Index

Page numbers followed by f indicate figures; page numbers followed by t indicate tables.

Abraham density 44
Absorption 301–312
 finite duration pulses 311–312
 quantum description of 294–318
 stimulated 309
 finite lifetime considerations for 309–311
Absorption coefficient 88
 frequency dependence of 196f
 as function of frequency 108f
 of water vs frequency 90f
Absorption cross section 88
Absorption length 91
Absorption spectra 88, 404–406
Acceptor atom
 energy levels of 401f
 impurities 400–402
Acoustic waves 169
 diffraction by 163–168
Acousto-optic detection
 in gases 169–171
 uses of 169
Acousto-optic effects 163–171
 Brillouin scattering 163–168
 photoelastic effect 168–169
Adiabatic limit 523–524
Adiabatic passage 512–514
Adiabatic theorem 512–514
Airy discs 65
Alfvén velocity 289
Alfvén waves 289, 289f
 electron cyclotron 289
 ion cyclotron 289
Alkali atoms
 spectra of 320f
Alkali–halide crystal lattice
Alkali spectra 321
 dispersion relation for 273f
 particle displacements for 273f
AM mode-locking 427f

Amplified spontaneous emission (ASE) 435–437
Amplifier system
 chirped pulse 430f
Amplitude-modulated field 38
Amplitude modulation 14, 38
Analogue communication 577
Angular beam spread 50
Angular frequency 6, 27
Anisotropic crystal
 optic axis of 128
Annihilation operators 77
Anti-Stokes Brillouin process 165
Anti-Stokes field
 frequency of 200
Anti-Stokes lines 200
Antiferroelectric arrangement 158
Antiferroelectricity 158
Antiferromagnetic crystal
 magnetic susceptibility of 251f
Antiferromagnetism 251
Ar ion lasers 439–441
Argon ion lasing scheme 440f
Amplitude shift keying (ASK) 578
Asphericity parameter 375
Asymmetric top molecule 375
Atom 320–348
 band structure of 393f
 broadening due to collisions 347
 broadening due to lifetime 347
 cooling of 225–232, 527–528
 diffuse series transitions 322f
 electronic excitation energy of 93f
 excited molecular potential 191f
 fine-structure splitting 321
 ground molecular potential 191f
 Hartree–Fock method 337–344
 hydrogen 327–336
 contact term 332
 fine structure 328–334
<table>
<thead>
<tr>
<th>Atom (continued)</th>
<th>Bloch wall 249</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperfine structure 328–334</td>
<td>Bohr magneton 171, 240, 298</td>
</tr>
<tr>
<td>Landé gyromagnetic factor 334</td>
<td>Bohr radius 187</td>
</tr>
<tr>
<td>Stark shift 336</td>
<td>Bolometer 15, 17</td>
</tr>
<tr>
<td>symmetric gauge 328</td>
<td>response time 15</td>
</tr>
<tr>
<td>Zeeman splitting 334–336</td>
<td>Boltzmann collision integral 283</td>
</tr>
<tr>
<td>hyperfine interaction 322</td>
<td>Boltzmann distribution 190</td>
</tr>
<tr>
<td>ionization energy of 93</td>
<td>Boltzmann equation 284</td>
</tr>
<tr>
<td>multielectron atomic systems 337–347</td>
<td>Born–Oppenheimer approximation (BOA) 349–350</td>
</tr>
<tr>
<td>antisymmetry principle 337</td>
<td>Born–Oppenheimer potential surfaces</td>
</tr>
<tr>
<td>Pauli exclusion principle 337</td>
<td>multidimensional 367–369</td>
</tr>
<tr>
<td>polarization gradient cooling of 230–232</td>
<td>Bose–Einstein condensate (BEC) 501</td>
</tr>
<tr>
<td>spin–orbit interaction 321</td>
<td>Bose–Einstein particles 232</td>
</tr>
<tr>
<td>Thomas–Fermi approximation 337, 344–346</td>
<td>Bragg diffraction law 163</td>
</tr>
<tr>
<td>trapping of 225–232, 527–528</td>
<td>Bragg scattering 167f, 572</td>
</tr>
<tr>
<td>Atom mirrors 226–228</td>
<td>condition for 114</td>
</tr>
<tr>
<td>Atomic radius vs atomic number 341f</td>
<td>regime 166</td>
</tr>
<tr>
<td>Atomic selection rules 347</td>
<td>Braking radiation. See Bremsstrahlung</td>
</tr>
<tr>
<td>Atomic units 603–605</td>
<td>Bravais lattice 114, 115f</td>
</tr>
<tr>
<td>Azimuthal drift velocity 15</td>
<td>Bremsstrahlung 13, 18, 19, 219</td>
</tr>
<tr>
<td>Babinet compensators 53f</td>
<td>Brewster’s angle 104</td>
</tr>
<tr>
<td>Band gap 393, 394t</td>
<td>Brillouin scattering 161, 163–168, 314, 498</td>
</tr>
<tr>
<td>Barium titanate 157</td>
<td>Doppler shift 165</td>
</tr>
<tr>
<td>lattice structure of 157f</td>
<td>Brillouin scattering 161, 163–168, 314, 498</td>
</tr>
<tr>
<td>phases of 157t</td>
<td>Bus topology 577f</td>
</tr>
<tr>
<td>relative dielectric constant of 158f</td>
<td>Cavity modes 46–49, 430–435</td>
</tr>
<tr>
<td>spontaneous polarization of 158f</td>
<td>longitudinal 430–431</td>
</tr>
<tr>
<td>structure of 157–158</td>
<td>Fabry–Perot resonator 431</td>
</tr>
<tr>
<td>Beam waist 49</td>
<td>transverse 432–435</td>
</tr>
<tr>
<td>Beamsplitter 68</td>
<td>Centrosymmetric medium</td>
</tr>
<tr>
<td>Beer’s law 89</td>
<td>nonlinear polarization of 207–210</td>
</tr>
<tr>
<td>Bessel functions 39f</td>
<td>Centrosymmetric potential 206f</td>
</tr>
<tr>
<td>Biaxial crystals 121t, 128, 131–132</td>
<td>Centrosymmetry 118</td>
</tr>
<tr>
<td>Birefringence 122–140</td>
<td>Cesium filter wavelength 90</td>
</tr>
<tr>
<td>application of 136–140</td>
<td>Charge density</td>
</tr>
<tr>
<td>fast axis 123</td>
<td>classical expressions for 79–80</td>
</tr>
<tr>
<td>slow axis 123</td>
<td>Charge-coupled device (CCD) 18</td>
</tr>
<tr>
<td>Birefringent 120</td>
<td>Chemical shift 257</td>
</tr>
<tr>
<td>Birefringent medium</td>
<td>Cherenkov detectors 217</td>
</tr>
<tr>
<td>wavepacket propagation in 133–136</td>
<td>Cherenkov radiation 217</td>
</tr>
<tr>
<td>Bit error rate (BER) 579</td>
<td>Chiral 140</td>
</tr>
<tr>
<td>Black soliton 495</td>
<td>Chirped pulse adiabatic passage 513–514</td>
</tr>
<tr>
<td>magnitude of 495f</td>
<td>Chirped pulse amplifiers 429–430</td>
</tr>
<tr>
<td>Blackbody matter 20</td>
<td>Circular dichroism (CD) 140–143</td>
</tr>
<tr>
<td>Blackbody radiation 20–23</td>
<td>Circulating intracavity intensity 417–419</td>
</tr>
<tr>
<td>Bloch equation 239, 241, 504</td>
<td>Classical radiation theory</td>
</tr>
<tr>
<td>Bloch vector 255</td>
<td>ultraviolet catastrophe of 22</td>
</tr>
<tr>
<td>diffusion of 536f</td>
<td>Clausius–Mossotti equation 265–267</td>
</tr>
<tr>
<td>precession of 255f</td>
<td>Clausius–Mossotti relation 266</td>
</tr>
<tr>
<td>Clebsch–Gordan coefficient 363</td>
<td></td>
</tr>
</tbody>
</table>
CO₂
 laser 441–443
 lasing scheme 442
 vibrational modes of 376
Coercive field 248
Coherence
 complex degree of 72
 coherence decay time 199
 coherence distance 73
 coherence function
 mutual 72
 temporal 72
 coherence time 73
Coherent optical communication 577–579
Coherent optical detection 578
Coherent trapping
 dark states 541
Cold plasma 281, 290
Cole-Cole diagram
 for water 269
Colliding pulse mode (CPM) 428
Collisional line narrowing 193
Collisionless plasma approximation 285
Compensator 53
Compton scattering 187, 188
Compton wavelength 187
Condensed-phase materials 381–407
 crystal field approximation 384–386
 d-orbitals and configurations 382–384
 five d orbital functions 382
 metal ions
 crystals doped with 381–392
 metals 392–397
 semiconductor materials 397–407
 Tanabe–Sugano diagrams 391–392
 transition-metal complexes 387–391
Conductance 180
Conducting fluid 275
Conduction band 393
Conductivity 180–183
Conductors
 energy band diagram for 394
Confocal parameter 50
Contact resistance 15
Continuity equation 286
Continuous wave (cw) beam 96
Cornu’s spiral 65
Cotton–Mouton effect
 in liquids 175–176, 204
Coulomb gauge 296
Coulomb potential 602–603
Creation operators 77
Cross-spectral density 73
Crossed electric field 179–180
Crossed magnetic field 179–180
Crystal classes. See Point groups
Crystal field
 coordinates for 384
Crystal field splitting
 Orgel diagram for 389
Crystal field theory 381
Crystal field transitions
 octahedral 392
Crystal lattice
 types of 120
Crystal rectifier 15
Crystal system 114, 115
 cubic 114
 dielectric properties of 120
 hexagonal 114
 monoclinic 114
 optically isotropic 113
 orthorhombic 114
 point groups of 117
 tetragonal 114
 triclinic 114
 trigonal 114
 types of 114
Crystallography 113–122
 symmetry 114
Crystals
 anisotropic
 optic axis of 128
 biaxial 131–132
 optics in 113–122
 point groups 113
 polyhedra 113
 uniaxial 129–131
Cubic crystal system
 space lattices, properties of 115
Cubic perovskite crystal
 unit cell of 154
Cubic symmetry
 optically isotropic 119
Curie constant 244
Curie law 244
Curie temperature 152, 247
 ferrimagnetic crystals 249
 ferromagnetic crystals 249
Curie-Weiss law 247
Current
 classical expressions for 79–80
Cyclotron frequency 178–179, 214
 of proton 241
Cyclotron radius 179

d orbitals
 electronic configurations of 383\textit{f}
 splitting of 388\textit{f}
Damping force 229

DCI
 infrared absorption spectrum of 359\textit{f}
Debye 193
 number 280
 screening length 277
 shielding distance. \textit{See} Debye, screening length
Decay constant 188
Decay matrix 519
Decay rate 180, 185
Density matrix dynamics
 adiabatic theorem for 528–529
Density matrix solution
 steady-state 524–526
Deshielding 257

Detectors 404
Detuning 227
Dextro-rotatory 140

Diamond
 crystal structure of 119\textit{f}
 structure of, projected on cubic face 119\textit{f}

Diatomic molecules 353–367
 Born–Oppenheimer approximation 354
 electric dipole transitions in 361\textit{f}
 electronic spectra of 360
 Franck–Condor principle 361–363
 \(\text{H}_2 \) molecule 366
 \(\text{H}_2^+ \) ion 364–366
 coordinates used for 364\textit{f}
 rotational energy levels of 355\textit{f}
 rotational states 354–358
 transitions 354–358
 vibrational states 354–358

Dichroism 122

Doppler broadening 189–190
Doppler cooling 228–230
Doppler cooling temperature 229

Doppler line narrowing. \textit{See} Collisional line narrowing

Doppler shift 12

Double refraction 133
 allowed wave normals 133\textit{f}

Double-pass optical circulator 173\textit{f}

Drift region 14
Drift velocity 179

Drude-Born-Fedorov equations 142

Dye lasers 444–445
Dye molecules 380–381
Dynode 17

E1 (electric dipole) term 308
Echo planar imaging 258
Einstein absorption 93–94
Electric dipole transitions 360–361
Electric dipole moment 219
operator 306
vector 193
Electric dipole radiation 219
Electric field
crossed
motion of charged particle 179–180
polarization
expansion of 456–470
reflection with 103f
refraction with 103f
static 143
Electric field effects 143–163
electrostriction 158–161
ferroelectric effect 152–158
Kerr effect 143–144
photorefractive effect 161–163
piezoelectricity 149–151
Pockels effect 144–148
pyroelectric effect 151–152
Electric quadrupole 220
Electric quadrupole moment tensor 193
Electric vector 236
Electrical conductivity 236
Electrical potential 193
Electro-optic crystal
in amplitude modulator 147f
in phase modulator 147f
Electro-optic effect 123
Electro-optic phase modulator 38
Electro-optic shutters 144
Electro-optic tensor 145
Electroluminescence 410
 Electromagnetic cavity 47
spectral mode density of 47
Electromagnetic field
angular momentum of 41–50
Bohr magneton 298
charged particle in 294–301
electron spin coupling 297–300
Coulomb part of 84
dipole moment
Lagrangian for 299
electron spin gyromagnetic ratio 299
energy of 41–50
magnetic moment 298
momentum of 41–50
quantization of 76
Electromagnetic flux 43
Electromagnetic propagation 31
Electromagnetic radiation 2–85
frequency of 6
Electromagnetic spectrum 12f, 6–26
division of 12
blackbody radiation 20–23
γ-rays 19–20
infrared 15–17
microwaves 14–15
radiowaves 12–14
ultraviolet 18
visible light 17–18
X-rays 18–19
frequency regimens of 12f
wavelength regimens of 12f
Electromagnetic units 589–590
Electromagnetic waves 26
amplitude modulation of 38
angular momentum of 41–50
in conductors 195–199
skin depth 198
in dielectric media 195–199
energy of 41–50
frequency modulation of 38
in insulators 195–199
length of 67f
momentum of 41–50
propagation of one component in one dimension
30–34
slowly varying envelope 32–34
Electromagnetism
laws of 588
macroscopic, atomistic derivation of 261–264
Electron
bound, motion in electromagnetic field 184–210
bound, spontaneous emission
linewidth due to 184–186
spin magnetic moment of 297
Electron correlation 353
Electron cyclotron wave 289
Electron g-factor 328
Electron gas
vs magnetic field 184f
Electron gun 14
Electron magnetic resonance (EMR) 252
Electron masses 401f
Electron paramagnetic resonance (EPR) 252
Electron spin coupling 297–300
Stern–Gerlach experiment 297
Electron spin g-factor 240
Electron spin gyromagnetic ratio 299
Electron spin magnetic moment vector 328
Electron spin resonance (ESR) 252
Electrostriction 158–161
 polarizability tensor 159
Electrostrictive constant 160
Emission 301–312, 406–407
 dipole approximation 306–307
 orientation of 307f
 finite duration pulses 311–312
 multipole radiation expansions 307–308
 probability
 time-dependence of 310f
 quantum description of 294–318
 spontaneous 93, 304–308
 stimulated 93, 309
 finite lifetime considerations for 309–311
Emission coefficients 93–94
Emission spectra 88, 404–406
Emitter 311
Enantiomorphic 140
Energy flux tensor 285
Energy limiter 99
Erbium doped fiber
 gain spectrum of 567f
Etchant 155
Evaporative cooling 232
Exchange energy 248
Exchange field 247
Excimer lasers 444
Exciplex lasers 444
Exciton 406
Exciton absorption 406–407
Excitonic states
 energy levels of 406f
Expansion parameters 358f
Fabry–Perot etalon. See Fabry–Perot interferometer
Fabry–Perot filter analyzer 72
Fabry–Perot interferometer 69f, 69–72
 finesse of 70
 free spectral range 70
 intensity vs frequency 70f
 losses of 70
Fabry–Perot resonator. See Fabry–Perot interferometer
Far off-resonance trapping 226–228
Far-field diffraction approximation. See Fraunhofer diffraction approximation
Far-zone 217

Faraday effect 172–175
Faraday materials
 comparison of 175f
Faraday rotation 173
Fast Fourier transform (FFT)
 split-step propagation method 469
Fermi energy 393, 396
Fermi Golden rule 303
Fermi velocity 396
Fermi–Dirac particles 232
Fermi–Dirac distribution function 396f, 396–397
Ferrimagnet 250
Ferrimagnetism 250–251
Ferroelectric domain walls 154f
Ferroelectric domains 155f
Ferroelectric effect 152–158
 coercive field 153
 ferroelectric hysteresis 153f
 ferroelectric material 152
 classification of 149f
 electric energy density of 156
Ferroelectric phase transition
 mechanism of 155–156
Ferroelectricity 152
 crystallographic groups 153
Ferroelectrics
 domain structure 154
 domain wall 154
 etchant 155
 groups of 153
 barium titanate 153
 potassium dihydrogen phosphate 153
 Rochelle salts 153
 second-order phase transition 154
Ferromagnet 247
 coercive field 248
 exchange energy 248
 exchange field 247
 hysteresis 247, 248f, 249
 magnetic domains 250f
 remnance 248
 saturation magnetization
 temperature dependence of 249f
Ferromagnetic domain 249
Ferromagnetism 247–249
 Curie temperature 247
Feynmann diagrams 314
Fiber
 attenuation in 564–565, 564f
 characteristics of 562–567
 dispersion in 565
 graded-index 563
graded-index multimode 562f
higher-order nonlinear effects 575–576
self-frequency shifting 575–576
self-steepening 575–576
imperfections in 572
maximum entrance angle 563f
modes
coupling between 572
multimode 563
nonlinear processes in 573–576
parametric processes 576
optical solitons in 573–574
polarization-maintenance 565–566
radiation modes 563
single-mode 563
single-polarization 565–566
step-index multimode 562f
step-index single-mode 562f
stimulated Raman amplification in 574–575
Fiber–Bragg gratings 572
Fiber jacket 563
Fiber-optic communication systems 576–582
analogue communication 577
coherent optical communication 577–579
Fine-structure coupling. See Spin–orbit coupling
Flow velocity. See Stream velocity
Fluorescence spectroscopy 17
Fluorescent screen 18
Fortrat diagram 359f
FORTS. See Far off-resonance trapping
Four-pass optical circulator 174f
Fourier transform filtering 61
Fourier transform spectroscopy 61
Franck–Condon principle 362f, 361–363
Fraunhofer diffraction 64–65
for circular aperture 64
for rectangular aperture 64
square of function sinc (x) 64f
Fraunhofer diffraction approximation 61
Fraunhofer diffraction limit 63
Free induction decay (FID) 256, 257, 534–535
Free particle 600–601
Free spectral range 70, 72
Frenkel exciton 406
Frequency-division multiplexing (FDM) 562
Frequency filters 136–140
Lyot-Ohman filter 136
Sole filter 137
folded 137
Frequency modulation 14, 38–40
Fresnel diffraction 65–66
Fresnel diffraction approximation 61
Fresnel diffraction regime 65
Fresnel equations 101
Fresnel integrals 56f
Fresnel’s ellipsoid 127
Friction 180, 184
Frequency-resolved optical gating (FROG) 41
Frequency shift keying (FSK) 578
Fusion reaction 24
GaAs absorption coefficient
vs frequency 406
GaAs–GaAlAs heterojunction 183
Gain saturation 417
γ-rays 19–20
detection of 19
frequency of 19
nuclear reaction 19
power law spectrum 20
production of, astrophysical mechanisms for 20
Gas lasers 17
Gaussian beams 50f, 49–50, 435f
angular beam spread 50
beam waist 49
confocal parameter 50
Guoy phase 50
intensity of 49
Gaussian envelope 32
Gaussian modes
higher-order 432–433
Gaussian wave-packet 137f
Generalized Liouville operator 518
Golay cell 17
Golden rule formula 306
Graded-index fibers 563
Green’s function 81
retarded 81
Green’s theorem 62
Grotrian diagrams 322, 323f
Group velocity 34, 37
Group velocity dispersion (GVD) 476
parameter 110
Group velocity mismatch broadening (GVMB) 476
Guoy phase 50
Gyromagnetic ratio 171
Gyrotropy. See Optical activity
Half-wave voltage 144
Hall conductance 181
Hall effect 180–183
gamma of 183f
Hall field 182
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall resistance</td>
<td>182, 183</td>
</tr>
<tr>
<td>Hall voltage</td>
<td>182</td>
</tr>
<tr>
<td>Hamiltonian operator</td>
<td>77</td>
</tr>
<tr>
<td>Hanbury–Brown Twiss experiment</td>
<td>75</td>
</tr>
<tr>
<td>Handed arrangement. See Chiral</td>
<td></td>
</tr>
<tr>
<td>Hanle effect</td>
<td>204–206</td>
</tr>
<tr>
<td>Harmonic oscillator potential</td>
<td>606–609</td>
</tr>
<tr>
<td>Hartree–Fock method</td>
<td>337–344</td>
</tr>
<tr>
<td>configuration interaction</td>
<td>343</td>
</tr>
<tr>
<td>Coulomb integrals</td>
<td>342</td>
</tr>
<tr>
<td>electron configuration</td>
<td>337</td>
</tr>
<tr>
<td>exchange integrals</td>
<td>342</td>
</tr>
<tr>
<td>Slater determinant</td>
<td>337</td>
</tr>
<tr>
<td>He–Ne laser</td>
<td>438–439</td>
</tr>
<tr>
<td>energy levels of</td>
<td>438</td>
</tr>
<tr>
<td>transitions for</td>
<td>438</td>
</tr>
<tr>
<td>Heat tensor. See Energy flux tensor</td>
<td></td>
</tr>
<tr>
<td>Heisenberg representation</td>
<td>555, 608</td>
</tr>
<tr>
<td>Heisenberg uncertainty relation</td>
<td>547</td>
</tr>
<tr>
<td>Helmholtz equation</td>
<td>62</td>
</tr>
<tr>
<td>Heterodyne detector</td>
<td>552</td>
</tr>
<tr>
<td>Heterojunctions</td>
<td>404</td>
</tr>
<tr>
<td>Hole masses</td>
<td>401t</td>
</tr>
<tr>
<td>Homodyne detector</td>
<td>578</td>
</tr>
<tr>
<td>Hub topology</td>
<td>577f</td>
</tr>
<tr>
<td>Hubble’s law</td>
<td>190</td>
</tr>
<tr>
<td>Hund’s rule</td>
<td>346</td>
</tr>
<tr>
<td>Huygens–Fresnel principle</td>
<td>61</td>
</tr>
<tr>
<td>Huygens’ principle of optics</td>
<td>61</td>
</tr>
<tr>
<td>Hydrogen</td>
<td></td>
</tr>
<tr>
<td>magnetic analogy of</td>
<td>13f</td>
</tr>
<tr>
<td>Hyperfine coupling</td>
<td>329</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>247, 249</td>
</tr>
<tr>
<td>Incident radiation</td>
<td></td>
</tr>
<tr>
<td>polarization vectors for</td>
<td>223f</td>
</tr>
<tr>
<td>wavevectors for</td>
<td>223f</td>
</tr>
<tr>
<td>Index of refraction</td>
<td>100–113</td>
</tr>
<tr>
<td>BBO</td>
<td>130f</td>
</tr>
<tr>
<td>dispersion</td>
<td>107–112</td>
</tr>
<tr>
<td>isotropic</td>
<td>120</td>
</tr>
<tr>
<td>Kramers–Kronig relation</td>
<td>105–107</td>
</tr>
<tr>
<td>Index-matching. See Phase-matching</td>
<td></td>
</tr>
<tr>
<td>Indirect bandgap semiconductor</td>
<td></td>
</tr>
<tr>
<td>photo-absorption</td>
<td>399f</td>
</tr>
<tr>
<td>photo-emission</td>
<td>399f</td>
</tr>
<tr>
<td>Infrared</td>
<td>15–17</td>
</tr>
<tr>
<td>detection of</td>
<td>17</td>
</tr>
<tr>
<td>sources of</td>
<td>17</td>
</tr>
<tr>
<td>gas lasers</td>
<td>17</td>
</tr>
<tr>
<td>Inhomogeneous broadening</td>
<td>529–530</td>
</tr>
<tr>
<td>Insulators</td>
<td></td>
</tr>
<tr>
<td>energy band diagram for</td>
<td>394f</td>
</tr>
<tr>
<td>Intensity modulation</td>
<td>580</td>
</tr>
<tr>
<td>Intensity modulation–direct detection (IM/DD)</td>
<td>579</td>
</tr>
<tr>
<td>Interaction energy</td>
<td>13</td>
</tr>
<tr>
<td>Interference</td>
<td>66–72</td>
</tr>
<tr>
<td>Interferometers</td>
<td>68–69, 169</td>
</tr>
<tr>
<td>beamsplitter</td>
<td>68</td>
</tr>
<tr>
<td>Fabry–Perot</td>
<td>69–72</td>
</tr>
<tr>
<td>Mach–Zehnder</td>
<td>68</td>
</tr>
<tr>
<td>Sagnac</td>
<td>68</td>
</tr>
<tr>
<td>Intrinsic electron magnetic moment</td>
<td>240</td>
</tr>
<tr>
<td>Inverse group velocity</td>
<td>110</td>
</tr>
<tr>
<td>Ion acoustic wave</td>
<td>276</td>
</tr>
<tr>
<td>Ion cyclotron wave</td>
<td>289</td>
</tr>
<tr>
<td>Ionization energy</td>
<td></td>
</tr>
<tr>
<td>vs. atomic number</td>
<td>341f</td>
</tr>
<tr>
<td>Jacobi elliptic function</td>
<td>479f, 484f</td>
</tr>
<tr>
<td>Jahn-Teller dipolar distortions</td>
<td>157</td>
</tr>
<tr>
<td>Jahn-Teller effect</td>
<td>155</td>
</tr>
<tr>
<td>Jaynes–Cummings model</td>
<td>554–556</td>
</tr>
<tr>
<td>Jones matrices</td>
<td>55–57</td>
</tr>
<tr>
<td>Joule’s law</td>
<td>43</td>
</tr>
<tr>
<td>Kerr constant</td>
<td>143, 144t</td>
</tr>
<tr>
<td>Kerr effect</td>
<td>143–144</td>
</tr>
<tr>
<td>half-wave voltage</td>
<td>144</td>
</tr>
<tr>
<td>Kerr nonlinearity</td>
<td>574</td>
</tr>
<tr>
<td>Kinetic equation</td>
<td>283</td>
</tr>
<tr>
<td>Kinetic theory</td>
<td>282–284</td>
</tr>
<tr>
<td>Kirchhoff diffraction formula</td>
<td>62, 66</td>
</tr>
<tr>
<td>Kirchhoff diffraction theory</td>
<td>61–64</td>
</tr>
<tr>
<td>Kleinman symmetry condition</td>
<td>461</td>
</tr>
<tr>
<td>Kleinman’s conjecture. See Kleinman symmetry condition</td>
<td></td>
</tr>
<tr>
<td>Klystron.14, 16f, 17</td>
<td></td>
</tr>
<tr>
<td>frequency bandwidth of</td>
<td>15</td>
</tr>
<tr>
<td>Kr ion lasers</td>
<td>439–441</td>
</tr>
<tr>
<td>Kramers–Heisenberg formula</td>
<td>315</td>
</tr>
<tr>
<td>Kramers-Kronig relation</td>
<td>105–107</td>
</tr>
<tr>
<td>Lamb shift</td>
<td>79</td>
</tr>
<tr>
<td>Landé’s interval rule</td>
<td>347</td>
</tr>
<tr>
<td>Landau gauge</td>
<td>300</td>
</tr>
<tr>
<td>Lambda doubling</td>
<td>377</td>
</tr>
<tr>
<td>Landé g factor. See Landé gyromagnetic factor</td>
<td></td>
</tr>
<tr>
<td>Landé gyromagnetic factor</td>
<td>244</td>
</tr>
<tr>
<td>Langmuir mode</td>
<td>290</td>
</tr>
<tr>
<td>Large molecules</td>
<td>377–381</td>
</tr>
<tr>
<td>Larmor formula</td>
<td>213, 219</td>
</tr>
<tr>
<td>Larmor frequency. See Cyclotron frequency</td>
<td></td>
</tr>
</tbody>
</table>
Larmor precession frequency 240
Laser 409–453
 amplified spontaneous emission 435–437
 cavity modes 410, 430–435
 coherence of 437
 cw output vs input 419–420
 dynamics of 410–414
 pumping 410
 electroluminescence 410
 energy diagram 411
 exciplex 444
 four-level 410–412
 gain medium 409
 intracavity intensity 418f
 lasing level 409
 linewidth 437
 master oscillator 429
 mode locked 420
 optical properties
 comparison of 448
 output intensity
 vs pumping rate 419f
 polarization effects in 138
Q-switching
 flashlamp pulse pumping rate 423f
 intensity 423f
 population inversion 423f
 pumping rate 423f
 rate equations 412–414
 semiconductor diode 451–453
 short pulse 41
 titanium-sapphire 41
 slope efficiency 420
 solid-state 445–451
 specific systems 437–453
 Ar ion lasers 439–441
 CO2 laser 441–443
 dye lasers 444–445
 excimer lasers 444
 exciplex lasers 444
 He–Ne laser 438–439
 Kr ion lasers 439–441
 nitrogen laser 443–444
 steady state 416–420
 circulating intracavity intensity 417–419
 gain saturation 417
 small signal gain 417
 three-level 410–412
 threshold 414–416
Laser amplifier 429
 regenerative 429
Laser cavity 410, 418f

Laser polarization
 spatial modulation of 231
Lasing level 409
Lasing media 97
Lasing transition
 terminal level 410
Law of mass action 400
LCAO approximation 350
Lenz’s law 243
Levo-rotatory 140
Lienard-Wiechert potentials 80–85
Ligand field theory 382
Ligands
 square planar orientation of 384f
Light
 absorption of 88–94
 Einstein absorption 93–94
 emission coefficients 93–94
 materials, color of 91–93
 acousto-optic detection of 169–171
 in dielectric crystals
 dispersion relations for 272–275
 propagation equation for, in dispersive medium
 inverse group velocity 110
 unpolarized 54
 in vacuum 3–79
Light and matter
 interaction of 3, 177–232
 magnifying glasses 3
 positive lenses 3
Light beam
 self-focusing of 489, 489f
Light by amplified stimulated emission of radiation
 (Laser) 17
Light emitting diodes (LEDs) 397
Light field
 scattered, polarization of 187
Light nuclei
 atomic masses of 332
 nuclear angular momentum of 332
 parity of 332
Light propagation in matter
 phenomenology of 88–176
Light pulse 97
 electric field 34
 intensity of 33
 group velocity of 34–37
 phase velocity of 34–37
Light refraction 105f
Light scattering
 Feynmann diagrams for 315f
Light scattering (continued)
quantum description of 294–318
Light source
stars 24–26
sun 24–26
temperature of 24
thermonuclear reactions in 24
Linear dissipative medium 206
Linear electro-optic effect. See Pockels effect
Linear laser
cavity configuration of 415f
Linear susceptibility 194
Liouville–von Neumann equation
decay matrix 519–520
for density matrix 514–536
matter, description of 515–524
density matrix state 516
mixed state 516
partition function 518
pure state 516
rate equation limit 526–527
Local-oscillator mixing 579f
Longitudinal acoustic (LA) phonons 272
Lorentz factor 189, 212
Lorentz force law 178, 294
Lorentz gauge 81
Lorentz–Lorenz correction factor 265–267, 520
Lorentzian lineshape profile 188f
Lyddane-Sachs-Teller relation 274
Lyot-Ohman filter 136
Mach–Zehnder interferometer 68, 69f
Macroscopic magnetization 267
Macroscopic polarization 263–267
Magic-angle spinning (MAS) 259
Magnetic circular birefringence
and dichroism 176
Magnetic circular dichroism (MCD) 141, 176
Magnetic diffusivity 288
Magnetic dipole 220
Magnetic dipole moment 238
Magnetic field
crossed
motion of charged particle 179–180
Magnetic field effects 171–176
Faraday effect 173–175
Magnetic field vector 236
Magnetic hydrostatic pressure 288
Magnetic materials
classification of 242
features of 242f
Magnetic moment 237–242
for non-spherically symmetric system 241
precession of 239f
for spherically symmetric system 241
Magnetic permeability 236, 242
Magnetic phenomena 236–291
Magnetic properties
of elements at low temperature 243f
Magnetic resonance 252–259
Zeeman energy levels of two-level spin system in
DC magnetic field 253f
Magnetic resonance imaging (MRI) 258
Magnetic Reynolds number 288
Magnetic susceptibility 242, 265
Magnetic viscosity. See Magnetic diffusivity
Magnetite 250
structure of 250
Magnetization 242–252, 259–261
Bloch equations for 254
Magnetization vector 236
Magnetooptical trap (MOT) 230, 231f
Magnetococonductivity 180–183
Magnetoelectricity 176
Magnetohydrodynamics (MHD) 276, 286
Magnetosonic wave 289, 289f
Magnetostriiction 176
Magnetron 15, 16f
Manley–Rowe relations 469–470
Mass conservation equation. See Continuity equation
Matter 79–85
Maxwell’s equations 590–595
Metal-organic chemical vapor deposition (MOCVD)
404
Metals 392–397
Fermi–Dirac distribution function 396–397
Michelson interferometer 69f, 74
setup of 69f
Microscopic magnetic moment 267
Microscopic polarizability 264–267
Microwave frequency 14
Microwave oven
operation of 14
Microwave spectroscopy 363–364
Clebsch–Gordan coefficient 363
Microwaves 14–15
detection of 15
bolometer 15
klystron 14
Mie scattering 223, 317
Mode-locking 426–429
Modulation transfer function (MTF) 74
Molecular orbitals 350–353
configuration interaction 353
internuclear distance 352
LCAO approximation 350
Molecular orientation
in applied field 270–272
Molecular polarizability 264, 265
Molecular re-orientation
in applied field 270–272
Molecular systems
Hamiltonian for 348–349
nuclear Hamiltonian for 369–370
normal modes 369–370
Molecules 348–353
Born–Oppenheimer approximation 349–350
potential energy surfaces 349–350
Mollow triplet 507, 507f
Moment of inertia 355
Monochromatic light
polarization, degree of 58
Monochromatic plane wave 123
Morse potential 606
Mott exciton 406
Mueller matrices 59–60
Multi-component fluid model 276
Multielectron atoms
fine structure of 346–347
generalized Hund’s rule 347
Hund’s rule 346
Landé’s interval rule 347
hyperfine structure of 347
Multimode light
second harmonic generation with 473–476
Multiplexing 562
Multipole radiation 217–224
far-zone 217
near-zone 217
Mutual coherence function 72

N_2

electronic states of 443f
Nd–YAG energy level 446f
Near-field diffraction 65
Near-field diffraction approximation. See Fresnel diffraction approximation
Near-zone 217
Néel temperature 251
Negative uniaxial crystal
refraction index 471f
Neutrino 24
Nitrogen laser 443f, 443–444
NMR spectrometer
pulsed 258f, 257–258
NMR spectroscopy 256

free induction decay (FID) 256
Non-centrosymmetric medium
nonlinear polarization of 208
Non-centrosymmetric potential 206f
Nonisotropic media
optical phenomena in 113–143
Nonlinear absorption 88, 94–100
saturable absorption 95–97
two-photon absorption 99–100
Nonlinear crystal
output of
for high DFG conversion 486f
for high SFG conversion 482f
for low SFG conversion 481f
Nonlinear hyperpolarizability 465
Nonlinear medium
electromagnetic energy density in 462–463
Nonlinear optics 455–501
four-wave mixing 459, 495–496
momentum matching for 496f
Manley–Rowe relations 469–470
matter-wave 501
optical solitons 492–495
phase-matching 470–473
photon fluxes 480f
Schrödinger equation 490–492
second harmonic generation 473–478
short-pulse 476–478
self-focusing modulation 488–495
self-phase modulation 488–495
stimulated Brillouin processes 498–501
stimulated Raman processes 496–498
temporal dependence of 477
third harmonic generation (THG) 485–488
three-wave mixing 478–485
difference frequency generation 484–485
sum frequency generation 478–484
Nonlinear polarization 207–210
self-focusing 208
self phase modulation 208
third harmonic generation 207
Nonlinear refractive index 488
Nonlinear Schrödinger equation (NSE) 573
higher-order
two-soliton solution for 495f
Nonlinear susceptibilities
local field corrections to 464–465
symmetry relations of 460–462
Nonpiezoelectric medium 150
Nuclear g-factor 331
Nuclear magnetic resonance (NMR) 252, 256–259
chemical shift 257
Nuclear magneton 246
Number squeezing 549–551

Octahedral environment
free ion state
splitting of 389

Octahedral site symmetry
Tanabe–Sugano diagram for 392

Octahedral symmetry
term energies for 390

Octahedron 118

Ohm’s law 236

One-electron d state
splitting of 387

One-fluid model 276

Onsager symmetry relation 171

Optic plane 130

Optical activity 140–143

Optical-activity rotation 141

Optical Bloch equations 520

Optical cable 15

Optical circulator 173
double-pass 173
four-pass 174

Optical coherent transient processes 530
free induction decay 534–535
optical nutation 534
photon echo 535–536
π-pulses 530–531
pulse area 530–531
indfig 532
theorem 531–533

Optical communication system
introduction to 561–582

Optical fiber
light propagation in 561–582
multiplexing techniques 581–582
transverse modes of 567–572
fiber parameter 570
propagation constant 568

Optical heterodyning 578

Optical indicatrix 127
for negative uniaxial crystals 130
for positive uniaxial crystals 130

Optical isolators 173

Optical modulator 173

Optical molasses 230

Optical nutation 534

Optical pumping 231

Optical radiation 577

Optical rotator 173

Optical rotatory dispersion 140–143

Optical shutter 424

Optical solitons 492–495

Optical symmetry
uniaxial 119

Optical transitions
linewidth of
factors affecting 189

Optical tweezers 226–228
focus above object center 228
focus below object center 228
formation of 228

Optical wave 6

Optically active substance 140

Optics
discoveries in 4, 7

Optimal source encoding 577
Optoelectronic device 48

Orbitals
splitting of 385

Oscillator frequency 14

Oscillator strength 186

p–i–n junction 404
p–n junction 402–403
current–voltage characteristics of 403

Parallel transition 360

Paramagnetism 244–247
Pauli paramagnetism 246–247
Van Vleck paramagnetism 247

Parametric down-conversion 551–552
Parametric oscillation 559–560

Paraxial Helmholtz equation 49

Paraxial wave equation. See Paraxial Helmholtz equation

Paraxial waves 49

Passive star coupler 578

Pauli exclusion principle 337

Pauli paramagnetism 246–247
with finite magnetic field 246
with vanishing magnetic field 246

Periodic table
atomic elements, ionization energy of 92
atomic elements, lowest electronic excitation energy of 92

Permeability resonances 251–252

Permittivity. See Dielectric constant

Perturbation theory 609–613
degenerate time-independent 611–612
nondegenerate time-independent 609–611
INDEX

second-order 303

time-dependent 301–304, 612–613

Phase conjugation 496

Phase factor 54

Phase modulation 38–40, 111

Phase–matching 470–473

angle 478
collinear 471–472
collinear THG 496f

noncollinear 472

four-wave mixing 496f
group velocities for 473f

wave vectors for 473f
type I 471, 472f
type II 471

Phase operator 549–551

Phase squeezing 549–551

Phase velocity 34, 37, 125, 126

Phonons 165

acoustic 165

optic 165

Photocell 17

Photoconductive materials 161

Photodiode 18

Photoelectric effect 112, 123, 168–169

anisotropic crystals 169

Photoelectrons 17

Photomultiplier tube (PMT) 16f, 17

Photon 6, 46, 75–79, 165

blue 91

red 91

Photon bunching 75

Photon density 412

Photon echo 535–536
time sequence 535f

Photon emission 88

Photonic band gap 48

Photonic crystals 48

Photorefractive crystal
energy levels in 162f

schematic of charge migration 162f

Photorefractive effect 162f, 161–163

uses of 161

Photovoltaic detector 18

Piezoelectric conversion 149

Piezoelectric crystal 39

Piezoelectric detector 170

Piezoelectric effect 149

point groups 149

Piezoelectric materials 149

applications of 150f
classification of 149f

Piezoelectricity 149–151

photoelastic tensor 150

strain tensor 149

Planck’s blackbody radiation law 20, 21f

Planck’s constant 6, 20

Plasma 275, 278f, 236–291

Alfvén wave in 289f

constitutive equations in 280–282

Debye screening length for 277

generalized permittivity 281

hydrodynamic model of 284–288

collisionless plasma approximation 285

stream velocity 286

ion acoustic wave 276

magneto sonic wave in 289f

parameters 277–280

waves in 289–291

longitudinal 289

transverse 289

Plasma dynamics 278

Plasma frequency 277, 278

Plasma oscillation 276, 279, 289

Pockels cell 148

limitation of 148

Pockels effect 143–148

electro-optic amplitude modulators 147

electro-optic phase modulators 147

electro-optic tensor 145

half-wave voltage 147

instantaneous frequency 148f

materials, parameters of 146f

phase-modulated electric field 148f

point groups 144–145

Pockels media 147

Point groups 114, 117

classification of, based on inversion symmetry 118

symmetry elements in 117

Poisson–Boltzmann equation 279

Polariton 272, 274

Polariton dispersion 274

for optical and acoustic phonon branches 275f

Polarizability 194

Polarization 259–261

as a function of temperature 153f

circular 51–52

electric field of 51

direction of 51f

elliptical 52

linear 51–52

of medium 193–201

Polarization beam splitters (PBS) 173

Polarization gradient cooling. See Sisyphus cooling
Polarization vector 236
 total 281
Polarized light 53f, 50–60
Polarizer 59
Polaroid 56, 58
 H-sheet 122
Polaroid sheet 58
Polyatomic molecules 367–381
 asymmetric top molecule 375
 CO₂ molecule 376–377
 freedom, rotational degrees of 370–377
 spherical top molecule 371
 symmetric top molecule 373–374
Population inversion function 413
Position-momentum squeezing 547–549
Positive lenses 3
Positive uniaxial crystal
 refraction index 472f
Positron 24
Potassium dihydrogen phosphate (KDP) 145, 147
Power broadening 199
Power law spectrum 20
Power limiter 99
Poynting theorem 43
Principal axes
 dispersion of 121
Pseudo-Jahn–Teller effect 155
Phase shift keying (PSK) 579
Pulse
 amplitude of 40f
 instantaneous frequency of 40f
 shaping and characterization of 40–41
Pulse broadening
 in dispersive medium 109f
Pulse fluence 98
Pulse position modulation (PPM) 580
Pulse propagation
 dispersion relation 36
 vacuum
 vs dispersive medium 35
Pulse shaper 41
 constituents of 41
 mask 41
Pulse shortener 99
Pulse smoother 99
Pulsed laser operation 420–430
 chirped pulse amplifiers 429–430
 extra-cavity pulse compressor 429
 mode-locking 426–429
 active 426
 AM 426–427
 FM 428
 passive 428–429
 Q-switching 422–426
 relaxation oscillations 420–422
Pulsed NMR spectrometer 257–258
Pump frequency 200
Pyroelectric coefficient 151, 152f
Pyroelectric current 151
Pyroelectric detector 17, 152
Pyroelectric effect 151–152
 point groups 151
 uses of 152
Pyroelectric image tubes 152
Pyroelectric material 151, 152f
 classification of 149f
Pyroelectric vector 151

Q-switched Nd-YAG laser 18
Q-switching 420, 422–426
Quadratic electro-optic effect. See Kerr effect
Quadrupole moment 263
Quantum efficiency 17
Quantum field
 interaction between modes of 556–560
 interaction representation of 557–558
 parametric oscillation 559–560
 two-mode Rabi problem 558–559
Quantum mechanics and Schrödinger equation
 595–609
 atomic units 603
 Coulomb potential 602
 free particle 600
 harmonic oscillator potential 606
 Morse potential 606
 spherical harmonics 597
 spherical top and distorted spherical top 601–602
Quantum-optical processes 503–560
 adiabatic passage 512–514
 adiabatic theorem 512–514
 coherent states 548f, 543–554
 dressed states 508–512
 in number operator representation 511–512
 inhomogeneous broadening 529–530
 Jaynes–Cummings model 554–556
 number squeezing 549–551
 parametric down-conversion 551–552
 phase operator 549–551
 phase squeezing 549–551
 squeezed states 548f, 543–554
 application of 553–554
 generation of 551–552
 homodyne detection 552f, 552–553
 sub-shot-noise phase measurements 553–554
three-level system 537f, 536–543
 density matrix treatment of 541–543
 wavefunction treatment of 537–539
Quantum well structure
 geometry of 405f
Quantum wells 404
Quasars 190
Quasi-monochromatic radiation 54
Quasi-static line broadening theory 193

Rabi frequency 199, 231, 506, 541f
 generalized 506
Rabi oscillation 506–507, 534
Rabi problem
 two-level 503
Racah parameters 391
Radiation
 amplified spontaneous emission of 436f
 due to charge acceleration 210–217
 from moving charges 211–213
 stimulated emission of 410
Radiation field
 Hamiltonian of 295
 intensity of 42
 modes of 46–49
 quantization of 76
Radiation gauge 45
Radiative damping force 185, 215–217
Radiowave frequency 12
Radiowaves 12–14
 braking radiation 13
 detection of 14
 low-frequency emission 13
Raman adiabatic passage
 stimulated
 population transfer 539–541
Raman gain
 vs frequency 574f
Raman gain parameter 498
Raman scattering 199–201, 304, 312–317
 anti-Stokes processes 313f
 anti-Stokes transition 313
 Stokes process 313f, 496
 Stokes transition 313
 superfluorescence 316
Raman spectroscopy
 coherent anti-Stokes 498, 499f
 coherent Stokes 498, 499f
Raman-Nath phonon scattering 166f
Raman-Nath scattering 166, 167f
Ray vector 125
Rayleigh backscattering 566
Rayleigh- Jeans formula 21
Rayleigh range 50
Rayleigh scattering 91, 303, 312–317
 limits 186–193
Recessional velocity 189
Recoil temperature 230
Red-shift 189
Reflection
 at boundary interface 101–105
 reflectivity amplitude 105
 Refraction
 at a boundary interface 101–105
 Refraction index 111f
 as a function of frequency 108f
 frequency dependence of 196f
 rutile extraordinary 130f
 Refractive index 291f
 extraordinary 120
 ordinary 120
 relationship with absorption 105–107
 of water vs frequency 90f
 Refractive index temperature dependence 112–113
 Relaxation oscillations 420–422
 Remnance 248
 Resistance 180
 Resonance frequency 108, 257
 Resonant cavities 14
 Resonant frequency 15
 Resonant line scattering
 collisional shifts of 190–193
 Doppler shift of 189–190
 limits 186–193
 widths of 190–193
 Resonator
 longitudinal electric field modes 431f
 spherical mirror 433–435
 Retarder 52
 Reverse saturable absorber (RSA) 97, 428
 Reverse saturable absorption 97–99
 Rigid rotor 370
 Ring laser
 cavity configuration of 415f
 Rochelle salts 153
 Rotating wave approximation (RWA) 505–506
 blue detuned 506
 detuning 505
 red detuned 506
 Rotational angular momentum quantum number 355
 Ruby laser
 pulses from 421f
Sagnac effect 68
Sagnac interferometer 68, 69
Saturable absorber (SA) 95, 97, 428
Saturable absorption 95–97
reverse 97–99
saturable absorber (SA) 95
saturation intensity 96
Saturated magnetization 245
Saturation field strength 199
Saturation intensity 96, 199
Saturation magnetization 249
ferrimagnetic crystals 249
ferromagnetic crystals 249
Saturation parameter 525
Scalar diffraction theory 61
Scalar Helmholtz equation
characteristic equation, solutions to 571
Scalar wave field 38
Scattered radiation
polarization vectors for 223
wavevectors for 223
Schrödinger equation
nonlinear 490–492
radial 598–600
time-dependent and time-independent 595–597
Schrödinger representation 557, 608
Screw symmetry axis 140
Second harmonic generation (SHG) 458
short pulse 483
Self-consistent field (SCF) 337
Self-focusing modulation 488–495
Self-frequency shifting 491
Self-induced transparency 533–534
Self-phase modulation 208, 488–495
Self-steepening 491
Self-trapping 490
Semiconductor diode lasers 451–453
quantum-dot 452
quantum-well 452
quantum-wire 452
Semiconductor materials 398, 397–407
hole states 398
p–n junctions 402–403
Semiconductors
energy band diagram for 394
Shim coils 258
Signal pulse 41
Signal-to-noise ratio (SNR) 553
Single-mode fiber 565, 572
cut-off frequency 572
Sisyphus cooling 230–232
Skin depth 198
Slater determinant 337
Slope efficiency 420
Slowly varying envelope (SVE) 32–34, 49, 134
nonlinear wave equation for 465–469
Slowly varying envelope approximation (SVEA) 32, 134, 573
Snell’s law of reflection 102
Snell’s law of refraction 102
Sodium
ground and excited potential energy curves for 192
Sodium D light
molar refractivity at 267
refractive index at 267
Sodium D line frequency
molar refractivity for 267
refractive index for 267
Solar constant 24
Solar luminosity 25
Soleil compensator 53
Solid-state lasers 445–451
alexandrite 449
Nd–glass 448
Nd–YAG 445
ruby 448
Ti–sapphire 450
vibronic lasers 449
Space groups 114
Space lattices
conventional unit cells of 116
Spark gap 12
Spatial coherence 72–75
measurement of 74–75
spectral power density 74
Spectral power density 74
Spectral reflection
by Bragg scattering 114
Spectral width 74
Spectroscopy 319–407
atoms 320–348
condensed-phase materials 381–407
diatomic molecules 353–367
large molecules 377–381
microwave 363–364
molecules 348–353
Spectrum
ultraviolet regions of 320
Spherical harmonics 597–598
Spherical top molecule 371
INDEX

Stark shift of 371–372
Zeeman splitting of 372
Sphericity parameter 375
Spin magnetic moment 240
Spin–orbit coupling 329
Spin–orbit interaction 329
Spin–orbit splitting 331
Spin–spin coupling 257
Spontaneous emission 93
linewidth due to 184–186
Squeezed states 543–554
Stark shift 143, 336
Stark splitting 328
Static electric field
and electromagnetic field 206–207
charged particle, motion of 178–183
Static magnetic field
charged particle, motion of 178–183
Landau levels in 300–301
polarization of 202–206
Static-zone. See Near-zone
Stefan–Boltzmann constant 20
Stefan–Boltzmann law of radiation 21
Stimulated Brillouin processes 498–501
Stimulated Brillouin scattering 499
Stimulated emission 93, 97
Stimulated Raman processes 496–498
Stimulated Raman scattering 17, 200
STIRAP (Stimulated rapid adiabatic passage) 540
Stokes–Brillouin scattering
backward 166
Stokes field
frequency of 200
Stokes lines 200
Stokes parameters 57–59
for circularly polarized light 58
for fully polarized light 58
for linearly polarized light 58
measurements of 58–59
for partially coherent light 57
for unpolarized light 58
Stokes process 496
Stokes shift 88, 378, 380f
Stokes theorem 585
Stokes transition 313
Stokes vector 57
Stream velocity 286
Stress–birefringence. See Photoelastic effect
anisotropic crystals 169
Sub-Doppler cooling 230
Sum frequency generation (SFG) 458, 478–484
for frequency modulated input fields 480–483
short pulse 483–484
Superfluorescence 316
Superheterodyne detection principle 14
Superlattices 404
Superposition principle of 6
Superradiance. See Superradiant emission
Superradiant emission 311
Susceptibility tensor
second order
symmetries of 462t, 463t
Switched laser
cavity arrangements in 424f
Symmetric top molecule 373–374
parallel absorption band of 374f
Stark shift of 374–375
Symmetry elements 117
identity element 117
inversion 117
mirror reflection 117
rotation diad 117
rotation hexad 117
rotation tetrad 117
rotation triad 117
Synchrotron emission 214–215, 215f
total emitted power 214
Synchrotron radiation 20
Tanabe–Sugano diagrams 391–392
Racah parameters 391
TEMpl Laguerre–gaussian modes
radial intensity distribution of 434f
Temporal coherence 72–75
spectral power density 74
Temporal coherence function 72
Terbium gallium garnet (TGG) 174
Tetrahedron 118f
Thermal lensing 112–113
Third harmonic generation (THG) 485–488
effects of self-phase modulation on 487–488
in rare gas mixtures 487
Thomas–Fermi approximation 344–346
Bose–Einstein condensates 346
density functional theory 346
Thomas-Reiche-Kuhn sum rule 186
Thomson scattering 313, 317–318
limits 186–193
orientation of 317f
Threshold 414–416
Threshold population inversion 414
Time-division multiplexing (TDM) 562
Titanium-sapphire laser 41
Total displacement field 281
Total internal reflection 104
Tourmaline 122
Transverse acoustic (TA) phonons 272
Transverse electric (TE) modes
characteristic equation, solutions to 571f
Transverse electric (TE) polarization 103
Transverse Hermite–gaussian intensity profile 434f
Transverse magnetic (TM) polarization 103
Transverse optical (TO) phonons 272
Triglycine sulfate
pyroelectric coefficient for 151f
spontaneous polarization, temperature dependence of 151f
Two-level system
interaction with electromagnetic field 504–514
optical Bloch equations for 520–523
Two-photon absorption 99–100
configuration 538
Two-photon emission 303
Two-photon radiative processes 99
Ultraviolet 18
detection of 18
fluorescent screens 18
Q-switched Nd-YAG laser 18
Ultraviolet catastrophe
of classical radiation theory 22
Uncertainty relation 547
Uniaxial crystal 128–131
extraordinary polarization 129
negative 120, 121t, 129
optic plane 130
ordinary polarization 129
positive 120, 120t, 129
principal section. See Optic plane
Unpolarized light 54–55
phase difference, variation with time 54f
phase factor 54
Valence band 393
Van Vleck paramagnetism 247
Vector analysis 583–588
curvilinear coordinates 586–588
differential operators 583–585
divergence theorem 585
scalar and vector products 583
Stokes theorem 585
Verdet constant 173, 174t
Vibrations and rotations
interaction between 375–376
Visible light 17–18
detection of 17
fluorescence spectroscopy 17
optical frequency range of 17
photomultiplier tube (PMT) 17
response time 17
sources of 17
Visible spectrum
frequency ranges for colors in 25t
wavelength ranges for colors in 25t
Voigt effect
in gases 175–176, 204
Voigt lineshape 190
Wave equation
in vacuum 26–30
wavelength of 27
Wave normals
directions of 124f
ellipsoid of 127f
Fresnel’s equation of 123–129
ray vector 125
index ellipsoid of. See Optical indicatrix
inverse surface of 129
Wavefunction
frequencies in 508f
Wavelength-division multiplexing (WDM) 562
Wavepacket
propagation in positive uniaxial crystal 131f
Wave plate 52
Whistler modes 289
Wiener-Khinchin theorem 73
Wigner function 519
X-ray diffraction 114
X-ray spectrometer
for investigating crystal structure 114f
X-rays 18–19
frequency range 19
hard 19
soft 19
Zeeman splitting, 244, 328 336f, 334–336
of ground state of hydrogen 335f