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Abstract: This paper presents a novel design of a J-
iegged “spider” robot capable of moving in a wide range
of two-dimensional tunnels. The spider moves in a qua-

sistatic manner, by stably bracing itself against the tun-

nel walls and moving a free limb to a new position. The
design has been strongly influenced by the recent immo-
bilization theory of Rimon and Burdick [13, 15]. The

theory dictates the minimum number of limbs such a spi-
der can have, as well as the shape of the footpads. The

class of tunnel geometries dictates other key parameters
of the spider, such as limb dimensions and number of
degrees of jieedom of each limb. We review the relevant
components of the immobilization theoy, then describe
the details of the spider design. The spider will initially

move under a worst-case assumption of slippey tunnel

walls, and we also descn”be a locomotion strategy un-
der this assumption. The spider has been built and is

currently undergoing locomotion experiments.

1 Introduction

Many motion planning problems are suited for legged
robots that interact with the environment in order to
achieve stable locomotion. For example, surveillance of
collapsed structures for survivors, inspection and test-
ing of aircraft engine and wing interiors, and inspection
of hazardous structures such as nuclear reactors, all re-
quire motion in a congested, unstructured, and complex
environment. Further, in such environments the robot
cannot always rely on friction, as surfaces may be wet,

oily, or icy. Our goal is to develop a general purpose
multi-legged mechanism that uses quasistatic motion to
navigate in such environments. In quasistatic motion,
inertial effects due to moving parts are kept small rel-
ative to the forces/torques of interaction between the
robot and the environment. Motion is generated by re-
action forces between the robot and the environment,
and the planning of a path to the goal is subject to the
constraint of maintaining stable equilibrium with the en-
vironment during the motion. Spider-like and snak~like
mechanisms are examples of robots that can move qua-

sistatically in congested environments. We now mention
several works in these two areas.
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In prior work on spider-like mechanisms, the robot

typically moves according to a set of heuristically cho-
sen locomotion modes, or by simple local reactive con-
trol laws. While these types of motion guarantee stable

behavior of each individual limb, they do not necessar-
ily guarantee stability of the whole mechanism. Ex-
amples of such spider-like mechanisms are by Madhani
and Dubowsky [6], Neubauer [10], and Stone et. al.
[17]. Legged locomotion in a gravitational field is re-
lated to locomotion in congested environments. Exam-
ples of works in this area are by Boissonnat [1], Hirose
[4], Marhefka [7], McGeer [9], Pfeiffer [11], Van-den-Doel
[18], and their coworkers. However, we focus on locomo-
tion in congested tunnel-like environments rather than
legged locomotion over a terrain.

Snake-like mechanisms also interact with the environ-
ment during locomotion. They are related to spider-like
mechanisms, since both mechanisms brace themselves
against the environment while moving free parts toward

a new position. Chrikjian and Burdick [2] and Shari and
Koren [16] developed snake-like mechanisms that move
by locking some of their links to the ground while al-
lowing other links to move. These workers, as well as
Hirose and Morishima [5], also investigated the use of
motion patterns borrowed from biological snakes. How-

ever, virtually all existing snake-like mechanisms inter-
act with the environment via frictional contacts with
the ground. In contrast, we focus on locomotion where

the robot stably braces itself against the environment
while moving its free parts. Furthermore, our robot is
required to operate under the worst-case assumption of
slippery contacts.

Our goal is thus to design a spider-like mechanism
that can move in congested unstructured environments.
We make the following assumptions. First, we initially
study locomotion in two-dimensional hom”zontal tunnels
with piecewise linear walls. Second, we assume that the
tunnel has slippery walls, so that locomotion must pro-
ceed without using friction. This restriction excludes
tunnels of a particular simple geometry (such as two par-
allel lines), but most unstructured congested environ-
ments do have a complex geometry with many possible
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Figure 1. A conceptual design of a spider-likerobot moving
in a two-dimensional tunnel.

footholds within reach of the robot. Our last assump-
tion is that the spider moves quasistatically, by stably
bracing itself against the tunnel walls while changing its
internal configuration to allow motion of its free parts
to the next position. This approach enables the robot to
reliably operate even when unpredicted external forces
are applied, such as drag forces from surrounding air or
liquids, unexpected collisions, or uneven loads.

We describe the design of a 4-legged spider robot
(Figure 1), capable of quasistatically moving in a wide
range of two-dimensional tunnels according to the above
assumptions. The design has been strongly influenced
by the recent immobilization theory of Rlmon and Bur-
dick [13, 15]. The theory dictates the minimum number
of limbs such a spider can have, as well as the shape of
the footpads. The class of tunnel geometries dictates
other key parameters of the spider, such as limb dimen-
sions and number of degrees of freedom of each limb.
We begin with a review of the immobilization theory
and its implications for the spider’s structure. Then we
describe the spider design, accounting for issues such as
the number of degrees-of-freedom of each limb, links di-
mension, and the mechanical structure of various parts

of the spider. The spider will initially move under a
worst-case assumption of slippery tunnel walls, and we
also describe a locomotion strategy under this assump-
tion. The spider has been built and is currently under-
going locomotion experiments in a tunnel.

2 C-Space Approach to Rigid Body Mobility

The immobilization theory developed by Rimon and
Burdick [13, 15] provides a basis for the design of the spi-
der robot. This theory is concerned with the mobility
of a rigid object B held by k stationary and friction-

less finger bodies Al,.. . , d~ in an equilibrium grasp.
The same analysis holds for a k-limb mechanism which
braces itself against an environment in a static equilib-
rium posture. In the latter case the mechanism plays
1378
finger or section
of tunnel wall” *

&

A,
object B ~.

e

(d,,dY)

world
frame

(a)

k motion — “
—

halfspace r’%%~?

R

a(t)

tangent i’thC-ohtack$
Plme. ~<,.

. f p(t)

9’

L

q~

dY ~ ....----------------------....
d. ‘“”

(b)

Figure 2. The first-order approximation to the free motions
of 2? at go. &(O) and P(O) are I“f order roll-slide motions.
a(t) locally lies in freespace, @(t) locally penetrates the c-
obstacle.

the role of Z?, while the tunnel walls play the role of

all,... ,d~. The bodies are planar, and the analy-

sis focuses on the configuration space (c-space) of Z?,
parametrized by q = (dz, dv, 0) ~ IR3. The fingers or

tunnel walls are represented as c-space obstacles (c-
obstacles). As shown in Figure 2, the c-obstacle due to
~ is the set of all configurations where 23intersects the
stationary Ai. Thus, if rJO is 2?’s contact configuration
with Ai, go lies on the c-obstacle boundary, denoted S~.

When 23 is contacted by k bodies, go lies on the inter-
section of Si for i = 1,....k. We denote tangent vectors

in c-space by g, and use the notation Tq113 and T@~ for
the tangent space of R3 and Si at q.

2.1 1st and 2n~ order free motions
The free motions of f.? are those local motions of B
along which it either breaks away from or maintains
surface contact with the bodies Al, . . . , Ak. In c-
space, the free motions of B at go are the c-space paths
that emanate from go and locally lie in the fieespace,
which is the complement of the c-obstacle interiors.
The first-order geometry of the free paths and the c-
obstacle boundaries determines what we term the jirst-
order mobdity of B at go. To formalize this notion, let
na(go) be the outward pointing unit normal to S~ at go
(Fig. 2(b)). The 1st order free motions of B at go is
the halfspace of tangent vectors q E TqOlR3 satisfying
Mj(qo) ~ {~ c T#3 : ni (go) . ~ ~ O}. Tangent vec-

tors ~ ● TgO~3 satisfying ni (go) . g = O are called 1st
order roll-slide motions, while the other tangent vectors
in M: (go) are called 1st order escape motions. For k

fingers or tunnel walls, the set of 1st order free motions

is: Ml,.., ,~(qo) ~ @--lM~(qo).
Thus, along 1st order escape motions B locally breaks

away from ~. Along 1st order roll-slide motions B
maintains surface contact with da to first-order, and
it is not possible to determine from first-order consid-
erations if B locally breaks away or penetrates d~. For
example, the c-space curves a(t)and ~(t) in Figure 2
have the same tangent vector at go. Yet a(t) locally lies



in the freespace, while ~(t) does not. As we shall see,
ail the free motions of B at a frictioniess equilibrium
grasp or posture are necessarily roll-slide to first-order.
Thus, in order to fully characterize the mobility of B,
the second-order properties of its local motions must
be considered. The ensuing characterization of second-
order mobility is a major new tool which we employ in
the design of the spider robot.

The second-order geometry of the free-motion curves
and the c-obstacles is determined by their curvature and
curvature form, respectively. The curvature form, de-
scribing the curvature of Sa at q. E Sa, is the quadratic
form ~i (qo, ~) ~ gTDni(qo)& where g E TQOS~and Dni

is the derivative of the unit normal ni. Ref. [13] con-
tains a formula for ~i (go, g) in terms of the surface
normals and curvatures of the contacting bodies. The
free-motion curves are determined to second-order by
their ve~ocity and acceleration at go, as follows. The
2nd order free motions of B at go is the subset of

(~, ~) satisfying M~(qo) ~ {(g, g) : na(qo) . @ = O and
qiT[Dni (qo)]~ +ni (go) . ~ > 0}, Analogous to the first-
order case, pairs (g, g) that satisfy n~(qo) . g = O and
gT [Dni (qo)]@+ni(go).9 = Oare called 2nd order roll-slide
motions, while the other pairs in 114,2(q. ) are called 2nd
order escape motions. Note that the definition of 2nd
order free motions focuses on those curves which are ls~
order roll-slide motions, but might not correspond to
free-motion curves. It is important to stress that l’t

order roll-slide motions are the only motions available
for B when it is held in an equilibrium grasp or posture.
Thus, if all the l’t order roll-slide motions of B are 2nd
order penetration motions, B is completely immobilized
at the equilibrium.

2.2 I“t and 2nd Order Mobility Indices

We now use the free-motion framework to define mo-
bility indices. These are coordinate invariant integer-
valued functions that measure the instantaneous mobil-
ity of B when it is held in a k-contact equilibrium grasp
or posture. At an equilibrium the net wrench (force and
torque) generated by the contact forces is zero. It can
be verified that the wrench generated by the ith con-
tact force is a positive multiple of the c-obstacle nor-
mal ni (q. ). An equilibrium grasp is therefore character-
ized by the condition that zero lies in the convex hull of
nl (go), .. . . nk (go). That is, there exist SCdMS Al, . . . . ~k

such that
0= Alnl(qo) +... + ~~n~(qo), (1)

where Aa>0 and ~~=1 & = 1.
At a k-contact equilibrium graspiposture, the inter-

section of the lSt order free motion halfspaces associated
with the individual contacts forms a subspace. This
subspace is the set of instantaneous motions which are
simultaneously 1‘~ order free with respect to each of the
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bodies Al,... , dk. The I’t order mobility index of an
equilibrium grasp/posture is defined aa the dimension of
this subspace. The index is denoted m&, and for non-
redundant grasps m& = max{O, 4 – k} where k is the
number of contacts. A key fact is that m~O is identical
for all k-contact equilibrium grasps or postures.

The 2nd order mobility index for k-contact equilib-
rium grasps/postures is based on the c-space curvature
form of S~, ~i(qo, g). Consider the coefficients ~a in the
equilibrium condition (1). It is shown in [15] that the
weighted sum of the c-obstacle curvatures, called the rei-
ative c-space curvature, has a coordinate invariant struc-
ture which is related to the second-order mobility of B
at the equilibrium. These notions are made precise in
the following definition.

Definition 1 Let Al, ... . ~k be the coeflcients of the

equilibrium equation (1). The c-space relative cur-
vature form for the equilibrium is the quadratic form:

k

~,,l(qo,~) = ~ ~~tc~(qo,~) such that 4 E kf~,.,~(qo).
i=l

The 2nd order mobility index of the equilibrium, de-

noted m~o, is the number of non-negative eigen-
values of the matrix of the c-space relative curvature
Kre](qo, g).

By definition, m:, is an upper bound on the possible
values of rn~Oi.e., O ~ m;, ~ m:,. Hence second-order
(or curvature) effects always act to reduce the mobility
of B. We say that B is completely immobile if its config-
uration go is completely isolated from the freespace by
the c-obstacles associated with the bodies AI,.. . , dk.
Physically, this means that all the local c-space motions
of B which start at go cause the object to penetrate
the bodies Al, . . . , dk. We say that B is immobile to

1 – I), and immobile to second-order ifjirst-order if mq, –
1 = O, and B is com-~z = O. For k > 4 contacts mqO—

pl~tely immobile to first-order. The 2nd order index is

useful for determining the mobility of B in planar grasps
or postures involving k = 2,3 contacts. In these cases
B is not immobile to first-order (m~O > O), but may be
immobile to second-order (m~O = O).

2.3 Implications for the Spider’s Design
Here we briefly sketch some implications of the immo-
bilization theory to the spider’s structure. The 1st and
2nd order mobility indices allow immobilization which is
based on surface curvature in addition to the more con-
ventional reliance on contact normals. Based on con-
ventional first-order considerations, it was previously
thought that four frictionless contacts are required to
immobilize generic 2D objects [8, 12]. However, Czy-
zowicz et. al. [3] and Rlmon and Burdick [14] have
shown that generic 2D objects can be immobilized by
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Figure 3. (a) The spider is not immobile since T’< pi. (b)
The spider is immobile since the footpads satisfy r > p:.

only three frictionless fingers with convex boundary, pro-
vided that the fingers are sufficiently flat at the contacts.
Equivalently, any multi-limbed mechanism can immobi-

lize itself against a frictiordess environment using only
three limbs with sufficiently flat convex footpads. The
spider must therefore have at least /our limbs—three
for immobilization and at least one additional limb for
establishing a new foothold during locomotion.

Let us consider the proper choice of footpad curva-
ture. In a 3-legged equilibrium posture, the contact-
force lines must intersect at a common point p (Fig.
3). The set of 1st order roll-slide motions available
to the mechanism is a one-dimensional subspace (since
ml = 1), consisting of instantaneous rotations of the
m~chanism about p. (That is, instantaneous rotations
of the mechanism as a single rigid body.) For complete
immobility we must have m& = O. This condition can
be interpreted as the requirement that the footpads be
sufficiently flat at the contacts, as to prevent inst anta-
neous rotations of the mechanism about p. A sufficient
condition for m~O= O is that the radius of curvature of

the ith footpad be larger than the distance between the iih

contact point and the concurrency point p, for i = 1, 2, 3.
This condition is illustrated in Figure 3, where the foot-
pads have a radius of curvature r, and the distance be-
tween the ith contact and p is denoted pa. In our design,
we have selected the footpads’ radius-of-curvature to be
slightly larger than the tunnel’s average width, thereby
guaranteeing that the mechanism will be completely im-
mobile in every 3-legged equilibrium posture.

3 Spider Robot Design Considerations

Thus far we have established that the spider will have
four limbs, with the footpads’ curvature sufficiently flat
as to guarantee immobilization. In this section we de-
scribe the considerations that have led us to choose
other key parameters of the spider. First we consider
kinematic parameters-the number of degrees of free-
dom and the links’ dimension. Then we consider the
mechanical structure of the spider’s limbs and footpads.
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3.1 The Number of Degrees of Iheedom
As discussed below, the spider uses two modes of loco-
motion. In the first mode, called limb repositioning, the
spider braces itself against the environment with three
limbs and lifts its fourth limb to a new position. In the
second mode, called central-body repositioning, the spi-
der contacts the environment with all four limbs while
repositioning its central body at a new location.

We now discuss our choice of the number of degrees
of freedom (d.o.f.) for each limb. First consider the
central-body repositioning mode of locomotion. To al-
low arbitrary placement of the central body in the plane
(position and orientation), the closed-loop mechanism
formed by the spider should have at least three d.o.f..
In general, the number of d.o.f. of a planar mechanism
consisting of #link links and #joint joints is:

# d.o.f. = 3(#link – 1environment) – 2#joint, (2)

where #link includes a stationary link representing the
environment. Let n be the number of links in each
limb. There are n joints in each limb, and consequently
#joint = 4n. The spider has four limbs, and the dis-
tal link of each limb (the footpad) remains stationary.
Hence #link = 4n + lcentral.body + lenvironment –

Afootp~. substituting these values in (2) gives:

# d.o.f. = 3(4n + lcent,ral-body – 4footpads)

–8n = 4n – 9.

The requirement # d.o.f. = 4n – 9 ~ 3 implies that
n ~ 3. Thus three links and three joints for each limb
would suffice during central-body repositioning. Con-
sider now the limb-repositioning mode of locomotion.
We may assume that the central-body makes only local
motions during this mode of locomotion. The free limb
therefore has an essentially fixed base while it attempts
to reach a new foothold position. In principal the limb’s
three d.o.f. should suffice to arbitrarily place its foot-
pad in the plane (position and orientation). However,
when operating in a congested environment, additional
d.o.f. are required in order to accommodate obstacles.
But motion planning and control become substantially
more complex as the number of d.o.f. increases. Thus,
in order to increase maneuverability while retaining a
manageable mechanism complexity, we add one addi-
tional link and joint to each limb, resulting in four links
and four joints for each limb.

3.2 The Spider’s Dimensions
We now describe our choice of two key dimensions of
the spider robot: the size of the central-body, denoted
b, and the total length of each limb, denoted 1. (The
dimension of the individual links is determined below.)
The ratio l~b is related to the desired maneuverability of
0



the spider as follows. Let Dmin and D~.Z be the mini-
mal and maximal widths of the tunnel. Then Dmin ~ b

to allow motion of the central body through the tun-
nel, while D ~ac < b + 2i to allow the spider to reach

both sides of the tunnel. Assuming that Dmim = b and
D – b + 21, we define the maneuverability index asmaz —

the ratio: M = DmaZ /Dmi. = 1 + 21/b. A large ma-
neuverability index is more desirable, as it reflects an
increased ability of the spider to move in a given tunnel

environment. In our design, we have assumed tunnels
with a maneuverability index of M = 10, which gives

the ratio llb ~ 5.

Next we focus on the quantity R = l+ b/2, which rep-
resents the spider’s radius. The choice of R influences

the ability of the spider to reach desired footholds along
the tunnel walls. To understand this influence, consider

I At aa particular triplet of tunnel segments, Iil, Iiz, %3.

3-legged equilibrium posture the contact-force lines in-
tersect at a common point p. The collection of points

p corresponding to all possible equilibrium footholds on
Ii,, Ii,, Ii, is a polygonal region denoted Pi, ,i,,i,. For
frictionless contacts Pi, ,i, ,i, is simply the intersection

Iof the strips perpendiculzu to the segments Iil, ~i2, $3.

The collection of all polygons Pal,i, ,i~, where 21,i2, 23
range over the tunnel segments, describes all possible
3-legged equilibrium postures in a given tunnel.

Next we impose a reachability constraint on the poly-
gons Pi, ,i,,i,. Figure 4 shows a randomly selected
piecewise-linear tunnel whose average width is one unit.
For each triplet Ii,, Ii,, Ii, of tunnel segments, we first
determine the corresponding equilibria polygon Pil ,az,~~.

Then We discretize Pil ,i~,ia ~ and for each point P E
Pi, ,i, ,i, perform the following two steps. First we de-
termine the location of the footholds corresponding to p

on Ii,, Ii,, Ii,. Then we plot the region formed by inter-
secting three discs of radius R (the spider’s radius), cen-
tered at the three footholds. The resulting reachability
region represents all central-body locations from which

Isome equilibrium footholds On the segments Iil, ~iz, ~~
can be reached. Figure 4 shows the resulting reach-
ability regions for several spider diameters. To allow a
continuous motion of the central-body, R should be cho-
sen such that the reachability regions form a contiguous

area along the tunnel. As the figure shows, a spider
diameter of 2R = 1.15 units already provides ample
overlap of the reachability regions. In our experiment
the tunnel’s average width is 1.1 m, and we selected the
spider’s diameter as 2R = 1.3 m. Combining the equa-
tions 2R = 21+ b= 1.3 with l/b = 5, the limbs’ length
is 1=60 cm and the central-body’s size is b =12 cm.

3.3 Limbs Mechanical Design

First we describe how the limbs are attached to the cen-
tral body, which is made of a square plate. To minimize
1381
(a)

Figure 4. Reachability regions corresponding to a unit-
width tunnel. (a) 2R = 0.85 units, (b) 2R = 1.05 units, (c)
2R = 1.15 units. (Courtesy of Eran Guy.)

inter-link interference, we designed two types of limbs—
an upper and a lower limb. In an upper limb all driving
mechanisms are positioned upward, above the plane of
the central body, In a lower limb all driving mecha-
nisms are positioned downward, underneath the central
body. We attached two upper limbs and two lower limbs

to the central body. As Figure 5(a) shows, the upper
limbs never interfere with the lower limbs. Further, to
minimize interference between the upper (lower) limbs,
the upper (lower) limbs are attached at diagonally op-
posite corners of the central-body. The resulting design

allows simultaneous motion of the four limbs with little
inter-link interference.

Finally, to achieve maximum motion flexibility of
each limb, we selected the links) length in a decreasing
order. The link closest to the central-body is 24 cm long,

and the next ones have lengths of 18 cm, 14 cm, and 4
cm. These lengths allow each limb to completely retract
into the first link, allowing the spider to maneuver itself
in congested environments and through narrow passage-
ways. Figure 5(b) shows an upper limb in its retracted
configuration.

3.4 Footpad Mechanical Design
The distal links of the limbs are the only parts of the
spider that contact the environment, and these links
are called footpads. Recall that during 3-legged brac-
ing, the footpads’ curvature must be sufficiently flat to
guarantee immobilization of the spider. Since the tunnel
walls are assumed piecewise linear, perfectly flat foot-
pads would give the best immobilization. However, we
wish to avoid the overhead incurred by controlling the

placement of such footpads. We therefore designed two
types of footpads which are easier to control. The first
footpad design, shown in Figure 6(a), is a simple rigid-
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Figure 5. (a) Schematic description of the upper and lower
limbs. (b) An upper limb in its retracted configuration.

body curved with a large radius-of-curvature that guar-
antees immobilization. This footpad easily establishes a
point-contact with the environment, and by controlling
the location of the footpads’ contacts we can establish
immobile equilibrium postures.

The second footpad design simulates a flat footpad
(which gives maximal immobilization), while avoiding
the overhead involved in placing a flat footpad on a flat
surface. This footpad reduces the contact friction to al-
most zero, allowing validation of the spider’s locomotion
in a truly slippery environment. As Figure 6(b) shows,
the footpad mechanism consists of a rotating triangu-
lar flange with two roller-bearings at each edge, and an
electronic clutch that controls the flange’s rotation axis.
When the footpad reaches a contact surface, the clutch
is released and one of the edges passively adjusts itself
to the contact surface. When contact is established,
the clutch is activated and the footpad becomes a rigid
body with two roller-bearings in contact with the envi-
ronment. The bearings allow only perpendicular forces
to be transferred at the contacts, thereby emulating a
truly slippery environment.

4 The Spider Robot Motion

We now describe a motion paradigm that allows qua-
sistatic locomotion of the spider in a slippery tunnel en-
vironment. The motion consists of two phases which re-
peat until the spider reaches its goal. In the first phase,
called limb repositioning, the spider braces itself against
the environment with three limbs while the fourth limb
moves toward a new foothold. At the end of this phase

all four limbs contact the environment. However, be-
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“Figure 6. Two footpad designs. (a) A geometric curvature
design. (b) A frictionless contact design.

fore the spider can lift a new limb, it must ensure that
the remaining three limbs form an equilibrium posture.
For clarity, let the limbs be denoted L1, Lz, L3, LA. Sup-
pose that the spider initially lifts the limb L1, while the
limbs Lz, Ls, Lq maintain a 3-legged equilibrium pos-
ture (Figure 7(a)). To be able to lift a new limb, say
L4, the spider must first ensure that the force-lines of
the limbs, L1, Lz, Ls intersect at a common point. How-
ever, the limbs Lz, Ls are common to both limb-triplets,
and their force-lines intersect at a unique point. Hence
we must first move the location of the contact points of
the limbs Lz, L3 before LA can be lifted.

In the second phase, called central-body repositioning,
the spider slides two limbs along the tunnel walls while
maintaining a fixed contact with the other two limbs.
Using the notation introduced above, the spider slides
the limbs Lz, Ls along the tunnel walls, while the limbs
L1, Lb maintain a fixed contact with the environment
(Figure 7(b)). During this sliding, the intersection point
of the force-lines of Lz and L3 moves forward, until it
reaches the stationary force-line of L1. Now the limbs
LI, Lz, L3 forma 3-legged equilibrium posture, and the
spider can lift the limb Lq. Note that in both modes
of locomotion the spider is continuously immobile with
respect to the tunnel walls. During limb-repositioning
the spider is immobilized by surface curvature effects

2 = O). During central-body reposi-(w& >0 and m~,
tioning the spider is immobilized by first-order effects
(m:, –– O). Immobilization implies that the naturally
occurring compliance at the contacts stabilize the mech-
anism against any external perturbation [15]. Hence, if
the inertial forces due to moving paxts of the spider are
kept small, the reaction forces at the contacts would au-
tomatically compensate for the inertial forces, resulting
in a locally stable locomotion. Other important topics,
such as the spider’s motion planning and control algo-
rithms, will be described in a future paper.

5 Concluding Discussion

We described a design of a 4-legged spider robot capable
of quasistatic locomotion in two-dimensional tunnels.
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Figure 7. The two motion phases of the spider.

Figure 8. A snapshot showing the spider bracing against
tunnel walls.

An immobilization theory dictated the minimal number
of limbs such a spider can have, as well as the curva-
ture the footpads must have to guarantee the spider’s
stability. Other key parameters, such as the dimension
and number of degrees of freedom of each limb, were
dictated by the class of tunnel geometries. As the spi-
der will initially move under a worst-case assumption
of slippery tunnel walls, we also described a locomotion
strategy under this assumption. The spider has been
built, and a snapshot of the spider bracing against tun-
nel walls are shown in Figure 8. The spider is currently
undergoing initial locomotion experiments, which vali-
date the control algorithms currently being developed
for its various modes of locomotion.
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