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Abstract. – A theory is developed to study shot noise in superconducting (SAS) and hy-
brid (SAN) junctions with singly occupied Anderson impurity (A) as a weak link. The zero-
frequency dc component of the shot noise spectral density is calculated at zero temperature as
a function of the bias at different Coulomb repulsion strengths (U), and shows a remarkable
structure resulting from combination of electron-electron interaction and Andreev reflections.

Motivation and main results. – Following the first theoretical work on noise in supercon-
ducting point junctions [1] the underlying physics attracted a considerable theoretical [2–7]
and experimental [8–12] attention (see review article [13] for a more complete list of refer-
ences). In most of these works, the quantum point contacts have been considered in both the
linear and nonlinear regimes. Tunneling junctions in which the electrodes are separated by a
resonant double barrier were studied in refs. [3,14]. Novel experimental techniques now enable
the study of transport and shot noise in quantum dots located between either normal (N) or
superconducting (S) electrodes. So far, however, the physics of shot noise in superconducting
junctions with strong electron correlations has not been exposed. Investigation of this funda-
mental aspect is carried out in this work. The shot noise spectral density in SAS and SAN
junctions is calculated below for the case where the Anderson type impurity level (A) is singly
occupied. For an SAN junction at small bias voltages V , doubling of the normal Poisson noise
to current ratio (Fano factor) is preserved, although its dependence on the electron-electron
interaction is quite essential. In an SAS junction, the main process contributing to the current
and shot noise power is multiple Andreev reflections (MAR). However, in spite of the fact that
for low V the number n ≈ 2∆/eV of MAR is large (∆ is the superconductor gap), the current
and shot noise density are rather weak. This is due to the low effective transparency Γ of the
c© EDP Sciences



398 EUROPHYSICS LETTERS

junction as a consequence of interaction (Coulomb blockade). Large-n processes are therefore
damped as Γn.

Model and effective action. – The junction is represented by two half-planar electrodes
on the left (L) and the right (R) separated by a quantum dot. The dot (located at the origin)
is modeled as an Anderson impurity A with level position ε0 < 0 and Hubbard repulsion U
under the condition of single occupancy U > −ε0 > 0. This can be justified by noticing that
in recent experiments [15, 16] on semiconductor quantum dots it was shown that tunneling
takes place through a separate state with the characteristics of a Kondo behavior (the tunable
Kondo effect).

The starting point is the tunnel HamiltonianH = HL+HR+Hd+Ht in whichHj(j = L,R)
are lead Hamiltonians (usually of BCS form) defined in terms of electron field operators
ψjσ(x, y, t), Hd = ε0

∑
σ c

†
σcσ +Un↑n↓ and Ht = T

∑
jσ c

†
σψjσ(0, t) + hc. Formally, the whole

physics is contained in the partition function Z ≡
∫

d[F ] exp[iS], where the path integral
Grassman integration is carried out over all fermion fields [F ] and the action S is obtained
by integrating the Lagrangian pertaining to the Hamiltonian H along a Keldysh contour. In
a recent work [17] we studied I-V characteristics in SAS and SAN junctions, and developed
a formalism to carry out integration over the fields ψjσ(x, y, t), combined with the dynamical
mean-field approximation to account for the quartic term Un↑n↓. At the end of this procedure
one arrives at an effective action Seff which depends on the parameter γ− whose physical
meaning is the difference between spin-up and spin-down energies of the dot (to be determined
self-consistently in terms of the effective action). The latter is defined in terms of lead Green
functions, gR/A/K

j where j = L,R and R/A/K denotes advanced, retarded and Keldysh,
respectively. Explicitly, dropping the lead index,

ĝ =
(
ĝR ĝK

0 ĝA

)
(1)

is a matrix in Keldysh space with

ĝR/A(ε) =
(ε± i0)τz + i|∆|τy√

(ε± i0)2 − |∆|2
, (2)

ĝK(ε) = (ĝR(ε) − ĝA(ε)) tanh(ε/2T ) . (3)

The set of Pauli matrices τx,y,z acts in spin (Nambu) space, and the lead dependence enters
through the corresponding superconducting gaps ∆. It is now possible to define the kernel

Ĝ−1(ε, ε′) = δ(ε− ε′)(ε+ γ− − τz ε̃) + iΓĝ+(ε, ε′)τz (4)

(where ĝ+ ≡ (ĝL + ĝR)/2) as an operator in Nambu ⊗ Keldysh product spaces (here ε̃ ≡
ε0 +U/2 and Γ ∝ T 2 is the usual transparency parameter). The effective action is a functional
of the Grassman fields c, c̄ which are fourtuples in this space,

Seff =
∫

dε
2π

∫
dε′c̄Ĝ−1(ε, ε′)c . (5)

The self-consistency equation for γ− is,

γ− = −iU
2

∫
dtTr (Gσx) , (6)

where the set of Pauli matrices σx,y,z acts in Keldysh space.
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The physical justification for using the mean-field approximation is related to the fact that
the Kondo resonance is suppressed by the superconducting order parameter. Such suppression
occurs due to strong attenuation of the density of states in an energy region of order ∆ near
the Fermi energy. Thus, the number of low-energy electrons which are able to screen the local
impurity spin is small [18, 19]. Therefore, we can expect that ineffective screening results in
a larger domain in parameter space (ε0, U) for which the single occupancy (doublet state)
becomes the ground state of the whole system. For our choice of parameters, the Kondo
temperature TK ≈

√
2ΓU/π exp[−πẼ/(2Γ)] (where Ẽ = (U − |ε0|)|ε0|/U) is ≤ 0.2∆. In

this case the ground state of the system is a doublet, and the Kondo singlet is suppressed.
Therefore, we can look for a doublet solution which can be obtained from the mean-field
equation (6).

Explicit expression for the shot noise. – The noise spectrum measures the current fluc-
tuations in the junction. It is defined by the symmetrized current-current correlation function
which, in terms of current operators in Nambu ⊗ Keldysh space reads

K(t1, t2) = h̄[〈T̂ I(1)(t1)I(2)(t2)〉 + 〈T̂ I(1)(t2)I(2)(t1)〉 − 2〈I〉2], (7)

where T̂ is the time ordering operator and 〈...〉 denotes quantum-mechanical thermodynamic
averaging with respect to the total Hamiltonian H. Starting from the general definition of
the current operator for tunneling through a quantum dot [20], in the present case it reads

I(1,2) = ± ie
h̄

∑
k

T
[
c̄
1 ± σx

2
ψRk(0) − h.c.

]
, (8)

where ψRk(0) is the Fourier transform of ψR(0, y, t) (the so-called surface field operator) with
respect to y. Substituting the explicit form for the current operators (8) into eq. (7), we then
obtain an expression for K(t1, t2) which involves Grassman quadrature over surface fields
and dot electron operators. The first integration (involving the Green function matrix ĝ) is
Gaussian and can be done exactly. Integration over the dot fermion fields is achieved within
the dynamic mean-field approximation. It is then possible to express the power spectrumK(ω)
and γ− in terms of the Green functions of the entire system ĜR,A (inverse of the kernel defined
in eq. (4)). In the present work, attention is focused on the zero-frequency dc component of
the shot noise K = K(0) at zero temperature. The first novel result of our study then consists
of a workable expression for the noise power density functionK = K1+K2 supported by a self-
consistent equation for the energy occupancy parameter γ−. For a symmetric dot (ΓL = ΓR)
it reads

K1 =
ie2Γ
2h̄

∫
dε
2π

Tr
{
τz[(ĝRR − ĝAR)(ĜR − ĜA) − ĝKRF ]

}
, (9)

K2 =
e2Γ2

8h̄

∫
dε
2π

Tr
{ 1

2
(F g̃)2 − τz g̃τzĜAg̃ĜR −

−2g̃ĜRĝKRF + (ĜRĝKR )2 − g̃RĜRg̃RĜR + h.c.
}
, (10)

γ− = −iU
2

∫
dε
2π

TrF , (11)

where

F =
−iΓ

2
ĜR(ĝKR + ĝKL )τzĜA, g̃ = τz(ĝRR + (ĝRR)+)τz, g̃R,A = τz ĝ

R,A
R τz − ĝR,A

R . (12)
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We arrive now at our main goal, namely, using expressions (9)-(12), to analyze the noise
in SAN and SAS junctions. Note that eqs. (9), (10), (11) can be easily generalized to the
asymmetric case ΓR �= ΓL.

Shot noise in SAN junctions. – In this case only one Andreev reflection takes place
and K2 can be written explicitly as an integral over the entire energy domain (including
the sub-gap region), while for K1 integration is effected only above ∆. As a by-product we
get, from that part of K1 +K2 related to integration with |ε| > ∆, the shot noise for NAN
junction (tunneling between normal metal electrodes through an Anderson-impurity center).
It assumes a standard form [1], although it depends on the interaction through the parameter
γ−, that is

K =
e3|V |
πh̄

[T−(1 − T−) + T+(1 − T+)], (13)

where T± = Γ2/((ε̃ ± γ−)2 + Γ2). In a perfect resonance condition (ε̃ = 0 and U = 0) we
get K = 0 as expected for a pure point junction [1, 13]. When U �= 0 we have to solve the
self-consistent equation (11) to find γ− and substitute the solution for a given voltage into
eqs. (9), (10).

Another limiting situation for which a simple analytical expression exists is that of small
bias eV < ∆. For completely transparent point junctions the current-noise spectral density
vanishes [1]. For nonresonant transport there is a finite shot noise in the sub-gap region
which, in the limit of low effective transparency, yields the Fano factor to be equal to 2. The
principal contribution to the noise density in the regime eV  ∆ comes from K2. Therefore,
integrating over the sub-gap energies in eqs. (9), (10), (11) results in

K =
2e3|V |
πh̄

Γ4[Γ2ε̃2 + (γ2
− − ε̃2)2]

[Γ2γ2− + (ε̃2 + 0.5Γ2 − γ2−)2]2
. (14)

This formula, together with the self-consistency equation (11), yields the shot noise density
for T = 0 and eV  ∆. For Γ  ε̃, γ− it leads to twice the normal Poisson noise-current ratio.
Numerical calculations using the exact expressions (9), (10) for specific values of U indicate
that the deviation from the approximate relation (14) starts already at eV ∼ ∆/2. Therefore,
even in the sub-gap regime, the nonlinear V -dependence of the shot noise is important and
exact expressions for the spectral density should be employed. The shot noise of an SAN
junction is displayed in fig. 1 (hereafter, all the energies are expressed in units of ∆). For the
parameters employed in the figure, the noise in the sub-gap regime is rather small, starting
to grow near the superconducting gap. It is strongly dependent on the Coulomb interaction
which, as a general rule, suppresses it in comparison with its value appropriate for simple
tunneling through a noninteracting impurity. It is interesting to note that the role of U in
an SAN junction (in the regime of single occupancy) is similar to that of an exchange term
in a contact between a superconductor and a ferromagnetic metal. Therefore, our results
might be relevant for this junction as well. Note also that for clean point junctions there is a
saturation value for the shot noise spectrum density at large voltages [1]. This value is readily
reproduced from our formulas (9), (10) if we consider the limit Γ � ∆ at resonance (ε̃ = 0)
for bias voltage eV > ∆. The only contribution to the correlation function comes from energy
integration above the gap in eqs. (9), (10), yielding the saturated value

Kex =
4e2

πh̄
lim

eV →∞

{∫ eV

∆

dε
N(ε) − 1

(N(ε) + 1)2

}
=

4e2∆
15πh̄

, (15)

where N(ε) = |ε|√
ε2−∆2 .
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Fig. 1 – The shot noise K vs. bias V for an SAN junction at sub-gap voltages. The parameters are
ε0 = −1.5, Γ = 0.6, U = 2.45 and 2.713.

Fig. 2 – The shot noise K vs. bias V for an SAS junction at sub-gap voltages. The parameters are
ε0 = −1.5, Γ = 0.6, U = 2.4 and 2.7.

Shot noise in SAS junctions. – The current-noise spectral density of an SAS junction
is calculated numerically from eqs. (9), (10). For a constant bias V it is useful to discretize
the energy integration [17]. The energy domain in eqs. (9), (10), (11) is divided into slices of
width 2eV and integration is performed on an interval [0 < E < 2eV ]. The Green functions
become matrices with indices representing the different energy slices. Explicitly

(m|Ĝ−1(ε)|n) = δm,n

[
εm + γ− − τz ε̃+

iΓ
2
ĝR(εm)τz

]
iΓ
2

(m|ĝL(ε)|n)τz , (16)

(m|ĝL(ε)|n) = (ĝ11L (ε−m)P+ + g22L (ε+m)P−)δm,n +

+g12L (ε−m)τ+δn,m−1 + g21L (ε+m)τ−δn,m+1, (17)

where εm = ε+ 2 meV, ε±m = εm ± eV , the superscripts denote the matrix elements in Nambu
space and P± = (1 ± τz)/2. We dropped the constant phase difference φ0 = arg(∆L − ∆R)
which does not play a special role here.

We are mainly interested in the voltage dependence at the sub-gap region where MAR
are important and the way how this noise-voltage characteristic is influenced by Coulomb
interaction. The result is displayed in fig. 2. As can be deduced, there is a strong effect of the
Coulomb repulsion on the noise spectrum K in the sub-gap region. For voltages not too close
to 2∆ the noise is smaller for the higher value of U . This is similar to what happens with the
current itself, as can be judged by a glance at the I-V curve (fig. 3). And yet, the Fano factor
K/2eI is nearly independent of interaction (see fig. 4). This finding stresses the importance
of MAR process, analogous to what has been argued in junctions with low transparency [6].
We can suggest a simple explanation for such a behavior of Fano factor with interaction.
Indeed, Fano factor shows that the shot noise is larger than the Poisson noise. The ratio
of the shot noise to the Poisson noise depends on how many charge quanta are transferred.
These additional charge quanta appear in multiple Andreev reflections. The interaction shifts
the exact canonical value eV = 2∆/n of the voltages when new charge quanta appear, but
does not changes the number of these quanta.
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Fig. 3 – The I-V curves for an SAS junction at sub-gap voltages. Parameters are the same as in
fig. 2.

Fig. 4 – The Fano factor K/2eI vs. bias V for an SAS junction at sub-gap voltage. The parameters
are as in fig. 2.

It is also important to note that in our case we are dealing with the strong interaction that
put the energy level deep under the EF. Therefore we are in the Coulomb blockade regime
and the sub-gap current is vanishingly small at eV < ∆ (see figs. 2, 3). It is difficult to follow
the MAR processes for this region. However, for larger voltages eV < 2∆ we clearly see one
MAR with a step slightly shifted from 2∆ and two MAR near ∆ (see Fano factor, fig. 4).

As in the case of SAN junction, there is a saturated value for the spectral noise density
power also for SAS junctions. In the limit Γ � ∆ this saturated value is twice of that of
eq. (15).

In conclusion, based on a theory developed for the study of tunneling in SAS and SAN
junctions [17], the shot noise in such systems is calculated. Special attention is devoted to
analyzing the implications of the Coulomb repulsion between electrons in the dot on the tun-
neling process in general and the noise spectrum in particular. The theoretical treatment uses
a combination of Keldysh nonequilibrium Green function and path integral formalism, and the
interaction is handled within the dynamical mean-field approximation. General expressions
for the current noise spectral density correlation function are then derived.

The main results of the present research can be summarized as follows: 1). In SAN and
SAS junctions, the Coulomb interaction results in a nonzero value for the occupancy energy
(γ−) and thus always acts as a factor which lowers the transparency. Therefore in SAN
junctions the shot noise appears already at eV < ∆ (even if ε̃ = 0). The doubled value of the
Fano factor emerges in the limit Γ  ε̃, γ−. 2) In SAS junctions, the shot noise correlation
function in the sub-gap regime (eV < 2∆) is suppressed at higher values of U . The Fano
coefficient is nearly interaction independent, and unambiguously manifests the importance of
MAR.
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