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Abstract. – Novel effects emerge from an interplay between multiple Andreev reflections
and Coulomb interaction in a quantum dot coupled to superconducting leads and subject to a
finite potential bias V . Combining an intuitive physical picture with a rigorous path integral
formalism, we evaluate the current I through the dot and find that the interaction shifts the
subharmonic pattern of the I-V curve toward higher V . For a sufficiently strong interaction
the subgap current (at eV < 2∆) is virtually suppressed.

Recent progress in nanotechnology enables the fabrication and experimental investigation
of superconducting contacts of atomic size with few conducting channels [1, 2]. Transport
properties of such systems are essentially determined by the mechanism of multiple Andreev
reflections [3] (MAR) which is responsible for Josephson current as well as for dissipative
currents at subgap voltages. Theoretical analysis of MAR and current-voltage characteristics
in small superconducting junctions is reported in a number of papers [4–6]. In these works,
an essential ingredient is the assumption that electron-electron interaction inside the contact
can be neglected. It might indeed be justified provided a metallic contact is sufficiently large
and/or strongly coupled to massive superconducting leads.

However, in very small contacts (quantum dots), the Coulomb interaction is not effectively
screened, hence it is expected to substantially affect transport properties of the system. For
instance, it is well known both from theory [7] and experiment [8] that tunneling through a
quantum dot between superconductors can virtually be suppressed due to Coulomb effects.
Thus, to the fascinating physics of SNS and SIS junctions, one should add that of an SAS
junction composed of superconducting leads coupled by an interacting quantum dot [9].

In this work, the physics of interplay between MAR and interaction effects in SAS junctions
subject to a finite bias is exposed. It encodes the salient features of superconductivity, strong
correlations and nonlinear response. A simple intuitive physical picture is combined with a
rigorous path integral technique by which irrelevant degrees of freedom are eliminated and an
effective action is constructed (in the spirit of the Feynman-Vernon influence functional [10]).
Similar ideas proved to be useful elsewhere, see, e.g., [11, 12]. In the present context they
have been applied for the relatively simple case of an SAS junction at zero bias, focusing on
the equilibrium Josephson current [13, 14]. Our main achievements are: a) Derivation of a
c© EDP Sciences
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tractable expression for the nonlinear tunneling current in the presence of interactions and
b) prediction of novel physical effects pertaining to the I-V curve of an SAS junction at subgap
bias.

Let us commence with a simple and physically transparent picture of an interplay between
MAR and Coulomb effects. Consider a quasiparticle (hole) which suffers n Andreev reflections
inside the superconducting junction, thereby gaining an energy neV , where V is the voltage
bias. As soon as neV = 2∆ the quasiparticle leaves the junction and does not contribute
anymore to the subgap current. Hence, the number of Andreev reflections n for a given
voltage is n � 2∆/eV .

Consider first a highly transparent junction for which the transparency parameter Γ is
the largest energy scale (see definition of Γ after eq. (15)). Assume now that the Coulomb
interaction inside the junction is switched on. For our qualitative discussion it suffices to
account for it in terms of an effective capacitance C and its related charging energy EC =
e2/2C. At T = 0 and for eV ≤ EC a single electron tunneling (and, hence, also MAR) is
blocked, so in what follows we will consider the case eV > EC > 0. In order to leave the
junction, the quasiparticle should gain an energy neV equal to 2∆ + (n + 1)EC . The last
term originates from the fact that during the MAR cycle with a given n a charge (n + 1)e
is transferred between the electrodes. Hence, an additional energy (n + 1)EC should be
paid. This fixes the number n at a given voltage as n =

[
2∆+EC

eV −EC

]
. Thus, in the presence

of Coulomb interaction quasiparticles spend more time inside the junction and suffer more
Andreev reflections. At low temperature T , the transfer of charge (n + 1)e is blocked by
interaction at voltages eV ≤ (n + 1)EC . One then arrives at the condition eV ≤ eVth =

EC

(
1 +

√
1 + 2∆

EC

)
, under which the MAR current is suppressed due to Coulomb repulsion.

For EC � ∆ the voltage threshold is eVth �
√
2∆EC � EC , i.e. in this case MAR should be

blocked even at voltages much higher than EC/e.
Recall now that subharmonic peaks in the I-V curves occur each time the MAR cycle

with a given n is blocked. In the absence of interaction, these peaks are located at voltages
Vn = 2∆/en. It follows immediately from the above discussion that in the presence of Coulomb
interaction the peaks should be shifted to higher voltages, Vn = EC

e + 2∆+EC

en , i.e. one expects
the subharmonic peaks to be shifted by δVn = (EC/e)(1+1/n) towards larger V as compared
to the noninteracting case.

Thus, even a naive analysis of the interplay between MAR and Coulomb effects in junctions
with large Γ allows one to predict several novel effects which can be experimentally tested. In
cases when the Coulomb interaction in the dot is the largest energy, and for moderate values
of Γ, the estimation of the voltage threshold based on eq. (2) is not justified. The physics
resembles that of an Anderson center as a weak link and discussed in ref. [7] pertaining to
Josephson currents. Here we also expect that the main processes contributing to the subgap
current are MAR. Yet, while the number of MAR at low voltages is rather large, the current
remains small. This is due to the low effective transparency of the junction as a consequence
of interaction. The high-n processes are damped by higher powers of Γ. The interaction
introduces an important parameter which is proportional to the difference between spin-up
and spin-down population of the dot level and obeys a self-consistent equation ((20) below).
We now put these qualitative arguments on a firm basis by formulating a realistic model of
an SAS junction, followed by calculations of the resulting I-V characteristics.

The model and basic formalism. – Consider, in two dimensions, a quantum dot at r = 0
weakly coupled to (half planar) superconducting electrodes. The Hamiltonian of the system
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is decomposed as
H = HL + HR + Hdot + Ht. (1)

The Hamiltonians of the left (x < 0) and right (x > 0) superconducting electrodes have the
standard BCS form

Hj =
∫

dr[Ψ†
jσ(r)ξ(∇)Ψjσ(r)− λΨ†

j↑(r)Ψ
†
j↓(r)Ψj↓(r)Ψj↑(r)]. (2)

Here Ψ†
jσ (Ψjσ) are the electron creation (annihilation) operators, ξ(∇) = −∇2/2m−µ, and

j = L, R for left and right electrodes. The dot itself is modeled as an Anderson impurity
center with Hamiltonian

Hdot = ε0
∑

σ

C†
σCσ + UC†

↑C↑C
†
↓C↓ , (3)

where C†
σ and Cσ are dot electron operators. The impurity site energy ε0 (counted from the

Fermi energy µ) is assumed to be far below the Fermi level ε0 < 0. The presence of a strong
Coulomb repulsion U > −ε0 between electrons in the same orbital guarantees that the dot is
at most singly occupied.

Electron tunneling through the dot is described by the term

Ht = T
∑

j=L,R

∑
σ

Ψ†
jσ(0)Cσ + h.c., (4)

where T is an effective transfer amplitude.
Using the single-level Anderson model in our problem is justified if the dot level spacing

δ is large, in our case δ > 2∆ > eV . This requirement can be easily met in experiments.
E.g., in a recent experiment on tunable Kondo effect in GaAs/AlGaAs quantum dots [15], the
estimate is δ ≈ 0.15 meV. Thus, for ∆ ≈ 1 K the above inequality is satisfied. With smaller
dots [8] δ can be pushed higher.

The dynamics of the system is completely contained within the evolution operator on the
Keldysh contour K, which consists of forward- and backward-oriented time paths. Its kernel
J is given by a path integral,

J =
∫

DΨ̄DΨDC̄DC exp[iS], (5)

over Grassman fields corresponding to the fermion operators, with Ψ̄ = (Ψ†
L↑,Ψ

†
L↓,Ψ

†
R↑,Ψ

†
R↓)

and similar definitions for Ψ, C̄ and C. The action S =
∫

K
Ldt, where L is the Lagrangian

pertaining to the Hamiltonian (1).
In order to avoid dealing with fields defined on both branches of the Keldysh contour, one

performs a rotation C → c and Ψ → ψ in Keldysh space:

c̄ = C̄σzQ̂
−1, c = Q̂C; Q̂ = 1√

2

(
1 −1
1 1

)
(6)

and similarly for ψ̄ and ψ. Here σz is the third Pauli matrix operating in Keldysh space.
The new Grassman variables c̄, c, ψ̄, ψ are now defined solely on the forward time branch.
Averages of the corresponding products of these fields determine the standard 2 × 2 Green-
Keldysh matrix composed of retarded (ĜR), advanced (ĜA) and Keldysh (ĜK) Green functions
which, in turn, are 2× 2 matrices in spin (Nambu) space.
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The path integral (5) is expressed in terms of the new Grassman variables in the same
way, and the action S is now defined as S = Sdot + S0[ψ̄, ψ], where

Sdot =
∫

dt
[
c̄

(
i
∂

∂t
− ε̃τz

)
c+

U

2
(c̄c)2

]
, (7)

S0 =
∫

dt
∑

j=L,R

[ ∫
j

drψ̄j(r, t)Ĝ−1
j ψj(r, t) + (T ψ̄j(0, t)τzc(t) + c.c.)

]
, (8)

where ε̃ = ε0 +U/2 and the Pauli matrices τx,y,z act in Nambu space. The operator Ĝ−1
L,R has

the standard form
Ĝ−1

L,R(ξ) = i
∂

∂t
− τzξ(∇) + τ+∆L,R + τ−∆∗

L,R, (9)

where τ± = (τx ± iτy)/2 and ∆L,R are the (spatially constant) BCS order parameters of the
electrodes.

Effective action and transport current. – The basic algorithm of our approach is to
integrate out the electron variables in the superconducting electrodes which play the role of
an effective environment for the dot. This procedure yields the influence functional F [c̄, c] for
the c-fields in the dot:

F ≡ exp[iSenv[c̄, c]] =
∫

Dψ̄Dψ exp[iS0[ψ̄, ψ]], (10)

which is evaluated exactly. Gaussian integration in (10) is carried out separately for L- and
R-electrodes.

Consider, say, the left superconductor and omit the subscript j = L for the moment. The
first step is to integrate out the fermion fields inside the superconductor thereby arriving at an
intermediate effective action in terms of the fermion fields defined on the surface x = 0. It is
useful at this point to Fourier transform the fields ψ(x, y) along the (translationally invariant)
y direction. The problem then reduces to a one-dimensional one with fermion fields ψk(x)
where k is the quasiparticle momentum in the direction normal to x. In order to evaluate the
Gaussian integral, we will look for a saddle point field ψ̃k(x) defined by Ĝ−1(ξx)ψ̃k(x) = 0,
where ξx = −(1/2m)(∂2/∂x2)− µk and µk = µ− k2/2m.

Decomposing ψ̃ into bulk and surface fields ψ̃k(x) = ψb
k(x) + ψk(0) and integrating out

ψb
k(x) we arrive at the intermediate effective action S̃ of a superconductor lead expressed only

via the ψ-fields at the surface,

S̃ = i
∫

dt
∫

dt′
∑

k

vx
2
ψ̄k(0, t)τz ĝ(t, t′)ψk(0, t′). (11)

Here vx =
√

2µk/m and

ĝ(t, t′) = exp
[
iϕ(t)τz

2

] ∫
ĝ(ε)e−iε(t−t′) dε

2π
exp

[
− iϕ(t

′)τz
2

]
, ĝ =

(
ĝR ĝK

0̂ ĝA

)
, (12)

where ϕ(t) = ϕ0 + 2e
∫ t
V (t1)dt1 is the time-dependent phase of the superconducting order

parameter and V (t) is the electric potential of the electrode. The Fourier-transformed retarded
and advanced Eilenberger functions have the standard form

ĝR/A(ε) =
(ε± i0)τz + i|∆|τy√

(ε± i0)2 − |∆|2
, (13)
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and ĝK = (ĝR − ĝA) tanh(ε/2T ) is the Keldysh function.
The second step in our derivation amounts to integrating out the ψ-fields on the surface.

The integral ∫
Dψ̄(0)Dψ(0) exp

[
iS̃ + i

∫
dt(T ψ̄k(0)τzc+ c.c.)

]
(14)

can be easily evaluated. Carrying out exactly the same procedure for the right electrode,
making use of the identity ĝ2L,R = 1 and adding up the results we obtain

Senv = iΓ
∫

dt
∫

dt′c̄(t)τz ĝ+(t, t′)c(t′). (15)

Here and below we define Γ = 4
∑

k T 2/vx and ĝ± = (ĝL ± ĝR)/2. Equation (15) is one of
our central results. It enables the expression of the kernel J (5) solely in terms of the fields c̄
and c:

J =
∫

Dc̄Dc exp[iSdot + iSenv], (16)

where Sdot + Senv ≡ Seff [c̄, c] represents the effective action for a quantum dot between two
superconductors.

In order to complete our derivation, let us express the current through the dot in terms
of the correlation function for the variables c̄ and c. Starting from the general expression for
the current and representing the correlator for the ψ-fields in terms of that for the c-fields, we
find

I =
eΓ
4
Tr[ĝ−〈c̄c〉|K + h.c.] . (17)

Thus, the problem of calculating the current through an interacting quantum dot is reduced
to that of finding the correlator 〈c̄c〉 in the model defined by the effective action Seff =
Sdot + Senv (7), (15). It should be emphasized that our approach is appropriate for studying
both equilibrium and nonequilibrium electron transport. In the noninteracting limit U → 0
the results of previous studies can be easily recovered within our formalism.

Mean-field approximation. – Consider now the case U �= 0 and decouple the interacting
term in (7) by means of the Hubbard-Stratonovich transformation [13, 14] introducing new
scalar fields γ±. The kernel J now reads

J =
∫

Dc̄DcDγ+Dγ− exp[iS[γ] + iSeff |U=0], (18)

S[γ] =
∫

dt
(
c̄γ+σxc+ c̄γ−c−

2
U
γ+γ−

)
. (19)

Here we will assume that the effective Kondo temperature [7] TK =
√
UΓ exp [−π|ε0|/2Γ] is

smaller than the superconducting gap ∆. In this case interactions can be accounted for
within the mean-field approximation. The fields γ± in (19) are considered as time-independent
parameters determined self-consistently from the saddle point conditions δJ/δγ± = 0:

γ+ =
U

2

∫
dt〈c̄c〉, γ− =

U

2

∫
dt〈c̄σxc〉. (20)

As it turned out from our numerical analysis, the effect of the parameter γ+ is merely the
renormalization of the tunneling rate Γ. Absorbing γ+-terms in Γ we arrive at the final
effective action of our model

Seff [γ] =
∫

dε
2π

∫
dε′c̄M̂(ε, ε′)c, M̂(ε, ε′) = δ(ε− ε′)(ε+ γ− − τz ε̃) + iτzΓĝ+(ε, ε′). (21)
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Fig. 1 – The I-V curves for an SAS junction at subgap voltages. The parameters are ε0 = −1.5,
Γ = 0.6, U = 2.4 (dotted line) and 2.7 (solid line).

The physical justification for using the mean-field approximation is the suppression of
the Kondo resonance by superconducting order parameter. Such a suppression occurs due
to strong decreasing of the density of states at the Fermi energy in the region of order ∆.
Thus, the number of low-energy electrons which are able to screen the local impurity spin
is small [16, 17]. Therefore, we can expect that the damping of the screening enlarges the
parameter space (ε0, U ) for which the single occupancy (dublet states) becomes the ground
state of the system. Indeed, the complete solution includes competition between singlet state
responsible for Kondo physics that cannot be obtained by the mean-field approximation (MF)
and doublet states which can be reached by MF. These doublet states whose characteristics
depend on the applied voltage were obtained by solving eq. (20) as a function of bias. In
s-superconductors both the spin-up and spin-down electrons of the Cooper pair interact with
the local spin and the new important parameter which distinguishes which doublet or singlet
states are relevant is the ratio ∆/TK. Thus, roughly, one may say: if ∆ > TK then the doublet
states is preferable and the MF can be used; if ∆ ≤ TK then the Kondo singlet is stabilized
and the other methods like noncrossing approximation or variational wave function approach
are more suitable. Such reasoning was used for example in recent works on the subject (see
refs. [13,17]). In our case even for largest value of U = 2.7, for all Γ and for ε/∆ = 1.5 which
we used, the criterion ∆ > 2TK (it was obtained in the above-mentioned works) is fulfilled.

Subgap current in SAS junctions. – In order to find the correlator 〈c̄c〉 = iM̂−1 and
the current (17), we numerically inverted the matrix (21) and simultaneously solved the self-
consistency equation for γ− (20). The resulting I-V characteristics for an SAS junction in the
presence of Coulomb interaction are displayed in fig. 1. One observes all the main features
which characterize an interplay between MAR and Coulomb interaction: i) at relatively low
voltages the current is essentially suppressed due to interaction, ii) for higher voltages (but
still eV < 2∆) MAR is possible and results in a nonzero subgap current which increases with
V and iii) the subharmonic peaks in the differential conductance occur and are shifted to
higher voltages as compared to the noninteracting case. An increase of U results in a stronger
current suppression and a more pronounced shift of the subharmonic peaks. Close to the gap
edge eV = 2∆ the current shoots up sharply.

The parameters used in our numerical analysis are chosen in a way to observe all the key
features i), ii) and iii). The transparency of the junction is chosen to be Γ = 0.6 and the
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current is evaluated for U = 2.4, and U = 2.7. Here we notice that the MAR were considered
for interacting quantum dot also in ref. [18]. In this work Γ � 1 and the factorized form
for the effective tunneling rate was suggested . In our case all higher-order virtual processes
take place and must be included into calculations of the current. Thus the expressions for the
current are much more complicated and cannot be represented in a factorized form. The same
is correct for the saddle point dynamical mean field equations that defined the position and
the width of doublet states. The case U− >∞ was considered in [19] in the limit TK � Tc.

In summary, we presented a detailed analysis of an SAS junction at finite bias and de-
rived its effective action using Keldysh path-integral techniques. Our approach applies for
both equilibrium and nonequilibrium current transport in the presence of interactions. The
repulsive Coulomb interaction leads to novel effects in the pattern of the subgap current. In
particular, it shifts the peaks of the differential conductance toward larger bias. When the
interaction is sufficiently strong the subgap current is highly suppressed. Our predictions can
be directly tested in experiments with superconducting quantum dots.
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