The structure of plant communities

• Observing and describing vegetation
• Community structure and diversity
• Species richness
• Dominance hierarchies
• A field example
What shapes plant communities?

- How do plant communities vary in space?
- And change in time?
What shapes plant communities?

- What are the internal and external causes of the variation in vegetation states?
Observing plant communities

• How do we describe plant communities?
• What do we measure?
• How do we sample?
Sampling plant communities

- Sampling shape
 - transects
 - quadrats
 - Points along line

- Sample size
 - depends on plant and patch size
 - plant density
 - minimal sample area assumed to capture most or all species in the entire assemblage (*problematic!*)

- Sample placement
 - regular, contiguous,
 - random, stratified
 - depending on landscape patchiness
Sampling scale

- Arbitrary sampling (random)
 reflects patchiness implicitly, but ignores patch-specific differences

- Stratified sampling (random sets)
 within different patch types, ≥ 2

- Regular sampling (grids or lines)
 captures both patchiness and differences

- Two spatial scales (*spatial ‘window of observation’*)
 - Resolution (*grain – smallest unit of observation*)
 - Extent (*scope – largest actually observed area*)

can be extended by nested hierarchy of replication
Describing plant communities

- Physical structure
 - Dimensions
 horizontal and vertical
 - Biomass
 above- and below-ground
 - Abundance
 plant density, cover

- Biodiversity
 - Number of species
 or other taxa or functional groups
 - Abundance per species or functional group

Most commonly used is species diversity
Biodiversity

Individual plants within communities

➢ Taxonomic groups
 • Species, genera, (sub)families, orders

➢ Functional groups
 • Primary producers, litter producers, N-fixers

➢ Species traits
 • By developmental, morphological and physiological characteristics

➢ Species responses
 • To various environmental factors

➢ Life-forms
 • Herbs (perennial/annual graminoids and forbs, incl. legumes), woody plants (sub-shrubs, shrubs, trees, rosette trees), vines, stem-succulents, epiphytes

 • Raunkiaer’s (1907) life-form spectra based on location of renewal buds: Phanerophytes, Chamaephytes, Hemicryptophytes, Cryptophytes, Therophytes
Other forms of biodiversity

Other levels of organization

- Genetic diversity
 - of genotypes or genes
 - within and among populations

- Biochemical, metabolomic diversity (?)
 - within organisms, populations, communities

- Landscape diversity
 - Landscape patches
 - Successional stages
 - Physical and biogeochemical gradients
Physical structure

- Abundance
 - Plant density
 - Total biomass
 - Ground cover (aerial, basal)

- Canopy layers
 (Synusia)

Continuous variables (scalars)

Straightforward comparisons between communities
Species diversity

Species richness
(number of different species)

Abundance hierarchies
(differences in abundance added)

Species composition
(species identities added)

Species incidence-abundance
(spatial distribution of species added)
Species richness

- Number of species depends on sample size (density/sample)

![Graph showing species richness vs. number of individuals](resampling.png)

![Graph showing seed traps in herbaceous communities](seed_traps.png)

- and on area

![Graph showing Mauritius trees](mauritius_trees.png)

- Correction for density
- Fisher’s α
- Rarefaction

(equal resampling from all samples)
Species richness increases with area due to

- Greater number of individuals sampled (sample size N)
- More different habitats (patch types)
- "Provincial" effects (entering a different biome)
Cumulative species-area curves

The way S increases with area depends on:

- The mean number of species per sample,
- The similarity between samples and
- The incidence (presence) of the species among the samples
Abundance

• Abundance hierarchies and rank dominance
 • Dominant and subordinate species
 ➢ Based on importance values $p_i = n_i/N$ of species i

 • Models assuming an underlying species abundance distribution
 ➢ Used for Fisher’s α to correct species number for density
Dominance structure

• Diversity indices
 ➢ Simpson: $D = 1/(\Sigma p_i^2)$
 ➢ Shannon: $H = -\Sigma p_i \ln(p_i)$

Indices are combinations of Species number S and Equitability E, J

• Equitability (evenness)
 ➢ Simpson: $E = D/S = (1/(\Sigma p_i^2))/S$
 ➢ Shannon: $J = H/\ln(S) = - (\Sigma p_i \ln(p_i))/\ln(S)$

Great Basin shrubland Chihuahuan Desert scrub
Equitability

- Reflects dominance structure
- Simpson’s E and Shannon’s J reflect different aspects:
 - ΔE - differences in dense species (dominants)
 - ΔJ - differences in sparse (subordinate) or dominant, but not intermediate species

![Graph showing the relationship between species importance (p_i) and equitability measures ($Y = f(p_i)$).](image)

Measures of vegetation structure

• Physical variables
 - Plant density N, Total biomass, Ground cover
 - Measure overall structure

Scale-independent scalars: pooling = averaging

• Species richness
 - Species number S, Density-corrected S_d, Rarefaction, Fisher’s α
 - Measure diversity within samples

Scale-dependent vectors: pooling ≠ averaging

• Equitability
 - Simpson’s E and Shannon’s J
 - Measure dominance structure within samples
 - Comparisons show differences due to dense or sparse species

Scale-dependent vectors: pooling ≠ averaging
A field example

Three patch types
- 1x0.3m samples
- 20 replications

Matrix
- few plants and species
- abundant dominants, sparse species equitable

Mounds
- denser and richer in species
- less dominance

Pits
- also denser and richer in species
- sparse species less equitable