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Tunneling through an Anderson impurity between superconductors
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We consider an Anderson impurity~A! weakly connected to a superconducting electrode~S! on one side and
a superconducting or a normal-metal electrode~N! on the other side. A general path-integral formalism is
developed and the response ofSAN and SAS junctions to a constant voltage biasV is elucidated, using a
combination of the Keldysh technique~to handle nonequilibrium effects! and a dynamical mean-field approxi-
mation ~to handle repulsive Hubbard interactions!. An interesting physics is exposed at subgap voltages (eV
,D for SANandeV,2D for SAS). For anSANjunction, Andreev reflection is strongly affected by Coulomb
interaction. For superconductors withp-wave symmetry the junction conductance exhibits a remarkable peak at
eV,D, while for superconductors withs-wave symmetric pair potential the peak is shifted towards the gap
edgeeV5D and strongly suppressed if the Hubbard repulsive interaction increases. Electron transport inSAS
junctions is determined by an interplay between multiple Andreev reflection~MAR! and Coulomb effects. For
s-wave superconductors the usual peaks in the conductance that originate from MAR are shifted by interaction
to larger values ofV. They are also suppressed as the Hubbard interaction strength grows. Forp-wave
superconductors the subgap current is much larger and theI -V characteristics reveal an interesting feature,
namely, a peak in the current resulting from a midgap bound state in the junction.

DOI: 10.1103/PhysRevB.63.134515 PACS number~s!: 74.40.1k, 72.10.2d, 74.20.2z, 74.50.1r
gl
i

ea
is

.
,
on
th
an
c
m
tin
c
ri

ub
ig

on
m

r-

tu

in

e to
ots
nd
ges.
t

by

on-

gle
e-
of

then
nec-
th

of
rent
efs.

the
ti-

AR
ct-

en-
we
to-
ter-
—

tern

he
I. INTRODUCTION

The dynamical behavior of Josephson junction stron
depends, among other factors, on its transparency. If the
sulating barrier is not too high then the concept of nonlin
tunneling becomes relevant. In this case the character
dynamical conductancedI/dV at applied voltagesV less
than the superconducting gapD shows a subgap structure
An explanation of this behavior was given some time ago1,2

based on the mechanisms of multiple Andreev reflecti
~MAR!. Recently, the subgap current was calculated for
case of electron tunneling through a junction with reson
impurity.3 Rapid progress in the technology of supercondu
ing junctions makes it possible to fabricate junctions co
posed of quantum dots weakly coupled to superconduc
or normal electrodes. The basic physics of such a device
be elucidated once it is modeled as an Anderson impu
center. In this case the Coulomb interaction is expected
strongly affect the tunneling current in general and the s
gap current in particular. Since the subgap current is or
nated from multiple Andreev reflections, its physics has
close similarity to that of the Josephson current. In this c
text, it is established4 that the tunneling through a quantu
dot is suppressed if the effective Kondo temperatureTK

5AUGexp@2pue0u/2G# is small as compared with the supe
conducting gapD ~hereafter,U is the Hubbard repulsion
strength,e0 is the orbital energy of the dot electron, andG is
the width of this energy state!. Strong interaction-induced
suppression of the current through superconducting quan
dots was also observed experimentally.5

Quite recently detailed measurements ofI -V curves in
atomic-size metallic contacts were performed.6 An explana-
tion of the observedI -V curves were given7 in terms of the
atomic valence orbitals which represent different conduct
0163-1829/2001/63~13!/134515~13!/$20.00 63 1345
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channels. The Coulomb interaction was considered ther
be screened as in bulk metals. However, for quantum d
and break junctions the screening is virtually ineffective a
an unscreened Hubbard-type repulsive interaction emer
In this case the Kondo temperatureTK becomes a relevan
parameter, separating levels withTK.D ~which are respon-
sible for high, nearly resonant conductance! from levels with
TK,D, in which the conductance is strongly influenced
interaction.

In recent experiments, a tunable Kondo effect in semic
ducting quantum dot devices8,9 was investigated. It was
clearly demonstrated there that tunneling through a sin
level ~out of numerous levels formed by electron confin
ment in the dot! takes place. In such dots, the interaction
electronsU strongly influences the bare orbital energye0. In
the case of quantum dots with superconducting leads we
expect the superconducting gap at the leads and the con
tion of the dot to the leads to play an important role for bo
SAS and SAN junctions. Depending on relative values
theses parameters different regimes for the tunneling cur
are possible. One is the Kondo regime considered in R
10–12.

In the present paper we study the other regime when
impurity is singly occupied, and develop a detailed theore
cal analysis of an interplay between the phenomena of M
and Coulomb interaction in quantum dots with supercondu
ing leads. Both MAR and Coulomb effects have been int
sively studied in the literature over the past decades; here
elucidate an interplay between them. When combined
gether in quantum dots, these two phenomena, lead to in
esting physical effects and — depending on parameters
may dramatically influence the subgap conductance pat
of the system. Another important issue in the study ofSAS
andSAN junctions is the parity of the order parameter of t
©2001 The American Physical Society15-1
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superconducting electrodes. For example, the order pa
eter of the recently discovered13 superconducting materia
Sr2RuO4 is believed to have ap-wave symmetry.14 If a su-
perconductor of this type is properly oriented with respec
the tunneling direction the principal contribution to the J
sephson current comes from a bound state16,17 formed at the
contact point. This bound state arises since the pair pote
has an opposite sign for injected and reflected quasipart
and is expected to play an important role in the formation
subgap currents.

The rich physics ofSASandSAN junctions subject to a
finite potential bias is exposed below. In particular, we c
culate the tunneling current and the dynamical conducta
for junctions consisting ofs- and p-wave superconductors
The main steps required for treating the pertinent many-b
problem can be summarized as follows:~i! Taking the Fermi
energy of the unbiased lead as an energy reference, the
energye0 of the Anderson impurity is chosen such thate0
,0 while U1e0.0. These inequalities assure that assu
ing the quantum dot to be at most singly occupied should
an excellent approximation.~ii ! To handle the strong inter
action appearing in the Hubbard term, a mean-fi
approximation18,19 is adopted.~iii ! The formalism should
take into account the nonequilibrium nature of the physi
system. For this purpose, the standard approach is to
from the expression for the kernel of the evolution opera
or the generating functional, which is the analog of the p
tition function in the equilibrium case, evaluated, howev
on a Keldysh contour20 ~see review article in Ref. 21!. At the
end of this procedure one is able to calculate theSAN An-
dreev conductance analytically, and to get expressions
the nonlinear response ofSASjunctions which are amenabl
for numerical evaluation.

The technical procedure by which we manage to adva
the calculations is detailed below in Sec. II, where we der
an effective action forSASand SAN junctions. In Sec. III
we discuss the dynamical mean-field approximation adop
in the present work in order to treat interaction effects. C
crete results pertaining to subgap current inSAS junctions
and differential conductance inSAN junctions are presente
and discussed in Sec. IV. The paper is then concluded
summarized in Sec. V. Some technical details of the ca
lation are given in the Appendix.

II. GENERAL ANALYSIS

A. Model

Consider a system consisting of two superconduct
wide strips on the left (x,0,2`,y,`) and on the right
(x.0,2`,y,`) weakly connected by a quantum d
through which an electron tunneling takes place. This sys
can be described by the Hamiltonian

H5HL1HR1Hdot1Ht . ~1!

The Hamiltonians of the left and right superconducting el
trodes have the standard BCS form,
13451
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H j5E dr@C j s
† ~r!j~“ !C j s~r!

2lC j↑
† ~r!C j↓

† ~r!C j↓~r!C j↑~r!#. ~2!

HereC j s
† (C j s) are the electron creation~annihilation! op-

erators,l is the BCS coupling constant,j(“)52“

2/2m
2m, and j 5L,R. Here and below we set the Planck’s co
stant\51. Whenever appropriate, the spin, space, and t
dependence of all the field operators will not be explici
displayed.

The quantum dot is treated as an Anderson impurity c
ter located atx5y50. It is described by the Hamiltonian

Hdot5e0(
s

Cs
†Cs1UC↑

†C↑C↓
†C↓ , ~3!

whereCs
† andCs are the electron operators in the dot. T

impurity site energye0 ~counted from the Fermi energym) is
assumed to be far below the Fermi level~that is,eF50, e0
!0. The presence of a strong Coulomb repulsionU.2e0
between electrons in the same orbital guarantees that the
is at most singly occupied.

Electron tunneling through the dot is accounted for
means of the term

Ht5 (
j 5L,R

Tj(
s

C j s
† ~0!Cs1H.c., ~4!

whereTL(R) are the effective transfer amplitudes between
left ~right! electrode and the dot.

In what follows we will always assume that, if a bia
voltageV is applied to the system from, say, right to left, th
entire voltage drop occurs across the dot. Hence the qu
particle distribution functions in the leads are the Fermi on
with the chemical potentials of the electrodes shifted w
respect to each other byeV.

B. Evolution operator

Complete information about the quantum dynamics of
system is contained within the evolution operator defined
the Keldysh contour20 K ~which consists of forward and
backward oriented time branches!. The kernelJ of this evo-
lution operator can be expressed in terms of a path integ

J5E DC̄DCDC̄DC exp~ iS!, ~5!

over the fermion fields corresponding to the operatorsC†,
C, C†, and C @here the field C̄ corresponds to
(CL↑

† ,CL↓
† ,CR↑

† ,CR↓
† ) and similarly for other fields#, S

5*KLdt is the action andL is the Lagrangian pertaining to
the Hamiltonian~1!. The external fields~e.g., electromag-
netic fields! can be treated as the source terms for the act
though the fluctuating parts of these fields should be in
grated as well.

Usually it is convenient to perform an operator rotati
C→c andC→c in Keldysh space:
5-2
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c̄5C̄Q̂21, c5Q̂szC; c̄5C̄Q̂21, c5Q̂szC. ~6!

Heresz is one of the Pauli matricessx , sy , sz operating in
the Keldysh space and

Q̂5
1

A2
S 1 21

1 1 D ~7!

is the Keldysh matrix. The Grassman variablesc̄, c, c̄, c are
now defined solely on the forward time branch.

The transformation of the Green functions follows d

rectly from Eq.~6!. One starts from the 232 matrix Ĝ̃ of the
Green functions defined in terms of the initial electron o

erators. The elements of the matrixĜ̃ are the Green func

tions Ĝ̃i j with i , j 51,2 according to whether the time be
longs to the upper or the lower branch of the Keldy
contourK. Of these four Green functions only three are
dependent. Under the operator rotation~6! the Green-

Keldysh matrixĜ̃ is transformed asĜ5Q21Ĝ̃Q, where

Ĝ5S ĜR ĜK

0̂ ĜAD ~8!

and

ĜR52 iu~ t2t8!^c~r ,t !c†~r 8,t8!1c†~r 8,t8!c~r ,t !&,

GA5 iu~ t82t !^c~r ,t !c†~r 8,t8!1c†~r 8,t8!c~r ,t !&,

GK52 i ^c~r ,t !c†~r 8,t8!2c†~r 8,t8!c~r ,t !&, ~9!

are respectively retarded, advanced and Keldysh Green f
tions. Each of these matrices is in turn 232 matrix in the
Nambu space.

The path integral~5! is now expressed in terms of the ne
Grassman variables

J5E Dc̄DcDc̄Dc exp~ iSdot1 iS0@c̄,c#!, ~10!

where

Sdot5E dtF c̄S i
]

]t
2 ẽtzD c1

U

2
~ c̄c!2G , ~11!

S05E dt (
j 5L,R

F E
j
drc̄ j~r ,t !Ĝj

21c j~r ,t !

1~Tc̄ j~0,t !tzc~ t !1c.c.!G . ~12!

Here we definedẽ5e01U/2. In order to obtain the expres
sion for the operatorĜj

21 we employ the standard Hubbard
Stratonovich transformation of the quartic term in Eq.~2!
and introduce additional path integrals over the complex s
lar order parameter fieldD(r ,t) defined on the Keldysh con
tour, see, e.g., Ref. 21. Here we are not interested in
fluctuation effects for the order-parameter field, and the p
13451
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integral overD is then evaluated by means of the sadd
point approximation. Quantitatively, it amounts to setti
D(r ,t) equal to the equilibrium superconducting order p
rameter valuesDL,R of the left and the right electrodes. I
needed, fluctuations of the order parameter field~both the
amplitude and the phase! can easily be included into ou
consideration along the same lines as it was done in Ref.
Disregarding such fluctuations here, we find

ĜL,R
21 ~j!5 i

]

]t
2tzj~“ !1t1DL,R1t2DL,R* , ~13!

where we definet65(tx6 i ty)/2. Here and belowtx ,ty ,tz
is the set of Pauli matrices operating in the Nambu space~for
the sake of clarity we chose a different notation from th
used for Pauli matrices operating in the Keldysh space!.

C. Effective action

Let us now proceed with the derivation of the effecti
action for our model. We first notice that thec-fields depen-
dent partS0 of the total action is quadratic in these field
Hence the integrals overc̄ andc in Eq. ~10! can be evalu-
ated exactly, resulting in an actionSenv( c̄,c), formally de-
fined as

exp~ iSenv@ c̄,c# !5E Dc̄Dc exp~ iS0@c̄,c#!. ~14!

Its physical content can be understood as follows: One
say that electrons in the two superconducting bulks serv
an effective environment for the quantum dot. Integrating
these electron variables in the spirit of the Feynman-Vern
influence functional approach22 one arrives at the ‘‘environ-
ment’’ contribution to the actionSenv expressed only in terms
of the Anderson impurity variablesc̄ andc.

Due to the fact that coupling to the leads is concentra
at one point (x,y)5(0,0) we can integrate out the field
inside the superconductors~hereafter referred as bulk fields!
and obtain an effective action in terms of fermion operat
with arguments solely on the surface. In order to achieve
central goal let us first note that translation invariance alo
y permits the Fourier-transform in Eq.~12! in this direction.
The problem then reduces to a one-dimensional one w
fermion fields ck(x) where k is the momentum alongy.
Gaussian integration over the bulk fields can be done w
the help of the saddle-point method.

Let us consider, say, the left superconductor and omit
subscript j 5L for the moment. The pertinent equation fo
the optimal field reads

Ĝ21~jx!c̃k~x!50, ~15!

wherejx52(1/2m)(]2/]x2)2mk andmk5m2k2/2m.
Let us decomposec̃k(x)5ck

b(x)1ck(0) in such a way
that on the surface one hasck

b(0)50. The bulk fieldck
b(x)

satisfies the inhomogeneous equation

Ĝ21~jx!ck
b~x!52mktzck~0!. ~16!
5-3
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In the right-hand side of this equation we employed the st
dard quasiclassical~Andreev! approximation which makes
use of the fact that the superconducting gap as well as o
typical energies of the problem are all much smaller than
Fermi energy.

In order to solve Eq.~16! we find the Green function
Ĝk(x,t;x8,t8) ~which satisfies the same equation albeit w
a d function on the right-hand side! and requireĜ to vanish
at x50. The solution of Eq.~16! is then exploited to expres
ck

b(x) in terms of the surface fieldsck(0). Combining the
result with Eq.~12! we arrive at the intermediate effectiv
action S̃ for a superconducting electrode which depends
the c fields at the surface,

S̃5 i E dtE dt8(
k

vx

2
c̄k~0,t !ĝ~ t,t8!tzck~0,t8!, ~17!

where vx5A2mk /m is the quasiparticle velocity in thex
direction. For a uniform superconducting half space~here the
left one!, the Green-Keldysh matrix

ĝ~ t,t8!tz52 i
vx

2

]

]xEL
dx8Ĝk~x,t;x8,t8!ux50 ~18!

@which has the structure~8!# is expressed in terms of th
Eilenberger functions23 as follows:

ĝ~ t,t8!5eiw(t)tz/2E ĝ~e!e2 i e(t2t8)
de

2p
e2 iw(t8)tz/2, ~19!

where

ĝR/A~e!5
~e6 i0!tz1 i uDuty

A~e6 i0!22uDu2
, ~20!

ĝK~e!5@ ĝR~e!2ĝA~e!#tanh~e/2T!. ~21!

Here w(t)5w012e* tV(t1)dt1 is the time-dependent phas
of the superconducting order parameter andV(t) is the elec-
tric potential of the superconducting electrode.

An identical procedure applies for the right electrod
Each superconductor is thus described by a zero-dimens
action, respectivelyS̃L and S̃R , coupled by an on-site hop
ping term with the Anderson impurity. It is now possible
integrate out these surface fields. The integral

J̃5E Dc̄~0!Dc~0!

3expH iS̃L,R1 i E dt@TL,Rc̄k~0!tzc1c.c.#J ~22!

can easily be evaluated, so that the contribution of the su
conductors to the total effective action of our model is ma
fested inSenv defined as
13451
-

er
e

n

.
al

r-
-

Senv52i E dtE dt8(
k

c̄~ t !S T L
2

vx
ĝL~ t,t8!

1
T R

2

vx
ĝR~ t,t8! D tzc~ t8!. ~23!

Note that in deriving Eq.~23! we made use of the norma
ization condition23 ĝL,R

2 51.
Equation~23! is valid for an arbitrary pairing symmetry

In the case of unconventional superconductors the Gr
functionsĝL,R depend explicitly on the direction of the Ferm
velocity. For uniforms-wave superconductors such depe
dence is absent and Eq.~23! can be simplified further. De-
fining the tunneling rates between the left~right! supercon-
ductor and the dot as

GL(R)54(
k

T L(R)
2

vx
, ~24!

we obtain

Senv5
i

2E dtE dt8c̄~ t !@GLĝL~ t,t8!1GRĝR~ t,t8!#tzc~ t8!.

~25!

Concerning the definition~24! some comment is in order
The focus of attention here is the case in which there i
single conducting channel in the dot. In this situation, t
transfer amplitudesTL,R should effectively differ from zero
only for uvxu'vF . One can easily generalize the action~25!
to the situation with several or even many conducting ch
nels. In this case the summation over momentum~essentially
equivalent to the summation over conducting modes! should
be done in Eq.~25! and some other dependence ofT L,R

2 on
vx should apply. For instance, for tunnel junctions in t
many channel limit one can demonstrate that24 T L,R

2 }vx
3 . It

is also quite clear that the transfer amplitudesTL,R cannotbe
considered as constants independent of the Fermi velo
direction, as it is sometimes assumed in the literature. In
case the sum~24! would simply diverge at smallvx in a clear
contradiction with the fact that quasiparticles withvx→0
should not contribute to the current at all. This ‘‘paradox’’
resolved in a trivial way: the amplitudesTL,R do depend on
vx and, moreover, they should vanish atvx→0. For further
discussion of this point we refer the reader to Ref. 24.

Combining Eqs.~10! and~14! we arrive at the expressio
for the kernel of the evolution operatorJ solely in terms of
the fieldsc̄ andc:

J5E Dc̄Dc exp~ iSeff!, Seff@ c̄,c#5Sdot1Senv. ~26!

HereSeff@ c̄,c# @defined by Eqs.~11! and~25!# represents the
effective action for a quantum dot between two superc
ductors.
5-4
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D. Transport current

In order to complete our general analysis let us expr
the current through the dot in terms of the correlation fu
tion for the variablesc̄ andc. This goal can be achieved b
various means. For instance, one can treat the supercon
ing phase difference across the dot as a source field in
effective action and obtain the expression for the current
by varying the corresponding generating functional with
spect to this phase difference. Another possible procedu
to directly employ the general expression for the curren
terms of the Green-Keldysh functions of one~e.g., the left!
superconductor, with arguments at the impurity site:

I 5
e

4mE dy~]x2]x8!Tr@ĜK~xy,x8y8;t !#x5x8 , ~27!

where the trace is taken in Nambu space.
As before, it is convenient to separate the computation

terms of bulk and surface variables. After a simple alge
we transform Eq.~27! into the following result:

I 52 i
e

4 (
k

vxTr@ ĝLĜc2H.c.#uK , ~28!

whereGc52 i ^ck(0)c̄k(0)& is the Green-Keldysh function
for the surfacec fields. Here and below the integration ov
the internal time variables in the product of matrices is i
plied and (•••)uK means the Keldysh component of th
product.

Finally, let us express the functionĜc in terms of the
correlator for the fieldsc̄ and c. Consider the generatin
functional for the surface fields

Z@h̄,h#5 J̃@TLt̄zc1h̄,TLtzc1h#, ~29!

where the path integralJ̃ is defined in Eq.~22!. The func-
tional derivative of Eq.~29! with respect to theh fields just
yields the functionĜc :

Ĝc5 i
d2Z

dh̄dh
u h̄5h50 . ~30!

Evaluating the path integral~29! and making use of Eq.~30!
we arrive at the following identity:

iĜc52
2

vx
ĝLtz1

4T L
2

vx
2 ^cc̄&. ~31!

Combining Eqs.~28! and ~31! with the conditionĝL
251

we observe that the contribution of the first term in the rig
hand side of Eq.~31! to the current vanishes identically, an
only the second term}^c̄c& turns out to be important. Mak
ing use of the definition~24! and symmetrizing the fina
result with respect toR and L we arrive at the following
expression for the current:

I 5
e

8
Tr@~GLĝL2GRĝR!^c̄c&uK1H.c.#. ~32!
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This expression completes our task. We have demonstr
that in order to calculate the current through an interact
quantum dot between two superconducting electrodes
sufficient to evaluate the correlator^c̄c& in the model defined
by the effective actionSeff5Sdot1Senv @Eqs.~11! and ~25!#.
Our approach enables one to investigate both equilibr
and nonequilibrium electron transport in superconduct
quantum dots. In the noninteracting limitU→0 the problem
reduces to a Gaussian one. In this case it can easily be so
and, as we will demonstrate below, the well known resu
describing normal and superconducting contacts without
teraction can be recovered in a straightforward manner
the interacting caseUÞ0 the solution of the problem natu
rally involves certain approximations. One of them, the d
namical mean-field approximation, is described in the n
section.

III. MEAN-FIELD APPROXIMATION

In order to proceed further let us decouple the interact
term in Eq. ~11! by means of a Hubbard-Stratonovic
transformation18,19 introducing additional scalar fieldsg6 .
The kernelJ now reads

J5E Dc̄DcDg1Dg2expF iS@g#1 i E dtc̄S i
]

]t
2 ẽtzD cG ,

~33!

S@g#5E dtS c̄g1sxc1 c̄g2c2
2

U
g1g2D . ~34!

These equations are still exact. Now let us assume that
effective Kondo temperatureTK5AUGexp@2pue0u/2G# is
smaller than the superconducting gapD. In this case, inter-
actions can be accounted for within the dynamical me
field ~MF! approximation~seeSANsection for more details!.
Notice that in equilibrium, an elaborate approximation w
suggested recently in Ref. 25. The fieldsg6 in Eq. ~34! can
be determined from the saddle-point conditions

dJ/dg650. ~35!

In general these two equations contain an explicit dep
dence on the time variable. Let us average these equa
over time and considerg6 as time independent parameter
This approximation is equivalent to retaining only the fir
moment ofg6 . The self-consistency Eqs.~35! now read

g15
U

2 E dt^ c̄c&, ~36!

g25
U

2 E dt^c̄sxc&. ~37!

As it turns out from our numerical analysis~to be described
below!, the parameterg1 has a negligible effect on the sub
gap current. It just slightly renormalizes the coupling co
stantsTL,R of our model. On the other hand, the second p
rameter,g2 , which has~see below! the physical meaning a
an energy proportional to the difference of spin up and do
5-5
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populations of electrons on the level, strongly influences
I -V characteristics. Therefore in what follows we will s
g150 and take into account only the second se
consistency Eq.~37! for g2 . Under this approximation the
effective action of our model acquires the following form

Seff@g#5E de

2pE de8c̄M̂ ~e,e8!c, ~38!

M̂ ~e,e8!5d~e2e8!@e1g22tzẽ1 i ~GR/2!ĝR~e!tz#

1 i ~GL/2!ĝL~e,e8!tz . ~39!

Here and below we deliberately choose the electrostatic
tential of the right electrode to be equal to zero, for whi
case the Keldysh matrixĝR is diagonal in energy space. Pe
forming the functional integration over Grassman variablec̄
and c we can cast the self-consistency Eq.~37! for g2 in
terms of the matrix

M̂ 215S ~M̂R!21 2~M̂R!21M̂K~M̂A!21

0̂ ~M̂A!21 D , ~40!

whereM̂R, M̂A, M̂K are three independent elements of t
Keldysh matrixM̂ ~39!. Recall that each of these elements
a 232 matrix in the Nambu space and an infinite matrix
the energy space. Equation~37! for g2 can now be rewritten
as

g25 i
U

2
Tr~M̂R!21M̂K~M̂A!21, ~41!

with the trace being taken both in energy and spin space
Finally, employing the MF approximation for the Hub

bard interaction as was implied in the calculation ofg2 , we
get the current as a difference of symmetric forms,

I 5
eGLGR

8
Tr@~N̂LĝR

R2~L↔R!!1H.c.#, ~42!

N̂L,R5~M̂R!21ĝL,R
K tz~M̂A!21.

Consider now the case of a constant~time-independent!
voltage biasV and recall that the entire voltage drop occu
across the quantum dot. Setting the phase of the right e
trode equal to zero, we obtain, for the phase of the left
perconductor,w(t)52eVt1w0. Let us expressĝL in terms
of the matrix elements in energy space2

~euĝLue8!5 (
s50,61

d~e2e812seV!ĝL~e,e12seV!,

~43!

ĝL~e,e12seV!5@ ĝL
11~E2eV!P11gL

22~e1eV!P2#d0,s

1eiw0gL
12~e2eV!t1ds,211e2 iw0gL

21

3~e1eV!t2ds,1 , ~44!
13451
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where the superscripts denote the matrix elements in Na
space andP65(16tz)/2.

In what follows we shall abbreviateĝL(e12meV,e
12neV)5(muĝL(e)un) where the right-hand side is ob
tained from Eq. ~44! after replacinge→e12meV, d0,s
→dm,n , d21,s→dn,m21, andd1,s→dn,m11. Then we have

ĝL~e,e8!5(
n

d~e2e812neV!~0uĝL~e!un!. ~45!

The matrixM ~39! may also be represented in a simil
form, that is,

M̂ ~e,e8!5(
n

d~e2e81n2eV!@0uM̂ ~e!un#, ~46!

where

@muM̂ ~e!un#5dm,nFe1m2eV1g22tzẽ

1
iGR

2
ĝR~e1m2eV!tzG

1
iGL

2
@muĝL~e!un#tz . ~47!

The integration over energy variables in the se
consistent equation forg2 and in the expression for the tim
averaged current is conveniently performed by dividing
whole energy domain into slices of width 2eV and perform-
ing energy integration on an interval@0,E,2eV#. Thus we
can use the discrete representation~47! and write

g25 i
U

2 E0

2eVde

2p (
n

Tr@nu~M̂R!21M̂K~M̂A!21un#,

~48!

I 5
eGLGR

8 E
0

2eVde

2p (
n

Tr~nu@„N̂LĝR
R2~L↔R!…1H.c.#un!.

~49!

Let us also note that in the case ofSAN junctions the
expressions for the current and forg2 can be further simpli-
fied. In this case Eq.~42! takes the form

I 5
eGLGR

2 E
2`

` de

2p
Tr„$@M̂R~e!#21 f̂ ~e,V!@M̂A~e!#21ĝR

A~e!

2@M̂R~e!#21 f̂ ~e,0!ĝR
A~e!tz@M̂A~e!#21tz%1H.c.…,

~50!

where the matrixf̂ has the standard form

f̂ ~e,V!5S tanhS e1eV

2T D 0

0 tanhS e2eV

2T D D . ~51!
5-6
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Equation ~50! can be straightforwardly evaluated sin
the ~Fourier transformed! matrices (M̂R,A)21 depend now
only on one energye @ĝL in Eq. ~39! is proportional tod(e
2e8) in this case# and hence can easily be inverted analy
cally. Similar simplifications can also be performed in t
self-consistency Eq.~41!.

IV. RESULTS AND DISCUSSION

A. SAN junction

1. s-wave superconductors

We commence by calculating the differential conductan
of anSANcontact assuming thes-wave pairing symmetry in
a superconducting electrode. As it was already pointed
above, Eqs.~50! and~51! allow one to proceed analytically
From these equations one obtains the expression for cu
which consists of two parts. The first part originates from
integration over subgap energiese,D and yields the domi-
nant contribution to the current at low temperatures. T
other part comes from integration over energiese.D. At
low voltages and temperatures~lower than the gapD) this
second part gives a negligible contribution to the curre
Considering below the subgap contribution only, we find

I 5
eGLGR

4 E
2`

` de

2p
B~e!F tanhS e1eV

2T D2tanhS e2eV

2T D G ,
~52!

where at subgap voltages and energies one has

B~e!

5
D2u~ uDu2ueu!

D22e2

GLGR

S ẽ21
GL

2

4
1

GR
2

4

D2

D22e2
2x D 2

1GL
2x

,

~53!

and

x5S e1g21
GR

2

e

AD22e2D 2

. ~54!

In the limit eV!D and T→0 for the conductanceG[I /V
we obtain

G5
e2

h

GL
2GR

2

S GL
21GR

2

4
1 ẽ22g2

2 D 2

1g2
2

GL
2

4

. ~55!

In order to recover the expression forG in the noninteracting
limit in Eq. ~55! one should simply putg250. In a symmet-
ric caseGL5GR and for ẽ→0 Eq. ~55! reduces to the well-
known result26
13451
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GNS52GNN5
4e2

h
. ~56!

In the presence of Coulomb interaction the parameterg2

in Eqs. ~53!–~55! should be determined from the sel
consistency Eq.~41!. It has a physical meaning as an ener
proportional to the difference pertaining to spin-up and sp
down populations of electrons on the level. We are look
for solution of Eq.~41! which gives nonzero value of thi
parameter. In the introduction we noticed that the solut
exists ifU.2e0. The presence of nonzero biasV as well as
interaction itself modifies this condition and put a restricti
on the lower bound ofU for which there is a solution of Eq
~41!. Generally, at a givenG this lower bound for interaction
Umin increases when the voltage grows, more strongly
SAN junction and less forSASones. The same is true if w
increase the transparencyG. Figure 1 displays such a depen
dence ofUmin as function ofG at eV5D.

The parameterUmin plays the important role of being
lower bound on the Hubbard energyU for which the single
occupancy solution of mean-field Eq.~41! ~doublet state!
still exists. The other state~a singlet!, which is relevant for
the Kondo limit11,12 cannot be obtained in the MF approx
mation. It turn out to be important for higher values ofU and
when the Kondo temperatureTK5AUGexp@2pue0u/2G# is
larger thanD. In the present study we do not consider t
Kondo limit,10–12 assuming thatTK is small and thus the
single occupancy solution represents the ground state o
system.

The calculation of the tunneling current then proceed
Eq. ~41! is solved numerically for a given set of syste
parameters. To be definite, the parametersGL5GR5G
50.35D are adopted, and the more interesting subgap v
age bias regimeeV&2D is considered in the low-
temperature limitT→0. The values of the Hubbard repulsio
parameterU were fixed to beU52.450D and U52.713D.
As a reference we also consider a noninteracting locali
state3 in the off-resonance case that formally corresponds
the limit U5g250, although, as we noticed above, th

FIG. 1. The lower bound Hubbard interactionUmin as a function
of G at eV5D for the bare level positione0521.5 of anSAN
junction with ans-wave symmetry superconductor~the parameters
U, G, ande0 are given in units ofD).
5-7
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limit cannot be reached by a gradually decreasingU. For
convenience all energy parameters are scaled, namely,e, U,
GL,R , andT are expressed in units ofD. The current and the
conductance are respectively expressed in units ofDe/\ and
e2/2h.

The dependence ofg2 on the biasV has a considerable
impact on the differential conductances5dI/dV which we
calculate numerically. The corresponding results are p
sented in Fig. 2. It is readily seen that for a given set
parameters the conductance virtually vanishes in a subs
tial part of the subgap region. Note, however, that at volta
close to but still smaller thanD/e the differential conduc-
tances increases sharply. This feature can be understoo
a result of interplay between Coulomb blockade and t
electron tunneling effects. It is well known26 that the subgap
conductance inSN junctions is caused by the mechanism
Andreev reflection during which the charge 2e is transferred
between the electrodes. Without interaction Eq.~55! with
U5g250 holds atV→0. The conductance versus voltag
dependence in the whole subgap region is represented in
case (U5g250) by the solid curve in Fig. 2. Unlike the
resonance limit Eq.~56!, which corresponds to perfect tran
parency of the channel here we clearly see a maximum
the gap region. This effect is related to the small transp
ency of the junction due to the off-resonance conditio
when increasing the BCS density of states at the gap is

FIG. 2. Differential conductance of anSAN junction with an
s-wave symmetry superconductor. The figure displays the dep
dence of Andreev conductance on the applied voltage forU
52.450 ~dot curve! and U52.713 ~dashed curve! and U5g250
~solid curve!. The barrier transparency isG50.35 and the dot leve
energy ise0521.5 ~the parametersU, G, ande0 are given in units
of D).
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portant~a shift fromD in the position of the peak originate
from a small inelastic term we added to the energy!. In the
presence of interaction, atT50, the nonzero solutiong2 of
the self-consistent Eq.~41! appears. It represents the Co
lomb blockade influence on electron tunneling which acts
the mean-field approximation by changing the position of
level and also, through the value ofg2 , by changing the
energy of spin-up and spin-down electrons. In the stron
interacting regime the single occupancy energyg2 is not
zero even if the renormalized level positionẽ vanishes. This
drives the conductance to small values ofV Eq. ~55! and
turns the current behavior to be like that corresponding
tunneling through a localized level out of resonance. T
height of the maximum and the exact voltage at which
current is ‘‘turned on’’ are in the vicinity to the gap as in Fig
2 for all 0.3,G<1. Although the above height and voltag
are affected by interaction, the presence of the gap is m
fested.

It is interesting to point out that the highest peak in t
conductance near the superconducting gap is obtained w
the Hubbard energyU approaches the valueUmin . As was
noticed earlier,Umin is the low boundary value of the inter
action at which the MF approximation is valid for voltag
eV5D. For U,Umin there is no solution of Eq.~41! for the
single occupancy parameterg2 .

There exists a certain analogy between our results
those obtained for superconductor-ferromagnet (SF)
junctions.27 Here the repulsion parameterU plays a role
similar to that of an exchange term inSF systems: in both
cases the subgap conductance can be tuned by changin
parameter in a way that a smaller value ofU corresponds to
a weaker exchange field. In contrast to the case under s
here, however, changing of the exchange field inSF junc-
tions leads to smooth variations of the subgap conductanc27

Let us now briefly consider the limit of large bias voltag
eV@D. In this case the current may be represented as a
of two terms I 5I 11I 2. The term I 1 is determined by an
expression similar to Eq.~52! which now includes the con
tribution from energies above the gap. We find

I 15
eGLGR

4 E
2`

` de

2p
@B~e!1B1~e!#

3F tanhS e1eV

2T D2tanhS e2eV

2T D G . ~57!

Here B(e) is again given by Eq.~53! while the function
B1(e) reads

n-
B1~e!5
2ueuu~ ueu2uDu!

e22D2

@ ẽ21~e1g2!21x1#

@ ẽ22~e1g2!21x1#21~e1g2!2S GL1GR

ueu

Ae22D2D 2 . ~58!
5-8



r

u

ll

r t
ev
in

th
l-
e

e

s

rr
n

hi

en
w

th

-

tion
to
te
g.
r

be

-
g

er-
gy
is

s
n
pa-

e-

-

e

Due
s at

ne
ing
le-
ese
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We also define

x15
1

4 S GL
21GR

212GLGR

ueu

Ae22D2D . ~59!

The other contributionI 2 is proportional to the level position
ẽ. One obtains

I 25
eGLGR

4 E
2`

` de

2p
B2~e!F tanhS e1eV

2T D
1tanhS e2eV

2T D22 tanhS e

2TD G . ~60!

The expression forB2(e) can be obtained from Eq.~58! if
one replaces the term in the square brackets by the exp
sion 22ẽ(e1g2).

The above results together with the self-consistency eq
tion for g2 provide a complete description for theI -V curve
of an SAN junction in the presence of interactions. In a
interesting limits the energy integrals in Eqs.~57! and ~60!
can be carried out and the corresponding expressions fo
current can be obtained. These general expressions, how
turn out to be quite complicated and will not be analyzed
detail further below. Here we just demonstrate that in
noninteracting limitg250 our results reduce to those a
ready familiar in the literature. Indeed, in the leading ord
approximation, Eqs.~57! and ~58! yield the standard Breit-
Wigner formula

s5
2e2

h

GLGR

~GL1GR!2

4
1 ẽ2

. ~61!

After settingẽ50 andG@D in Eqs.~57!, ~53!, and~58! in
the limit eV@D one easily obtains the contributions to th
current equal to 2GNND/e and GNN(V22D/3e), respec-
tively, from the subgap energies (B) and from energies
above the gap (B1). The sum of these contributions yield
the standard result

I 5GNN~V14D/3e!. ~62!

The second term represents the so-called excess cu
which originates from the mechanism of Andreev reflectio
It follows from our general analysis that in quantum dots t
current is also affected by Coulomb interaction.

2. Superconductors with unconventional pairing

Since the order parameterD for p- andd-wave supercon-
ductors is not isotropic, the magnitude of the current is s
sitive to the junction geometry. As discussed before, here
consider a system of two planar superconducting~or normal!
strips with electron tunneling between them along thex axis
through the dot located atx5y50. For d-wave supercon-
ductors we choose the nodal line of the pair potential on
Fermi surface to coincide with the tunneling direction~Fig.
3!, such thatD5vDppF

sin 2a. The direction of tunneling

corresponds to the anglea50. For spin-triplet supercon
13451
es-

a-

he
er,

e

r

ent
.
s

-
e

e

ducting states the order parameter is an odd vector func
of momentum and a 232 matrix in spin space. We choose
represent it by a time-reversal symmetry-breaking sta14

which is off-diagonal in spin indices. In the geometry of Fi
3, a is the azimuthal angle in thex-y plane and the orde
parameter can approximately be represented asD
5D0exp(ia). This order parameter can possibly descri
pairing in a superconductor Sr2RuO4 which was recently
discovered.13 The pair potential so chosen within the geom
etry of the junction may have different signs for incomin
and reflected quasiparticles moving at the anglesa and p
2a, respectively. This fact significantly affects the scatt
ing process15 and causes the formation of a zero ener
~midgap! bound state17 centered at the boundary. For th
state we calculate the Green functionĜ which, like in the
case ofs-wave superconductors, satisfies Eq.~16! with a d
function on the right side and requireĜ to vanish atx50.
The distinction of solutions ford- or p-wave superconductor
from those found above for thes-wave case is due to the sig
change of the pair potential: reflected quasiparticles pro
gate in a pair potential of an opposite sign compared withD
as ‘‘seen’’ by incoming quasiparticles. The equilibrium r
tarded and advanced Eilenberger-Keldysh functionsĝR,A for
p-wave superconductors read

ĝR,A~e!5
A~e6 i0!22D22t1D1t2D*

e6 i0
. ~63!

The I -V curve for anSAN junction with electrodes com
posed ofp-wave superconductors andwith Hubbard interac-
tion is remarkably distinct from those found for thes-wave
case~cf. Figs. 2 and 4!. This difference is predominantly du
to the surface bound state which exists in thep-wave case
and causes the conductance peak in the subgap region.
to electron-electron repulsion this peak is split and appear

FIG. 3. Schematic geometry of the junction. The left half pla
is a superconductor and the right one is a normal metal. Incom
and reflected electronlike excitations are moving in an ang
dependent pair potential which can have different signs for th
quasiparticles.
5-9
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VÞ0, see Fig. 4. Here again, the repulsion attenuates
conductance, which is larger forU52.45D than for U
52.713D.

B. SAS junction

We focus first on the noninteracting caseU50 and
briefly consider pure resonant tunneling at the Fermi lev
i.e., sete0→0. This situation corresponds to a ballisticSNS
junction with only one conducting channel. Current-volta
characteristics of ballisticSNS junctions were intensively
studied in the past.2,28–33If the relevant energies are small a
compared toG ~for short junctions this condition usuall
meansG.D), Sdot in Eq. ~26! can be dropped and one ge

^c̄c&5ĝ1
21tz /G. Equation~32! then yields

I 5
e

2
Trtzĝ2ĝ1

21uK . ~64!

Note that here the tunneling rateG just cancels out. In the
many channel limit Eq.~64! coincides with the quasiclassica
result.28,29For a constant biasV the matrixĝ1

21 can be evalu-
ated analytically,30 yielding theI -V curve of a ballisticSNS
junction. In particular, in the zero-bias limitV→0 and for
G@D one recovers the MAR current:30

I AR5
2e2

h

2D

eV
V5

4eD

h
. ~65!

The corresponding explicit calculation performed within o
formalism is presented in the Appendix.

Now we considerSASjunctions with Hubbard interaction
included.

1. s-wave superconductors

In order to calculate the subgap current in the case o
SASjunction with Coulomb interaction one has first to fin
the solution of the self-consistency Eqs.~48!. This requires
the inversion of the matrixM̂ in energy and spin spaces.

FIG. 4. Same as in Fig. 2 but for ap-wave symmetry supercon
ductor. The figure displays the dependence of Andreev conduct
on the applied voltage forU52.4 ~solid curve! andU52.713~dot
curve!. The barrier transparency isG50.35 and the dot level energ
is e0521.5
13451
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the number of modes for each energy in the interval@0,2eV#
is cut off at some integerm, the size of the pertinent matrice
is (4m12)3(4m12). The numberm of energy slices has
to be adjusted in such a way that the results become in
sitive to it. This requires largerm for smaller voltages be-
cause quasiparticles can escape the gap region after u
going a large number of Andreev reflections.

In the MF approximation which is used to analyze t
Hubbard interaction, the Anderson level is effectively r
duced to a free level out of resonance, which interacts o
with the superconductors. The Coulomb repulsion is
cause of nonzero single occupancy energyg2 . This energy
is included in the deviation of the free level from resonan
Thus tunneling through an Anderson impurity center is re
resented by tunneling through an energy level out of re
nance. The farther is the level from resonance, the weake
the effective transparency of the junction. In anSAS junc-
tion, the main process contributing to the subgap curren
multiple Andreev reflections~MAR!. However, in spite of
the fact that for lowV the numbern'2D/eV of MAR is
large, the current density is rather weak. This is due to
low effective transparency of the junction as a conseque
of interaction ~Coulomb blockade!. Indeed, inSAS junc-
tions, the interaction produces an effective transpare
which is of the same order as in Eq.~56! for anSANcontact.
If the transparency of the junction is less than unity, th
every next Andreev reflection is suppressed by the powe
the effective transparency. This is due to the fact that
current depends in a nonlinear way on the tunneling am
tude, and Andreev reflection is combined with ordinary sc
tering at theSA interface. Therefore the high-n processes are
of higher order in the tunneling strength and will be su
pressed as thenth power of the effective transparency. Thu
there is a strong suppression of the current at low volta
when the number of Andreev reflections is large. This
what is observed in our Fig. 5.

The I -V characteristics for tunneling between twos-wave
superconductors is displayed in Fig. 5. The transparenc
the junction is chosen to beG50.6D and the current is

ce FIG. 5. The subgap tunneling current in units 2eD/h versus
voltage for anSASjunction with s-wave symmetry superconduc
ors. The parameters~in units of D) are U52.4 ~solid curve!, U
52.7 ~dot curve!, e521.5, andG50.6.
5-10
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TUNNELING THROUGH AN ANDERSON IMPURITY . . . PHYSICAL REVIEW B63 134515
evaluated forU52.4D and U52.7D. One notices that a
relatively low bias voltageseV&0.8D for U52.4D andeV
&(0.9–0.95)D for U52.7D the subgap current is essential
suppressed. For higher voltages the subgap current incre
rather sharply, as a result of an interplay between Coulo
blockade and multiple Andreev reflections. The latter mec
nism manifests itself in the occurrence of subharmonic pe
in the differential conductance. Due to interaction, the s
gap current as we note above is strongly depressed at
voltages. The positions of peaks in the conductance
shifted relative to those in the noninteracting caseeV
52D/n, wheren is the number of Andreev reflections an
are as can be seen in Fig. 5, increasingU results in a larger
shift of peak positions.

In the limit of high voltageseV@D the I -V curves for
SASjunctions are analogous to those forSAN ones except
the excess current is two times larger.

2. Superconductors with unconventional pairing

Similarly to the case ofSAN junctions, there is an impor
tant difference in the tunneling current betweenSAS junc-
tions with interaction depending on whether the order para
eter in the electrodes is ofs- or p-wave symmetry. TheI -V
curve for the latter case is depicted in Fig. 6. We observe
the subgap current forp-wave superconductors is conside
ably larger than fors-wave ones, roughly byI max

(p) /I max
(s) '8.

On the other hand, the effect of the Coulomb repulsionU at
low voltages is rather similar: there is a strong suppressio
the subgap current because high-n MAR processes are
damped by then power of transparency which is small due
Coulomb repulsion. ForU52.7D the current is suppresse
compared to its value atU52.4D. Beside the distinction of
magnitudes, there is an unusual additional structure in
I -V curves forp-wave superconductors which is related
the presence of a surface bound state. Comparing the re
presented in Figs. 5 and 6 we observe that in the latter c
the current peaks at a certain bias voltage. This implie
negative differential conductance, which is the hallmark
resonant tunneling~contributed by the bound state!.

Our analysis of the junctions formed byp-wave supercon-
ductors can be straightforwardly extended to the case
d-wave pairing. TheI -V curves and the subharmonic ga

FIG. 6. Same as Fig. 4 but forp-wave symmetry superconduc
ors.
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structure in junctions withd-wave superconductors in th
absence of Coulomb interaction was recently studied~see,
e.g., Ref. 34 and other references therein!. Near zero bias the
I -V curves34 exhibit a current peak~equivalently, negative
differential conductance! related to the presence of midga
surface states. Notice that in such systems the symmetry
stricts the current, so that the contribution from the bou
midgap states may vanish if, for instance, one assumesT L,R

2

to be independent ofvx . As we have already argued befo
~see also Ref. 24!, it might be essential to take the depe
dence of tunneling matrix elements onvx into account al-
ready for point contacts. One can also consider the impu
model different from a pointlike defect. Such a situation c
be realized, e.g., by artificially induced defects.35 The spec-
troscopy of Bi2Sr2CaCu2O8 surfaces indicates that such d
fects appear to be more extended in scanning tunnel mi
scope imaging. In this case one can expect nonz
contribution from midgap level also ind-waves supercon-
ductors. Here, again, the electron-electron repulsion sh
the peak positions from their ‘‘noninteracting’’ valueseV
52D/n to higher voltages. It is quite likely that thi
interaction-induced shift was observed in the experiment36

V. CONCLUSIONS

In this paper the tunneling between two superconduc
or between a superconductor and normal metal through
Anderson-type quantum dot is investigated. Special atten
is devoted to analyze the implications of the Coulomb rep
sion between electrons in the dot on the tunneling proc
The Andreev conductance for anSAN junction and the sub-
gap current in anSASjunction are calculated and elaborate
upon. The theoretical treatment requires a combination of
Keldysh nonequilibrium Green function and path integ
formalism and the dynamical mean-field approximation. W
derive general expressions for the effective action and
transport current through the system. These expressions
then employed in order to obtain a workable formula for t
current. The latter is then calculated analytically and num
cally for a certain set of energy parameters.

The main results of the present research can be sum
rized as follows:~i! When one of the electrodes is a norm
metal ~an SAN junction! the gap symmetry structure is ex
hibited in the Andreev conductance. Forp-wave supercon-
ductors, it shows a remarkable peak for voltages in the s
gap region. Fors-wave superconductors, on the other han
the position of the peak is shifted towards the gap edge.
further demonstrated that the highest peak in the cond
tance is reached if the Hubbard repulsive interaction
proachesUmin . Recall that at this value ofU5Umin the MF
approximation is not valid anymore and the single occ
pancy solution ceases to exist.~ii ! The dynamics of tunneling
between two superconductors~an SAS junction! is more
complicated. Fors-wave superconductors the usual peaks
the conductance that originate from multiple Andre
reflections2 are shifted by interaction to higher values ofV.
The subgap current suffers sizable suppression at low v
ages though the number of Andreev reflections is large. T
is because the high-n order MAR are suppressed byn power
5-11
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of effective transparency of the junction. This effective tran
parency mainly is defined by Hubbard interaction and
comes smaller when Hubbard interaction strength increa
The subgap current in this case may describe the low en
channels in break junctions.6 For p-wave superconductors
the subgap current is much larger than in thes-wave case and
the I -V characteristics exhibits an interesting feature: the
currence of midgap bound state results in a peak in the
rent, that is, a negative differential conductance.
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APPENDIX

Below we will derive the result~65! within the framework
of the formalism developed in the present paper. Consid
quantum dot between twos-wave superconductors and a
sume that the interaction is negligibly smallU→0. For the
sake of simplicity we will also setGL5GR5G. The result
~42! can be expressed as a sum of two termsI 5I AR1I qp ,
where

I AR52
eG2

4h E
0

2eV

deTr@~ÑR!12~ g̃L
A!212~ÑL!12~ g̃R

A!21

2~ÑR!21~ g̃L
R!121~ÑL!21~ g̃R

R!12#, ~A1!

I qp52
eG2

4h E
0

2eV

deTr@~ÑR!11
„~ g̃L

A2gL!R
…

11

2~ÑL!11
„~ g̃R

A2g̃R!R
…

11#. ~A2!

Here I AR is the subgap~Andreev reflection! contribution to
the averaged current whileI qp is defined by the excitation
above the gap. In Eqs.~A1! and~A2! we defined the Green
Keldysh matricesg̃5 i tzĝ with

g̃R,L
R,A~e!5FR,A~e!~e1t1D1t2D* !, ~A3!

FR,A~e!5
u~ uDu2ueu!

AD22e2
6 isgn~e!

u~ ueu2uDu!

Ae22D2
, ~A4!

g̃R,L
K ~e!5@ g̃R,L

R ~e!2g̃R,L
A ~e!#tanh~e/2T!. ~A5!

We also defined

ÑL,R
i j 5~M̃Rg̃L,R

K M̃A! i , j , M̃R,A[~MR,A!21, ~A6!

where the superscripts stand for the spin indices in Nam
space and Tr denotes the remaining trace over~discrete! en-
ergies which are scaled toD throughout this Appendix.

Consider the limit of small voltageseV!D. In this limit
the subgap currentI AR can be rewritten in the form
13451
-
-
s.

gy

-
r-

e

t

a

u

I AR52
e2V

h (
m,n

@ g̃K~Em!„@mu~M̃A! i2un#

3@n11u~M̃R!1i um#FA~En
1!2@mu~M̃A! i1un#

3@n21u~M̃R!2i um#FR~En
2!…2g̃K~Em

2!„@mu~M̃A!12un#

3@nu~M̃R!11um#FA~En!2@mu~M̃A!11un#

3@nu~M̃R!21um#FR~En!…2g̃K~Em
1!„@mu~M̃A!22un#

3@nu~M̃R!12um#FA~En!2@mu~M̃A!21un#

3@nu~M̃R!22um#FR~En!…#. ~A7!

Here we denoteEn
65eV(2n61) andEn52eVn. We also

includedG/2 into the definition ofM̃ and omitted terms non
diagonal in the spin indices because these terms are sma
the limit eV!D. At T→0 the summation overm is reduced
to just one term with the maximum numberm0 determined
by the condition:uEm0

u51.

It is straightforward to evaluate the matrices (m0uM̃ i , j un)
for sufficiently largeG.D ande0→0. In this caseM̃ i , j sat-
isfy the following approximate equations:

@mu~M̃R!11um0#~Em
2 /422!

52Emdm,m0
/2FR~Em!1@m21u~M̃R!11um0#

1@m11u~M̃R!11um0#, ~A8!

@mu~M̃R!12um0#524@mu~ M̃̄R!12um0#

3@EmFR~Em!Em0

2 FR~Em0

0 !21#,~A9!

@mu~ M̃̄R!12um0#~Em
2 /422!

5@dm,m0
1dm21,m0

#Em
2 FR~Em!/4

1@m21u~ M̃̄R!12um0#1@m11u~ M̃̄R!12um0#.

~A10!

Similar equations can easily be derived for the two rema
ing blocks. In the leading order inm0 ~this approximation is
justified at small voltagesV→0) at subgap energies (En
,1,FR5FA5F) we obtain

@nu~M̃R!11um0#5
~21!n~n11!

~m012!F~Em0

2 !
, ~A11!

@nu~M̃R!12um0#5
~21!n~n11!Em0

~m012!EnF~En!
, ~A12!

@nu~M̃R!21um0#52
~21!n~n11!Em0

~m012!EnF~En!
. ~A13!

Substituting these matrix elements into Eq.~A7! and per-
forming a simple summation overn we arrive at the result
~65!.
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34T. Löfwander, G. Johansson, and G. Wendin, cond-mat/9908

~unpublished!.
35A. Yazdaniet al., Phys. Rev. Lett.83, 176 ~1999!.
36A. Engelhardt, R. Dittmann, and A.I. Braginski, Phys. Rev. B59,

3815 ~1999!.
5-13


