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Josephson current in unconventional superconductors through an Anderson impurity
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Josephson current for a system consisting of an Anderson impurity weakly coupled to two unconventional
superconductors is studied and shown to be driven by a surface zero energy~midgap! bound state. The
repulsive Coulomb interaction in the dot can turn ap junction into a 0 junction. This effect is more pronounced
in p-wave superconductors while in high-temperature superconductors withdx22y2 symmetry it can exist for
rather large artificial centers at which tunneling occurs within a finite region.
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Recently, the Josephson effect in unconventional su
conductors have attracted a considerable attention.1–6 Mea-
surements of direct Josephson current yield valuable in
mation on the symmetry of the order parameter which
essential for understanding the mechanisms of supercon
tivity in these complex materials. Phase interferen
experiments7 definitely suggest the presence ofd-wave sym-
metry of the order parameter in high-Tc superconductors
while the recent discovery of superconductivity in Sr2RuO4

~Ref. 8! implies the existence of a peculiar system for whi
the pair potential has a triplet (p wave! symmetry.9

p- andd-wave symmetries of the order parameter have
common a property which reflects the variation of the p
potential across the Fermi surface. This results in a str
sensitivity to inhomogeneities which, in turn, influences t
Josephson effect. In particular, an anomalous tempera
dependence of a single Josephson junction at
temperatures3–6 and an induced crossover from a usual~0
junction! to ap junction on approaching the critical temper
ture were observed.

Tunneling in a Josephson junction consisting of conv
tional (s-wave! superconductors and a dynamical impur
~Anderson and Kondo! was considered sometime ago.10–13

In a recent work14 the tunneling current was calculated
zero temperature and was shown to be strongly depende
the Coulomb interaction which, in some cases, may cau
sign change of the current. The experimental observat
described above motivate us to study the same device a
with unconventional superconductors at finite temperatu
As will be demonstrated, the underlying physics is rema
ably different.

The main focus here is the influence of Coulomb inter
tion on the low temperature behavior of the current in a
Josephson junction consisting of left~L! and right~R! super-
conductors with eitherp or dx22y2 symmetry of the order
parameter weakly coupled to a quantum dot~via identical
hoping matrix elementstL5tR5t). The dot is represented b
a finiteU Anderson impurity whose energye0,0 lies below
the Fermi energy. Usually, the inequalitiesU.2e0.0 are
maintained so that the ground state of the disconnectet
50) dot is singly occupied. We use the nonperturbat
scheme suggested in Ref. 14~extended for finite tempera
PRB 610163-1829/2000/61~17!/11293~4!/$15.00
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ture! and elucidate the low-temperature behavior of the
sephson current and its dependence onU, t, and the phase o
the order parameterD.

SinceD is not isotropic, it is useful at this point to specif
the underlying geometry. Each superconductor has the sh
of half a plane defined as2`,y,` andx,0 (x.0) for
the left ~right! superconductor. The dot is located at the o
gin r50 and tunneling is described by zero-range hop
between the impurity and the superconductors along thx
axis. Ford-wave superconductors we choose the nodal l
of the pair potential on the Fermi surface to coincide with t
tunneling direction, such thatD5vDpFsin2a wherepF is the
Fermi momentum. For spin-triplet superconducting states
pair potential is an odd vector function of momentum and
232 matrix in spin space. We chose to represent it by
time reversal symmetry breaking state9 which is off-diagonal
in spin indices with the order parameter approximately giv
asD5D0expia. In this junction geometrya is the azimuthal
angle in thex-y plane.

The physical implication of this geometrical constructio
for d- andp-wave superconductors can be described as
lows: The pair potential pertaining to electronlike excitatio
has different values~and signs! depending on whether the
propagate along the directiona or reflected along the direc
tion p-a ~see Fig. 1!. This fact significantly affects the sca
tering process and causes the formation of a zero en
~midgap! bound state centered at the boundary. Another

FIG. 1. Schematic geometry of the junction. Incoming and
flected electronlike excitations are moving in an angle-depend
pair potential which can have different signs for these quasipa
cles.
11 293 ©2000 The American Physical Society



ro
e

tio
e
e

ua

rts
n
b

s

r

co

er
n

a

s
o

-

le

s
e

eev
er-
tial.

ion

nct
he

at

the
rd

ds
-

a
ro-

ting

11 294 PRB 61BRIEF REPORTS
ometry which has been used recently is that of a mir
junction,3 in which the barrier is a reflection-symmetry plan
for the superconducting electrodes.

To obtain the Josephson current we compute the parti
function Z5*D@c̄c c̄c#exp(2S) and the corresponding fre
energy of the system. The functional integration is perform
over Grassmann fields in the superconductors and the q
tum dot ~see below for a precise definition!. The Euclidean
action can be written as a sumS5SL1SR1Stun1Sdot, cor-
responding respectively to left, right, tunneling and dot pa
In the following, quantities pertaining to the right superco
ductor are obtained from those calculated for the left one
simply replacingL→R. With obvious notations the action
read

SL5T(
v

E dx dyc̄Lv~xy!@ iv1HL
BDG~ p̂x ,p̂y!#cLv~xy!,

~1!

Stun52T(
v

@ tLc̄Lv~0!t3cv1tL* c̄vt3cLv~0!#1L→R, ~2!

Sdot5E dt@ c̄]tc1 ẽ c̄t3c2U~ c̄c!2/2#, ~3!

where t35diag(1,21) being the Pauli matrix andẽ5e0
1U/2. The summation is taken over odd Matsuba
frequencies v5(2n11)pT, while c̄Lv(xy)
[@c̄Lv↑(xy)cLv↓(xy)#,c̄[( c̄↑c↓) and the corresponding
conjugate fields are Grassmann variables of the super
ductors and the impurity, respectively.

The Bogolubov-DeGennes HamiltonianHL
BDG acquires

the form

HL
BDG~ p̂x ,p̂y!5S e~ p̂!2pF

2/2m D~ p̂!exp~fL!

D~ p̂!* exp~2fL! 2e~ p̂!1pF
2/2m

D , ~4!

wheree( p̂) denotes the kinetic energy operator with disp
sion e(p), andfL is the phase of the superconducting co
densate. We takeDL5DR[D but fLÞfR.

Since the pair potential is translation invariant in they
direction we employ Fourier transform and express the
tion in terms of fermion Grassmann variablescLvky

(x) and

BDG Hamiltonian HL
BDG( p̂x ,ky) where ky5pFsina. Ac-

cordingly, the available energy for the longitudinal motion~a
renormalized chemical potential! is then mk[(pF

22ky
2)/2m

[k0
2/2m.
In computing the action~1! the integration over the field

can be carried out explicitly using the saddle point meth
~which is exact here, since the action is quadratic!. The equa-
tion for the stationary fields isGLvky

21 cLvky
(x)50, with

GLvky

21 5 iv1HL
BDG( p̂x ,ky). The result of these manipula

tions is the following form for the action~1!:

SL52T(
v,ky

1

2m
c̄Lvky

~0!t3S ]

]x
cLvky

~x! D
x→0

. ~5!

Due to the zero-range nature of the tunneling matrix e
ments, the fields atrÞ0 ~referred to as bulk fields! can be
r
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integrated out14 yielding an effective action solely in term
of the boundary fieldscLvky

(0). To this end, we decompos

cLvky
(x)5cLvky

bulk (x)1cLvky
(0) in such a way that at the

surfacecLvky

bulk (x)ux5050. The bulk fieldscLvky

bulk (x) are ob-

tained by solving the inhomogeneous equation

GLvky

21 cLvky

bulk ~x!5mkt3cLvky
~0!. ~6!

The right hand side of this equation corresponds to Andr
approximation for which the typical energies and the sup
conducting gap are much smaller than the chemical poten
In order to solve equation~6! we need to find the Green
function GLvky

(xx8) such that

GLvky

21 GLvky
~xx8!5d~x2x8!, ~7!

subject to the homogeneous boundary condit
GLvky

(0x8)50. The Green function thereby obtained ford

or p wave superconductors turn out to be markedly disti
from that ofs wave ones. This is due to sign change of t
pair potential as underlined above.

Solving then for the bulk fields in terms of the fields
x50 and substituting it into Eq.~5! we obtain the effective
superconductor action in terms of the surface fields

SL5T(
v,ky

c̄Lvky
~0!ḠLvky

cLvky
~0!, ~8!

with

ḠLvky
5

mk

2m

]

]xE2`

0

dx8t3GLvky
~xx8!ux50t3 . ~9!

For reasons that will be clear later on we prefer to display
function ḠLvky

for p-wave superconductors. Straightforwa

calculation yieldsḠLvky
52(k0/2m)r L(v) with

r L~v!5
1

v S 2 iAv21uDLu2 2DL

DL* 2 iAv21uDLu2D . ~10!

Note that the dependence onky enters only ink0. The effec-
tive action defined via equations~8!–~10! is indeed distinct
from the corresponding quantity derived fors-wave super-
conductors~note in particular the occurrence ofv in the
denominator!.

Performing the integration over the boundary fiel
c̄Lvky

(0),cLvky
(0) in the partition function is now straight

forward. The remaining integrations over thec,c̄ fields is
done by decoupling the Hubbard interaction using
Hubbard-Stratonovich transformation. This implies the int
duction of auxiliary fieldsgv . The result is then

Z5CE )
v

dgvexpS 2
gv

2

2UT
2

ẽ

T
2

F

T
D . ~11!

HereF52T(vln@detR(v)# andC is a constant. The matrix
R which encodes the coupling between the superconduc
~half! planes and the impurity is given by

R~v!5 ẽt31gv2 iv2pN~0!^utu2@r L~v!1r R~v!#&, ~12!
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whereN(0) is the density of states at the Fermi level, a
^O&[p21*2p/2

p/2 daO(a). The averaging procedure thus d
fined is related to a possible dispersion of the transmiss
matrix elementtky . For a point junction with constantt, only
the component of the Josephson current perpendicular to
interface is relevant. In this case, for even (d-wave symme-
try! superconductors the midgap zero energy bound s
does not contribute to the Josephson current. In clear dis
tion, for a p-wave pair potential this state defines the ma
contribution at low temperatures15 ~which is the temperature
domain of our interest here!. Intuitively, occurrence of dis-
persive tunneling matrix elementstky correspond to devia
tion of the impurity from a point-like defect. Such a case c
be realized, e.g., by artificially induced defects.16 The spec-
troscopy of Bi2Sr2CaCu2O8 surfaces indicates that such d
fects appear to be more extended in STM imaging. In t
case one can expect nonzero contribution from the mid
level in d-waves superconductors as well.

With this point in mind we now proceed and consider t
p-wave case. The functional integral in Eq.~11! is approxi-
mated by the saddle point method. The appropriate optim
solution for gv ~denoted hereafter byg) should then mini-
mize the free energy

F52T (
v.0

ln$A2~v!14g2v2@11a~v!#2%1
g2

2U
1 ẽ. ~13!

Here we use the notations

A~v!5 ẽ21v2@11a~v!#22g22b2~v!uDu2cos2S f

2 D , ~14!

a~v!5G
Av21uDu2

v2
, ~15!

where G52pt2N(0) is the bare impurity level width
b(v)5G/v, and f[fL2fR is the phase difference be
tween the two superconductors. The self-consistent equa
for g is

1

2U
22T (

v.0

2v2@11a~v!#22A~v!

A2~v!14g2v2@11a~v!#2
50. ~16!

Once the solutions are defined we can calculate the cur
J5(2e/\)]F/]f and the impurity occupancyn5]F/]e0,

J52~2e/\!sin~f!T (
v.0

uDu2b2~v!A~v!

A2~v!14g2v2@11a~v!#2
, ~17!

n5124T (
v.0

ẽA~v!

A2~v!14g2v2@11a~v!#2
. ~18!

We now analyze the main results of the present study.
the parameters having the dimension of energy (e,U,G,T)
are expressed in units ofuDu and the current is given in unit
of uDue/\. In Figs. 2~a!,2~b! the current is displayed versu
temperature in the low-temperature region and for coup
strengthsG ranging between 0.001 and 0.0882. At sm
Hubbard interaction@U52.1, Fig. 2~a!# the junction is in ap
state for which the current~within the present geometry o
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the tunneling direction! is negative. At higher values ofU
@Fig. 2~b!# the pattern is inverted: The current for most co
pling strengths is now positive and thep junction is trans-
formed into a 0 junction. The current is strongly depende
on temperature, which is rather distinct from the classi
Ambegaokar-Baratoff formula. It is typical for superconduc
ing systems for which the zero energy midgap bound s
plays the major role. A similar situation takes place also
s-wave superconductors,12,14 where it is attributed to the
single occupancy of the impurity which then becomes a
generate magnetic moment. We have thus presented an
example for this scenario, though the temperature dep
dence is quite different.

Now let us discuss the behavior of the currentJ(f) as
function of the phase difference as displayed in Fi
3~a!,3~b! for fixed U52.6 andT50.01 and for numerous
transparenciesG. First we fix the transparency to be rela
tively low (G50.0446) and plot both the current and the d
occupancy. Remarkably, the corresponding curves are
continuous with jumps at certain values off @Fig. 3~a!#.
These jumps are in one to one correspondence with poin
which the dot occupation changes abruptly. Between th
points the occupation is nearly constant and the impurity
virtually incompressible. This remarkable behavior in whi
a Josephson current undergoes a discontinuous sign ch
was noticed also fors-wave superconductors albeit for larg
transparencyG51 @see Fig. 2~b! in Ref. 14#. In contrast, for
p-wave superconductors the effect is pronounced at sma
G, being strongly influenced by the zero-energy state.

Next we consider in Fig. 3~b! the case of slightly higher
transparenciesG50.120.5. In this case the curves are co
tinuous but deviate significantly from the classical sinf be-
havior. In particular there is a sign change@Fig. 3~b!#, of the
current as a function of phase difference 0,f,p. This fea-
ture is more pronounced at low transparenciesG,0.3. Such
deviation is not expected in superconductors withs-wave

FIG. 2. Dependence of the Josephson current on temperatur
U52.1 ~a! andU53.0 ~b! for different transparenciesG. Note the
sign reversal for strongU. Heree0522.0 andf5p/12 are fixed.
The units of all quantities are explained in the text.
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symmetry and is again related to the midgap state whic
the hallmark of unconventional superconductors in con
with an interacting quantum dot.

Evidently, a deviation from sinf behavior should mani-
fest itself also in current-voltage characteristics, when
flowing current I satisfies the inequalityI .Jc[maxuJ(f)u.
Within the framework of the resistivity shunted junctio
model the averaged voltageV̄ across the junction is relate
to the currentI and the resistanceR as

R5V̄E
0

2p df

2p@ I 2J~f!#
. ~19!

We then expect a deviation of theV̄(I ) characteristics from

its classical expressionI 5AJc
21(V̄/R)2. It can indeed be

seen in Fig. 4 where the difference is mainly exhibited at l
voltage.

To summarize, we have solved the problem of transp
between two unconventional superconductors through an
purity and traced the dependence of the current on temp

FIG. 3. ~a! Dependence of the Josephson current~squares, left
scale! and occupancy~circles, right scale! on the phase difference
for G50.0446. The other parameters aree0522.0, T50.01, and
U52.6. ~b! Dependence of the Josephson current for larger tra
parenciesG50.120.5. The other parameters are as in~a!.
is
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ture, Coulomb interaction barrier transparency and phas
condensates. The essentially nonperturbative, self-consi
approach we have used yields a finite value for the curr
without adding relaxation terms that should be included
perturbation approach is adopted. It is mandatory at this fi
stage to point out the peculiarities related to the physics
non-s-wave superconductors.

~1! The contribution to the current in our case originat
principally from the surface bound state which is related
the asymmetry of the pair potential, and has no analog
s-wave superconductors. The contribution of this state in l
transparency junctions results in a large current, that
uJp /Jsu;AD/G. It is also marked by a stronger temperatu
dependence especially at low temperatures.

~2! For unconventional superconductors, the Joseph
tunneling through an interacting quantum dot can serve a
indicator to distinguish odd parity superconductors fro
even parity ones. It might be difficult to fabricate junction
whose superconducting electrodes have the required spe
symmetry, but such technical problem might be solved in
near future. Superconductors with bothp and d-wave sym-
metry of the order parameter have surface bound state w
contributes to the current~mainly at low temperatures!. Yet,
as we indicated above, for even-symmetry (d-wave! super-
conductors, the current vanishes in the limit of pointlike im
purity. In sharp distinction, under the same conditions,
current is maximal for odd-symmetry (p-wave! supercon-
ductors.

This research is supported by grants from the Israeli S
ence Foundation~Center of Excellence and Non-Linear Tun
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FIG. 4. V(I ) characteristics of thep wave junction~upper curve!
compared with the classical square root expression~lower curve!.
The relevant parameters aree0522.0, U53.0, T50.01, andG
50.66.
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