors using analytical models. Int. J. of Fracture, 87(1): L7‑L10.

[Ben‑Dor et al., 1997b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1997). Area rules for penetrating bodies. Theoretical and Applied Fracture Mechanics, 26(3): 193‑198.

[Ben‑Dor et al., 1997c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1997). Optimal 3D impactors penetrating into layered targets. Theoretical and Applied Fracture Mechanics, 27(3): 161‑166.

[Ben‑Dor et al., 1998a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1998). On the ballistic resistance of multi‑layered targets with air gaps. Int. J. of Solids and Structures, 35(23): 3097‑3103.

[Ben‑Dor et al., 1998b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1998). A model of high speed penetration into  ductile targets. Theoretical and Applied Fracture Mechanics, 28(3): 237‑239.

[Ben‑Dor et al., 1998c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1998). New area rule for penetrating impactors. Int. J. Impact Engineering, 21(1‑2): 51‑59.

[Ben‑Dor et al., 1998d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1998). Effect of air gaps on ballistic resistance of targets for conical impactors. Theoretical and Applied Fracture Mechanics, 30(3): 243‑249.

[Ben‑Dor et al., 1998e]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1998). Analysis of ballistic properties of layered targets using cavity expansion model. Int. J. of Fracture, 90(4): L63‑L67.

[Ben‑Dor et al., 1998f ]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1998). Optimization of layered shields with a given areal density. Int. J. of Fracture, 91(1): L9‑L14.

[Ben‑Dor et al., 1999a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1999). Optimization of light weight armor using experimental data. Theoretical and Applied Fracture Mechanics, 100(4): L29‑L33.

[Ben‑Dor et al., 1999b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1999). On the order of plates providing the maximum ballistic limit velocity of a layered armor. Int. J. of Impact Engineering, 22(8): 741‑755.

[Ben‑Dor et al., 1999c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1999). Effect of air gap and order of plates on ballistic resistance of two layered armor. Theoretical and Applied Fracture Mechanics, 31(3): 233‑241.

[Ben‑Dor et al., 1999d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (1999). Some ballistic properties of non‑homogeneous shields. Composites. Part A, 30(6): 733‑736.

[Ben‑Dor et al., 2000a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2000). Optimization of the shape of a penetrator taking into account plug formation. Int. J. of Fracture, 106(3): L29‑L34.

[Ben‑Dor et al., 2000b]  Ben‑Dor, G., Dubinsky, A., Elperin, T., Frage, N. (2000). Optimization of two component ceramic armor for a given impact velocity. Theoretical and Applied Fracture Mechanics, 33(3): 185‑190.

[Ben‑Dor et al., 2000c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2000). The optimum arrangement of the plates in a multilayered shield. Int. J. of Solids and Structures, 37(4): 687‑696.

[Ben‑Dor et al., 2000d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2000). Analytical solution for penetration by rigid conical impactors using cavity expansion models. Mechanics Research  Communications, 27(2): 185‑189.

[Ben‑Dor et al., 2001a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2001). Shape optimization of penetrator nose. Theoretical and Applied Fracture Mechanics, 35(3): 261‑270.

[Ben‑Dor et al., 2001b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2001). A class of models implying the Lambert‑Jonas relation. Int. J. of Solids and Structures, 38(40‑41): 7113‑7119.

[Ben‑Dor et al., 2002a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2002). Optimal nose geometry of the impactor against FRP laminates. Composite Structures, 55(1): 73‑80.

[Ben‑Dor et al., 2002b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2002). Optimization of the nose shape of an impactor against a semi‑infinite FRP laminate. Composites Science and Technology, 62(5): 663‑667.

[Ben‑Dor et al., 2002c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2002). A model for predicting penetration and perforation of FRP laminates by 3‑D impactors. Composite Structures, 56(3): 243‑248.

[Ben‑Dor et al., 2002d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2002). On the Lambert‑Jonas approximation for ballistic impact. Mechanics Research Communications, 29(2‑3): 137‑139.

[Ben‑Dor et al., 2003a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2003). Numerical solution for shape optimization of an impactor penetrating into a semi‑infinite target. Computers and Structures, 81(1): 9‑14.

[Ben‑Dor et al., 2003b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2003). Shape optimization of an impactor penetrating into a concrete or a limestone target. Int. J. of Solids and Structures, 40(17): 4487‑4500.

[Ben‑Dor et al., 2005a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2005). Optimization of two‑component armor against ballistic impact. Composite Structures, 69(1): 89‑94.

[Ben‑Dor et al., 2005b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2005). Ballistic impact: recent advances in analytical modeling of plate penetration dynamics. A Review. ASME Applied Mechanics Reviews, 58: 355-371.

[Ben‑Dor et al., 2006a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2006). Applied High-Speed Plate Penetration Dynamics. Springer, Dordrecht.

[Ben‑Dor et al., 2006b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2006). Effect of air gaps on the ballistic resistance of ductile shields perforated by nonconical impactors. J. of Mechanics of Materials and Structures, 1(2): 279-299.

[Ben‑Dor et al., 2006c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2006).  Modeling of high-speed penetration into concrete shields and shape optimization of impactors. Mechanics Based Design of Structures and Machines, 34(2): 139-156.

[Ben‑Dor et al., 2006d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2006). Effect of the order of plates on the ballistic resistance of ductile layered shields perforated by nonconical impactors. J. of Mechanics of Materials and Structures, 1(7): 1161-1177.

[Ben‑Dor et al., 2007a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2007). Localized interaction models with non-constant friction for rigid penetrating impactors. Int. J of Solids and Structures, 44(7-8): 2593–2607.

[Ben‑Dor et al., 2007b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2007). Modification of the method of local variations for shape optimization of penetrating impactors using the localized impactor/shield interaction models. Mechanics Based Design of Structures and Machines, 35(1): 1–14.

[Ben‑Dor et al., 2007c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2007). Shape optimization of impactors against a finite width shield using a modified method of local variations. Mechanics Based Design of Structures and Machines, 35(2): 113–125.

[Ben‑Dor et al., 2007d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2007). Optimization of high-speed penetration by impactor with jet thruster. Mechanics Based Design of Structures and Machines, 35(3): 205-228.

[Ben‑Dor et al., 2007e]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2007). Penetration by non-monolithic and monolithic high-speed impactors. Mechanics Based Design of Structures and Machines, 35(4): 481-495.

[Ben‑Dor et al., 2008a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2008). Optimization of penetration into geological and concrete shields by impactor with jet thruster. J. of Mechanics of Materials and Structures, 3(4): 707-727.

[Ben‑Dor et al., 2008b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2008). Optimization of high-speed penetration of segmented impactors using discrete and continuous models. Mechanics Based Design of Structures and Machines, 36(2): 150–168.

[Ben‑Dor et al., 2008c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2008). Engineering approach to penetration modeling. Engineering Fracture Mechanics, 75(14): 4279–4282.

[Ben‑Dor et al., 2009a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). Improved Florence model and optimization of two-component armor against single impact or two impacts. Composite Structures, 88(1): 158-165.

[Ben‑Dor et al., 2009b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). Method of basic impactors for simplified modeling of penetration. Engineering Fracture Mechanics, 76(4): 614-618.

[Ben‑Dor et al., 2009c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). An engineering approach to shape optimization of impactors against fiber-reinforced plastic laminates.  Composites Part B, 40(3): 181-188.

[Ben‑Dor et al., 2009d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). Method of basic objects and its application to penetration dynamics. Mechanics Based Design of Structures and Machines, 37(2): 247-258.

[Ben‑Dor et al., 2009e]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). Ballistic properties of multilayered concrete shields. Nuclear Engineering and Design, 239(10): 1789-1794.

[Ben‑Dor et al., 2009f ]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). Modeling of penetration by rigid impactors. Mechanics Research Communications, 36(5): 625–629.

[Ben‑Dor et al., 2009g]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). Optimization of reinforced concrete panels with rear face steel liner under impact loading. Mechanics Based Design of Structures and Machines, 37(4): 503-512.

[Ben‑Dor et al., 2009h]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2009). High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields. Mechanics Based Design of Structures and Machines, 37(4): 538-549.

[Ben‑Dor et al., 2010a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2010). Estimation of perforation thickness for concrete shield against high-speed impact. Nuclear Engineering and Design, 240(5): 1022–1027.

[Ben‑Dor et al., 2010b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2010). Effect of layering on ballistic properties of metallic shields against sharp-nosed rigid projectiles. Engineering Fracture Mechanics, 77(14): 2791–2799.

[Ben‑Dor et al., 2010c]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2010). Some inverse problems in penetration mechanics. Mechanics Based Design of Structures and Machines, 38(4): 468-480.

[Ben‑Dor et al., 2010d]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2010). Segmentation of high-speed/hypervelocity penetrators: criteria of effectiveness based on approximate analytical models. Mechanics Based Design of Structures and Machines, 38(3): 372-387.

[Ben‑Dor et al., 2011]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2011). Optimization of multi-layered metallic shield. Nuclear Engineering and Design, 241(6): 2020-2025.

[Ben‑Dor et al., 2012a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2012). Investigation and optimization of protective properties of metal multi-layered shields: A Review. Int. J.  of Protective Structures, 3(3): 275 -291.

[Ben‑Dor et al., 2012b]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2012).  Shape optimization of high-speed penetrators: a review. Central  European J. of Engineering, 2(4): 473-482.

[Ben‑Dor et al., 2013]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2013). High-Speed Penetration Dynamics: Engineering Models and Methods. World Scientific.

[Ben‑Dor et al., 2013a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2013). About effect of layering on ballistic properties of metal shields against sharp-nosed rigid projectiles. Engineering Fracture Mechanics, 102: 358–361.

[Ben‑Dor et al., 2014]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2014). About the paper by H.C. Chen, Y.L. Chen, B.C. Shen. «Ballistic resistance analysis of double-layered composite material structures» [Theoretical and Applied Fracture Mechanics, 62 (2012) 15–25]. Theoretical and Applied Fracture Mechanics, 74: 233-234.

[Ben-Dor et al., 2016]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2016). World Scientific Handbook of Experimental Results on High Speed Penetration into Metals, Concrete and Soils. World Scientific.

[Ben‑Dor et al., 2017a]  Ben‑Dor, G., Dubinsky, A., Elperin, T. (2017). New results on ballistic performance of multi‑layered metal shields: review. Theoretical and Applied Fracture Mechanics, 88: 1-8.

[Ben‑Dor et al., 2017b]  Ben-Dor, G., Dubinsky, A., Elperin, T. (2018). Optimization of ballistic properties of layered ceramic armor with a ductile back plate. Mechanics Based Design of Structures and Machines, 46(1): 18-22.

[Benzing et al., 1976]  Benzing, R., Goldblatt, I., Hopkins, V., Jamison, W., Mecklenburg, K., Peterson, M. (1976). Friction and Wear Devices. American Society of Lubrication Engineers. New York.

[Bernard and Creighton, 1979]  Bernard, R.S., Creighton, D.C. (1979). Projectile penetration in soil and rock: analysis for non‑normal impact. Rep. WES/TR/SL‑79‑15. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

[Bernard and Hanagud, 1975]  Bernard, R.S., Hanagud S.V. (1975). Development of a projectile penetration theory. Rep. S‑75‑9. Penetration Theory for shallow to moderate depths (Rep. 1 of Series). U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

[Bernard, 1977]  Bernard, R.S. (1977). Empirical analysis of projectile penetration in rock. Miscellaneous paper S-77-16. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

[Bernard, 1978]  Bernard, R.S. (1978). Depth and motion prediction for earth penetrators. Rep.  WES‑TR‑S‑78‑4. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

[Berriaud et al., 1978]  Berriaud, C., Sokolovsky, A., Gueraud, R., Dulac, J., Labrot, R. (1978). Local behaviour of reinforced concrete walls undermissile impact. Nuclear Engineering and Design; 45(2): 457–469.

[Berriaud et al., 1979]  Berriaud, C., Verpeaux, P., Hoffman, A., Jamet, P., Avet-Flancard, R. (1979). Tests and calculations of the local behaviour of concrete structures under missile impact. In: Trans. of  5th Int. Conf. on Structural Mechanics in Reactor Technology - SMiRT-5 (August 13-17, 1979, Berlin (West), Germany), paper J7/1.

[Berriaud et al., 1982]  Berriaud, C., Verpeaux, P., Jamet, P. (1982). Concrete wall perforation by rigid missile. RILEM-CEB-IABSE-IASS Interassociation Symp. on Concrete Structures under Impact and Impulsive Loading (June 2-4, 1982, Berlin, Germany, F.R), pp. 358–367.

[Beth, 1946]  Beth, R.A. (1946). Concrete penetration. Rep. OSRD‑6459. Office of Sci. R&D, Washington, DC.

[Beth, 1945]  Beth, R.A. (1945). Concrete penetration, Division 2. NDRC Rep. A-319, OSRD Rep. 4856. National Defense Research Committee (NDRC) of the Office of Scientific Research and Development (OSRD).  Washington, DC.

[Bethe, 1941]  Bethe, H.A. (1941). Attempt of a theory of armor penetration. Rep. Ordnance Laboratory, Frankford Arsenal, Philadelphia, PA.

[Bhatnagar, 2006]  Bhatnagar, A., ed. (2006). Lightweight ballistic composites. Woodhead Publishing Limited and CRC Press.

[Bhushan, 2013]  Bhushan, B. (2013). Introduction to tribology. John Wiley & Sons.

[Bilek, 1962a]  Bilek, A.G. (1962). Study of target penetration prediction by high speed and ultra high speed ballistic impact. second quarterly report (1 October - 31 December 1961), 1962. APGC-TDR-62-11. Air Proving Ground Center (APGC), Air Force Systems Command, United States Air Force, Eglin Air Force Base, FL.

[Bilek, 1962b]  Bilek, A.G. (1962). Study of target penetration prediction by high speed and ultra high speed ballistic impact. Third Quarterly Rep. (1 January - 31 March 1962). APGC-TDR-62-35), 1962. Air Proving Ground Center (APGC), Air Force Systems Command, United States Air Force, Eglin Air Force Base, FL.

[Bilek, 1962с]  Bilek, A.G. (1962). Study of target penetration prediction by high speed and ultra high speed ballistic impact. Fourth Quarterly Rep. (1 April 1962 - 30 June 1962).  APGC-TDR-62-51), 1962. Air Proving Ground Center (APGC), Air Force Systems Command, United States Air Force, Eglin Air Force Base, FL.

[Bilek, 1963a]  Bilek, A.G. (1963). Study of target penetration prediction by high speed and ultra high speed ballistic impact. Fifth Quarterly Rep. (1 Yuly 1962 - 30 September 1962).  APGC-TDR-63-16, 1963. Air Proving Ground Center (APGC), Air Force Systems Command, United States Air Force, Eglin Air Force Base, FL.

[Bilek, 1963b]  Bilek, A.G. (1963). Study of target penetration prediction by high speed and ultra high speed ballistic impact. Final Rep. (1 July 1961 - 28 February 1963).  APGC-TDR-63-22, 1963. Air Proving Ground Center (APGC), Air Force Systems Command, United States Air Force, Eglin Air Force Base, FL.

[Bishop et al., 1945]  Bishop, R.F., Hill, R., Mott, N.F. (1945). The theory of indentation and hardness tests. Proc.of the Physical Society, 57(321), Part 3: 147‑155.

[Bivin and Simonov, 2010]  Bivin, Yu.K., Simonov, I.V. (2010). Mechanics of dynamic penetration into soil medium. Mechanics of Solids, 45(6): 892-920.

[Bivin et al., 1978]  Bivin, Yu.K., Viktorov, V.V., Stepanov, L.P. (1978). Investigation of motion of a body in clayey ground. Izvestija Akademii Nauk SSSR, Mekhanika Tvjordogo Tela, 2: 159-165 (in Russian).

[Bivin et al., 1982]  Bivin, Yu.K., Kolesnikov, V.A., Flitman, L.M. (1982). Determination of the mechanical properties of a medium by the dynamic penetration method. Mechanics of Solids, 17(5): 180-183.

[Bivin, 1996]  Bivin, Yu. K. (1996). Direct penetration of a group of bodies into an elastoplastic medium. Mechanics of  Solids, 31(1): 70–76.

[Bivin, 1999]  Bivin, Yu.K. (1999). Comparison of penetration of star-shaped and conic bodies. Mechanics of  Solids, 34 (4): 94-97.

[Bivin, 2012]  Bivin, Yu. K. (2012). Penetration. Perforation. Ricochet. LAP Lambert Academic Publishing, Germany (in Russian).

[Bjork, 1958]  Bjork, R.L. (1958). Effects of a meteoroid impact on steel and aluminum in space. Tech. Rep. P-1662, Rand Corporation, Engineering Division.

[Bjork, 1961]  Bjork, R.L. (1961). Meteoroids vs. Space Vehicles. American Rocket Society J. (ARS J.): 31(6): 803-807.

[Blau, 1992]  Blau, P.J. (1992). ASM Handbook, Vol.18 - Friction, Lubrication, and Wear Technology. ASM Int.

[Blau, 2008]  Blau, P.J. (2008). Friction science and technology: from concepts to applications. CRC Press.

[Bless and Anderson, 1993]  Bless, S.J., Anderson, C.E,Jr. (1993). Penetration of hard layers by hypervelocity rod projectiles. Int. J. of Impact Engineering, 14: 85-93.

[Bless et al., 2013]  Bless, S., Peden, B., Guzman, I., Omidvar, M., Iskander, M. (2013). Poncelet coefficients of granular media. In: Song, B., Casem, D., Kimberley, J., eds. Dynamic Behavior of Materials, v. 1. Proc. of the 2013 Annual Conf. on Experimental and Applied Mechanics (June 3–5, 2013, Lombard, IL), Springer.  Ch. 45.

[BNFL, 2003]  BNFL (2003). Reinforced concrete slab local damage assessment, R3 impact assessment procedure, vol. 3, Appendix H. Magnox Electric plc & Nuclear Electric Limited.

[Bochet, 1861]  Bochet, H. (1861). Nouvelles recherches expérimentales sur le frottement de glissement specialement sur des rails de chemins de fer dans des circonstances très-diverses. Annales des Mines, 19: 27-120 (in French).

[Bohn and Fuchs, 1958]  Bohn, J.L., Fuchs, O.P. (1958). High velocity impact studies directed towards the determination of the spatial density, Mass and velocity of micrometeorites at high altitudes. geophysics research directorate, Air Force Cambridge Research Center, Air Research and Development Command,  AFCRC TN 58-243, ASTIA AD 243106.

[Bokhari et al., 2016]  Bokhari, D., Teagle, M., Horsfall, I. (2016). Terminal ballistics of 7.62 mm armour piercing projectiles against spaced, oblique RHA plates. In: Proc. of 29th Int. Symp. on Ballistics (May 9-13, 2016, Edinburgh, Scotland, UK), pp. 2316-2322.

[Bondarchuk et al., 1982]  Bondarchuk, V.S., Vedernikov, Y.A., Dulov, V.G., Minin, V.F. (1982). On optimization of star‑shaped impactors. Izvestija Sibirskogo Otdelenija Akademii Nauk SSSR. Serija Tekhnicheskikh Nauk, 13(3): 60‑65 (in Russian).

[Booker et al., 2009]  Booker, P.M., Cargile, J.D., Kistler, B.L., Saponara, V.La. (2009). Investigation on the response of segmented concrete targets to projectile impacts. Int. J. of Impact Engineering, 36: 926–939.

[Booser, 1983]  Booser, E.R., ed., 1983. CRC Handbook of Lubrication and Tribology (Theory and Practice of Tribology). Vol.2. Theory & Design, CRC.

[Børvik et al., 1998]  Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A. (1998). Empirical equations for ballistic penetration of metal plates. Fortifikatorisk Notat No. 260/98. The Norwegian Defence Construction Service, Central Staff - Technical Division, Oslo, Norway.

[Børvik et al., 1999]  Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A. (1999). Ballistic penetration of steel plates. Int. J. of Impact Engineering, 22(9-10): 855-886.

[Børvik et al., 2001]  Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M. (2001). Numerical simulation of plugging failure in ballistic penetration. Int. J. of Solids and Structures, 38(34-35): 6241-6264.

[Børvik et al., 2002a]  Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A. (2002). Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses. Part I: Experimental study. Int. J. of Impact Engineering, 27(1): 19–35.

[Børvik et al., 2002b]  Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A. (2002). Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical, and conical noses part II: numerical simulations. Int. J. of Impact Engineering, 27(1): 37–64.

[Børvik et al., 2003]  Børvik, T., Hopperstad, O.S., Langseth, M., Malo, K.A. (2003). Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. Int. J. of Impact Engineering, 28(4): 413-464.

[Børvik et al., 2004]  Børvik, T., Clausen, A. H., Hopperstad, O.S., Langseth, M. (2004). Perforation of AA5083‑H116 aluminium plates with conical‑nose steel projectiles – experimental study. Int. J. of Impact Engineering, 30(4): 367‑384.

[Børvik et al., 2005]  Børvik, T., Clausen, A.H., Eriksson, M., Berstad, T., Hopperstad, O.S., Langseth, M. (2005). Experimental and numerical study on the perforation of AA6005-T6 panels. Int. J. of Impact Engineering, 32(1-4): 35–64.

[Børvik et al., 2009a]  Børvik, T., Forrestal, M.J., Hopperstad, O.S., Warren, T.L., Langseth, M. (2009). Perforation of AA5083-H116 aluminum plates with conical-nose steel projectiles – calculations. Int. J. of Impact Engineering, 36(3): 426–437.

[Børvik et al., 2009b]  Børvik, T., Dey, S., Clausen, A.H. (2009). Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. Int. J. of Impact Engineering; 36(7): 948–964.

[Børvik et al., 2009c]  Børvik, T., Dey, S., Hopperstad, O.S., Langseth, M. (2009). On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities. In: Hiermaier, A.S., ed. Predictive Modeling of Dynamic Processes. A Tribute to Professor Klaus Thoma. Spinger, pp.189-219.

[Børvik et al., 2010]  Børvik, T., Forrestal, M.J., Warren, T.L. (2010). Perforation of 5083-H116 aluminum armor plates with ogive-nose  rods and 7.62 mm APM2 bullets. Experimental Mechanics, 50(7): 969-978.

[Børvik et al., 2010a]  Børvik, T., Hopperstad, O.S., Pedersen, K.O. (2010). Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates. Int. J. of Impact Engineering, 37(5): 537-551.

[Bowden and Freitag, 1958]  Bowden, F.P., Freitag, E.H. (1958). The friction of solids at very high speeds. I: Metal on metal. II: Metal on diamond. Proc.of the Royal Society of London. Series A: Mathematical and Physical Sciences, 248(1254): 350–367.

[Bowden and Persson, 1961]  Bowden, F.P., Persson, P.A. (1961). Deformation, heating and melting on solids at high-speed friction. Proc. of the Royal Society of London. Series A: Mathematical and Physical Sciences, 260(1303): 433–458.

[Bowden and Tabor, 1964]  Bowden, F.P., Tabor, D. (1964). The Friction and Lubrication of Solids, Part 2. Clarendon Press, Oxford.

[Breeze et al., 2013]  Breeze, J., Hunt, N., Gibb, I., James, G., Hepper, A., Clasper, J. (2013). Experimental penetration of fragment simulating projectiles into porcine tissues compared with simulants. J. of Forensic and Legal Medicine, 20: 296-299.

[Brissenden, 1992]  Brissenden, C. (1992). Performance of novel KE penetrator designs over the velocity range 1600 to 2000 m/s. In: Proc. of 13th Int. Symp. on Ballistics (1-3 June, 1992, Stockholm, Sweden), vol. 3, pp. 183-190.

[Brooks and Erickson, 1971]  Brooks, P.N., Erickson, W.H. (1971). Ballistic evaluation of materials for armor penetrators. Rep. No. DREV R-643/71. Defence Research Establishment Valcartier, Quebec, Canada.

[Brooks, 1973]  Brooks, P.N. (1973). On the prediction of crater profiles produced in ductile targets by the impact of rigid penetrators at ballistic velocities. Rep. DREV R-686/73. Defence Research Establishment Valcartier, Quebec, Canada.

[Brooks, 1974]  Brooks, P.N. (1974). Ballistic Impact - the dependence of the hydrodynamic transition velocity on projectile tip geometry. Rep. DREV R-4001/74, Defence Research Establishment Valcartier, Quebec, Canada.

[Brown, 1964]  Brown, A. (1964). A quasi-dynamic theory of containment. Int. J. of Mechanical Science, 6(4): 257-262.

[Brown, 1986]  Brown, S.J. (1986). Energy release protection for pressurized systems. Part 2. Review of studies into impact/terminal ballistics. Applied Mechanics Reviews, 39(2), part 1: 177‑202.

[Bruce, 1961] Bruce, E.P. (1961). Review and analysis of high velocity impact data. In: Proc. of the 5th Symp. on Hypervelocity Impact (October 30 - November 1, 1961, Denver, CO), pp. 439–474.

[Bruce, 1979] Bruce, E.P. (1979). Velocity dependence of some impact phenomena. In: Proc. of the Comet Halley Micrometeoroid Hazard Workshop (18–19 April, 1979, Noordwijk, Netherlands).

[Bruhl et al., 2013]  Bruhl, J.C., Varma, A.H., Johnson, W.H. (2013). Design of SC composite walls for projectile impact: local failure. In: Trans. of 22nd Int. Conf. on Structural Mechanics in Reactor Technology - SMiRT-22 (August 18-23, 2013, San Francisco, CA).

[Bruhl et al., 2015]  Bruhl, J.C., Varma, A.H., Johnson, W.H. (2015). Design of composite SC walls to prevent perforation from missile impact. Int. J. of Impact Engineering, 75: 75-87.

[Buchar et al., 2002]  Buchar, J., Voldřich, J., Rolc, S., Lazar, M. (2002). Ballistic performance of the dual hardness armor. In: Proc. of the 20th Int. Symp. on Ballistics (23-27 September, 2002, Orlando, FL).

[Budinski, 2007]  Budinski, K.G. (2007). Guide to friction, wear and erosion testing. ASTM Int., West Conshohocken, PA.

[Bukharev and Gandurin, 1995]  Bukharev, Yu.N.. Gandurin, V.P. (1995). Forces acting on sharp cone during non-steady penetration into water and soil. In: Prikladnye Problemy Prochnosti I Plastichnosti, Gor'kovskij Gosudarstvennyj Universitet imeni N.I. Lobachevskogo, 53: 46-55. [The same paper one can found in: Bukharev, Yu.N., ed. (2011). Applied Problems of High-Speed Impact. Rossijskij Federal'nyj Jadernyj Tsentr, Vserossijskij Nauchno-Issledovatel'skij Institut Eksperimental'noj Fiziki (FGUP "RFJaTs-VNIIEF"), pp. 9-25] (in Russian).

[Bukharev et al., 2011b]  Bukharev, Yu.N.. Gandurin, V.P., Korablev, A.E., Morozov, V.A., Xajmovich, M.I. (2011). Experimental investigation of penetration of rigid projectile into clay and snow. In: Bukharev, Yu.N., ed. Applied Problems of High-Speed Impact. Rossijskij Federal'nyj Jadernyj Tsentr, Vserossijskij Nauchno-Issledovatel'skij Institut Eksperimental'noj Fiziki (FGUP "RFJaTs-VNIIEF"), pp. 26-37] (in Russian).

[Bukharev et al., 2011c]  Bukharev, Yu.N., Tereshin, A.I., Tverskov, A.V., Bashurov, V.V. Results of solution of some problems of high-speed collision of solid particles having velocity in the range 3‑10 km/s with barriers. In: Bukharev, Yu.N., ed. (2011) Applied Problems of High-Speed Impact. Rossijskij Federal'nyj Jadernyj Tsentr, Vserossijskij Nauchno-Issledovatel'skij Institut Eksperimental'noj Fiziki (FGUP "RFJaTs-VNIIEF"), pp. 208-223] (in Russian).

[Bukharev, 2011] Bukharev, Yu.N. (2011). Some relationships for calculation of parameters under high-speed collision of solid bodies (at impact velocity no more than 10-15 km/s). In: Bukharev, Yu.N., ed. Applied Problems of High-Speed Impact. Rossijskij Federal'nyj Jadernyj Tsentr, Vserossijskij Nauchno-Issledovatel'skij Institut Eksperimental'noj Fiziki (FGUP "RFJaTs-VNIIEF"). Appendix (in Russian).

[Bulson, 1997]  Bulson, P.S. (1997). Explosive Loading of Engineering Structures. A History of Research and a Review of Recent Developments. E&FN Spon, London.

[Bunimovich and Dubinsky, 1995]  Bunimovich, A.I., Dubinsky, A. (1995). Mathematical Models and Methods of Localized Interaction Theory. World Scientific.

[Bunimovich and Dubinsky, 1996]  Bunimovich, A.I., Dubinsky, A. (1996). Development, current state of the art, and applications of local interaction theory. Review. Fluid Dynamics, 31(3): 339‑349.

[Bunimovich and Dubinsky, 1997]  Bunimovich, A., Dubinsky, A., (1997). Development of localized interaction theory. In: Investigations on History of Physics and Mechanics. Moscow, Nauka, pp. 198-218 (In Russian)

[Bunimovich and Yakunina, 1987a]  Bunimovich A.I., Yakunina, G.Ye. (1987). On the shape of minimum‑resistance solids of revolution moving in plastically compressible and elastic‑plastic media. J. of Applied Mathematics and Mechanics, 51(3): 386‑392.

[Bunimovich and Yakunina, 1987b]  Bunimovich, A.I., Yakunina, G.Ye. (1987). The shapes of three‑dimensional minimum‑resistance bodies moving in compressible plastic and elastic media. Moscow University Mechanics Bulletin, 42(3): 59‑62.

[Bunimovich and Yakunina, 1989]  Bunimovich, A.I., Yakunina, G.Ye. (1989). On the shape of a minimum resistance solid of rotation penetrating into plastically compressible media without detachment. J. of Applied Mathematics and Mechanics, 53(5): 680‑683.

[Burch, 1967] Burch, G.T. (1967) Multi-plate damage study. AFATL-TR-67-116, Air Force Armament Library, Eglin Air Force Base, FL.

[Buyuk et al., 2008]  Buyuk, M., Kurtaran, H., Marzougui, D., Kan, C.D. (2008). Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology. Int. J. of Impact Engineering, 35(12): 1449-1458.

[Buyuk et al., 2009]  Buyuk, M., Kan, S., Loikkanen, M.J. (2009). Explicit finite-element analysis of 2024-T3/T351 aluminum material under impact loading for airplane engine containment and fragment shielding. J. of Aerospace Engineering, 22(3): 287-295.

[Buzaud et al., 1999a]  Buzaud, E., Don, D., Chapelle, S., Gary, G., Bailly, P. (1999). Perforation studies into Mb 50 concrete slabs In: Proc. of  9th Int. Symp. on Interaction of the Effects of Munitions with Structures (3-7 May, 1999, Berlin, Germany), pp. 407-414.

[Buzaud et al., 1999b]  Buzaud, E., Laurensou, R., Darrigade, A., Belouet, P., Lissayou, C. (1999). Hard target defeat: An analysis of reinforced concrete perforation process. In: Proc. of  9th Int. Symp. on Interaction of the Effects of Munitions with Structures (3-7 May, 1999, Berlin, Germany), pp. 283-290.

[Calder and Goldsmith, 1971]  Calder, C.A., Goldsmith, W. (1971). Plastic deformation and perforation of thin plates resulting from projectile impact. Int. J. of Solids and Structures, 7(7): 863-881.

[Canfield and Clator, 1966]  Canfield, J.A., Clator, I.G. (1966). Development of a scaling law and techniques to investigate penetration in concrete. Tech. Rep.2057. U.S. Naval Weapons Laboratory, Dahlgren, VA.

[Cantwell and Morton, 1990]  Cantwell, W., Morton, J. (1990). Impact perforation of carbon fibre-reinforced plastic. Composites Science and Technology, 38(2): 119–141.

[Cao et al., 2011]  Cao, Z.S., Deng, Y.F., Zhang, W. (2011). Numerical investigation of penetration performance of segmented rod projectiles with various connectors. Key Engineering Materials, 452: 185-188.

[Caprino et al., 2007]  Caprino, G., Lopresto, V., Santoro, D. (2007). Ballistic impact behaviour of stitched graphite/epoxy laminates. Review. Composites Science and Technology, 67(3–4): 325–335.

[Cargile et al., 1993]  Cargile, J.D., Giltrud, M.E., Luk, V.K. (1993). Perforation of thin unreinforced concrete slabs. Rep. SAND-93-0150C. In: Proc. of the Special Session during the 6th Int. Symp. On Interaction of Nonnuclear Munitions with Structures (May 3-7, 1993, Panama City Beach, FL), Sandia National Laboratories, Albuquerque, NM.

[Cargile et al., 2002]  Cargile, J.D., O’Neil, E.F., Neeley, B.D. (2002). Very high strength concretes for use in blast and penetration resistant structures. AMPTIAC Quaterly 6(4): 61-66.

[Cargile, 1999]  Cargile, J.D. (1999). Development of a constitutive model for numerical simulations of projectile penetration into brittle geomaterials. Tech. Rep. SL-99-11. Army Engineer Research and Development Center, Vicksburg, MS.

[Carlucci and Jacobson, 2008]  Carlucci, D.E., Jacobson, S.S. (2008). Ballistics. Theory and Design of Guns and Ammunition. CRC Press.

[Cazacu et al., 2006]  Cazacu, O., Ionescu, I.R., Perrot, T. (2006). Steady-state flow of compressible rigid–viscoplastic media. Int. J. of Engineering Science, 44(15-16): 1082-1097.

[Chai et al., 2014]  Chai, C.-G., Pi, A., Wu, H.-J., Huang, F.-L. (2014). A calculation of penetration resistance during cratering for ogive-nose projectile into concrete. Explosion and Shock Waves, 34(5): 630-635. (in Chinese).

[Chakrabarty, 2010]  Chakrabarty, J. (2010). Applied Plasticity. Springer, New York.

[Chakrapani and Rand, 1971] Chakrapani, B., Rand, J.L. (1971). An analytical and experimental study of the behavior of semi-infinite metal targets under hypervelocity impact. TEES-9075-CR-71-02, Texas Engineering Experiment Station (TEES), Texas A&M University College Station, TX.

[Chan, 2008]  Chan, D.T. (2008). Investigation of high-speed interaction of deformed solid bodies. Ph.D. Thesis. "VOENMEKH" imeni D.F. Ustinova, S-Peterburg (in Russian).

[Chang, 1981]  Chang, W.S. (1981). Impact of solid missiles on concrete barriers. J. of the Structural Division ASCE, 107(ST2): 257–271.

[Charters and Charters, 1976]  Charters, A.C. III., Charters, A.C. (1976). Wounding mechanism of very high velocity projectiles. J. of Trauma, 16: 464–470.

[Charters and Locke, 1958] Charters, A.C., Locke, G.S,Jr. (1958). A preldainary investigation of high-speed impact: The penetration of small spheres into thick copper targets. NACA Research Memorandum A58B26, Ames Aeronautical Laboratory, Moffett Field, CA.

[Charters and Summers, 1959] Charters, A.C., Summers, J.L., (1959). Some comments on the phenomena of high speed impact. In: Proc. of the Dicennial Symp.. Technical sessions. VTOL (October 14-16, 1959, MD, U.S.A.). Naval Ordnance Laboratory, White Oak, pp.1-21.

[Charters et al., 1990]  Charters, A.C., Menna, T.L., Piekutowski, A.J. (1990). Penetration dynamics of rods from direct ballistic tests of advanced armor components at 2–3 km/s. Int. J. of Impact Engineering, 10(1–4): 93–106.

[Chassaing et al., 2014]  Chassaing, G., Faure, L., Philippon, S., Coulibaly, M., Tidu, A., Chevrier, P., Meriaux, J. (2014). Adhesive wear of a Ti6Al4V tribopair for a fast friction contact. Wear, 320: 25-33.

[Chelapati et al., 1972]  Chelapati, C.V., Kennedy, R.P., Wall, I.B. (1972). Probabilistic assessment of hazard for nuclear structures. Nuclear Engineering and Design, 19(2): 333–364.

[Chen and Chen, 2012]  Chen, Y.-L., Chen H.-C. (2012). The numerical method as applied to impact resistance analysis of ogival nose projectiles on 6061-T651 aluminum plates. J. of Mechanics, 28: 715-726.

[Chen and Huang, 2006]  Chen, S., Huang, C. (2006). A semi-empirical equation of penetration depth on concrete target impacted by ogive-nose projectiles. J. de Physique IV, 134: 403–408.

[Chen and Lang, 2014]  Chen, X.W., Lang, L. (2014). The effect of segment length and gap distance on segmented rods penetrating into a steel target Structures Under Shock and Impact XIII, WIT Transactions on The Built Environment, Vol 141, WIT Press, pp. 125-137.

[Chen and Li, 2002]  Chen, X.W., Li, Q.M. (2002). Deep penetration of a non‑deformable projectile with different geometrical characteristics. Int. J. of Impact Engineering, 27(6): 619‑637.

[Chen and Li, 2003a]  Chen, X.W., Li, Q.M. (2003). Perforation of a thick plate by rigid projectiles. Int. J. of Impact Engineering, 28(7): 743‑759.

[Chen and Li, 2003b]  Chen, X.W., Li, Q.M. (2003). Shear plugging and perforation of ductile circular plates struck by a blunt projectile. Int. J. of Impact Engineering, 28(5): 513-536.

[Chen and Li, 2004]  Chen X.W., Li Q.M. (2004). Transition from non-deformable projectile penetration to semi-hydrodynamic penetration. J. of Engineering Mechanics (ASCE), 130(1): 123-127.

[Chen and Li, 2014]  Chen, X.W., Li, J.C. (2014). Analysis on the resistive force in penetration of a rigid projectile. Defence Technology, 10(3): 285-293.

[Chen et al., 2004]  Chen, X.W., Fan, S.C., Li, Q.M. (2004). Oblique and normal perforation of concrete targets by a rigid projectile. Int. J. of Impact Engineering, 30(6): 617‑637.

[Chen et al., 2007]  Chen, X.W., Li, X.L., Huang, F.L., Wu, H.J., Chen, Y.Z. (2007). Modeling of normal perforation of reinforced concrete slab by rigid projectile. In: Proc. of the 23rd  Int. Symp.on Ballistics (April 16-20, 2007, Tarragona, Spain), vol. 2, pp. 1235-1242.

[Chen et al., 2008a]  Chen, X.W., Li, X.L., Huang, F.L., Wu, H.J., Chen, Y.Z. (2008). Normal perforation of reinforced concrete target by rigid projectile. Int. J. of Impact Engineering, 35(10): 1119–1129.

[Chen et al., 2008b]  Chen, X.W., Li, X.L., Huang, F.L., Wu, H.J., Chen, Y.Z. (2008). Damping function in the penetration/perforation struck by rigid projectiles. Int. J. of Impact Engineering, 35(11): 1314–1325.

[Chen et al., 2008c]  Chen, X.W., Li, X.L., Deng, K.W. (2008). Damping function in the penetration/perforation dynamics of rigid projectiles. In: Jones, N. and Brebbia, C.A., eds. Structures Under Shock and Impact X. WIT Press, Southampton, pp. 263-272.

[Chen et al., 2009]  Chen, X., Liang, G., Yao, Y., Wang, R., Tao, J. (2009). Perforation modes of metal plates struck by a blunt rigid projectile. Chinese J. of Theoretical and Applied Mechanics, 41(1): 84-90 (in Chinese).

[Chen et al., 2010]  Chen, X.W., Li, Q.M., Zhang, F.J., He, L.L. (2010). Investigation of the structural failure of penetration projectiles. Int. J. of Protective Structures, 1(1): 41‑65.

[Chen et al., 2011]  Chen, J.S., Chi, S.W., Lee, C.H., Lin, S.P., Marodon, C., Roth, M.J., Slawson,T.R. (2011). A multiscale meshfree approach for modeling fragment penetration into ultra high-strength concrete. Rep. ERDC/GSL TR-11-35. Geotechnical and Structures Laboratory, Department of Civil and Environmental Engineering, University of California, Los Angeles, CA.

[Chen et al., 2011]  Chen, X.W., Huang, X.L., Liang, G.J. (2011). Comparative analysis of perforation models of metallic plates by rigid sharp-nosed projectiles. Int. J. of Impact Engineering, 38(7): 613-621.

[Chen et al., 2012]  Chen, H.C., Chen, Y.L., Shen, B.C. (2012). Ballistic resistance analysis of double-layered composite material structures. Theoretical and Applied Fracture Mechanics, 62: 15–25.

[Chen et al., 2014]  Chen, C., Zhu, X., Hou, H., Zhang, L., Shen, X., Tang, T. (2014). An experimental study on the ballistic performance of FRP-steel plates completely penetrated by a hemispherical-nosed projectile. Steel and Composite Structures, 16(3): 269-288.

[Chen et al., 2017]  Chen, X., Zhang, D., Yao, S., Lu, F. (2017). Fast algorithm for simulation of normal and oblique penetration into limestone targets. Applied Mathematics and Mechanics (English Edition), 38(5): 671–688.

[Chen et al., 2017b]  Chen, C., Zhu, X., Hou, H., Tian, X., Shen, X. (2017). A new analytical model for the low-velocity perforation of thin steel plates by hemispherical-nosed projectiles. Defence Technology, 13(5): 327-337.

[Chen, 1989]  Chen, E.P. (1989). Penetration into dry porous rock: a numerical study on sliding friction simulation. Theoretical and Applied Fracture Mechanics, 11(2): 135–141.

[Chernousko and Banichuk, 1973]  Chernous’ko, F.L., Banichuk, N.V. (1973). Variational Problems of Mechanics and Control.  Nauka, Moscow (in Russian).

[Chernyi, 1969]  Chernyi, G.G. (1969). Introduction to Hypersonic Flow. Academic Press, New York.

[Chi et al., 2013]  Chi, R., Serjouei, A., Sridhar, I., Tan, G.E.B. (2013). Ballistic impact on bi-layer alumina/aluminium armor: A semi-analytical approach. Int. J. of Impact Engineering, 52: 37-46.

[Chi et al., 2014]  Chi, R., Serjouei, A., Fan, F., Sridhar, I. (2014). Geometrical effects on performances of ceramic/metal armors impacted by projectiles. Explosion and Shock Waves, 34(5): 594-600. (in Chinese).

[Chian et al., 2017a] Chian, S.C., Tan, B.C.V., Sarma, A. (2017). Projectile penetration into sand: Relative density of sand and projectile nose shape and mass. Int. J. Impact Engineering, 103: 29-37.

[Chian et al., 2017b] Chian, S.C., Tan, B.C.V., Sarma, A. (2017). Reprint of: Projectile penetration into sand: Relative density of sand and projectile nose shape and mass. Int. J. Impact Engineering, 105: 80-88.

[Chichinadze, 2001]  Chichinadze, A.V., ed. (2001). Foundations of Tribology (Friction, Wear, Lubrication). Mashinostroenie, Moscow (in Russian).

[Chocron‑Benloulo and Sanchez‑Galvez, 1998]  Chocron‑Benloulo, I.S., Sanchez‑Galvez, V. (1998). A new analytical model to simulate impact onto ceramic/composite armors. Int. J. of Impact Engineering, 21(6): 461‑471.

[Choudhury et al., 2002]  Choudhury, M.A., Siddiqui, N.A., Abbas, H. (2002). Reliability analysis of a buried concrete target under missile impact. Int. J. of Impact Engineering, 27(8): 791‑806.

[Chowdhury et al., 2011]  Chowdhury, M.A., Khalil, M.K., Nuruzzaman, D.M., Rahaman, M.L. (2011). The effect of sliding speed and normal load on friction and wear property of aluminum. Int. J. of Mechanical and Mechatronics Engineering, 11(1): 53-57.

[Christiansen and Kerr, 2001]  Christiansen, E.L., Kerr, J.H. (2001) Ballistic limit equations for spacecraft shielding. Int. J. of Impact Engineering, 26: 93-104.

[Christiansen et al., 2009]  Christiansen, E.L., Arnold, J., Davis, A., Hyde, J., Lear, D., Liou, J.-C., Lyons, F., Prior, T., Ratliff, M., Ryan, S., Giovane, F., Corsaro, B., Studor, G. (2009). Handbook for Designing MMOD Protection. Jet Propulsion Laboratory; Johnson Space Center NASA/TM-2009-214785; S-1038.

[Christiansen, 1993]  Christiansen, E.L. (1993). Design and performance equations for advanced meteoroid and debris shields. Int. J. of Impact Engineering, 14(1–4): 145–156.

[Christman and Gehring, 1966]  Christman, D.R., Gehring, J.W. (1966). Analysis of high‐velocity projectile penetration mechanics. J. of Applied Physics, 37(4): 1579‑1587.

[Christman and Gehring, 1966]  Christman, D.R., Gehring, J.W. (1966). Analysis of high-velocity projectile penetration mechanics. J. of Applied Physics, 37(4): 1579–1587.

[Christman et al., 1963]  Christman, D.R., Gehring, J. W., Maiden, C.J., Wenzel, A.B. (1963). Study of the phenomena of hypervelocity impact. Summary Rep. No. TR 2-84081, Contract No. NASB-5067. GM Corporation Defense Research Laboratories, Santa Barbaraca Aerospace Operations Dept.

[Christman, 1966]  Christman, D.R. (1966). Target strength and hypervelocity impact. AIAA J., 4(10): 1872-1874.

[Cicala and Miele, 1956]  Cicala, P., Miele, A. (1956). Generalized theory of the optimum thrust programming for the level flight of a rocket-powered aircraft. ARS J., 26(6): 443–455.

[Cimpoeru, 2002]  Cimpoeru, S.J. (2002). Analytical modelling of the perforation of multi-layer metallic targets by fragment simulating projectiles. In: Proc. of the 20th Int. Symp. on Ballistics (September 23-27, 2002, Orlando, FL).

[Cloete et al., 2014]  Cloete, T.J., Curry, R.J., Balden, V.H., Maree, H., Basson, I. (2014). A scaling approach to assess mining cage roof performance under sub-ordnance projectile impact. In: Programme & Abstract Book of the 4th Int. Conf. on Impact Loading of Lightweight Structures - ICILLS 2014 (January 12-16, 2014 Cape Town, South Africa), pp.202-206.

[Clough et al., 1966]  Clough, N., McMillan, A.R., Lieblein, S. (1966).  Dimple, spall, and perforation characteristics in aluminum, columbium, and steel plates under hypervelocity impact. Lewis Research Center, Cleveland, OH; General Motors Corporation, Warren Research Laboratories, Santa Barbara, CA.  NASA TN D-3468.

[Clough et al., 1969]  Clough, N., Lieblein, S., McMillan, A.R. (1969).  Crater characteristics of 11 Metal Alloys under hyper-velocity impact including effects of projectile density and target temperature. Lewis Research Center Cleveland, OH; General Motors Corporation, Warren Research Laboratories, Santa Barbara, CA.  NASA TN D-5135.

[Cohen et al., 2010]  Cohen, T., Masri, R., Durban, D. (2010). Ballistic limit predictions with quasi-static cavitation fields. Int. J. of Protective Structures, 1(2): 235-255.

[Cole and Farrell, 1979]  Cole, D.M., Farrell, D.R. (1979). Bullet penetration in snow. Special Rep. 79-25, Project 4A762730AT42, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

[Collin and Wijk, 2000]  Collin, Å., Wijk, G. (2000). Experimental results for steel sphere penetration in gelatine. Rep. FOA-R-00-01600-310. Swedish Defence Reasearch Agency (FOI), Tumba, Sweden.

[Collins and Kinard, 1960]  Collins, R.D., Kinard, W.H.,Jr. (1960). The dependency of penetration on the momentum per unit area of the impacting projectile and the resistance of materials to penetration. NASA TN D-238, Langley Research Center, Langley Field, VA.

[Conti, 1875]  Conti, P. (1875). Sulla Resistenza di attrito. Royal Academia dei Lincei, 2, p. 145 (in Italian).

[Contiliano et al., 1977]  Contiliano, R., Donaldson, C. (1977). The development of a theory for the design of lightweight armor. Rep. No. AFDL-TR-77-114. Aeronautical Research Associates of Princeton, Inc., NJ.

[Contiliano et al., 1978]  Contiliano, R.M., McDonough, T.B., Swanson, C.V. (1978). Application of the integral theory of impact to the qualification of materials and the development of a simplified rod penetrator model. Rept No. ARAP-368. Aeronautical Research Associates of Princeton, Inc., NJ.

[Copland and Scheffler, 2003]  Copland, A., Scheffler, D. (2003). Influence of air gaps on long rod penetrators attacking multi-plate target arrays, Rep. No. ARL-TR-2906. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD.

[Copland et al., 2005]  Copland, A., Bjerke, T.W., Weeks, D. (2005). Semi-infinite target design effects on terminal ballistics performance - influence of plate spacing on penetrator energy partitioning. Rep. No. ARL-TR-3688, Army Research Laboratory, Aberdeen Proving Ground, MD.

[Copland et al., 2005]  Copland, A., Bjerke, T.W., Weeks, D. (2005). Semi-infinite target design effects on terminal ballistics performance - influence of plate spacing on penetrator energy partitioning, Rep. No. ARL-TR-3688, Army Research Laboratory, Aberdeen Proving Ground, MD.

[Corbett and Reid, 1993]  Corbett, G.G., Reid, S.R. (1993). Quasi-static and dynamic local loading of monolithic at-faced long projectiles. Int. J. of Impact Engineering, 13(3): 423-441.

[Corbett et al., 1996]  Corbett, G.G., Reid, S.R., Johnson, W. (1996). Impact loading of plates and shells by free‑flying projectiles: a review. Int. J. of Impact Engineering, 18(2): 141‑230.

[Coronado et al., 1987]  Coronado, A.R., Gibbins, M.N., Wright, M.A., Stem, P.H. (1987). Space station integrated wall design and penetration damage control. NASA George C. Marshall Space Flight Center, AL, NASA-CR-179169 (D180-30550-4 Users Guide for Design Analysis Code BUMPER), Contract NAS8-36426.

[Corran et al., 1983a]  Corran, R.S.J., Ruiz, C., Shadbolt, P.J. (1983). On the design of containment shield. Computers and Structures, 16(1‑4): 563‑572.

[Corran et al., 1983b]  Corran, R.S.J., Shadbolt, P.J., Ruiz, C. (1983). Impact loading of plates‑an experimental investigation. Int. J. of Impact Engineering, 1(1): 3‑22.

[Cour-Palais et al., 1969]  Cour-Palais, B.G., Whipple, F.L., D'Aiutolo, C.T., Dalton, C.C., Dohnanyi, J.S., Dubin, M., Frost, V.C., Kinard, W.H., Loeffler, I.J., Naumann, R.J., Nysmith, C.R., Savin, R.C. (1969). Meteorid environment model - 1969 [Near earth to lunar surface]. NASA SPACE VEHICLE DESIGN CRITERIA (Environment), NASA SP-8013.

[Cour-Palais, 1968]  Cour-Palais, B.G. (1968). Empirical hypervelocity equations developed for Project Apollo. Office of Advanced Research and Technology (OART) Hypervelocity Impact Workshop, Manned Spacecraft Center, Houston, pp. 565-601.

[Cour-Palais, 1969b]  Cour-Palais, B.G. (1969). Meteoroid protection by multiwall structures . AIAA Paper, No. 69-372.

[Cour-Palais, 1979]  Cour-Palais, B.G. (1979). Space vehicle meteoroid shielding design. In: Proc. of the Comet Halley Micrometeoroid Hazard workshop [April 18-19, 1979, European Space Research and Technology Center (ESTEC), Noordwijk, Netherlands], ESA SP-153, pp. 85-92.

[Cour-Palais, 1982]  Cour-Palais, B. G. (1982). Hypervelocity impact investigations and shielding experience related to Apollo and Skylab. In: Proc. of the Orbital Debris Workshop (July 27-29, 1982, Houston, TX), NASA CP-2360, pp. 247-275.

[Cour-Palais, 1987]  Cour-Palais, B.G. (1987). Hypervelocity impact in metals, glass and composites . Int. J. of Impact Engineering, 5: 221-237.

[Cour-Palais, 1999]  Cour-Palais, B.G. (1999). A career in applied physics: Apollo through space station. Int. J. of Impact Engineering, 23: 137-168.

[Courtney et al., 2017]  Courtney, E., Courtney, A., Andrusiv, L., Courtney, M. (2017). Experimental studies of terminal performance of lead-free pistol bullets in ballistic gelatin using high speed video. Investigative Sciences J., 9(1): 1-18.

[Cronin and Falzon, 2009]  Cronin, D.S., Falzon, C. (2009). Dynamic characterization and simulation of ballistic gelatin. In: Proc. of the SEM Annual Conf. (June 1-4, 2009, Albuquerque, NM).

[Cronin and Falzon, 2011]  Cronin, D.S., Falzon, C. (2011). Characterization of 10% ballistic gelatin to evaluate temperature, aging and strain rate effects. Experimental Mechanics, 51: 1197–1206

[Crouch et al., 1990]  Crouch, I.G., Baxter, B.J., Woodward, R.L. (1990). Empirical tests of a model for thin plate perforation. Int. J. of Impact Engineering, 9(l): 19-33.

[Crull and Swisdak, 2005]  Crull, M., Swisdak, M.M,Jr. (2005). Methodologies for calculating primary fragment characteristics. Technical Paper No. 16 (Technical Rep. DDESB TP 16), Revision 2. Department of Defense Explosives, Safety Board, Alexandria, VA.

[Crull et al., 1999]  Crull, M., Taylor, L., Tipton, J. (1999). Estimating ordnance penetration into earth. In: Proc. of the UXO Forum ‘99 (May 25-27, 1999, Atlanta, GA).

[Cuadros, 1990]  Cuadros, J.H. (1990). Monolithic and segmented projectile penetration experiments in the 2 to 4 km/s impact velocity regime. Int. J. of Impact Engineering, 10(1-4): 147–157.

[Dai et al., 2005]  Dai, Q., Yan, L., Jiang, Z. (2005). Analysis on the plugging model of concrete targets struck by rigid projectiles. J. of Ballistics, 17(3): 26-30 (in Chinese)

[Dancygier and Yankelevsky, 1996]  Dancygier, A.N., Yankelevsky, D.Z. (1996). High strength concrete response to hard projectile impact. Int. J. of Impact Engineering, 18(6): 583-599.

[Dancygier et al., 1995]  Dancygier, A.N., Yankelevsky, D.Z., Ben‑Menashe, Y. (1995). Resistance of high strength concrete plates to hard projectiles impact. In: Trans. of 13th Int. Conf. on Structural Mechanics in Reactor Technology - SMiRT-13 (August 13-18, 1995, Porto Alegre, Brazil), paper H033/1, pp. 213-218.

[Dancygier et al., 1999]  Dancygier, A.N., Yankelevsky, D.Z., Baum, H. (1999). Behavior of reinforced concrete walls with interior plaster coating under internal hard projectile impact. ACI Materials J., 96(1): 116-125.

[Dancygier et al., 2007]  Dancygier, A.N., Yankelevsky, D.Z., Jaegermann, C. (2007). Response of high performance concrete plates to impact of non-deforming projectiles. Int. J. of Impact Engineering, 34(11): 1768-1779.

[Dancygier et al., 2014]  Dancygier, A.N., Katz, A., Benamou, D., Yankelevsky, D.Z. (2014). Resistance of double-layer reinforced HPC barriers to projectile impact. Int. J. of Impact Engineering, 67: 39-51.

[Dancygier, 1997]  Dancygier, A.N. (1997). Effect of reinforcement ratio on the resistance of reinforced concrete to hard projectile impact. Nuclear Engineering and Design, 172(1‑2): 233‑245.

[Dancygier, 1998]  Dancygier, A.N. (1998). Rear face damage of normal and high-strength concrete elements caused by hard projectile impact. ACI Structural J., 95(3): 291-304.

[Dancygier, 2000]  Dancygier, A.N. (2000). Scaling of non‑proportional non‑deforming projectiles impacting reinforced concrete barriers. Int. J. of Impact Engineering, 24(1): 33‑55.

[Danilin et al., 2005]  Danilin, G.A., Ogorodnikov, V.P., Zavolokin, A.B. (2005). The foundations of design of cartridges for small arms. Baltijskij Gosudarstvennyj Tekhnicheskij Universitet, S-Peterburg, Russia (in Russian).

[Darrigade and Buzaud, 1999]  Darrigade, A., Buzaud, E. (1999). High performance concrete: A Numerical and experimental study. In: Proc. of the 18th Int. Symp. on Ballistics (November 15-19, 1999, San Antonio, TX), Technomic Pub. Co., Lancaster, Pennsylvania, pp. 845-852.

[Datoc, 2010]  Datoc, D. (2010). Finite element analysis and modeling of a .38 lead round nose ballistic gelatin test. Master of ScienceThesis. San Luis Obispo, California Polytechnic State University, CA.

[Daudeville and Malécot, 2011]  Daudeville, L., Malécot, Y. (2011). Concrete structures under impact. European J. of Environmental and Civil Engineering, 15(SI): 101-140.

[Davidson and Sandorff, 1963]  Davidson, J.R., Sandorff, P.E. (1963). Environmental problems of space flight structures. II. Meteoroid Hazard. Tech. Note D-1493. Langley Research Center, Langley Station, Hampton, VA.

[Davim, 2000]  Davim, J.P. (2000). An experimental study of the tribological behaviour of the brass/steel pair. J. of Materials Processing Technology, 100(1): 273-277.

[Davis et al., 2003]  Davis, R.N., Jones, S.E., Hughes, M.L. (2003). High-speed penetration of concrete using a new analytical model of velocity-dependent friction. In: Proc. of ASME 2003 Pressure Vessels and Piping Conf. (July 20–24, 2003, Cleveland, OH), paper No. PVP2003-1823, pp. 111-116.

[Davis, 1997]  Davis, J.R., ed. (1997). Concise Metals Engineering Data Book. ASM Int..

[Davis, 2003]  Davis, R.N. (2003). Modeling of high‑speed friction using multi‑step incrementation of the coefficient of sliding friction. In: Proc. of the AIAA 54th Annual Southeastern Regional Student Conf. (March 27‑28, 2003, Kill Devil Hills, NC), AIAA‑RSC2‑2003‑U‑004, pp. 1‑10.

[Davoudinejad et al., 2013]  Davoudinejad, R., Khodarahmi, H. (2013). Optimum design of ceramic-composite armors against ballistic impact of projectiles by genetic algorithm. Passive Defence Sci. & Tech, 4: 287-294 (in Persian).

[De Rosset and D'Amico, 1995]  De Rosset, W.S., D'Amico, D.A. (1995). Optimum velocity penetrators. Rep. ARL-TR-864, U.S. Army Research Laboratory, ATTN: AMSRL-WT-TC, Aberdeen Proving Ground, MD.

[De Rosset, 1981]  De Rosset, W.S. (1981). Multiple impacts on monolithic steel. In: Proc. of the 6th Int. Symp. on Ballistics (October 27-29, 1981, Orlando, FL).

[De Rosset, 2001]  De Rosset, W.S. (2001). An overview of novel penetrator technology. Technical Rep. ARL-TR-2395, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5W6.

[Dean et al., 2009]  Dean, J., Dunleavy, C.S., Brown, P.M., Clyne, T.W. (2009). Energy absorption during projectile perforation of thin steel plates and the kinetic energy of ejected fragments. Int. J. of Impact Engineering, 36(10-11): 1250-1258.

[Deere, 1968]  Deere, D.U. (1968). Geologic considerations. In: Stagg, K.G. and Zienkiewicz, O.C., eds. Rock Mechanics in Engineering Practice. John Wiley & Sons, New York, London, pp. 1-20.

[Degen, 1980]  Degen, P.P. (1980). Perforation of reinforced concrete slabs by rigid missiles. ASCE J. of the Structural Division, 106 (7): 1623–1642.

[Dehn, 1979]  Dehn, J.T. (1979). The particle dynamics of target penetration. Rep. ARBRL‑TR‑02188. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.

[Dehn, 1986]  Dehn, J.T. (1986). A unified theory of penetration. Rep. BRL‑TR‑2770. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.

[Dehn, 1987]  Dehn, J.T. (1987). A unified theory of penetration. Int. J. of Impact Engineering, 5(1‑4): 238‑248.

[Dekel and Rosenberg, 2004]  Dekel, E., Rosenberg, Z. (2004). More on the transition from rigid to eroding‐rod penetration. AIP Conf. Proc., 706(1): 1327-1330.

[Demir et al., 2008]  Demir, T., Übeyli, M., Yildirim, R.O., Karakaş, M.S. (2008). Investigation on the ballistic performance of Alumina/4340 steel laminated composite armor against 7.62 mm armor piercing projectiles. In: Proc. of 17th Int. Metallurgical & Materials Conf. METAL 2008 (May 13-15, 2008, Hradec nad Moravici, Czech Republic).

[Den Reijer, 1991]  Den Reijer, P.S. (1991). Impact on ceramic faced armours. Ph.D. Thesis. Delft University of Technology, Delft.

[Denardo et al., 1967]  Denardo, B.P., Summers, J.L., Nysmith, C.R. (1967). Projectile size effects on hypervelocity impact craters in aluminum. NASA TN D-4067, Ames Research Center, Moffett Field, CA.

[Deng et al., 2011]  Deng, Y.F., Zhang, W., Cao, Z.S., Chen, Y. (2011). Numerical investigation of penetration performance of segmented rods penetration into steel target. Chinese J. of High Pressure Physics25(3): 251-260 (In Chinese).

[Deng et al., 2012]  Deng, Y., Zhang, W., Cao, Z. (2012). Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against hemispherical-nosed projectiles impact. Materials and Design, 41: 266–281.

[Deng et al., 2013]  Deng, Y., Zhang, W., Cao, Z. (2013). Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against ogival-nosed rigid projectiles impact. Materials and Design, 44: 228–239.

[Deng et al., 2013]  Deng, Y.F., Zhang, W., Cao, Z.S. (2013). Experimental investigation on the ballistic performance of 45 steel metal plates subjected to impact by hemispherical-nosed projectiles. Chinese J. of High Pressure Physics, 27(6): 915-920 (in Chinese).

[Deng et al., 2013b]  Deng, Y.F., Zhang, W., Cao, Z.S., Song, J., Wang, Q.L. (2013). Influence of the number of layers on the ballistic resistance of layered thin Q235Steel plates. Chinese J. of High Pressure Physics, 4 (in Chinese).

[Deng et al., 2014a]  Deng, Y., Zhang, W., Yang, Y., Wei, G. (2014). The ballistic performance of metal plates subjected to impact by projectiles of different strength. Materials and Design, 58: 305-315.

[Deng et al., 2014b]  Deng, Y., Zhang, W., Qing, G., Wei, G., Yang, Y., Hao, P. (2014). The ballistic performance of metal plates subjected to impact by blunt-nosed projectiles of different strength. Materials and Design, 54: 1056–1067.

[Deng et al., 2014c]  Deng, Y., Zhang, W., Yang, Y., Shi, L., Wei, G. (2014). Experimental investigation on the ballistic performance of double-layered plates subjected to impact by projectile of high strength. Int. J.  of Impact Engineering, 70: 38-49.

[Deng et al., 2015c]  Deng, Y., Meng, F., Li, J., Wei, G. (2015). The ballistic performance of Q235 metal plates subjected to impact by hemispherically-nosed projectiles. Explosion and Shock Waves, 35(3): 386-392 (in Chinese).

[Deng et al., 2017]  Deng, J., Zhang, X., Ge, X., Chen, D., Guo, L. (2017). Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory. Explosion and Shock Waves, 37: 611-620 (in Chinese).

[Denisov, 1994]  Denisov, A.M. (1994). Introduction to Theory of Inverse Problems. Moscow State University Press, Moscow (in Russian).

[Deshpande and Gupta, 2000]  Deshpande, P.U., Gupta, N.K. (2000). Normal impact of spherical balls on metallic plates. In: Zhao, X.L., Grzebieta, R.H., eds. Proc. of the 7th Int. Symp. Structural Failure and Plasticity - IMPLAST 2000 (October 4-6, 2000, Melbourne, Australia), pp. 73-78.

[Dey and Børvik, 2007]  Dey, S., Børvik, T. (2007). Ballitic penetration and perforation of layerd steel plates: An experimental and numercal investigation. In: Proc. of the 23rd  Int. Symp.on Ballistics (April 16-20, 2007, Tarragona, Spain), pp. 1365-1372.

[Dey et al., 2004]  Dey, S., Børvik, T., Hopperstad, O.S., Leinum, J.R., Langseth, M. (2004). The effect of target strength on the perforation of steel plates using three different projectile nose shapes. Int. J. of Impact Engineering, 30(8–9): 1005–1038.

[Dey et al., 2006]  Dey, S., Børvik, T., Hopperstad, O.S., Langseth, M. (2006). On the influence of fracture criterion in projectile impact of steel plates. Computational Materials Science, 38(1): 176-191.

[Dey et al., 2007]  Dey, S., Børvik, T., Teng, X., Wierzbicki, T., Hopperstad, O.S. (2007). On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation. Int. J. of Solids and Structures, 44(20): 6701–6723.

[Dey et al., 2011]  Dey, S., Børvik, T., Hopperstad, O.S. (2011). Computer-aided design of protective structures: Numerical simulations and experimental validation. Applied Mechanics and Materials, 82: 686-691.

[Dienes and Miles, 1977]  Dienes, J.K., Miles, J.W. (1977). A membrane model for the response of thin plates to ballistic impact. J. of the Mechanics and Physics of Solids, 25(4): 237–256.

[Dikshit and Sundararajan, 1992]  Dikshit, S.N., Sundararajan, G. (1992). The penetration of thick steel plates by ogive shaped projectile - experiment and analysis. Int. J. of Impact Engineering, 12(3): 373–408.

[Dikshit and Sundararajan, 1995]  Dikshit, S.N., Sundararajan, G. (1995). Author's reply to Liaghat and Malekzadeh. Int. J. of Impact Engineering, 16(4): 693-695.

[Dikshit and Sundararajan, 1992a]  Dikshit, S.N., Sundararajan, G. (1992). Effect of clamping rigidity of the armour on ballistic performance. Defence Science J., 42(2): 117-120.

[Dikshit and Sundararajan, 1992b]  Dikshit, S.N., Sundararajan, G. (1992). The penetration of thick steel plates by ogive shaped projectile - experiment and analysis. Int. J. of Impact Engineering, 12(3): 373–408.

[Dikshit et al., 1995]  Dikshit, S.N., Rao, K., Sundararajan, G. (1995). The influence of plate hardness on the ballistic penetration of thick steel plate. Int. J. of Impact Engineering, 16(2): 293-320.

[Dikshit, 1998a]  Dikshit, S.N. (1998). Ballistic behaviour of tempered steel armour plates under plane strain condition. Defence Science J., 48(2): 167-172.

[Dikshit, 1998b]  Dikshit, S.N. (1998). Oblique Impact study in thin steel armour plate. Defence Science J., 48(2): 185-195.

[Dikshit, 1998c]  Dikshit, S.N. (1998). Ballistic behaviour of thick steel armour plate under oblique Impact: Experimental investigation. Defence Science J., 48(3): 271-276.

[Dikshit, 1999]  Dikshit, S.N. (1999). Ballistic behaviour of thick steel armour plate under oblique Impact: Experimental investigation II. Defence Science J., 49(3): 257-262.

[Dikshit, 2000]  Dikshit, S.N. (2000). Influence of hardness on perforation velocity in steel armour plates. Defence Science J., 50(1): 95-99.

[Ding et al., 2007]  Ding, L., Zhang, W., Pang, B.-J., Li, C.-A. (2007). Ballistic limit analysis for projectiles impacting on dual wall structures at hypervelocity. Chinese J. of High Pressure Physics, 21(3): 311-315 (in Chinese).

[Ding et al., 2008] Ding, L., Li, C., Pang, B., Zhang, W. (2008) Ballistic limit equations in ballistic and shatter regions. Int. J. of Impact Engineering, 35: 1490–1496.

[Dobritsa and Dobritsa, 2015]  Dobritsa, B.T., Dobritsa, D.B. (2015). Serviceability of mesh double-bumper shields under the action of high-velocity particles. Vestnik Tomskogo Gosudarstvennogo Universiteta, 4: 64-70 (in Russian).

[Dobritsa and Dobritsa, 2016]  Dobritsa, B.T., Dobritsa, D.B. (2016). Modeling of protective properties of double-wall structures at hypervelocity collision of debris with spacecraft. Inzhenernyj Zhurnal: Nauka i Innovatsii, No.11 (in Russian).

[Dobritsa, 2014]  Dobritsa, D.B. (2014). A method for calculating the resistance of spacecraft design elements under the action of space debris particles. Cosmic Research, 52(3): 229-234.

[Dobritsa, 2016]  Dobritsa, D.B. (2016). Modified procedure for determining ballistic limit velocity of double-wall barrier for hypervelocity collision. In: Proc of All-Russian Conf. “Fundamental’nye I Prikladnye Problemy Sovremennoj Mehaniki" [Fundamental and Applied Problems of Modern Mechanics], (September 21-25, 2016, Tomsk, Russia). Tomsk University Press, Tomsk, pp. 189-192 (in Russian).

[DOE, 1981]  DOE/TIC-11268. (1981). A manual for the prediction of blast and fragment loadings on structures. Change 1. U.S. Department of Energy, Albuquerque Operations Office, Amarillo, TX.

[DOE, 2006]  DOE-STD-3014-2006 (2006). Accident analysis for aircraft crash into hazardous facilities. U.S. Department of Energy, Washington, DC.

[Draper and Smith, 1998]  Draper, N.R., Smith, H. (1998). Applied Regression Analysis. J. Wiley & Sons, New York.

[Du et al., 2001]  Du, Z., Zhao, G., Yang, D., Liu, G. (2001). A simplified model for projectile normally into ceramic/metal composite target. J. of Ballistics2 (in Chinese).

[Du et al., 2003]  Du, Z.H., Wang, G.B., Shen, P.H. (2003). Analytical model of ceramic/kevlar composite amour defensible performance. J. of Ballistics15(2): 44-48 (in Chinese).

[Du et al., 2006]  Du, Z.H., Zhao, G.Z., Shen, P.H., Zeng, G.Q. (2006). Analytical model of oblique penetration ceramic/metal armor by small projectile. Ordnance Material Science and Engineering6 (in Chinese).

[Dubin, 1974]  Dubin H.C. (1974). A cavitation model for kinetic energy projectiles penetrating gelatin. Memorandum Rep. No. 2423, Ballistic Reserch Laboratory.

[Dubinsky and Elperin, 1997]  Dubinsky, A., Elperin, T. (1997). Method of basic projectiles for calculating force coefficients. J. of Spacecraft and Rockets, 34(4): 558‑560.

[Duffin et al. 1967]  Duffin, R.J., Peterson, E.L., Zener, C. (1967). Geometric Programming - Theory and Application, John Wiley and Sons, Inc.

[Dunn, 1966] Dunn, W. (1966). On material strengths of the hypervelocity impact problem (depth of penetration of projectiles impacting at hypervelocities predicted, using dynamic yield strength of material with phenomenological model). AIAA J., 4(3): 535-536.

[Durban and Fleck, 1992]  Durban, D., Fleck, N.A. (1992). Singular plastic fields in steady penetration of a rigid cone. J. of Applied Mechanics, 59(4): 706-710.

[Durmuş et al., 2011]  Durmuş, A., Güden, M., Gülçimen, B., Ülkü, S., Musa, E. (2011). Experimental investigations on the ballistic impact performances of cold rolled sheet metals. Materials and Design, 32(3): 1356–1366.

[Dusenberry, 2010]  Dusenberry, D.O., ed. (2010). Handbook for Blast Resistant Design of Buildings. J. Wiley & Sons, Hoboken, NJ.

[Dzimian, 1956]  Dzimian, A.J. (1956).The Penetration of steel spheres into tissue models. U.S. Army Chemical Warfare Laboratories, Tech. Rep. CWLR 2226.

[Dzimian, 1953]  Dzimian, A.J. (1953). Wound ballistics tests of .22 caliber bullets for the M4 air force survival gun. Chemical Corps Medical Laboratories, Army Chemical Center, MD. Medical Laboratories Research Rep. No. 215.

[Dzimian, 1958]  Dzimian, A.J. (1958). The penetration of steel spheres into tissue models. U.S.Army Chemical Warfare Laboratories, Technical Rep., CWLR 2226.

[Efimov, 1939]  Efimov, M.P. (1939). Course on Artillery Shells. OBORONGIZ, Moscow (in Russian).

[Eichelberger and Gehring, 1962] Eichelberger, R.J., Gehring, J.W. (1962). Effects of meteoroid impacts on space vehicles. ARS J., 32(10): 1583–1591.

[Eichelberger, 1963]  Eichelberger, R.J. (1963). Summary: theoretical and experimental studies of crater formation. In: Proc. of the 6th Symp. on Hypervelocity Impact (30 April - 2 May, 1963, Cleveland, OH), v.2, part 2: 683-706.

[Eisler et al., 1998]  Eisler, R.D., Chatterjee, A.K., Burghart, G.H., Loan, P. (1998). Simulates the tissue damage from small arms projectiles and fragment penetrating the musculoskeletal system. Final Rep.. Mission Research Corporation, Fountain Valley, CA.

[Eisler et al., 1998]  Eisler, R.D., Chatterjee, A.K., Burghart, G.H., Loan, P. (1998). Simulates the tissue damage from small arms projectiles and fragments penetrating the musculoskeletal system. Final Rep., Mission Research Corp. Fountain Valley, CA.

[Eisler et al., 2001]  Eisler, R.D., Chatterjee, A.K., Burghart, G.H., O'Keefe, J.A. IV. (2001). Casualty assessments of penetrating wounds from ballistic trauma. Missian Research Corporation (MRC), 3505 Cadillac Avenue – Building H., Costa Mesa, CA, USA. Final Rep. Natick/TR-01/011.

[Eisler et al., 2005]  Eisler, R.D., Stone, S.F., Chatterjee, A.K. (2005). Analytical simulation of penetrating wounds to the heart. In: Proc. of Medicine Meets Virtual Reality 13. Studies in Health Technology and Informatics, 111, IOS Press [The Conf. Proc. of the 13th Edition of the Annual "Medicine Meets Virtual Reality" Event, January 26-29, 2005, Long Beach, CA].

[Eisler et al., 2006]  Eisler, R.D., Chatterjee, A.K., Stone, S.F., El-Raheb, M. (2006). Analytic simulation of tissue damage from penetrating wounds to the heart. ATK Mission Research, Laguna Hills, CA. Final Rep., Grant No. W81XWH-04-C-0084.

[Eldeman and Bakken, 1965]  Eldeman, W.E., Bakken, L.N. (1965). Loads on a conical body impacting sand and polyurethane foam. Tech. Rep. SCL-DR-64-144. Sandia Corporation, Livermore Laboratory, Livermore, CA.

[Eleiche et al., 1996]  Eleiche, A.M., Abdel-Kader, M.S., Almohandes, A. (1996). Penetration resistance of laminated plates from steel and flbreglass-reinforced polyester. In: Jones, N., Bulson, P.S., eds. Structures under shock and impact IV [Proc. of the 4th Int. Conf. on Structures under Shock and Impact (July 1996, Udine, Italy)], Computational Mechanics Publ., Southampton, pp. 117-126.

[Elek et al., 2005]  Elek, P., Jaramaz, S., Mickovic, D. (2005). Modeling of perforation of plates and multi‑layered metallic targets. Int. J. of Solids and Structures, 42(3‑4): 1209–1224.

[Elek et al., 2016]  Elek, P.M., Jaramaz, S.J., Mickovic, D.M., Miloradović, N.M. (2016). Experimental and numerical investigation of perforation of thin steel plates by deformable steel penetrators. Thin-Walled Structures, 102: 58-67.

[Elfer, 1996] Elfer, N.C. (1996). Structural Damage Prediction and Analysis for Hypervelocity Impacts – Handbook. Marshall Space Flight Center, AL. Contract NAS8-38856.

[Erice et al., 2010]  Erice, B., Gálvez, F., Cendón, D., Sánchez-Gálvez, V. (2010). Mechanical behavior of FV535 steel against ballistic impact at high temperatures. In: Proc. of the IBM POWER Systems and System Storage Symp. 2010 (May 17 – 21, 2010, Beijing, China).

[Erice et al., 2011]  Erice, B., Gálvez, F., Cendón, D.A., Sánchez-Gálvez, V., Børvik, T. (2011). An experimental and numerical study of ballistic impacts on a turbine casing material at varying temperatures. J. of Applied Mechanics by ASME,  78: 051019-1-11.

[Espinosa et al., 2000a]  Espinosa, H.D., Patanella, A., Fischer, M. (2000). A novel dynamic friction experiment using a modified Kolsky bar apparatus. Experimental Mechanics, 40(2): 138–153.

[Espinosa et al., 2000b]  Espinosa, H.D., Patanella, A., Fischer, M. (2000). Dynamic friction measurements at sliding velocities representative of high-speed machining processes. J. of Tribology, 122(4): 834–848.

[Fackler, 1986]  Fackler, M.L. (1986) Discussion of “A Study of .22 caliber rimfire exploding bullets: effects in ordnance gelatin”. J. of Forensic Science, 31: 801–802.

[Fan et al., 2013]  Fan, P., Wang, M., Song, C. (2013). Anti-strike capability of steel-fiber reactive powder concrete. Defence Science J., 63(4): 363-368.

[Fang and Wu, 2017]  Fang, Q., Wu, H. (2017). Concrete Structures under Projectile Impact. Science Press, Beijing and Springer.

[FangQing, 1997]  FangQing, W.P. (1997). A model for penetration of segmented rods with high velocities. J. of Nanjing University of Science and Technology5 (in Chinese).

[Farrell and Eyre, 1970]  Farrell, R.M., Eyre, T.S. (1970). The relationship between load and sliding distance in the initiation of mild wear in steels. Wear, 15(5): 359–372.

[Fawaz et al., 2006]  Fawaz, Z., Behdinan, K., Xu, Y. (2006). Optimum design of two-component composite armours against high-speed impact. Composite Structures, 73(3): 253–262.

[Fedorov and Fedorova, 2013]  Fedorov, S.V., Fedorova, N.A. (2013). Influence of the jet thrust impulse on depth of the research probe penetration into planet soil. Inzhenernyj Zhurnal: Nauka i Innovacii, no. 1(13) (in Russian).

[Fedorov and Fedorova, 2016]  Fedorov, S.V., Fedorova, N.A. (2016). Influence of the soil and rocky target strength properties on projectiles penetration depth with additional action of the jet thrust impulse. Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta imeni N.E. Baumana, Mashinostroenie, no.4: 40-56 (in Russian).

[Fedorov and Fedorova, 2016b]  Fedorov, S.V., Fedorova, N.A. (2016). Penetration into soils and rocks of penetrators with ballast mass jettison during penetration. In: Proc of All-Russian Conf. “Fundamental’nye I Prikladnye Problemy Sovremennoj Mehaniki" [Fundamental and Applied Problems of Modern Mechanics] (September 21-25, 2016, Tomsk, Russia). Tomsk University Press, Tomsk, pp. 250-252 (in Russian).

[Fedorov and Veldanov, 2006]  Fedorov, S.V., Veldanov, V.A. (2006). Numerical simulation of cavity formation in soil by a flux of high-speed metallic penetrators. J. of Technical Physics, 51(7): 952–955.

[Fedorov and Veldanov, 2012]  Fedorov, S.V., Veldanov, V.A. (2012). Application of segmented projectiles for formation of cavity in  rock barriers. Izvestija Rossijskoy Akademii Raketnykh I Artilleriyskikh Nauk, 1(71): 43-50 (in Russian).

[Fedorov et al., 2007]  Fedorov, S.V., Veldanov, V.A., Kozlov, V.S. (2007). Numerical analysis of metal projectile penetration into soil in hydrodynamic mode. In: Proc. of the 23rd  Int. Symp.on Ballistics (April 16-20, 2007, Tarragona, Spain), pp. 1421-1428.

[Fedorov et al., 2014]  Fedorov, S.V., Fedorova, N.A., Veldanov, V.A. (2014). Jet thrust impulse using for increase in research modules penetration depth into low-strength soil targets. Izvestija Rossijskoy Akademii Raketnykh I Artilleriyskikh Nauk, 4(84): 53−63 (in Russian).

[Fedorov et al., 2016]  Fedorov, S.V., Veldanov, V.A., Gladkov, N.A., Smirnov, V.E. (2016) Numerical analysis of penetration of segmented and telescopic projectiles of high density alloy into the steel target. Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta imeni N.E. Baumana, Mashinostroenie, 3: 100-117 (in Russian).

[Fedorov, 2011]  Fedorov, S.V. (2011). High-velocity penetration of elongated and segmented projectiles into soil-rock targets. Vestnik of Lobachevsky State University of Nizhni Novgorod, 4, Part 4, pp. 1819–1821 (in Russian).

[Fedorova et al., 2014]  Fedorova, N.A., Veldanov, V.A., Daurskikh, A.Yu., Fedorov, S.V. (2014). Influence of jet thrust on penetrator penetration when studying the structure of space object blanket. Nauka i obrazovanie. Nauchnoe Izdanie Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta imeni N.E. Baumana, no. 2: 189-201 (in Russian).

[Fedorova, 2012]  Fedorova N.A. (2012). Exploring the platets blanket using jet thrust modules. Molodezhnyj Nauchnotekhnicheskij Vestnik (Moskovskij Gosudarstvennyj Tekhnicheskij Universitet imeni N.E. Baumana), no. 3 (in Russian).

[Fedorova, 2013]  Fedorova N.A. (2013). Determination of penetration depth of high-velocity research modules with the pulse jet engine into low-strength soil targets. Molodezhnyj Nauchnotekhnicheskij Vestnik (Moskovskij Gosudarstvennyj Tekhnicheskij Universitet imeni N.E. Baumana), no. 12 (in Russian).

[Fedorova, 2013a]  Fedorova N.A. (2013). Motion of penetrating modules in low-strength soil target with additional action of the jet thrust impulse. In: Sbornik Trudov Shestoj Vserossiyskoy Konferentsii Molodykh Uchenykh i Spetsialistov “Budushchee Mashinostroenija Rossii" (September 25-28, 2013, Moscow, Russia) (in Russian).

[Fedorova, 2015]  Fedorova N.A. (2015). Influence of the strength of space object blanket on depth of penetration of jet thrust modules. Molodezhnyj Nauchnotekhnicheskij Vestnik (Moskovskij Gosudarstvennyj Tekhnicheskij Universitet imeni N.E. Baumana), no.11 (in Russian).

[Fedorova, 2016]  Fedorova N.A. (2016). Application of ballast jettison during penetration into soil and rocky targets. Molodezhnyj Nauchnotekhnicheskij Vestnik (Moskovskij Gosudarstvennyj Tekhnicheskij Universitet imeni N.E. Baumana), no. 8 (in Russian).

[Feeny et al., 1998]  Feeny, B., Guran, A., Hinrichs, N., Popp, K. (1998). A historical review on dry friction and stick-slip phenomena. Applied Mechanics Reviews, 51: 321-342.

[Feli et al., 2010]  Feli, S., Aalami Aaleagha, M.E., Ahmadi, Z. (2010). A new analytical model of normal penetration of projectiles into the light-weight ceramic–metal targets. Int. J. of Impact Engineering, 37(5): 561-567.

[Feli et al., 2011]  Feli, S., Yas, M.H., Asgari, M.R. (2011). An analytical model for perforation of ceramic/multi-layered planar woven fabric targets by blunt projectiles. Composite Structures, 93(2): 548-556.

[Fellows and Barton, 1999]  Fellows, N.A., Barton, P.C. (1999). Development of impact model for ceramic‑faced semi‑infinite armor. Int. J. of Impact Engineering, 22(8): 793‑811.

[Fernández-Fdz and Zaera, 2008]  Fernández-Fdz, D., Zaera, R. (2008). A new tool based on artificial neural networks for the design of lightweight ceramic-metal armours against high velocity impact of solids. Int. J. of Solids and Structures, 45(25-26): 6369-6383.

[Fish and Summers, 1965]  Fish, R.H., Summers, J.L. (1965). The effect of material properties on threshold penetration. In: Proc. of the 7th Hypervelocity Impact Symp., (November 17- 19, 1964, Tampa, FL).

[Flis and Sperski, 2013]  Flis, L., Sperski, M. (2013).  An investigation of the resistance of multi-layered ships steel shields to 12.7 mm projectiles. Scientific J. of Polish Naval Academy, 4(195): 31-49.

[Florence, 1969]  Florence, A.L. (1969). Interaction of projectiles and composite armor.  Rep. AMMRC‑CR‑69‑15, Part 2. Stanford Research Institute, Menlo Park, CA.

[Flores-Johnson et al., 2011]  Flores-Johnson, E.A., Saleh, M., Edwards, L. (2011). Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm ARM2 projectile. Int. J. of Impact Engineering, 38(12): 1022-1032.

[Folsom, 1987]  Folsom, E.N,Jr., (1987). Projectile penetration into concrete with an inline hole. Master’s Thesis. Rep. UCRL‑53786. Lawrence Livermore National Laboratory, University of California, Livermore, CA.

[Fomin, 1999]  Fomin, V.M., ed. (1999). High-Speed Interaction of Bodies. Nauka, Novosibirsk (in Russian).

[Forrestal and Luk, 1988]  Forrestal, M.J., Luk, V.K. (1988). Dynamic spherical cavity‑expansion in a compressible elastic‑plastic solid. J. of Applied Mechanics, 55(2): 275‑279.

[Forrestal and Luk, 1992]  Forrestal, M.J., Luk, V.K. (1992). Penetration into soil targets. Int. J. of Impact Engineering, 12(3): 427‑444.

[Forrestal and Romero, 2007]  Forrestal, M.J., Romero, L.A. (2007). Comment on "Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts" (Int. J. of Impact Engineering 1996; 18: 877-887). Int. J. of Impact Engineering, 34(12): 1962–1964.

[Forrestal and Tzou, 1997]  Forrestal, M.J., Tzou, D.Y. (1997). A spherical cavity‑expansion penetration model for concrete targets. Int. J. of Impact Engineering, 34(31‑32): 4127‑4146.

[Forrestal and Warren, 2008]  Forrestal, M.J., Warren, T.L. (2008). Penetration equations for ogive-nose rods into aluminum targets. Int. J. of Impact Engineering, 35(8): 727-730.

[Forrestal and Warren, 2009]  Forrestal, M.J., Warren, T.L. (2009). Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int. J. of Impact Engineering, 36(2): 220-225.

[Forrestal and Hanchak, 1999]  Forrestal, M.J., Hanchak, S.J. (1999). Perforation experiments on HY-100 steel plates with 4340 Rc38 and maraging T-250 steel rod projectiles. Int. J. of Impact Engineering, 22(9-10): 923-933.

[Forrestal and Piekutowski, 2000]  Forrestal, M.J., Piekutowski, A.J. (2000). Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s. Int. J. of Impact Engineering, 24(1): 57‑67.

[Forrestal et al., 1981a]  Forrestal, M.J., Longcope, D.B., Norwood, F.R. (1981). A model to estimate forces on conical penetrators into dry porous rock. J. of Applied Mechanics, 48(1): 25‑29.

[Forrestal et al., 1981b]  Forrestal, M.J., Norwood, F.R., Longcope, D.B. (1981). Penetration into targets described by locked hydrostats and shear strength. Int. J. of Solids and Structures, 17(9): 915‑924.

[Forrestal et al., 1984]  Forrestal, M.J., Lee, L.M., Jenrette, B.D., Setchell, R.E. (1984). Gas‑gun experiments determine forces on penetrators into geological targets. J. of Applied Mechanics, 51(3): 602‑607.

[Forrestal et al., 1986]  Forrestal, M.J., Lee, L.M., Jenrette, B.D. (1986). Laboratory‑scale penetration experiments into geological targets to impact velocities of 2.1 km/s. J. of Applied Mechanics, 53(2): 317‑320.

[Forrestal et al., 1987]  Forrestal, M.J., Rosenberg, Z., Luk, V.K., Bless, S.J. (1987). Perforation of aluminum plates with conical‑nosed rods. J. of Applied Mechanics, 54(1): 230‑232.

[Forrestal et al., 1988]  Forrestal, M.J., Okajima, K., Luk, V.K. (1988). Penetration of 6061‑T651 aluminum target with rigid long rods. J. of Applied Mechanics, 55(4): 755‑760.

[Forrestal et al., 1990]  Forrestal, M.J., Luk, V.K., Brar, N.S. (1990). Perforation of aluminum armor plates with conical‑nose projectiles. Mechanics of Materials, 10(1‑2): 97‑105.

[Forrestal et al., 1991]  Forrestal, M.J., Brar, N.S., Luk, V.K. (1991). Perforation of strain‑hardening targets with rigid spherical‑nose rods. J. of Applied Mechanics, 58(1): 7‑10.

[Forrestal et al., 1992]  Forrestal, M.J., Luk, V.K., Rosenberg, Z., Brar, N.S. (1992). Penetration of 7075‑T651 aluminum targets with ogival‑nose rods. Int. J. of Solids and Structures, 29(14-15): 1729‑1736.

[Forrestal et al., 1994]  Forrestal, M.J., Altman, B.S., Cargile, J.D., Hanchak, S.J. (1994). An empirical equation for penetration depth of ogive‑nose projectiles into concrete targets. Int. J. of Impact Engineering, 15(4): 395‑405.

[Forrestal et al., 1995]  Forrestal, M.J., Tzou, D.Y., Askar, E., Longcope, D.B. (1995). Penetration into ductile metal targets with rigid spherical‑nose rods. Int. J. of Impact Engineering, 16(5/6): 699‑710.

[Forrestal et al., 1996]  Forrestal, M.J., Frew, D.J., Hanchak, S.J., Brar, N.S. (1996). Penetration of grout and concrete targets with ogive‑nose steel projectiles. Int. J. of Impact Engineering, 18(5): 465‑476.

[Forrestal et al., 2003]  Forrestal, M.J., Frew, D.J., Hickerson, J.P., Rohwer, T.A. (2003). Penetration of concrete targets with deceleration‑time measurements. Int. J. of Impact Engineering, 28(5): 479‑497.

[Forrestal et al., 2010]  Forrestal, M.J., Børvik, T., Warren, T.L. (2010). Perforation of 7075-T651 aluminum armor plates with 7.62 mm APM2 bullets. Experimental Mechanics, 50(8): 1245-1251.

[Forrestal et al., 2013]  Forrestal, M.J., Warren, T.L., Børvik, T. (2013). A scaling law for apm2 bullets and aluminum armor. In: Song, B., Casem, D., Kimberley, J., eds. Dynamic Behavior of Materials, v.1. Proc. of the 2013 Annual Conf. on Experimental and Applied Mechanics (June 3–5, 2013, Lombard, IL), Springer.  Ch. 35.

[Forrestal et al., 2014a]  Forrestal, M.J., Børvik, T., Warren, T.L., Chen, W. (2014). Perforation of 6082-T651 aluminum plates with 7.62 mm APM2 bullets at normal and oblique impacts. Experimental Mechanics, 54(3): 471–481.

[Forrestal et al., 2014b]  Forrestal, M.J., Børvik, T., Warren, T.L., W. (2014). Perforation of 6082-T651 aluminum plates with 7.62 mm APM2 bullets at normal and oblique impacts. In: Song, B., Casem, D., Kimberley, J., eds. Dynamic Behavior of Materials, vol.1 [Proc. of the 2014 Annual Conf. on Experimental and Applied Mechanics], pp.389-401.

[Forrestal, 1986]  Forrestal, M.J. (1986). Penetration into dry porous rock. Int. J. of Solids and Structures, 22(12): 1485‑1500.

[Frank and Zook, 1987]  Frank, K., Zook, J. (1987). Energy-efficient penetration and perforation of targets in the hypervelocity regime. Int. J. of Impact Engineering, 5(1-4): 277-284.

[Frank and Zook, 1990]  Frank, K., Zook, J. (1990). Chunky metal penetrators act like constant mass penetrators. In: Proc. of the 12th Int. Symp. on Ballistics (October 30 - November 1, 1990, San Antonio, TX).

[Frank and Zook, 1991]  Frank, K., Zook, J. (1991). Energy-efficient penetration of targets. Rep.BRL-MR-3885, U.S. Army Ballistic Research Laboratory, ATTN: SLCBR-DD-T, Aberdeen Proving Ground, MD.

[Franke, 1882]  Franke, J. (1882). Über Abhängigkeit der Gleitenden Reibung von der Geschwindigkeit. Civilingenieur, 23, p. 206 (in German).

[Franzen et al., 1994]  Franzen, R.R., Walker, J.D., Orphal, D.L., Anderson, C.E. (1994). An upper limit for the penetration performance of segmented rods with segment - L/D<l. Int. J. of Impact Engineering, 15(5): 661–668.

[Frew et al., 1998]  Frew, D.J., Hanchak, S.J., Green, M.L., Forrestal, M.J. (1998). Penetration of concrete targets with ogive‑nose steel rods. Int. J. of Impact Engineering, 21(6): 489‑497.

[Frew et al., 2000]  Frew, D.J., Forrestal, M.J., Hanchak, S.J. (2000). Penetration experiments with limestone targets and ogive‑nose steel projectiles. J. of Applied Mechanics, 67(4): 841‑845.

[Frew et al., 2006]  Frew, D.J., Forrestal, M.J., Cargile, J.D. (2006). The effect of concrete target diameter on projectile deceleration and penetration depth. Int. J. of Impact Engineering, 32(10): 1584–1594.

[Frost, 1970] Frost, V.C. (1970). Meteroid damage assessment. NASA Space Vehicle Design Criteria (Structures), NASA SP-8042.

[Frueh et al., 2016]  Frueh, P., Heine, A., Weber, K.E., Wickert,  M. (2016). Effective depth-of-penetration range due to hardness variation for different lots of ominally identical target material. Defence Technology, 12: 171–176.

[Frueh et al., 2017]  Frueh, P., Heine, A., Riedel, W. (2017). Assessment of the protective properties of two different UHA steels based on material testing and numerical simulation. Procedia Engineering, 197: 119-129.

[Fuchs, 1963]  Fuchs, O.P. (1963). Impact phenomena, AIAA J., 1(9): 2124-2126.

[Fugelso and Bloedow, 1966]  Fugelso, L.E., Bloedow, F. H. (1966). Studies in the perforation of thin metallic plates by projectile impact: I. Normal impact of circular cylinders. Rep. MR-1250. American Transportation Corp., Niles, IL.

[Fullard and Barr, 1989]  Fullard, K., Barr, P. (1989). Development of design guidance for low velocity impacts on concrete floors. Nuclear Engineering and Design, 115(1): 113–120.

[Fullard et al., 1991