List of Figures in Chapters 1-10 and (at the end of this file) List of Photos of Scientists 1.1. Electromagnetic spectrum 1.2. Hydrogen hyperfine states 1.3a. Klystron 1.3b. Magnetron 1.3c. Photomultiplier_tube 1.4. Planck's radiation Law 1.5. Bessel J_n 1.6a. Chirped pulse (pos. chirp) 1.6b. Pulseshaper 1.7. Gaussian beam 1.8. Right and left circular polarization 1.9. Elliptical polarization 1.10. Soleil and Babinet compensators 1.11. Random phase difference 1.12. Diffraction patterns of circular and square aperture 1.13. sinc2 function 1.14a. Fresnel Integrals 1.14b. Cornu Spiral 1.15. Fresnel straight edge 1.16. 2-wave_interference 1.17. Interferometers 1.18. Michelson interferometer 1.19. Fabry Perot Resonator 1.20. Fabry Perot Intensity vs frequency 2.1. Water_absorption 2.2. Periodic Table - ionization and excitation energy 2.3. Atomic Ionization and Excitation 2.4a. Saturable absorption 2.4b. Reverse Saturable Absorber 2.5. Interface reflection and refraction 2.6. Fresnel Perpendicular and parallel 2.7. Refraction from || plates 2.8. Dispersion and refraction 2.9. Index of refraction vs frequency 2.10. Dispersion pulse broadening 2.11. Silica refractive index 2.12. Bragg scattering 2.13. Unit cells of the space lattices 2.14. Tetrahedron-Octahedron 2.15a. Crystal structure of diamond 2.15b. Diamond structure 2.16. Principal axes of crystal system 2.17. Directions of wave normal 2.18. Ellipsoid of inverse dielectric 2.19. Uniaxial crystals 2.20. Refractive Index - rutile 2.21a. BBO indices 2.21b. BBO group velocities 2.22. Wavepacket motion 2.23. Biaxial k vector surfaces 2.24. Double refraction 2.25. BBO wavepacket tilting 2.26. Six-stage folded Solc filter 2.27. Six-stage fan Solc filter 2.28. Faraday optical activity 2.29a. Electro-Optic amplitude modulator 2.29b. Electro-Optic EO phase modulator 2.30a. Phase modulated frequency 2.30b. Phase modulated field strength 2.31. Classification: Piezo, Pyro, Ferroelectric 2.32. Pyroelectric coefficient 2.33. Ferroelectric properties 2.34. Perovskite PZT crystal 2.35. Ferroelectric domain walls 2.36. Ferroelectric observation 2.37. Barium titinate crystal 2.38. Barium titinate dielectric constant 2.39. Photorefractive effect 2.40. Photorefractive crystal energy levels 2.41. Photoacoustic refraction 2.43. Raman-Nath Diffraction 2.42. Bragg diffraction: Bragg and Raman-Nath 2.44. Circulator: double-pass 2.45. Circulator: 4-pass 2.46. Faraday figure of merit 3.1. Hall effect geometry 3.2. Quantum Hall Resistance 3.3. Compton Scattering 3.4a. Lorentzian vs frequency 3.4b. Lorentzian scattering peak 3.5. Collision-shift broadening 3.6. Na ground_excited Adiabatic Born-Oppenheimer surfaces 3.7a. Absorption coefficient vs frequency 3.7b. Index of refraction vs frequency 3.8a. Hanle setup schematic 3.8b. Hanle effect 3.9a. Centrosymmetric potential 3.9b. Non-centrosymmetric potential 3.10a. Nonrelativisitic radiation 3.10b. Partial relativisitic radiation 3.10c. Relativisitic radiation 3.11. Synchrotron pulses 3.12. Dielectric sphere scattering 3.13. Dipole force trapping 3.14. Optical tweezers 3.15. Sisyphus cooling 4.1. Spin precession 4.2. Magnetization vs magnetic field 4.2. Periodic Table of magnetic properties 4.4. Pauli Paramagnetism 4.5. Ferromagnetic hysteresis and saturation 4.6. Temperature dependence of the ferromagnetic saturation 4.7. Magnetic domains 4.8. Antiferromagnetic susceptibility 4.9. Zeeman two-level splitting 4.10. Precession of Bloch vector 4.11. Schematic drawing of an NMR spectrometer 4.12. ColeŠCole diagram for water 4.13. Optic and acoustic phonon modes 4.14. Acoustic and optic dispersion 4.15. Polariton dispersion 4.16. Plasma oscillation in a metallic slab 4.17. Alfen wave 4.18. Magnetosonic wave in a plasma 4.19. Plasma refractive index 5.1. Transition dipole orientation 5.2. Excited state probability 5.3. Stokes Anti-Stokes transitions 5.4. Rayleigh Feynmann diagrams 5.5. Raman coordinate vectors 6.1. Spectra of alkali atoms 6.2. Diffuse Series of alkali 6.3. Grotrian diagrams 6.4. H atom Zeeman and hyperfine spectrum 6.5. Na Zeeman and hyperfine splitting 6.6a. Atomic Radii of the elements 6.6b. Atomic Ionization Energies 6.6'. Hund_rules 6.7. H molecular ion lowest potentials 6.8a. H molecular ion g potentials 6.8b. H molecular ion u potentials 6.9. Rigid rotor energy levels 6.10. DCl absorption spectrum 6.11p. Rovibrational spectrum 6.12. Franck-Condon Principle 6.13. H molecular ion coordinates 6.14. Hydrogen molecule ground singlet and triplet potentials 6.15. Hydrogen molecule potential curves 6.16. Spherical top energy levels 6.17. CH_{3}Br absorption 6.18.CO_2 vibrational modes 6.19a.CO_2 parallel absorption 6.19b. CO_2 perpendicular absorption 6.20. Electronic transitions of acetaldehyde 6.21a. Rhodamine 6G absorption and fluorescence 6.21b. Dye molecule transitions 6.22. d-orbital functions 6.23. Crystal-field coordinates 6.24. Octahedron 6.25. Tetrahedron 6.26. Square planar orientation of ligands 6.27. Crystal field splitting of d orbitals in cubic symmetries 6.28. d-orbital energy level diagram in cubic symmetries 6.29. Orgel diagrams 6.30. TanabeŠSugano diagram 6.31. Band structure of atoms 6.32. Metal-semiconductor-insulator energy bands 6.33. Energy bands vs wave vector 6.34. Fermi-Dirac distribution 6.35. Absorption and emission of dsemiconductor 6.36. Absorption and emission of indirect-gap semiconductor 6.37. Semiconductor donor-acceptor diagram 6.38. p-n junction 6.39. p-n junction I-V 6.40. p-i-n junction 6.43. Semiconductor excitons 7.1. Three and Four Level Laser Levels 7.2. Laser Cavities 7.3. Circulating Laser Intensity 7.4. Laser output vs input 7.5. Temporal structure of ruby laser pulses 7.6. Q-switched laser operation for constant pumping 7.7. Q-switched laser operation for flashlamp pumping 7.8. Schematic diagram for Q-switched laser 7.9. AM Mode-locking 7.10. Chirped pulse amplifier 7.11. Longitudinal resonator modes 7.12. TEM modes 7.13. Laguerre Gaussian modes 7.14. Gaussian beam mirror radii 7.15. Laser Cavity with Amplified Spontaneous Emission 7.16. He-Ne levels 7.17. Argon laser scheme 7.18. Argon ion energy levels 7.19. CO_2 laser scheme 7.20. Lowest nitrogen molecule electronic states 7.21a. Nd_YAG levels 7.22. Ruby energy levels 7.23. Alexandrite energy levels 7.24. Ti-sapphire energy levels 7.25. DFB and DBR laser 8.1. Second Harmonic Generation phase-matching 8.2. 90 degree phase-matching 8.3. SHG phase-matching for a positive uniaxial crystal 8.4. Sum Frequency Generation Phase and Group Velocity Matching 8.5. SHG and SFG spectra 8.6. SHG for low. medium and high conversion 8.7. SHG phasematching angles 8.8. sn Jacobi Elliptic functions 8.9. y*sn^2(y,x) vs x for several y 8.10. SFG conversion vs propagation distance 8.11. SFG conversion for 11 modes (low and high conversion) 8.13. Short pulse SHG 8.14. cn Jacobi Elliptic functions 8.15. DFG conversion vs propagation distance 8.16. DFG conversion for 11 modes (low and high conversion) 8.17. Refractive indices of Rb and Xe vs wavelength 8.18. Self-focusing of a beam of light 8.19. Nonlinear Schrodinger equation soliton 8.20. 2-soliton for the Higher Order Nonlinear Schrodinger Equation 8.21. Dark soliton 8.21. Phase-matching for collinear THG and noncollinear FWM 8.22. 4WM phase-matching 8.23. Coherent Stokes scattering 8.24. Self-frequency shifting 9.1. Mollow_triplet 9.2. Dressed States energy level diagram 9.3. Real and imaginary part of the susceptibility vs detuning 9.4. Pulse area theorem 9.5. Photon echo time sequence 9.6. Pphoton-echo Bloch vector diagram 9.7. 3-level system with 2 fields 9.8. Stimulated Rapid Adiabatic Passage 9.9. Coherent states and squeezed states 9.10. Homodyne detection of squeezed light 10.1. Fiber characteristics 10.2. Fiber numerical aperture 10.3. Silica absorption 10.4. Erbium Amplifier 10.5. Erbium gain 10.6. Fiber character equation 10.7. Helmholtz characteristic equation 10.8. Fiber Raman gain cross section 10.9. Distribution networks 10.10. Passive star coupler 10.11. Heterodyne detection 10.12. Pulse position modulation B.1 Schematic of proof boundary conditions for D B.1 Schematic of proof boundary conditions for E B.3. Snell's Law schematic C.1. Morse_potential Photos of Scientists at the beginning (and end) of chapters Chapter 1. James Clerk Maxwell, Carl Friedrich Gauss, Andre Marie Ampere, Charles Augustin de Coulomb, Michael Faraday (end of chapter 2) Isaac Newton, Max Planck Chapter 2. Willebrord Snell, Augustin Fresnel, Wilhelm Rontgen, William H. Bragg, William L. Bragg, Albert Einstein Chapter 3. K. L. Drude, J. J. Thomson, A. H. Compton, Lord Rayleigh (John William Strutt), C. V. Raman (end of chapter 3) Steven Chu, Claude Cohen-Tannoudji, William D. Phillips Chapter 4. Marie and Pierre Curie, Wolfgang Pauli, Henrik Lorentz, Felix Bloch, Ludwig Boltzmann Chapter 5. Niels Bohr, Erwin Schrodinger, Werner Heisenberg, Max Born, Paul Dirac, Richard Feynmann, Lev Landau Chapter 6. Douglas Hartree, Robert Mulliken, Gerhard Gerzberg Enrico Fermi, Walter Kohn, John Pople Chapter 7. Charles L. Townes Aurthor L. Schawlow, Theodor H. Maiman, A.M. Prokhorov, Nicolay G. Basov Chapter 8. Maria Goppert-Mayer, Nicholaas Bloembergen, Peter Franken Chapter 9. Isidor Isaac Rabi, John von Neumann, Roy Glauber Chapter 10. Claude Shannon, Akira Hasegawa, Jacob Ziv