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ABSTRACT

This technical correspondence presents a surprisinglypnanalytical criterion for the stability of general seaborder
asymmetric linear systems. The criterion is based on thetFet if a symmetric system is stable, adding a small amount
of asymmetry would not cause instability. We compute aigalist an upper bound on the allowed asymmetry such that the
overall linear system is stable. This stability criterianthen applied to robot grasping arrangements which, duehigsizal

effects at the contacts, are asymmetric mechanical systéfmpresent an application of the stability criterion to a gkasp
arrangement.

INTRODUCTION

This technical correspondence is concerned with the #iabfl second-order linear systems that have an asymmeiffitess matrix.
Our goal is to provide an analytical criterion for the stapibf systems of the form:

Mp+Kap+Kpp =0, (1)

whereM € R™" andKyq € R™" are symmetric positive definite, afg, € R™" is asymmetric Such systems arise in the linearized
dynamics of robot grasping arrangements [9], and in othpliGaions such as feedback control. See, for instancend][5, p. 36].

Researchers have taken the following approach to the igadisin of general asymmetric systems, whiteKq, andK, are
asymmetric. Their approach is based on transforming thenamtric system into a symmetric one. The subclass of asyriumet
systems that can be transformed into symmetric system#esl cymmetrizable systems. Inman has introduced negeasdrsufficient
conditions for a subclass of such systems to be symmetezablsimilarity transformation [4]. Ahmadian and Chou haeveloped
a systematic technique for computing the coordinate sygtewhich the symmetrizable system is symmetric [2]. Cogheg Rla
have given a condition for transforming the system into aodeted diagonal system [3]. Utilizing equivalence tramsfation rather
than similarity transformation enables the subclass ofragirizable systems to be enlarged [1, 8]. All these resuét®ract and give
conditions for the stability of the original asymmetric 8. However, only subclasses of asymmetric systems caredted in these
ways, and the application of stability criteria based ondfarmation to symmetric systems is cumbersome.

In this technical correspondence we develop a simple mitdor the stability of asymmetric systems of the form (1)the context
of robot grasping applications, this stability criteri@atls to a synthesis rule that indicates which contact paimdswhat preloading
profile guarantee stable grasp.

We make the following two assumptions, which are motivatgdcbnsideration of the grasping application. First, as imyna
mechanical systems, we assume that the inertia and dampitnizes,M andKy, are symmetric positive definite matrices. Second, we
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assume that the symmetric part of the stiffness mafkiy)s = %(Kp + Kg), is positive definite. This assumption has been shown to hols
true for almost every robot grasping application [9].

The stability criterion is based on the idea that if the syrmimeystem is asymptotically stable, one can add a bounadexiat of
asymmetry and the system will remain stable. In our solutiercompute an upper bound on the norniif)as = %(Kp — Kg) such that
the eigenvalues of the first-order equation recast fromtamuél) are located in the open left half plane. After esttihg the stability
criterion for such systems, we illustrate the applicapibt the result for analyzing the stability of robot graspargangements.

STABILITY OF 2"9-ORDER ASYMMETRIC SYSTEMS
For simplicity we begin with the following system:

P+Kap+Kpp=0, (2)

which is identical to (1), except that helkis the identity matrix. The following theorem states thahié skew-symmetric part &€,
(Kp)as, is sufficiently small, the system (2) is globally asymptatiy stable.

Theorem 1 (global asymptotic stability). Consider the system (2). LBtc R be the minimal eigenvalue offKLeta € R be the
minimal eigenvalue ofKp)s, and lety € R be the matrix norof the skew-symmetric part of,Kif

IV <+ap,

the system (2) is globally asymptotically stable.

JUNEEA

Proof. The system (2) can be written as

For global asymptotic stability, it suffices to show that thal part of the eigenvalues éfis negative. Leh € C be an eigenvalue &&
with corresponding non-zero eigenveciot (vi,v2) € C2". Note that each is a complex vector it". Then

0 | Vi) Vo - Vi
—Kp —K4g ) o —Kij_—KdVZ o Vo )

Since (Kp)s > 0 K, is non-singular. This implies that=0 cannot be an eigenvalue &f SinceA # 0, it follows thatv, # 0 and
Vo #£ 0. Hence, we may assume without loss of generality ¥hat; = 1, wherex denotes complex conjugate transpose. Based o

this choice, we can writd? = viA%v; = ViV, = V; (—Kpvi — Kgv2) = —V;Kpva — AV;Kgv1, where we used the relations; = v, and
Avo = —Kpvi — Kgva. SinceKy > 0, the scala = v;Kqvy is positive real. Similarly, the scaldr = v;(Kp)sv1 is also positive real.
Since(Kp)as is skew-symmetric, we can writ§ = vi (Kp)asv1, wherej = v/—1andyis real. Substituting these scalars into the quadratic
equation in\ gives

AN+ BN +d+ jy=0. 3)

Note that every eigenvalue éfsatisfies this equation. The solution of (3) is:

M2=1 (—Bi NTh m) | 4)

1The matrix norm is defined a|| = max{||Eul|} over all vectorg|u| < 1.



Let us pause to recall how one computes the square root of plekmumber. Consider a complex number a+ jb with a norm|z =
Va2 + b2 and argumerfl = arctarib/a). Then,/z= +(a2+b?)7 /2, and in cartesian coordinatg&@= +(a2+b?)# (cos($) + jsin(2)).

Since cofB) = ——2—, we use the trigonometric identity c()%) = HCTOS(G) to obtain

Va2+b?
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SR I

In our casea = 32 — 4& andb = —4¥, and (4) implies that
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The requiremenRe{A12} < 0 introduces an inequality i, B, andy. Rearranging terms in this inequality gives the equivalent
inequality,

“N2  /n 2
(46+8) > (B*-4a)" + 167,
Cancelling similar terms yields the inequality
¥l < Vap. (5)

For stability we must ensure that (5) holds for evétr,yﬁ, andy. In other words, (5) must hold for every eigenvahi@nd every
associated eigenvectorof A. Therefore we bound, B, andy as follows. First, 0< a = Amin((Kp)s) < vi(Kp)sva = @. Second,
0 < B=Amin(Kq) < ViKgvi = B. Third, |yl = [|(Kp)asl| > [V; (Kp)asvi| = |j¥| = |}]- Using these boundg< +/aB implies thafy| < vap

for everya, 3, andy. O

Note that the theorem gives only sufficient stability coiadit and the proof does not indicate what should be the nagessndition
for global asymptotic stability. Next, we present a conglithat adapts the theorem to a global asymptotic stabititgrion for systems
that contain a non-unit inertia matrix.

Corollary 2.1. Consider the following system
Mp+Kgp+Kpp=0, (6)

where all parameters are as above, except for the matrix Mclisi symmetric positive definite. Lgt> 0 be the minimal eigenvalue of
M~Y/2KqM %2, Leta > 0 be the minimal eigenvalue of M/2(Kp)sM~Y/2, and lety € R be the matrix norm of MY2(Kp)agM /2. If

IV < VoB

the system (6) is globally asymptotically stable.

Proof. We define the coordinate transformatipr="M¥2p or p = M~%/2p. (A similar transformation appeared in [5, p. 87].) Note
that the matrice$1/2 andM /2 are symmetric positive definite. Moreover, we have tat MY/2M¥2 andM~1 = M~1/2M~1/2,
Substituting the new coordinates into (1) and premultipyby M /2 gives

B+ M~1/2K yM~1/2 5+M—1/2KpM—1/2JF~) —-o.
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This system is exactly of the form used for theorem 1, bueadifKy andK, we now havedy ande, respectively. If the latter system
is asymptotically stable, it entails that (1) is asympiaiticstable, since the two systems differ only by coordiriedasformation. The
global asymptotic stability of (6) therefore follows frommetorem 1. O

We conclude this section with a simple numerical exampleghaws the applicability of the stability criterion.
Example: Consider the dynamical system

[100 101} P+ Hé} p+ [_883} p=0, )

wheres is a free parameter. The matridés K4, and the symmetric part &€, are all symmetric positive definite. Hence, whes 0
the system is symmetric and asymptotically stable. Quiditly, increasing the value afincreases the asymmetric part of the stiffness
4

matrix. Calculation ofx, 3, andyyieldsa = z, 3 = 0.328, andy = \/%10. Therefore, the stability condition of corollary 2.1 beassthe

condition|s| < 3.078. For comparison we numerically calculated the eigersbf the 44 matrixA. It turns out that for &< s < 3.920
the system (7) is asymptotically stabiq eigenvalues are in the left half plane). We can see that &jgen being conservative, our
stability condition correctly predicts the system'’s glbasymptotic stability.

APPLICATION TO GRASP SYNTHESIS
In this section our objective is to determine the stabilityfrictional grasps or fixtures. We consider a grasp, or figflarrangement
where a 2D objecB is held by stationary 2D bodieg;, ..., 4k that represent fingertips or fixturing elements. We assuiogdinal
contacts between the stationary bodigs ..., 4x andB. The usual assumption made in the solid mechanics literatuthat the
contacting bodies arquasi-rigid, which means that their deformations due to compliancectsffare localized to the vicinity of the
contacts [6]. This assumption is always valid for all bodlest are not made of exceptionally soft material and do notaio slender
substructures [10]. The quasi-rigidity assumption allows$o describe the overall motion Bfrelative to the stationary bodiet, ..., 4y
using rigid body kinematics. Since the grasping bodies @t@osary, we focus omB’s configuration spacéc-space). The c-space of a
planar object is parametrized by= (d,8) € R? x R, whered is B’s position and is a parametrization ab’s orientation.

We have derived the following linearized dynamics of a quisd object B held in equilibrium grasp by stationary quasi-rigid
bodies4s, ..., 4 [9]:

M (0o)Ad + Ka(do)Ad + Kp(do)Ag = 0, (8)

whereqq is the grasped object equilibrium configuration dypis the deviation of the actual configuration from the equilin.

In grasping applications1(qp) is the inertia matrix, an&q(qo) is the damping matrix. Both matrices are symmetric and pesit
definite. The matriX;,(qo) is the grasp stiffness matrix associated with the mecharfigaasi-rigid frictional contacts. This matrix is
composed of the individual contact stiffness matricesclaire asymmetric. See [9] for more details.

The asymmetry oK, strongly depends on the direction of the contact forcesclwii some cases can be selected during gras
synthesis. The magnitude of the matrix norm(kif)as increases as the angle between the contact force and thalnatrthe contacts
increases.

For example, consider the two-finger frictional grasp shawfigure 1. The example shows a grasp of a wedge-like objddtiw
has a head angtgand base angle 96 @as shown in the figure. Hence, the example is actually a grfasfamily of wedge-like objects
with different head angles. In this example we assume tleatrittion is sufficiently large that the fingers do not slidef course, the
two-finger grasp forms an equilibrium grasp. However, tliftnsiss matrixK,, is asymmetric and local deformations at the contacts ca
cause instability. In the example, if the contact forégsandF, are collinear with the normals at the contaestsandn, thenKp is
symmetric. When the contact forces rotate away from the abdinections the matrix normi(Kp)as|| increases. The rotation of the
contact forces with respect to the normal is due to the gngspf different objects with varying angles. The stability condition of
corollary 2.1 places a limit on the amount of asymmetry aldwConsequently, it bounds the value of the allowed apg@®omputation
of the maximalp angle reveals that the grasp is stablefer12.68°.
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Figure 1. A two-finger grasp of a family of wedge-like objects.

CONCLUSION
Adding an asymmetric matrix to a stable symmetric secomgosystem has the potential to cause instability. In orewbid such
instability, we establish an analytic bound on the amourasyfmmetry that is guaranteed to keep the asymmetric sydisally
asymptotically stable.

Recent results show that a frictional contact stiffnessimet asymmetric. As a result, the grasp stiffness matrithefentire grasp
is asymmetric. We obtained a concise condition for the dlabgmptotic stability of the grasp linearized dynamicsj éimerefore a
local asymptotic stability for the nonlinear system.

ACKNOWLEDGMENT

I would like to thank Elon Rimon for his valuable comments &mchelping me in preparing this technical correspondetssa.i | would
also like to gratefully acknowledge many fruitful discumss with Yizhar Or.

REFERENCES
[1] S. Adhikari. On symmetrizable systems of second kihn8 ME Journal of Applied Mechanid7:797-802, December 2000.
[2] M. Ahmadian and S.-H. Chou. A new method for finding symmeefform of asymmetric finite-dimensional dynamic systems.
ASME Journal of Applied Mechanics4:700—-705, September 1987.
[3] T. K. Caughey and F. Ma. Complex modes and solvability aficlassical linear system&SME Journal of Applied Mechanics
60:26-28, March 1993.
[4] D. J. Inman. Dynamics of asymmetric nonconservativéesys. ASME Journal of Applied Mechanics0:199-203, March 1983.
[5] D. J. Inman.Vibration with Control Measurement and Stabilifyrentice-Hall, Inc, Englewood Cliffs, NJ., 1989.
[6] K. L. Johnson.Contact MechanicsCambridge University Press, 1985.
[7] W. R. Kliem. Symmetrizable systems in mechanics and rmbtiheory. ASME Journal of Applied Mechanics9:454-456, June
1992.
[8] F. Ma and T. K. Caughey. Analysis of linear nonconsemetiibrations. ASME Journal of Applied Mechanic62:685-691,
September 1995.
[9] A. Shapiro and E. Rimon. On the mechanics of natural caanpk in frictional contacts and its effect on grasp stiéfhand
stability. InIEEE Int. Conference on Robotics and Automatipages 1264—-1269, New Orleans, LA, April 2004.
[10] N. Xydas and |. Kao. Modeling of contact mechanics arnctitin-limit-surfaces for soft fingers in robotics, with garimental
results.International Journal of Robotics Researd8(8):941-950, 1999.



