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1. INTRODUCTION

This work deals with a first-price sealed-bid auction of a single item.
Such type of auction, as well as many other types, have been extensively
used as selling mechanism and have been the subject of an intensive
theoretical research in economics and operations research.1 Much of this
research has focused on the equilibrium analysis of the corresponding one-
shot Bayesian game.2 Other research efforts have been devoted to auction
design, based on equilibrium analysis.3 This work differs from previous
ones in three main aspects: (a) it discusses discrete models, (b) it deals with
repeated auctions with incomplete information,4 and in particular, (c) it
does not analyze the repeated-game equilibria set, but rather employs
``learning theory.'' More precisely, we analyze the path generated by players
who use various classes of belief-based learning schemes, including the class
of learning schemes with bounded recall and the class of generalized fic-
titious play learning schemes. Roughly speaking, a player with a recall of
size m assigns a positive probability to a vector of the other players' bids
if and only if this vector was used in one of the last m stages. A player that
uses a generalized fictitious play learning scheme assumes that his
opponents' next bid vector is distributed according to a weighted empirical
distribution of their past bid vectors.5 We further assume that the players
are risk neutral and that each player's type is determined before the first
auction and does not vary with time.6 In our main result (Theorem A in

66 HON-SNIR, MONDERER, AND SELA

1 It is very difficult to list the numerous papers on auctions. The reader is referred to to the
surveys of Stark and Rothkopf [28], Milgrom [15, 16], McAfee and McMillan [12], Wilson
[32], Wolfstetter [33], Laffont [9], and to the evolving recent literature concerning auctions
on spectrum rights (e.g., McMillan [14] and Cramton [3]).

2 See, e.g. (in addition to the above mentioned surveys), the early work of Vickrey [30] and
the more recent and comprehensive approach to equilibrium of Milgrom and Weber [17].

3 See Harris and Raviv [6], Myerson [22], and Riley and Samuelson [24].
4 Various types of government bonds are repeatedly sold in first-price auctions. For other

examples see, e.g., Ashenfelter [1].
5 Note that the players in our model are not sophisticated. They do not attempt to learn

their opponents' types or to hide their own types. They merely make a simple statistical
inference about their opponents' next move. That is, our model does not exhibit the ratchet
effect appearing in some of the equilibrium strategies in repeated auctions. Equilibrium
analysis of repeated first-price auctions in the framework of repeated games with incomplete
information is complex. Therefore this theory is restricted and not conclusive. The reader is
referred to Laffont [9] for a survey of the relevant literature. An analysis of repeated second-
price auctionswith incomplete information is given in Bikhchandani [2]. Sequential auctions
in which each player wishes to purchase at most one unit are well-understood and discussed,
e.g., in Milgrom and Weber [17], Weber [31] and McAfee and Vincent [13]. Finally,
McAfee [11] discusses a dynamic setup for general auction mechanisms. He uses a solution
concept that involves elements of competitive equilibrium and strategic equilibrium.

6 See Section 7 for a discussion of this assumption.



Section 5) we prove under mild assumptions concerning tie-breaking rules
that after sufficiently long time the players play an equilibrium of the one-
shot auction in which players' types are common knowledge. This result
means, that generically, the player with the highest valuation wins the
object and pays the second-highest valuation. That is, under our belief-
based learning assumption, a repeated first price auction yields in the long-
run the outcome of a one-shot second-price auction. In Section 6 we show
by examples that Theorem A does not hold when we remove one of the tie-
breaking rules. However, we show that for two-person auctions, even
without this tie-breaking rule, if both players use a generalized fictitious
play learning scheme, then the beliefs of the players approach a mixed-
action equilibrium.This last result does not hold when the players use a
learning scheme with bounded recall as is shown by an example. Section 7
is devoted to some other learning schemes that seem natural in the context
of auctions, and in both Section 6 and Section 7 we provide some remarks
and open problems. The proofs of the main theorems are given in Section 8.

2. REPEATED (DISCRETE) FIRST-PRICE SEALED-BID AUCTION

Let N=[1, 2, ..., n] be the set of players. In the one-shot auction
A(v1, v2, ..., vn), Player i has a type v i which is a positive integer. That is,
vi is the expected monetary value of the item for Player i. The action set
of each player is the set Z+=[1, 2, ...] of positive integers. When every
player i # N makes a bid xi # Z+ , the player with the maximal bid wins the
object. If there is more than one such player, we deviate from the standard
theory by purifying the game: Instead of assuming that in such a case the
winner is determined by a lottery, we assume that every winner receives
his expected utility. That is, if xi=xmax=max j # N x j, then i receives
(1�w)(vi&xi), where w denotes the number of players j with x j=xmax. Our
purifying method is harmless if the players are assumed risk neutral, as we
indeed assume. The types are selected by Nature according to the probabil-
ity distribution * over (Z+)N. Every player knows his type. The precise
nature of * as well as the information channels of the players are not
important for the ``learning'' analysis (amthough they play a crucial role in
the standard equilibrium analysis). In the repeated auction, Nature chooses
the types v1, v2, ..., vn, and the auction is repeatedly conducted. The
repeated auction is denoted by RA(v1, v2, ..., vn).

3. BELIEF-BASED LEARNING

Consider a repeated game in strategic form. The one-shot game is
denoted by G. The set of players in G is N=[1, 2, ..., n]. The action set of
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Player i is S i, and i 's utility function is ui: S � R, where S=_j # N S j and
R denotes the set of real numbers.7 Let Ht=S t be the set of histories of
length t. By convention, H0 is a singleton. A strategy for player i is a func-
tion f i: ��

t=0 Ht � S i. For a finite set X, 2(X ) denotes the set of probabil-
ity measures over X. A belief function for i is a function Bi: ��

t=e i Ht �
2(S&i), where ei is a given positive integer, and S &i=_j{i S j. Bi(ht&1) is
the belief of Player i about the t th joint action of all other players, after
he observes the history ht&1=(x1 , ..., xt&1). Player i generates beliefs only
after he observes at least ei action profiles.8 Let BR i be the pure best
response correspondence of Player i at the one-shot game. A learning
scheme for i is a pair (Bi, f i) such that f i(ht&1) # BRi(B i(ht&1)) for every
t>ei. We deal with learning schemes that satisfy stronger conditions than
those of Milgrom and Roberts [18]��for an infinite history h=(x1 , x2 , ...),
we denote (x1 , ..., xt) by h[t] .For two finite histories h=(x1 , x2 , ..., xt) # Ht

and h$=(z1 , z2 , ..., zt$) # Ht$ we denote by (h, h$) the history (x1 , x2 , ..., xt ,
z1 , z2 , ...zt$) in Ht+t$ . A learning scheme (Bi, f i) is adaptive if it satisfies the
following three conditions for every infinite history h=(x1 , x2 , ...):

AD1. For every =>0 and for every T>ei there exists a positive inte-
ger M, such that for every s>M for every x&i # S&i and for every hs=
(z1 , ..., zs) # Hs if z&i

t {x&i for every 1�t�s, then

Bi(h[T&1] , hs)(x&i)<=.

AD2. For t>ei if Bi(h[t&1])(x&i)>0, then there exists 1�s�t&1
such that x&i

s =x&i.

AD3. For x&i # S &i and for t>ei if x&i
t&1=x&i, then Bi(h[t&1])_

(x&i)>0.

Condition AD1 means that Player i assigns a low probability to action
profiles that have not been used for a long time. AD2 means that Player
i assigns a 0-probability to a profile of actions that has never been used.
Condition AD3 means that Player i does not ignore recent information.
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7 Actually we assume that G has been already chosen by Nature according to some prob-
ability measure *. Each Player has received his signal and therefore knows the set of players,
the set of actions (S j)j # N and its own utility function. The exact nature of * is not relevant,
however it is implicitly assumed that i 's utility function which may depend on his signal, does
not depend on the other players' signals. That is, the players can compute their best-response
correspondences.

8 ei can be interpreted as the length of the experimenting period. The collection (e j) j # N can
be used to capture the concept of prior beliefs.



(Bi, f i) is a fictitious play (FP) learning scheme if for every t>ei and for
every history ht&1 :

Bi(ht&1)(x&i)=
1

t&1
*[1�s�t&1: x&i

s =x&i ] for every x&i # S &i.

For a sequence (wt)
�
t=1 of real numbers and for a subset A of positive

integers we denote w(A)=�t # A wt ; w([1, 2, ..., T ]) is denoted by w(T ).
(Bi, f i) is a generalized fictitious play (GFP) learning scheme if there exists
a nondecreasing sequence w=(wt)

�
t=1 of positive real numberssuch that for

every t>ei and for every history ht&1=(x1 , ..., xt&1):

Bi(ht&1)(x&i )=
1

w(t&1)
:

[1�s�t&1: xs
&i=x& i ]

ws for every x&i # S &i.

If wt=1 for every t�1, then the associated learning scheme is the FP
learning scheme. Note that every GFP learning scheme is adaptive, because
lims � �(w(T )�w(T+s))=0. We say that a learning scheme (Bi, f i) has a
bounded recall if there exists 1�mi�ei such that the following two condi-
tions are satisfied:

BR1. For t>ei both Bi and f i depend only on the last mi action
profiles. That is, for every (z1 , ..., zmi) # Hmi and for every ht&mi&1 ,
h� t&m i&1 # Ht&m i&1 ,

Bi(ht&m i&1 , z1 , ..., zmi)=Bi(h� t&mi&1 , z1 ...zmi )

and

f i(ht&mi&1 , z1 , ..., zmi)= f i(h� t&mi&1 , z1 ...zmi ).

BR2. For t>ei, Bi(ht&1)(x&i)>0 if and only if x&i was used in one of
the last mi stages (that is, if and only if there exists t&mi�s�t&1 such
that x&i

s =x&i, where ht&1=(x1 , ..., xt&1)).

Note that Condition BR2 excludes degenerate learning schemes with zero
recall, that is, learning schemes (Bi, f i) for which there exists p # 2(S &i)
such that for every t>ei and for every history ht&1 , Bi(ht&1)= p.

Lemma 3.1. Every learning scheme with bounded recall is adaptive.

Proof. Obviously, BR2 implies AD2 and AD3. It also implies a
stronger version of AD1: For every =>0 and for every T>ei, we can take
M=mi. K
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We say that the recall size of a learning scheme with bounded recall is
mi, if mi�1 is the minimal positive integer which satisfies BR1 and BR2.
The following simple lemma gives a useful principle. The converse of prin-
ciple has already been proved in other versions by Fudenberg and Kreps
[4], by Monderer and Sela [20] (who call it the ``stability principle''), and
by Fudenberg and Levine [5].

Lemma 3.2. Consider a repeated game as described above. Let h=
(x1 , x2 , ...) be a path that is generated when each player i uses either a learn-
ing scheme with bounded recall or a GFP learning scheme. Assume that there
exists x # S and T0 such that xt=x for every t�T0 . Then x is in equilibrium.

Proof. If Player i uses a learning scheme with bounded recall, then for
a certain large t he uses xi as a best reply versus x&i. If i uses a GFP learn-
ing scheme, then for every =>0, i uses xi as a best reply to a belief which
assigns to x&i a probability greater than 1&=. Therefore xi must be a best
reply to x&i. K

Note that a belief function does not determine the learning scheme; If
(Bi, f i

1) and (Bi, f i
2) are two learning schemes with the same belief func-

tion, then for t>ei, f i
1(ht&1) may differ from f i

2(ht&1) for histories ht&1 for
which BR i(Bi(ht&1)) is not a singleton. It is sometimes convenient to add
a tie-breaking rule to the definition of a learning scheme. We will frequently
use the following such rule:

TB1. If t>ei and x i
t&1 # BRi(Bi(ht&1)), then f i(ht&1)=x i

t&1 .

Note that TB1 is only a partial tie-breaking rule. That is, there may be ties
to which it is not applied.

4. BELIEF-BASED LEARNING IN AUCTIONS��MAIN THEOREM

We proceed to analyze the paths generated by players in the repeated
auction RA(v1, v2, ..., vn), when each player uses a GFP learning scheme or
a learning scheme with bounded recall. Note that for each Player i with
vi>1, every bid xi�vi is weakly dominated by the bid vi&1. We will
assume the tie-breaking rule:

TB2. If vi>1, then Player i never chooses a bid exceeding vi&1.

Theorem A. Let RA(v1, v2, ..., vn) be a repeated first-price auction.
Assume every player is using either a learning scheme with a bounded recall,
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or a GFP learning scheme, along with the tie-breaking rules TB1 and TB2.
Then there exist a time T0 and a strategy profile x # S which is in equilibrium
in the one-stage auction A(v1, v2..., vn), such that xt=x for every t>T0 .

The proof of Theorem A follows from combining the methods of proof
of the following two weaker versions of it, Propositions 1 and 2. These ver-
sions are needed for later references. In Proposition 1 we prove our con-
vergence result under the assumption that every player is using a learning
scheme with a bounded recall, and in Proposition 2 we prove the same
result under the assumption that every player is using a GFP learning
scheme.

Proposition 1. Let RA(v1, v2, ..., vn) be a repeated first-price auction.
Assume every player is using a learning scheme with a bounded recall, along
with the tie-breaking rules TB1 and TB2. Then there exist a time T0 and
a strategy profile x # S which is in equilibrium in the one-stage auction
A(v1, v2..., vn), such that xt=x for every t>T0 .

Proposition 2. Let RA(v1, v2, ..., vn) be a repeated first-price auction.
Assume every player is using a GFP learning scheme, along with the tie-
breaking rules TB1 and TB2.Then there exist a time T0 and a strategy
profile x # S which is in equilibrium in the one-stage auction A(v1, v2..., vn),
such that xt=x for every t>T0 .

We end the section with a remark concerning a possible, seemingly shorter
proof of Proposition 2.

A path (x1 , x2 , ...), in S is a better-reply path if for every t�1 for which
xt is not in equilibrium, xt+1{xt and for every i for which x i

t+1{x i
t ,

Player i strongly prefers x i
t+1 to x i

t when he believes that the next move of
all other players is x&i

t . Monderer and Sela [20] proved that if all players
use a GFP learning schemeand apply the tie breaking rule TB1, then
eliminating all successive repetitions from the path generated by the players
yields a better-reply path. They deduce that in a game that does not have
better reply cycles, the path generated by players that use GFP learning
schemes and apply the tie-breaking rule TB1, must stabilize on equilibrium.
One may think that an auction with commonly known types has this non-
cycling property. This would have provided a very short proof of Proposi-
tion 2. The next example shows, however, that this is not the case.9
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9 Monderer and Sela [20] conjecture a stronger form of the above mentioned theorem: If
the game does not have better reply cycles of length greater than two, then the path generated
by players that use GFP learning schemes and apply the tie-breaking rule TB1, stabilizes on
equilibrium. As our example shows a cycle of length three, even if the stronger version holds,
it does not apply here.



Example 1. Consider two players with v1=v2=7. A better reply cycle
is:

(5, 2), (2, 5), (6, 2), (5, 2), (2, 5), (6, 2), ... .

5. REMOVING THE TIE-BREAKING RULE TB1:
BELIEF CONVERGENCE

We first show by an example that Proposition 2 does not hold without
the tie-breaking rule TB1.

Example 2. There are two players. v1=9, v2=5. Both players use a
FP learning scheme with e1=e2=1. The players may generate the follow-
ing path:

(5, 4), (5, 4), (5, 1), (5, 4), (5, 4), (5, 1), ... .

In this case, the path generated by the players does not stabilize. However,
we show below that the corresponding belief path does stabilize.

For t>max[e1, e2], let

( pt , qt)=(B2(ht&1), B1(ht&1))

be the sequenceof beliefs. This sequence is converging to ( p, q) # 2(S1)_
2(S2), where p(5)=1, q(4)= 2

3 , and q(1)= 1
3 . It is easily verified that ( p, q)

is a mixed-action equilibrium in the one-shot auction.10 Note, however,
that the players in Example 2 may generate a nonconverging belief
sequence. For example, they may generate the path

(5, 4), (5, 4), (5, x2
3), (5, 4), (5, 4), (5, x2

6), ..., (5.1)

where x2
3k is an arbitrary integer in [1, 2]. Although the belief sequence

generated by the path in (5.1) does not necessarily converge, it approaches
equilibrium in the sense of Monderer and Shapley [21]: A sequence
(( pt , qt))�

t=1 in 2(S1)_2(S 2) is approaching equilibrium if for every =>0
there exists T�1, such that ( pt , qt) is an =-equilibrium for every t�T.11
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10 Actually, it is well known that in a 2-person game in which each player uses a FP learn-
ing scheme, if the sequence of beliefs converges, then the limit point must be a mixed-action
equilibrium.

11 Equivalently, for every =>0 there exists T�1, such that for every t�T, the Euclidean
distance between ( pt , qt) and the mixed-action equilibrium set is smaller than =. Note that all
famous convergence theorems for fictitious play (e.g., Robinson [25] (zero-sum games), and
Miyasawa [19] (2_2 games)) prove that the belief sequence is approaching equilibrium and
not necessarily converging to equilibrium.



Theorem B. Let RA(v1, v2) be a repeated first-price auction with two
players. Assume every player is using a GFP learning scheme, along with the
tie-breaking rule TB2. Thenthe belief sequence generated by the players is
approaching equilibrium in the one-stage auction A(v1, v2).

The proof of Theorem B is given in Section 8. In the next example we
assume that both players use a FP learning schemewith bounded recall. It
is shown that the pathof actions that is generated by the players does not
stabilize and the belief sequence does not approach equilibrium.

Example 3 (Samuelson). There are two players, v1=9, v2=5. Both
players use a learning scheme with a recall of size 1. The players may
generate the following path (cycle):

(5, 1), (2, 2), (3, 3), (4, 4), (5, 4), (5, 1), ... .

The belief sequence is converging to ( p, q) # 2(S1)_2(S 2), where p(5)= 2
5 ,

p(4)= p(3)= p(2)= 1
5 , q(4)= 2

5 , and q(3)=q(2)=q(1)= 1
5 . As q(1)>0,

and 1 is not a best-response to p, then ( p, q) is not in equilibrium.

When we deal with n�3 players, any limit point of the belief sequence
belongs to the set_i # N 2(S &i), and therefore, it is meaningless to discuss
approaching an equilibrium of the belief sequence. However, if every player
is using a FP learning scheme, we can define p i

t # 2(S i) as the empirical dis-
tribution of Player i 's actions up to time t and ask whether the sequence
( p1

t , p2
t , ..., pn

t ) is approaching equilibrium. The next example shows that
this is not necessarily the case.

Example 4. Let v1=100, v2=v3=98. Assume the players use FP
learning schemes. They may generate the path:

(98, 97, 1), (98, 1, 97), (98, 97, 1), (98, 1, 97), ... .

The individual empirical distribution vector is converging to ( p1, p2, p3),
where p1(98)=1, and for i=2, 3, pi(97)= pi(1)= 1

2 . It is easily verified that
for Player 1, the bid 98 is not a best-response to ( p2, p3). Therefore
( p1, p2, p3) is not in equilibrium.

6. OTHER LEARNING SCHEMES

In this section we discuss belief-based learning schemes, which seem
natural in the context of repeated auction, but which are not covered by
Theorem A. The original definition of fictitious play was given for 2-person
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games. One possible generalization to more than 2 players is the one given
in Section 5. One may consider another possible generalization as in
Monderer and Shapley [21]. In this version, we say that Player i uses the
individual fictitious play (IFP) learning scheme if he acts myopically and at
every stage t he believes that each of his opponents makes an independent
decision and that for every j{i, Player j 's next choice is distributed accord-
ing to j 's empirical distribution up to stage t&1. One can similarly define
generalized IFP learning schemes and individual learning schemes with
bounded recall. Except for 2-person games when the FP and IFP learning
schemes coincide, we do not know whether any of our convergence results
holds for the IFP learning schemes.

Next, consider a learning scheme in which Player i believes that the next
maximal bid will be the average of all previous maximal bids.12 Since bids
must be integers and the average maximal bid is not necessarily an integer,
we slightly modify the model. If the average maximal bid of all other
players is a, where l<a<l+1, l a positive integer, then Player i assigns
probability l+1&a to l and a&l to l+1. We call such a learning scheme
an average maximal bid (AMB) learning scheme. Hon-Snir [7] proved (for
the discrete first-price auction discussed in this paper) that when all players
use an AMB learning scheme and apply the tie breaking rules TB1 and
TB2, then the generated path of action profiles stabilizes on equilibrium.

7. ADDITIONAL REMARKS: FUTURE RESEARCH

Domination. Hon-Snir [7] proved that the discrete first-price auction
game discussed in this paper is weak dominance solvable in the sense of
Moulin [23]. That is, it is solved by successive elimination of all weakly
dominated strategies, in the sense that every strategy profile in the Car-
tesian product of the sets of strategies that survive the elimination process,
is in equilibrium. It is tempting to make the conjecture that Theorem A
remains true for such games. Technically, Theorem A assumes TB2 which
has no meaning in general games. Consider, however, the game derived
from the first-price auction game by eliminating for each player, all bids
which are greater than or equal to his valuation. From Theorem A we can
conclude that for every such quasi first-price auction game, if the players
use one of the learning schemes discussed in this paper, along with TB1,
then the path of actions eventually stabilizes on equilibrium. But as the
following example shows, even Proposition 1 does not hold for general
weak dominance solvable games.

74 HON-SNIR, MONDERER, AND SELA
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discusses such learning scheme applied to the Cournot game.



Example 5. Consider the following two-person game in which Player 1
chooses a row, and Player 2 chooses a column:

a b c

a 0, 1 0, 1 1, 0

b \1, 0 2, 2 1, 0+ .

c 1, 0 0, 1 0, 1

This game is weak dominance solvable and the elimination process leads to
the outcome bb. Assume each player is using a learning scheme with a
recall of size 1, along with the tie breaking rule TB1. If the initial move is
aa, the path of actions generated by the players may follow the cycle
aa, ca, cc, ac, aa.

Consider a game which is solvable by successive elimination of strongly
dominated strategies. One can deduce from Milgrom and Roberts [18],
that if every player is using a GFP learning scheme with the tie-breaking
rule TB1, then the path of action profiles generated by the players stabilizes
on equilibrium. It is easy to show that this result holds also when each
player is using either a learning scheme with bounded recall, or a GFP
learning scheme. That is, Theorem A is valid for such games. Obviously
a first-price auction game is not strong dominance solvable. One may
expect some intermediate dominance solvability property in between strong
and weak, which is satisfied by first-price auction games and implies
Theorem A.13 Such a natural property is the invariance under order of
elimination. However, the game in Example 5 has this property. Rochet
[26] characterized a subclass of games that satisfy this property. In these
games, if one player is indifferent to two action profiles so are the other
players. As noted by Marx and Swinkels [10], discrete first-price auction
games do not satisfy Rochet's condition. Nevertheless it is interesting to
know that Rochet's condition does not imply our learning result, as is
shown in the following example.14
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13 Moulin [23] proved that if a game is weak dominance solvable and in addition has the
property that the (pure strategy) best response correspondences are singled valued, then if all
players use a bounded recall learning scheme with a recall of size 1, the process stabilizes on
equilibrium. We do not know whether the same result holds when the players have bigger
recalls, though we conjecture it does not. However, first-price auction games do not satisfy
Moulin's condition.

14 Marx and Swinkels [10] generalized Rochet's theorem by proving it under a weaker
requirement which they call TDI (transference of decisionmaker indifference). As they noted,
generically discrete first-price auction games satisfy TDI, but Example 6 shows TDI is not
sufficient for our learning result. It is interesting to note that the first-price auction games dis-
cussed in this paper do not satisfy TDI.



Example 6. Consider the following two-person game in which Player 1
chooses a row, and Player 2 chooses a column.

a b c

a 2, 6 6, 4 6, 4

b \5, 2 6, 4 6, 4+c 0, 0 8, 1 5, 3

This game is weak dominance solvable and the elimination process leads to
the outcome bc. Assume each player is using a learning scheme with a
recall of size 1, along with the tie breaking rule TB1. If the initial move is
aa, the path of actions generated by the players may follow the cycle aa,
ba, bb, cb, cc, ac, aa.

To summarize, while dominance solvability seems to play a crucial role in
Theorem A, it seems that first-price auction games have a special additional
structure which is not easily identified and which forces convergence.15

Imperfect monitoring. In the models discussed in this paper we assume
``perfect monitoring.'' That is, at every stage t, every player i knows the full
history of bids up to time t&1, or at least he knows the full history of the
last mi bids. In the context of auctions it is reasonable to assume that the
players are informed only about the winning bids. It seems to us that
analyzing repeated auctions when the players are using belief based learn-
ing schemes with such imperfect monitoring will contribute to auction
theory.

Reinforcement learning. In the theory of reinforcement learning,16

players do not form beliefs about the other players' next move. They are
assumed to use a mixed action at each stage, where the probability
assigned by this mixed action to a pure bid positively depends on the suc-
cess of this bid in the past. The many ways in which these probabilities can
be updated give rise to a variety of reinforcement strategies. It seems
natural to analyze repeated auctions with reinforcement players.

Varying types. Consider a repeated auction in which the players' types
vary stochastically with time. If the distribution of the random type vectors
does not depend on time, then we actually deal with a repeated Bayesian
game. If all the players are using learning schemes, then they generate a
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stochastic process in S. Hon-Snir [7] partially analyzed the stochastic path
generated by fictitious players in a model where players' types are deter-
mined at each stage by the same i.i.d. random variables, each of them is
uniformly distributed on [1, 2, ..., V� ]. She shows that if the number of
possible types for each player does not exceed seven (i.e., V� �7), then with
probability one, for a sufficiently late stage the players' behavior is in equi-
librium in the one-stage Bayesian game in which the (common) distribu-
tion of each type is commonly known. She used computer simulation to
analyze the model with more than seven possible types. It seems that the
result continues to hold, although no analytical proof is given.

Removing the TB2 assumption. We conjecture that all our theorems
hold without the TB2 assumption, but it increases the size of the proofs
significantly.17 Since this is a natural assumption we do not actually prove
this conjecture.

8. PROOFS

Proof of Theorem A. We first prove two propositions. These proposi-
tions are needed for later reference. The methods of proof of the proposi-
tions can be combined in an obvious manner to generate a proof of
Theorem A.

Proposition 1. Let RA(v1, v2, ..., vn) be a repeated first-price auction.
Assume every player is using a learning scheme with a bounded recall, along
with the tie-breaking rules TB1 and TB2. Then there exist a time T0 and
a strategy profile x # S which is in equilibrium in the one-stage auction
A(v1, v2..., vn), such that xt=x for every t>T0 .

Proof of Proposition 1. Denote the recall size of Player i by mi. Assume
without loss of generality that Nature chooses the types in a nonincreasing
order. That is, v1�v2� } } } �vn. The proposition obviously holds when
v2=1. We therefore proceed to prove it under the assumption that v2>1.
Let h=(x1 , x2 , ...) be the path generated by the players. We will need also
the following notations: Let e=maxj # N e j, let M i be the set of all players
j for which v j=vi, and let yt(i)=maxj # Mi x j

t . For t>e j, let p j
t # 2(S & j)

be the belief of j about the t th actions of the other players. That is,
p j

t =B j (x1 , ..., xt&1). Let p j
t [b] denote the p j

t -probability that the maximal
bid of all other players is b, and let

q j
t[b]= :

<{M�N"[ j ]

1
|M |+1

p j
t (x

i=b for i # M; x i<b for i � M ),
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where |M | denotes the number of players in M. Note that in the non-
purified model q j

t [b] is the probability of winning if the maximal bid of all
other players is b and j 's bid is also b. Therefore, if j bids b at stage t, then
according to his belief, his expected utility is

E j
t (b)=(v j&b)( p j

t [1]+...+ p j
t [b&1]+q j

t[b]).

Note further that

1
n

p j
t [b]�q j

t [b]�
1
2

p j
t[b]. (8.1)

We need the following claim.

Claim 1. For every j # N and for every t>e, x j
t �v2.

Proof of Claim 1. If v1=v2, then v j�v2 for every player j and therefore
the assertion follows from TB2. If v1>v2, then all players in N"[1] bid less
than v2 by TB2. Therefore, for t>e�e1, a best response of Player 1 cannot
exceed v2. K

We proceed to show that there exists T0 such that for every j # M1 and
for every t>T0 , x j

t �v2&2 and in addition, if M1 is a singleton, then
yt(2)�v2&2 for each such t.18

This is obvious if v2<4, thus we proceed to prove it, assuming that
v2�4. We prove by induction on 1�k�v2&3 that there exists Tk such
that x j

t �k+1 for every j # M1 and t>Tk and that if M1 is a singleton
then yt(2)�k+1 for each such t. Additional two claims are needed:

Claim 2. Let 1�k�k+1�v j&1. If at time t>e, Player j weakly
prefers k to k+1, then

p j
t[1]+ } } } + p j

t[k&1]�
v j&k&2

2
p j

t [k], (8.2)

where the left-hand side of (8.2) equals zero when k=1.

Proof of Claim 2. As j weakly prefers k to k+1, E j
t (k)�E j

t (k+1).
Therefore

(v j&k)( p j
t [1]+ } } } +q j

t [k])�(v j&k&1)( p j
t[1]+ } } } +q j

t [k+1]).
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As q j
t [k+1]�0 and by (8.1), q j

t [k]� 1
2 p j

t [k], the last inequality yields

p j
t [1]+ } } } +p j

t [k&1]�\(v j&k&1)&
v j&k

2 + p j
t [k].

Hence, (8.2) is obtained by manipulating the right-hand side of the
previous inequality. K

The proof of the next claim is obvious.

Claim 3. Let 1�k�v j&2. If j weakly prefers k to v j&1 at t>e, then

(v j&k)( p j
t [1]+ } } } +q j

t [k])�p j
t[1]+ } } } +q j

t[v j&1].

We now return to the main proof.

k=1. Let j # M1 (i.e., v j=v1). We show that j does not bid 1 for t>e.
Indeed, assume in negation that x j

t =1 for such t. In particular, j weakly
prefers 1 to 2 at t. Hence, by Claim 2,

0�
v1&3

2
p j

t[1].

As v1>3, p j
t[1]=0. This implies by (8.1) that q j

t [1]=0. As j weakly
prefers 1 to v1&1, Claim 3 yields

0=(v1&1) q j
t [1]�p j

t[1]+ } } } + p j
t[v1&2]+q j

t[v1&1].

This implies that one of the other players, say player i, chose x i
s�v j for

some t&m j�s�t&1, contradicting TB2.
Assume now that M1 is a singleton; that is, v1>v2. Let it # M2 be a

player with x it
t = yt(2). We show that it does not bid 1 for t>2e. If x it

t =1
then x i

t=1 for every i # M2. Let i # M2. As in the previous paragraph, the
fact that i weakly prefers 1 to 2 implies p i

t[1]=0. The fact that i weakly
prefers 1 to v2&1 implies

0=(vi&1) q j
t [1]�p i

t[1]+ } } } + p i
t[v2&2]+q i

t[v2&1].

Therefore, x1
s =v2 for every t&m i�s�t&1. As by TB2 x i

t&1<v2, x i
t&1 is

a best response to Player i 's belief at time t and, therefore, by TB1,
xi

t=x i
t&1 . Hence, x i

t&1=1. At time t&1, Player i bids 1 when he observes
a history in which the maximal bid is v2 for mi&1 times and the maximal
bid is greater than 1 (because Player 1 bids more than 1 for s>e) in the
first stage of this history; thus x i

t&2<v2 is a best response to the belief
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generated by this history, and by TB1, x i
t&2=1. Continuing recursively, we

show that for every i # M2, Player i bids 1 in the stages s, t&m1&1�s�
t&2. Therefore, at time t&1 Player 1 plays v2 when he observes a history
in which the maximal bid does not exceed v2&2 (because every player
i # M2 plays 1 in this history, and by TB2 any other player bids at most
v3&1<v2&1). This is a contradiction because bidding v2&1 gives a
higher expected payoff than bidding v2 versus such a belief. Assume the
assertion holds for k&1, 2�k�v2&3, we now prove it for k with Tk=
Tk&1+2e.

Let j # M1. Assume j bids k at some t>Tk . In particular j weakly prefers
k to k+1. Therefore, by Claim 2, (8.2) holds. By the induction hypothesis
the probability that the maximal bid of all other players is less or equal to
k&1 equals zero, hence the left-hand side of (8.2) is zero and, therefore,

0�
v j&k&2

2
p j

t [k].

Since v j&k&2>0, this yields p j
t [k]=0. Since j weakly prefers k to v j&1,

we get, by Claim 3,

0=(v j&k) q j
t [k]�p j

t [1]+ } } } +q j
t[v j&1].

Hence, there exists a player i who bid at least v j along the last m j moves,
contradicting TB2. Assume now that M1 is a singleton. Let it # M 2 be a
player with x it

t = y2(t). Since it bids k at time t, then for every i # M2, x i
t�k.

Let i # M2, and denote x i
t by {. As i weakly prefers { to {+1 we get (as

before) that p i
t[{]=0. Since i weakly prefers { to v2&1, we get, as before,

that p i
t[1]+ } } } +q i

t[v2&1]=0. Therefore, Player 1 played v2 in the last
mi moves. By TB1, for every i # M2, x i

t&1=x i
t . This implies, as in the proof

for k=1 that at time t&1 Player 1 played v2 when he believed that with
probability one the maximal bid did not exceed v2&2. A contradiction.

We are now able to prove convergence and to characterize the limit
point of the process.

Case 1 ( |M1|=1). Let T0>e be an integer such that for s>T0 ,
x1

s �v2&2 and ys(2)�v2&2. We show that for t>T0+e, x1
t �v2&1.

Assume in negation that Player 1 bids v2&2 at such t. As he weakly prefers
this bid to v2&1, we get from Claim 2 and from the above property of
T0 that

0�
v1&v2

2
p1

t [v2&2]
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and, hence, p1
t [v2&2]=0. Since Player 1 weakly prefers v2&2 to v1&1,

0=(v1&v2+2) q1
t [v2&2]�p1

t [v2&2]+ } } } +q1
t [v1&1].

Therefore one of the other players bid v1 or more at one time along the last
m1 stages, contradicting TB2.

Case 1.1 (v1>v2+1). We show that there exists T� such that for
every t>T� , xt=x, where x is an equilibrium satisfying x1=v2, there exists
i # M2 such that xi=v2&1 for every player j with v j>1, x j�v j&1, and
x j=1 if v j=1.

Assume that for some stage T*>T0+2+2e, Player 1 bids v2&1. Then,
as was shown above in Case 1, right after that all players in M2 observe
an history in which the maximal bid in each step was either v2&1 or v2,
and they assign a positive probability to the maximal bid being v2&1.
Therefore, they bid v2&1. That is, x i

T*+1=v2&1 for every i # M 2. There-
fore, for every t>T*+1, every player in M2 assigns a probability 1 to the
maximal bid belonging to [v2&1, v2], and thus, by TB1, x i

t=v2&1 for
every such t. Therefore, for t>T*+m1, Player 1 observe an history of m1

times in which the maximal bid was v2&1. As v1>v2+1, Player 1 bids v2.
So, for t>T*+m1, xt=x, where x1=v2, xi=v2&1 for every i # M 2,
x j�v j&1 for every player j with v j>1, and x j=1 when v j=1.

Assume that for t>T� =T0+2+2e, Player 1 bids only v2. Then for every
t>T� +e+1, xt=x, where x1=v2 and for every j{1, x j=x j

T� +e , and for
one of the players i # M2, x i=v2&1 necessarily ( since otherwise Player 1
would switch to v2&1).

Case 1.2 (v1=v2+1). Assume that for t>T� =T0+2+2e, Player 1
bids only v2. Then we get the same convergence result as in Case 1.1. If,
however, for some stage T*>T0+2+2e, Player 1 bids v2&1, then as in
Case 1.1, x i

t=v2&1 for every i # M2 and for every t�T*+1. Therefore,
for every t>T*+m1 Player 1 observes a history in which the maximal bid
is constantly v2&1. Unlike Case 1.1, this does not mean that 1 bids v2 at
stage T*+m1+1, because it may be that v2 is not his unique best response
to such a history (if |M2|=1, then v2&1 is also a best reply). However, for
every t�T*+m1+1, xt=x, where x i=v2&1 for every i # M 2, x j�v j&1
for every j with v j>1, and x1=x1

T*+m1+1 , where x1
T*+m1+1 # [v2&1, v2].

Moreover, if |M2|>1, then x1=v2.

Case 2 ( |M1|>1).

Case 2.1 ( |M1|>2). In this case we show that all players in M1 bid
v1&1 after sufficiently large stage. That is, the process stabilizes at x, where
x j=v1&1 for every j # M 1 and xi�vi&1 for every player i. Note that
v1=v2. Hence, there exists T* such that for t>T*, each player in M1 bids
v1&2 or v1&1. Therefore, for every t>T*+e, every player j in M1
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assigns a probability 1 to the maximal bid in [v1&2, v1&1].We show that
j strictly prefers v1&1 to v1&2. Indeed, assume j assigns a probability p to
the maximal bid being v1&2. If he bids v1&2 his expected value is
E2=2q j

t [v1&2]. If he bids v1&1, his expected value is E1= p j
t[v1&2]+

q j
t [v1&1]. If p<1, then q j

t [v1&1]>0 and, therefore,

E1= p j
t[v1&2]+q j

t [v1&1]

�2q j
t [v1&2]+q j

t[v1&1]>2q j
t [v1&2]=E2 .

If p=1, then Player j observes an history of m j times in which the maximal
bid of all other players was v2&2 and in which all other players in M1 bid
v2&2. Because there are at least two other players in M1, q j

t[v1&2]�
1
3 p j

t[v1&2]. Therefore E2� 2
3E1<E1 .

Case 2.2 ( |M1|=2). In this case both players in M 1 bid either v1&1
or v1&2 for a sufficiently large stage. If one of them bids v1&1once, he will
continue this bid forever, because of TB1. Therefore, eventually the other
player switches to v1&1 too. So, the process stabilizes at x1=x2=v1&1,
and x j�v j&1 for every player j. It may be, however, that both players
play v1&2 forever, provided that v3<v2&1. If v3=v2&1, then necessarily
players 1 and 2 bid v1&1 from a certain point on, because otherwise the
players in M3 switch to v2&2 and there after make v1&1 a strictly best
reply for the players in M1. K

Proposition 2. Let RA(v1, v2, ..., vn) be a repeated first-price auction.
Assume every player is using a GFP learning scheme, along with the tie-
breaking rules TB1 and TB2. Then there exist a time T0 and a strategy
profile x # S which is in equilibrium in the one-stage auction A(v1, v2..., vn),
such that xt=x for every t>T0 .

Proof of Proposition 2. Assume without loss of generality that Nature
chooses the types in a nonincreasing order. That is, v1�v2� } } } �vn. The
proposition holds obviously when v2=1. We, therefore, proceed to prove
it under the assumption that v2>1. Let h=(x1 , x2 , ...) be the path
generated by the players. Let e=maxj # N e j, let M i be the set of all players
j for which v j=vi, and let yt(i)=maxj # Mi x j

t . Using the rest of the nota-
tions established in the proof of Proposition 1, it can be seen that Claims
1, 2, and 3 continue to hold. We proceed to prove another claim.

Claim 4. Every j # M1 makes a bid in [1, 2, ..., v2&3] only finitely
many times. Moreover, if M1 is a singleton and

A1. Player 1 makes a bid in [1, 2, ..., v2&1] infinitely many times,

then every i # M2 makes a bid in [1, 2, ..., v2&3] only finitely many times.
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Proof of Claim 4. This claim is obvious if v2<4; thus we proceed to
prove it assuming that v2�4. We prove by induction on 1�k�v2&3,
that every j # M1 makes a bid in [1, ..., k] only finitely many times and
that, in addition, if M1 is a singleton and Assumption A1 holds, then every
i # M2 makes a bid in [1, ..., k] only finitely many times.

k=1. Let j # M1 (i.e., v j=v1). We show that for t>e, Player j does not
bid 1. Indeed, assume in negation that x j

t =1 for such t. In particular,
j weakly prefers 1 to 2 at t. Therefore, by Claim 2, p j

t [1]=0. Hence By
Claim 3 ( as Player j weakly prefers 1 to v1&1),

0= p j
t [1]+ } } } + p j

t [v1&2]+q j
t [v1&1].

This implies that for some w�v1, p j
t [w]>0. Therefore, by AD2, there

exists a player i such that for some 1�s�t&1, x i
s=w�v1�v i, in con-

tradiction to TB2.
Assume M1 is a singleton, i.e., v1>v2, and that A1 holds. Let i # M2. We

show that Player i bids 1 only finitely many times. Assume in negation that
i bids 1 infinitely many times, at times e<t1<t2< } } } . At time tl Player
i weakly prefers 1 to 2; thus by Claim 2, p i

tl
[1]=0. As Player i weakly

prefers 1 to v2&1, Claim 3 yields

0= p i
tl
[1]+ } } } + p i

tl
[v2&2]+q i

tl
[v2&1].

By Claim 1, the last equality yields x1
s =v2 for every 1�s�t l&1. As

liml � � t l=�, x1
s =v2 for every s�1, contradicting A1.

Assume the assertion holds for k&1, 2�k�v2&3, we now prove it for
k. Let j # M1. Assume in negation that Player j bids k infinitely many times,
at times e<t1<t2 } } } . When Player j bids k at tl , he weakly prefers k to
k+1. Therefore by Claim 2, for every l�1

wj (tl&1)( p j
tl
[1]+ } } } + p j

tl
[k&1])�wj (tl&1) \v1&k&2

2
p j

tl
[k]+ .

By the induction hypothesis the left-hand side of the last inequality is
bounded when l varies, say by M. Therefore, the right hand-side is also
bounded by M. As j weakly prefers k to v1&1 we get from Claim 3:

wj (tl&1)(v1&k)( p j
tl
[1]+ } } } +q j

tl
[k])

�wj (tl&1)( p j
tl
[1]+ } } } +q j

tl
[v1&1]).

Since the left-hand side of this inequality is bounded, so is the right-hand
side. This implies that the bids [1, ..., v1&1] were used only finitely many
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times, contradicting TB2. Assume now that M1 is a singleton and A1 holds.
Let i # M2. We show that Player i bids k only finitely many times. Assume
in negation that Player i bids k infinitely many times, at times e<t1<
t2< } } } . At time tl Player i weakly prefers k to k+1; thus we conclude, as
in the first part of the k th step, that there exists M such that

wi (tl&1)( pit l[1]+ } } } +q i
tl
[k])�M for every l�1. (8.3)

Since at stage t l Player i weakly prefers k to v2&1, Claim 3 and (8.3) yield
for every l�1

wi (tl&1)( p i
tl
[1]+ } } } + p i

tl
[v2&2]+q i

tl
[v2&1])�M(v2&k).

The last inequality implies that there exists T0 such that Player 1 bids
v2 for every t�T0 in contradiction to A1. This completes the proof of
Claim 4. K

We are now able to prove convergence and to characterize the limit
point of the process.

Case 1 ( |M1|=1). We need the following claim.

Claim 5. Let M 1 be a singleton. Then Player 1 bids v2&2 only finitely
many times.

Proof of Claim 5. Assume 1 bids v2&2 infinitely many times, at times
e<t1<t2 } } } . When 1 bids v2&2 at tl , he weakly prefers v2&2 to v2&1.
Therefore, by Claim 2 for every l�1

w1(t l&1)( p1
tl
[1]+ } } } + p1

tl
[v2&3])�w1(tl&1)

v1&v2

2
p1

tl
[v2&2].

By Claim 4 the left-hand side of the last inequality is bounded when l
varies, say by M. Therefore the right-hand side is also bounded by M. As
1 weakly prefers v2&2 to v1&1 we get from Claim 3

w1(tl&1)(v1&v2+2)( p1
tl
[1]+ } } } +q1

tl
[v2&2]

�w1(t l&1)( p1
tl
[1]+ } } } +q1

tl
[v1&1]).

Since the left-hand side of this inequality is bounded, so is the right-hand
side. This implies that the bids [1, ..., v1&1] are used only finitely many
times, contradicting TB2. K

Case 1.1 (v1>v2+1) or (v1=v2+1 and M2 is not a singleton). We
show that there exists T� such that for every t�T� , xt=x, where x is in
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equilibrium in the auction A(v1, v2, ..., vn) satisfying x1=v2, there exists
i # M2 with xi=v2&1, and x j�v j&1 for every player j with v j>1.

Assume A1 is not satisfied. Then there exists T0>e such that Player 1
bids v2 for t�T0 . Therefore,19 by TB1, for each player j{1, x j

t =x j
T0

for
every t�T0 . If x i

T0
<v2&1 for every i # M2, then Player 1 eventually

switches from v2. Therefore, the process stabilizes at x with x1=v2; there
exists i # M2 with xi=v2&1 and x j�v j&1 for every player j. Assume A1
holds, then by Claim 5, Claim 4, and Claim 1, there exists T0>e such that
for every t�T0 , Player 1 makes bids in [v2&1, v2] and every player in M2

makes bids in [v2&2, v2&1]. Since A1 holds, player 1 bids v2&1 infinitely
many times. Therefore, for sufficiently large t, for each i # M2, the condi-
tional probability of the maximal bid of the other players being v2&1,
given that this maximal bid is less than v2, is increasing to 1. Therefore,
there exists a stage when all players in M2 switch to v2&1 and stay with
this bid. Since v1>v2+1, or v1=v2+1 and M2 is not a singleton, there
exists a stage when Player 1 switches to v2 and stay with this bid, which
contradicts A1. Therefore, Assumption A1 cannot hold.

Case 1.2 (v1=v2+1 and M2 is a singleton.). If Assumption A1 does
not hold, then we get the same convergence as in Case 1.1. If A1 does hold,
then, as in Case 1.1, Player 2 bids v2&1 for sufficiently large t. In contrast
to Case 1.1, it is no longer true that this forces Player 1 to switch to v2.
Actually, if Player 2 made at any stage in the past a bid smaller than v2&1,
then Player 1 must eventually bid v2&1 (because he uses a best-response).
If Player 2 made only the bid v2&1, then both v2 and v2&1 are best-
response actions for Player 1. Because A1 and TB1 hold, then Player 1 uses
v2&1 for sufficiently large t. The process therefore stabilizes at x, with
x1=x2=v2&1 and x j�v j&1 for every Player j with v j>1.

Case 2 ( |M1|�2). v1=v2. Thus by Claim 4, there exists T* such that
for t>T*, each player in M1 bids v1&2 or v1&1.

Claim 6. Suppose |M1|�2. If there exists a player in M1 who bids
v1&2 infinitely many times, then there exists T0 such that for t>T0 all
players in M1 bid v1&2.

Proof of Claim 6. Let j # M1 bids v1&2 infinitely many times, at times
T*<t1<t2< } } } . Then for every l�1, E j

tl
(v1&2)�E j

tl
(v1&1). Hence,

2( p j
t [1]+ } } } +q j

t[v1&2])�p j
t [1]+ } } } + p j

t[v1&2]+q j
t [v1&1].
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Therefore,

( p j
tl
[1]+ } } } + p j

tl
[v1&3])�p j

tl
[v1&2]&2q j

tl
[v1&2]+q j

tl
[v1&1]. (8.4)

By (8.1), p j
tl
[v1&2]�2q j

tl
[v1&2].Therefore,

( p j
tl
[1]+ } } } + p j

tl
[v1&3])�q j

tl
[v1&1]. (8.5)

Multiplying both sides of (8.5) by w j (tl) gives a bounded left-hand side
(when l varies) and therefore, a bounded right-hand side. Thus, there exists
T0 such that xd

tl
=v2&2 for every d # M1, d{ j. Let d # M1, d{ j. Since d

plays v2&2 infinitely many times, we get, replacing j with d in the above
calculation that all players in M1 other than Player d play v1&2 for suf-
ficiently large t. Since Player d plays v2&2 for sufficiently large t, all
players in M1 play v2&2 for sufficiently large t. K

Case 2.1 (( |M1|>2) or ( |M1|=2 and v3=v1&1)). In this case we
show that all players in M1 eventually bid v1&1. That is, the process sta-
bilizes at x, where x j=v1&1 for every j # M1, and x i�vi&1 for every
player i. Indeed, if our assertion does not hold, then, by Claim 6, all players
in M1 bid v2&2 for sufficiently large t. If there are more than two players
in M1, or v3=v1&1, then by Claim 6, for sufficiently large t each player
j in M1 believes that with a high probability the maximal bid of the other
players is v2&2 and that there are at least two other players who bid
v2&2. This forces Player j to switch to v2&1. A contradiction.

Case 2.2 (( |M1|=2) and (v3<v1&1)). In this case, by what we have
shown, the process stabilizes at some equilibrium x, of one of two possible
forms: Either x1=x2=v1&1 and xi�vi&1 for every player i with vi>1,
or x1=x2=v1&2 and xi�vi&1 for every player i with vi>1. K

Proof of Theorem B. Denote the belief sequence by (( pt , qt))t�2 . We
use the following characterization for approaching equilibrium given in
Monderer and Shapley [21]: (( pt , qt))t�1 is approaching equilibrium if
and only if every limit point of this sequence is in equilibrium. We also use
Claims 1�6, which were proved without utilizing TB1. Let ( p, q) be a limit
point of the belief sequence.

Case 1.1 (v1>v2+1). Assume A1 is not satisfied. Then there exists
T0>e such that Player 1 bids v2 for t�T0 . Therefore, p is the probability
measure concentrated on v2. As for every t�T0 , v2 is a best response to qt ,
p is a best response to q. On the other hand, by TB2, q assigns a positive
probability only to bids in [1, ..., v2&1] and each bid in this set is a best
response to v2. Therefore, q is a best response to p. Hence ( p, q) is in equi-
librium.
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Assume A1 holds, then by Claim 5, Claim 4, and Claim 1 there exists
T0>e such that Player 1 makes bids in [v2&1, v2] and Player 2 makes
bids in [v2&2, v2&1] for every t�T0 . Since A1 holds, Player 1 bids
v2&1 infinitely many times. Therefore, for sufficiently large t, Player 2's
conditional probability of the bid of Player 1 being v2&1, given that this
bid is less than v2, is increasing to 1. Therefore, there exists a stage in which
Player 2 switches to v2&1 and stays with this bid. Since v1>v2+1, there
exists a later stage at which Player 1 switches to v2 and stays with this bid,
in contradiction to A1. Therefore Assumption A1 cannot hold.

Case 1.2 (v1=v2+1). If Assumption A1 does not hold, then we get the
same convergence as in Case 1.1. If A1 does hold, then as in Case 1.1,
Player 2 bids v2&1 for sufficiently large t. Therefore, q=$v 2&1 , where for
a set X and for x # X, $x is the probability measure concentrated on x. In
contrast to Case 1.1, it is no longer true that this forces Player 1 to switch
to v2. Actually, if Player 2 made at any past stage a bid smaller than v2&1,
then Player 1 must eventually bid v2&1 (because he uses a best response).
In this case ( p, q)=($v 2&1 , $v 2&1) forms a pure action equilibrium. If
Player 2 made only the bid v2&1, then both v2 and v2&1 are best-
response actions for Player 1. As p assigns a positive probability only to
v2&1 and v2, and both these actions are best responses to v2&1, p is a best
response to q. As q is a best response to any mixture of v2&1 and v2, ( p, q)
is in equilibrium.

Case 2 (v1=v2). Since v1=v2, by Claim 4, there exists T* such that for
t>T*, each player in M1 bids v1&2 or v1&1.

If for every sufficiently late stage both players bid v1&1, then ( p, q)=
($v 1&1 , $v 1&1), and therefore ( p, q) is in equilibrium. If one of the players
bids v2&2 infinitely many times, then by Claim 6, ( p, q) is the equilibrium
($v 2&2 , $v 2&2). K
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