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Josephson current in unconventional superconductors through an Anderson impurity
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Josephson current for a system consisting of an Anderson impurity weakly coupled to two unconventional
superconductors is studied and shown to be driven by a surface zero dngdgap bound state. The
repulsive Coulomb interaction in the dot can tursr gunction ino a 0 junction. This effect is more pronounced
in p-wave superconductors while in high-temperature superconductorsdyvith. symmetry it can exist for
rather large artificial centers at which tunneling occurs within a finite region.

Recently, the Josephson effect in unconventional supetture) and elucidate the low-temperature behavior of the Jo-
conductors have attracted a considerable attefibMea-  sephson current and its dependencéJon and the phase of
surements of direct Josephson current yield valuable inforthe order parameteX.
mation on the symmetry of the order parameter which is SinceA is not isotropic, it is useful at this point to specify
essential for understanding the mechanisms of supercondutiie underlying geometry. Each superconductor has the shape
tivity in these complex materials. Phase interferenceof half a plane defined as «<y<w andx<0 (x>0) for
experiment§definitely suggest the presencedsivave sym-  the left (right) superconductor. The dot is located at the ori-
metry of the order parameter in high- superconductors, gin r=0 and tunneling is described by zero-range hoping
while the recent discovery of superconductivity inRu0, between the impurity and the superconductors alongxthe
(Ref. 8 implies the existence of a peculiar system for whichaxis. Ford-wave superconductors we choose the nodal line
the pair potential has a triplep(wave) symmetry® of the pair potential on the Fermi surface to coincide with the

p- andd-wave symmetries of the order parameter have intunneling direction, such that= v , pgSsin2a wherepg is the
common a property which reflects the variation of the pairFermi momentum. For spin-triplet superconducting states the
potential across the Fermi surface. This results in a strongair potential is an odd vector function of momentum and a
sensitivity to inhomogeneities which, in turn, influences the2x2 matrix in spin space. We chose to represent it by the
Josephson effect. In particular, an anomalous temperatutéme reversal symmetry breaking statehich is off-diagonal
dependence of a single Josephson junction at lown spin indices with the order parameter approximately given
temperatures® and an induced crossover from a us@@l asA=Agexpia. In this junction geometry is the azimuthal
junction) to a junction on approaching the critical tempera- angle in thex-y plane.
ture were observed. The physical implication of this geometrical construction

Tunneling in a Josephson junction consisting of convenfor d- and p-wave superconductors can be described as fol-
tional (s-wave superconductors and a dynamical impurity lows: The pair potential pertaining to glectronhke excitations
(Anderson and Kondowas considered sometime atjo’ has different vaIueSan_d S|gn$ depending on whether_they
In a recent work! the tunneling current was calculated at Propagate along the directian or reflected along the direc-

zero temperature and was shown to be strongly dependent §in 7-« (see Fig. 1. This fact significantly affects the scat-
the Coulomb interaction which, in some cases, may cause

ging process and causes the formation of a zero energy
sign change of the current. The experimental observation

idgap bound state centered at the boundary. Another ge-

described above motivate us to study the same device albeit
with unconventional superconductors at finite temperatures. A(B)
As will be demonstrated, the underlying physics is remark-
ably different.

The main focus here is the influence of Coulomb interac-
tion on the low temperature behavior of the current in a 2D | p=n-ot
Josephson junction consisting of I€f) and right(R) super-
conductors with eithep or d,2_,2 symmetry of the order
parameter weakly coupled to a quantum ¢at identical AlY)
hoping matrix elementg =tg=t). The dot is represented by
a finite U Anderson impurity whose energy<<0 lies below 3
the Fermi energy. Usually, the inequalitiels> —e,>0 are FIG. 1. Schematic geometry of the junction. Incoming and re-
maintained so that the ground state of the disconnedted flected electronlike excitations are moving in an angle-dependent
=0) dot is singly occupied. We use the nonperturbativepair potential which can have different signs for these quasiparti-
scheme suggested in Ref. 1dxtended for finite tempera- cles.

o
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ometry which has been used recently is that of a mirrointegrated odf' yielding an effective action solely in terms
junction? in which the barrier is a reflection-symmetry plane of the boundary fieIds{waky(O). Tothis end, we decompose

for the superconducting electrodes. Dok ()= P (x)+ g1 (0) in such a way that at the
To obtain the Josephson current we compute the partition Leky Loky Loky

— = surfacey® (x)|,_,=0. The bulk fieldsy*"¥ (x) are ob-
function Z= D[ ¢yycclexp(—9) and the corresponding free . d blﬁ"“’kyl( _)|X_ﬁ inh zﬂkay( )
energy of the system. The functional integration is performed@N€d by solving the inhomogeneous equation
over Grassmann fields in the superconductors and the quan- -1 bulk [y _
tum dot (see below for a precise definitipriThe Euclidean Lok, Lok, ()= RucTs Lok (0)- ©)
action can be written as a SUB* S + Sg+ Sunt Sgor: COT- The right hand side of this equation corresponds to Andreev
responding respectively to left, right, tunneling and dot partsgpproximation for which the typical energies and the super-

In the following, quantities pertaining to the right supercon-conducting gap are much smaller than the chemical potential.
ductor are obtained from those calculated for the left one by order to solve equatio6) we need to find the Green

simply replacingl —R. With obvious notations the actions fynction G, ,, (xx') such that
read oy

GLaic Lk, (XX ) = 8(x—X"), )

S =T fdxd_mx iw+HEPS(p,,p W(XY),
- % Wio(YL o+ HE Py Py) 1u(XY) subject to the homogeneous boundary condition

) Gk, (0x')=0. The Green function thereby obtained tbr
or p wave superconductors turn out to be markedly distinct
E—— o +t*e 4l from that ofs wave ones. This is due to sign change of the
Sun= — T2 [tLo(0)73¢, +1{ Cu T3¢ ,(0) ]+ L—R, (2) , : ,
) pair potential as underlined above.
Solving then for the bulk fields in terms of the fields at
3) x=0 and substituting it into Eq5) we obtain the effective

= cd,c+ecrsc—U(cc)?/2 9 i
Stiot f drlcd.ctecrsc—U(cc) /2], superconductor action in terms of the surface fields

where r;=diag(1~1) being the Pauli matrix and= ¢, _ _
+U/2. The summation is taken over odd Matsubara SL:TEk Pk, (0)CLok Yok (0), (8)
@Ry

frequencies w=(2n+1)7T, while UL o(Xy)
=[ L1 (XY) ¥ (Xy)],c=(cic)) and the corresponding
conjugate fields are Grassmann variables of the supercon-
ductors and the impurity, respectively.

The Bogolubov-DeGennes HamiltoniadfP® acquires

the form For reasons that will be clear later on we prefer to display the
A ~ function G for p-wave superconductors. Straightforward
e(P)—pE2m  A(p)exp(dy) Laky 1O P P g

A(p)*exp(—¢) —e(p)+p2/2m)’

~ - N 2 —
wheree(p) denotes the kinetic energy operator with disper- f(w)= i Wo+[A] A (10)
sion €(p), and ¢, is the phase of the superconducting con- - ) A} —ivol+|A %)

densate. We takA, =Ag=A but ¢, # ¢R.
LR O Ir Note that the dependence kpenters only irk,. The effec-

Since the pair potential is translation invariant in the ) ; . : . ’ -
direction we employ Fourier transform and express the actiVe action defined via equatiori8)—(10) is indeed distinct

tion in terms of fermion Grassmann variablgg, . (x) and from the corresppnding.quantity derived femwave super-
o BDG, A R conductors(note in particular the occurrence af in the
BDG Hamiltonian H""(py,ky) where ky=pgsina. Ac-  denominator.

cordingly, the available energy for the longitudinal motian Performing the integration over the boundary fields

. . . . _ ;2 2 —
reEg/rzmallzed chemical potenyials then w= (pg—kj)/2m Yok (0). 0k (0) in the partition function is now straight-
=kp/2m. o . — .

In computing the actionil) the integration over the fields OEOJnW:rdByTZzggl%‘i‘i':éngtr:ztegHrL?é'ggfd O\i/rftrert:g:iofr;eliz i:wsg .
can be carried out explicitly using the saddle point metho . ; T .
(which is exact here, since the action is quadjafibe equa- Hubbard-Stratonovich transformation. This implies the intro-

tion for the stationary fields iﬁ[jkyllfLmky(X):O, with duction of auxiliary fieldsy,, . The result is then

G L =io+HPP%(p, k,). The result of these manipula- 2 T OE
Lok, L Py z:cfﬂ dygexd] — 5o (11)

with

my d

0
kay:ﬁafﬂdxl TsGkay(XX')|x:o7'3- 9

BDG
H L

(Px,Py) = (4)  calculation yieldsGy , = — (ko/2m)r (@) with

tions is the following form for the actiofil):

1 d HereF=—-TZX In[detR(w)] andC is a constant. The matrix
SL= _Twzk ﬁ‘hwky(o) TS(&‘“wky(X)) - R which encodes the coupling between the superconducting
Y x=0 (half) planes and the impurity is given by
Due to the zero-range nature of the tunneling matrix ele- 5
ments, the fields at#0 (referred to as bulk fieldscan be  R(w)=er3+ y,—iw—aNO){|t|’[r (o) +Tr(®)]), (12)
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whereN(0) is the density of states at the Fermi level, and 0.0%0° - —

(O)Ew‘lfﬂfﬂzdaO(a). The averaging procedure thus de- soaof T3 .

fined is related to a possible dispersion of the transmission _l_mlo.sf_/'WW

matrix element,, . For a point junction with constamtonly _Lmo_;f_f/ﬂmna“’""“'“"“’“”’"

the component of the Josephson current perpendicular to the ’_mmf_ .

interface is relevant. In this case, for evatrWave symme- Lt 20,0882

try) superconductors the midgap zero energy bound state "2'”0_35_/""—-#

does not contribute to the Josephson current. In clear distinc- BoN0TE

tion, for ap-wave pair potential this state defines the main A s o om0 00% 003

contribution at low temperaturEs(which is the temperature A

domain of our interest herelntuitively, occurrence of dis- L0 (b)

persive tunneling matrix elementg, correspond to devia- £ W

tion of the impurity from a point-like defect. Such a case can b

be realized, e.g., by artificially induced defetisThe spec- 60407 froasst \

troscopy of BjSr,CaCyOg surfaces indicates that such de- 4,0xw-4:_"N

fects appear to be more extended in STM imaging. In this z(m‘,f_w

case one can expect nonzero contribution from the midgap St M

level in d-waves superconductors as well. R T
With this point in mind we now proceed and consider the 20wt L b

. . . . . 0 0005 001 0015 002 0025 003
p-wave case. The functional integral in E4.1) is approxi- TA

mated by the saddle point method. The appropriate optimum
solution for y,, (denoted hereafter by) should then mini-
mize the free energy

FIG. 2. Dependence of the Josephson current on temperature for
U=2.1(a) andU=23.0(b) for different transparenciels. Note the

sign reversal for stronyy. Hereep=—2.0 and¢= 7/12 are fixed.

2 The units of all quantities are explained in the text.

Y o~
F=—T2, Inf{A%(w)+4y*0 1+ A4—+e (1
w§>:O MA @) +4y o lra()]] 20 " € (13 the tunneling directionis negative. At higher values df

[Fig. 2(b)] the pattern is inverted: The current for most cou-
pling strengths is now positive and the junction is trans-
formed inb a O junction. The current is strongly dependent
)1 (14) on temperature, which is rather distinct from the classical
Ambegaokar-Baratoff formula. It is typical for superconduct-

5 5 ing systems for which the zero energy midgap bound state
Vor+[Al 15 plays the major role. A similar situation takes place also in
w2 (19 swave superconductofé™ where it is attributed to the

single occupancy of the impurity which then becomes a de-
where I'=27t?N(0) is the bare impurity level width, generate magnetic moment. We have thus presented another
b(w)=I/w, and ¢=¢ — ¢ is the phase difference be- example for this scenario, though the temperature depen-
tween the two superconductors. The self-consistent equatiaiience is quite different.

Here we use the notations

NS

Alw)=€*+ o l+a(w)]*~ yz—b2(w)|A|2co§(

a(w)=T

for yis Now let us discuss the behavior of the currdiip) as
function of the phase difference as displayed in Figs.
2071+ a(w)]*~A(w) 3(a),3(b) for fixed U=2.6 andT=0.01 and for numerous
2U %4, Az(w)+4yzw2[1+a(w)]220' (16) transparencie$’. First we fix the transparency to be rela-

tively low (I'=0.0446) and plot both the current and the dot
Once the solutions are defined we can calculate the curremccupancy. Remarkably, the corresponding curves are not
J=(2elh)dF/d¢ and the impurity occupanay=JF/dey, continuous with jumps at certain values ¢f [Fig. 3a)].
These jumps are in one to one correspondence with points at
|AI?b%(w)A(w) which the dot occupation changes abruptly. Between these
7) points the occupation is nearly constant and the impurity is
virtually incompressible. This remarkable behavior in which
~ a Josephson current undergoes a discontinuous sign change
n=1— 4T2 eAlw) _ (18 ~was noticed also fos-wave superconductors albeit for large
=0 A%(w)+4y?w’[1+a(w)]? transparency' =1 [see Fig. 2) in Ref. 14. In contrast, for
p-wave superconductors the effect is pronounced at smaller
We now analyze the main results of the present study. All’, being strongly influenced by the zero-energy state.
the parameters having the dimension of energyJ(I",T) Next we consider in Fig. ®) the case of slightly higher
are expressed in units of| and the current is given in units transparencie§ =0.1—0.5. In this case the curves are con-
of |Ale/#. In Figs. Za),2(b) the current is displayed versus tinuous but deviate significantly from the classical gibe-
temperature in the low-temperature region and for couplindhavior. In particular there is a sign charldgeg. 3(b)], of the
strengthsI” ranging between 0.001 and 0.0882. At smallcurrent as a function of phase difference < . This fea-
Hubbard interactiohU = 2.1, Fig. Za)] the junction is in ar ture is more pronounced at low transparendies0.3. Such
state for which the curreriwithin the present geometry of deviation is not expected in superconductors wsttvave

J=—(2elh)sin(¢)T >,

©>0 Az(a)) +4’yzw2[1+ a(w)]2 '
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FIG. 4. V(l) characteristics of thp wave junction(upper curve
compared with the classical square root expresgiomwer curve.
The relevant parameters aeg=—2.0, U=3.0, T=0.01, andI'
=0.66.

ture, Coulomb interaction barrier transparency and phase of
condensates. The essentially nonperturbative, self-consistent
approach we have used yields a finite value for the current

PPNL: without adding relaxation terms that should be included if
00’3 E e perturbation approach is adopted. It is mandatory at this final
PYTT oz o, 08 0s stage to point out the peculiarities related to the physics of

FIG. 3. (@) Dependence of the Josephson curi@oiares, left NONS-wave superconductors. , o
scalé and occupancycircles, right scaleon the phase difference (1) The contribution to the current in our case originates
for ['=0.0446. The other parameters agg= —2.0, T=0.01, and  Principally from the surface bound state which is related to
U=2.6. (b) Dependence of the Josephson current for larger transth€ asymmetry of the pair potential, and has no analog for
parencied’ =0.1-0.5. The other parameters are agah s-wave superconductors. The contribution of this state in low
transparency junctions results in a large current, that is,
symmetry and is again related to the midgap state which ithIJ5|~ VA/T'. It is also marked by a stronger temperature
the hallmark of unconventional superconductors in contactlependence especially at low temperatures.
with an interacting quantum dot. (2) For unconventional superconductors, the Josephson
Evidently, a deviation from si# behavior should mani- tunneling through an interacting quantum dot can serve as an
fest itself also in current-voltage characteristics, when theéndicator to distinguish odd parity superconductors from
flowing current! satisfies the inequality>J.=maxJ(¢)|.  even parity ones. It might be difficult to fabricate junctions
Within the framework of the resistivity shunted junction whose superconducting electrodes have the required specific

model the averaged voltagz across the junction is related Symmetry, but such technical problem might be solved in the

to the current and the resistancR as near future. Superconductors with bagitand d-wave sym-
metry of the order parameter have surface bound state which

(2w do contributes to the curreritnainly at low temperaturgsYet,

R=V 0 m (19 as we indicated above, for even-symmetdgvwjave super-

conductors, the current vanishes in the limit of pointlike im-
We then expect a deviation of thé(l) characteristics from Purity. In sharp distinction, under the same conditions, the

its classical expressioh= J§+(V/R)2. It can indeed be current is maximal for odd-symmetryp{wave supercon-

seen in Fig. 4 where the difference is mainly exhibited at IOWductors.
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