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Preface

The work and findings described in this thesis were carried out in the AtomChip group [1]

at Ben-Gurion University of the Negev, Beer-Sheva, Israel. At the time this work started,

the AtomChip group was focused on an effort to establish a laboratory for ultra-cold atoms

[2, 3, 4, 5, 6]. When I joined the group, my first task was to design and build a laser

system that can provide two phase-coherent laser beams with a precise and tunable frequency

difference of several GHz. Such a laser system, typically called a “Raman laser”, is an

important tool for manipulating both ultra-cold atoms (e.g. qubit rotations) and room-

temperature alkali metal vapor in vapor cells (e.g. coherent population trapping). See, for

example [7, 8] and references therein.

We realized the Raman laser (design, construction and operation) based on a modulation-

enhanced external cavity diode laser (ECDL) (see App. A). In order to test its capabilities

we decided to set up a versatile experimental system for studying the interaction of 87Rb va-

por with a variety of electromagnetic fields (light, MW, RF) in a well controlled environment

of magnetic fields (see App. B and C).

Our work attracted the attention of the Israeli Aerospace Industries, and led to a 4-year

joint R&D project for the development of optical magnetometry [9] technology. (Since my

part in this project was substantial, the university granted me a three-year leave-of-absence

from my Ph.D. work.)

During the development of our experimental setup, we came upon the need for a fast

and accurate method to measure the population of hyperfine states of room-temperature

alkali vapor – in our case, 87Rb. Although the interaction of alkali vapor with light has been

studied for more than 60 years, we could not find an accurate enough method in the literature,

so we had to develop our own method. This development effort led us to the discovery of

the magic frequency, which is the main subject of this thesis. At this magic frequency, the

absorption of a linearly polarized light beam by alkali vapor atoms is independent of the

population distribution amongst their Zeeman sub-levels and the angle between the light

beam and an external magnetic field.

Using the magic frequency, we present and analyze a simplified absorption model in

vi
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Ch. 3, with a review of helpful background material in Secs. 2.8 – 2.11 and in App E.

The magic frequency provides the basis for a novel method of measuring the population in

the hyperfine ground states of alkali atoms, as described in Ch. 4, with helpful background

material in Sec. 2.7.5 and in App. B.

In Chap. 5 we present an experimental demonstration of the magic frequency. The

relevant background material can be found in Secs. 2.5 and 2.10.2 and in Apps. B and D.

A general theoretical introduction in presented in sections 2.1 – 2.7, and some related

experimental work (modulated laser subsystem; vapor cell filling system) is presented in

Apps. A and C.



Abstract

In this thesis I analyze theoretically and demonstrate experimentally the existence of a

magic frequency for which the absorption of a linearly polarized light beam by alkali vapor

atoms is independent of the population distribution amongst their Zeeman sub-levels and the

angle between the light beam and an external magnetic field. I show that the phenomenon

originates from a cancellation of the contributions of higher moments of the atomic density

matrix, and is described using the Wigner-Eckart theorem and inherent properties of Clebsch-

Gordan coefficients.

I present a simplified model for the absorption of a light beam by a vapor of alkali

atoms and use it to numerically study the properties of the magic frequency. I find that the

magic frequency is very weakly dependent on the vapor temperature, and demonstrate that

absorption of a light beam within 10 MHz from the magic frequency is also independent of

the population distribution amongst the Zeeman sub-levels and the angle between the beam

and an external magnetic field.

Based on the magic frequency I build a measuring system for the hyperfine population,

demonstrate that it can measure the population with a time resolution of a few microseconds,

and validate that its stability and sensitivity are better than 1%.

A versatile experimental system was built for studying the interaction of 87Rb vapor

with a variety of electromagnetic fields (light, MW, RF) in a well-controlled environment of

DC magnetic fields. I describe the design, construction and operation of the system, which

includes an RF source, a MW generator, several coils that produce DC magnetic field and

three lasers, one of which is a modulated Raman laser capable of producing two coherent

beams with frequencies spaced by several GHz. The Raman laser employs an innovative

method that enhances the amplitude of sidebands generated by the modulation of the feed

current of the laser diode with a microwave current.

I also outline the design, construction and operation of a vapor cell-filling system that

is capable of producing Rb and Cs vapor cells with paraffin wall-coating and/or with buffer

gas. The system includes a demonstration of a cell filling method that may lead to low-cost,

high-yield vapor cell production.
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Chapter 1

Introduction

Interaction of light with alkali metal vapor has an important role both in the study of
fundamental physics and in many technological applications. In 1950, A. Kastler proposed
the idea of using photons to induce order in an atomic ensemble by scattering resonant
light [10, 11]. By appropriately choosing the frequency and the polarization of the pumping
light, it is possible to generate a desired distribution of population in the atomic energy
sub-levels of the atoms. A sodium vapor cell was used by J. P. Barrat et al. to demonstrate
spin-polarized optical pumping in 1954 [12]. Modulation of a light beam by a precessing
magnetic moment created by optically-pumped alkali atoms was suggested and realized by
H. G. Dehment [13]. Further work by W. L. Bell and A. L. Bloom [14, 15], R. H. Dicke [16]
and others during the late 1950s paved the way for modern frequency standards and optical
magnetometers.

One of the first technological applications is the vapor-cell frequency standard (atomic
clock). Commercially available since the 1960s [17], these standards were used in the early
space missions, and are still extensively used today. There is a constant, on-going R&D
effort to both miniaturize them and improve their performance (see [18, 19, 20, 21, 22] and
references therein).

The introduction of solid-state laser diodes in the late 1980s boosted both the applied
and the fundamental research of light-matter interaction. Optical magnetometers, typically
based on the interaction of several laser beams with an alkali vapor, became the most sensitive
available magnetometers, and their improvement continues to this very day [9, 23, 24, 25,
26, 27].

Other important examples of related phenomena are macroscopic entanglement, which
was demonstrated using cesium vapor cells [28]; the nonlinear light-matter phenomena known
as electromagnetically induced transparency (EIT) [7], which led to slow and stopped light
[29], and to the storing of pulses of light, as well as images, in alkali vapor cells [30, 31].

In view of the central role of alkali vapor cells, detailed understanding of the physics of
the vapor and its interaction with light is important. Already in 1957, U. Fano introduced
the density matrix and the polarization moments as the main tools needed to describe the
state of the vapor and its evolution [32, 33]. Additional reviews of this approach can be
found in W. Happer’s 1972 paper [34] and in a 1977 paper by A. Omont [35].

The early studies of the state of the vapor were focused on measuring the degree of
optical pumping and the relaxation processes. H. G. Dehmelt proposed in 1957 a scheme to

1



2 CHAPTER 1. INTRODUCTION

measure the spin-relaxation time of optically-pumped alkali vapor [36], reporting a relaxation
time of ∼ 200 ms. An improved method, known as “evolution in the dark” was described
in 1959 by W. Franzen [37], followed by detailed studies conducted in France during the
early 1960s, mainly by M. A. Bouchiat and J. Brossel (see [38] and references therein). A
comprehensive summary of these early methods can be found in the 1972 review by W.
Happer [34]. Such measurements are still done today, reporting relaxation and coherence
times of up to one minute [39, 40].

High-rank polarization moments and associated high-order coherences have attracted
considerable attention since the late 1990s (see [41] and references therein), and several
methods were developed to address and measure them (e.g. [41, 42]). Knowing all the
polarization moments is equivalent to full knowledge of the density matrix and, thereby,
all the observables of the system. However, to the best of our knowledge, there are no
methods to accurately measure the zero-order polarization moment (which is proportional
to the relative population of the hyperfine ground state), so the picture is not complete.

The main difficulty in measuring the population of atoms in their hyperfine ground
states is that the interaction of light with room-temperature alkali vapor depends not only
on the population, but also on several other parameters including the distribution of the
population between the Zeeman sub-levels. Thus, measuring the hyperfine population de-
pends on assumptions regarding the population distribution amongst the Zeeman sub-levels.
It was during the development and upgrade of our population measuring method that we
discovered a magic frequency – a frequency at which absorption of linearly polarized light by
alkali atoms depends only on the hyperfine population, and can serve as a basis for a fast
and accurate population measuring method. This method has potential for probing the full
density matrix and may even provide interesting insight concerning group theory.

The body of this thesis is devoted to the discovery of the magic frequency and its
applications, as follows: In Ch. 2 we present the necessary theoretical background related
to the features of two-state and multi-state systems, to the irreducible representation of the
density matrix via polarization moments, and to the interaction of electromagnetic radiation
with alkali atoms. Chapter 3 is devoted to the description of our relative absorption model
and to the discovery of the magic frequency. Based on our model, we analyze the absorption
of light by alkali vapor near the magic frequency both numerically and analytically, and
study the properties of the magic frequency. In Ch. 4 we show how we utilize the magic
frequency to develop a fast and accurate method to measure the population of the hyperfine
states of alkali vapor and in Ch. 5 we present an experimental demonstration of the magic
frequency. Ch. 6 summarizes our work and and provides an outlook for further studies in
this field.

Supplementary parts of our work and results are presented in the appendices. We
present the modulation-enhanced ECDL subsystem in App. A. Appendix B provides full
details of the various features of our versatile experimental system, and in App. C we describe
our vapor cell filling system. App. D describes our fast current shutters.



Chapter 2

Theory

In this chapter we present the necessary theoretical background related to our research. Our
aim here is to provide a coherent summary of the relevant material and to establish the
notation that we will use throughout this thesis.

In Secs. 2.1 –2.6 we provide a basic description of the main aspects of the interaction
of electromagnetic radiation with two-state atoms. Following a review of the Schrödinger
equation for a two-state atom subjected to a perturbative external field, we first present
the simple case of population oscillations resulting from a Heaviside step function of the
external field (“Majorana population oscillations”, see Shore [43], §3.4). We then review
briefly the concept of the density matrix, present the Bloch sphere, Rabi oscillations and
Ramsey fringes, and then discuss the dressed states concept.

Next (Sec. 2.7) we introduce the three-state Λ scheme, and provide a deeper insight into
electric dipole transitions, magnetic dipole transitions, and the Rabi frequency. After a short
review of optical pumping, we present important three-state phenomena: Raman transitions
and electromagnetically induced transparency (EIT). (Some parts of the material presented
in this section are typically included in the discussion of two-state atoms, but we prefer to
incorporate it into our three-states discussion).

In Secs. 2.8 – 2.9 we review angular momentum operators and angular momentum
states, present the concept of irreducible tensor operators and introduce the Wigner-Eckart
theorem. We then (Sec. 2.10) describe the state structure of the 87Rb atom. Here we also
review Doppler broadening, and calculate the fraction of 87Rb atoms at a temperature T
that interact with near-resonant light – a result needed for the presentation (in Sec. 3.1) of
our simplified absorption model. We then present the polarization moments (Sec. 2.11) and
use the state structure of the 87Rb atom to demonstrate some of them.

In the last section of this chapter (Sec. 2.12) we present a calculation of the dependence
of the absorption of near-resonant light by a two-state atom on the dipole matrix element – an
additional result we need for the presentation of our simplified absorption model.

This chapter is based mainly on works of Profs. Bruce W. Shore [43, 44], Daniel A.
Steck [45, 46] and Dmitry Budker et al. [9, 47, 48].
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4 CHAPTER 2. THEORY

2.1 The Schrödinger equation for a two-state atom

Let us look at an isolated atom which can be described by a stationary Hamiltonian H0 and
a complete set of orthonormal eigenfunctions (or eigenstates) |ψn〉 of H0 such that:

H0|ψn〉 = E0
n|ψn〉 (2.1)

and

〈ψn|ψm〉 = δm,n. (2.2)

Any state |Ψ〉 of the system can then be described as a linear combination of the |ψn〉’s:

|Ψ(t)〉 =
∑
n

Cn(t)|ψn〉, (2.3)

where

Cn(t) = 〈ψn|Ψ〉 ≡ 〈n|Ψ〉. (2.4)

The Cn(t)’s are complex numbers representing probability amplitudes. The probability Pn(t)
of finding the system in state |ψn〉 at time t is:

Pn(t) = |Cn(t)|2 = |〈n|Ψ〉|2 (2.5)

and, since |ψn〉 is a complete set, ∑
n

Pn(t) = 1. (2.6)

Obviously, when there is no interaction between the isolated atom and its environment the
system is stationary and all the Pn(t)’s are constants. It follows that only the phases of the
Cn(t)’s change with time for an isolated system:

Cn(t) = Cn(0)e−iE
0
nt/~. (2.7)

When we study light-matter interaction, we are typically interested in situations where
we manipulate the atom with controllable, time-dependent external fields. In most cases,
interactions with such external fields are small relative to the internal forces that define the
stationary eigenstates |ψn〉 of H0. In other cases, those interactions are strong, but last a
very short time. When these conditions are met, we may use the perturbative approach.
(Descriptions of the perturbation theory can be found in most quantum mechanics reference
texts; see, for example, [49], Ch. 8). With this approach, it is useful to define the Hamiltonian
H, describing both the isolated atom and its interaction with the applied external fields, as:

H(t) = H0 + V (t). (2.8)

Then the Schrödinger equation

i~
∂

∂t
Ψ(t) = H(t)Ψ(t) (2.9)
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describes the time evolution of the atomic state |Ψ(t)〉 under the influence of the external
interaction V (t), which may also be represented by its matrix elements Vnm(t):

Vnm(t) = 〈ψn|V (t)|ψm〉 (2.10)

with, since V (t) is Hermitian,
Vnm = V ∗mn. (2.11)

Let us now focus our attention on an atomic two-state system. Such a system is, by
definition, fully described by the two states: |0〉 ≡ |ψ0〉 and |1〉 ≡ |ψ1〉. Using Eq. (2.3)
we can expand any wave function |Ψ(t)〉 in |0〉 and |1〉. Substituting this expansion in the
Schrödinger equation [Eq. (2.9)] yields the following equation for the expansion coefficients:

i~
d

dt

(
C0(t)
C1(t)

)
=

(
E0

0 + V00(t) V01(t)
V10(t) E0

1 + V11(t)

)(
C0(t)
C1(t)

)
. (2.12)

Once V (t) and the initial conditions are specified, Eq. (2.12) provides the time evolu-
tion of the two-state system subject to the external interaction.

2.2 Coherent interaction – Majorana population oscil-

lations

An isolated two-state atom that at some time t0 is in one of the eigenstates of its Hamilto-
nian remains indefinitely in its initial condition, as long as there is no interaction with its
environment. Conversely, to illustrate some of the phenomena that occur when such an in-
teraction is present, let us subject a two-state atom to a very simple external time-dependent
potential: zero for t ≤ 0 and constant afterwards. For example, consider an atomic beam
that moves rapidly from a field-free region to an area with a constant electric or magnetic
field (see [43], § 3.4). The potential presented in Eq. (2.13) may be a good approximation
of the sudden change in the potential energy the atoms in that beam are subjected to:

V =


(

0 0
0 0

)
t ≤ 0

(
1
2
~(2ω̄ − ω0)− E0

0
1
2
~Ω

1
2
~Ω 1

2
~(2ω̄ + ω0)− E0

1

)
t > 0

(2.13)

where ~ω0 is the energy difference between the two states, ~ω̄ is the average of the energies of
the two states and Ω is a real number where ~Ω specifies the sudden change in the potential
energy due to the external field. As we will see below [Eq. (2.16)], this change in the
potential causes population oscillations, and the value of Ω is related to the frequency of
those oscillations. This Ω is, in a sense, the static counterpart of the Rabi frequency (also
marked Ω) that characterizes the interaction between a two-state atom and an oscillating
external excitation (see Sec. 2.5).

Substituting Eq. (2.13) into Eq. (2.12) and setting ~ω̄ = 0 (the zero point of the
energy is arbitrary) we get:

i
d

dt

(
C0(t)
C1(t)

)
=

1

2

(
−ω0 Ω
Ω +ω0

)(
C0(t)
C1(t)

)
, (2.14)
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which leads to:

C̈1(t) = −1

4
Ω̃2C1(t)

and Ω̃ =
√

Ω2 + ω2
0.

(2.15)

Solving Eq. (2.15) for the Cn(t)’s with the initial conditions C0(0) = 1, C1(0) = 0, and
calculating the probability P1(t) of finding the system in the upper state we get:

P1(t) =
1

2

(
Ω

Ω̃

)2

[1− cos(Ω̃t)]. (2.16)

So we see that by adding this simple interaction, we cause periodic oscillations in the two-
state probabilities. When the interaction is weak (Ω � ω0) the oscillation amplitude is
small, and its frequency is close to ω0. When the interaction is strong (Ω � ω0) the entire
population moves periodically between each of the two states, and its oscillation frequency
is close to Ω. Similar oscillations of the two-state atom (typically called “Rabi oscillations”
– see Sec. 2.5) are produced by almost any external excitation.

2.3 Pure / mixed states and the density matrix

The periodic probability oscillations described in the previous section cannot be observed by
one measurement of a single two-state atom. To notice these oscillations we need an ensemble
of such atoms (and several other conditions that we will summarize at the end of the next
section). In this section we describe the basic tools required to deal with an ensemble of
quantum states, following Hideo Mabuchi’s 2001 on-line course notes [50]. (Note that many
observations of a single system constitute an ensemble).

Let’s assume that at time t = 0 we can define an ensemble of two-state atoms through
a set of wave functions |Ψi(0)〉, each representing a fraction pi of the atoms in that ensemble
(
∑

i pi = 1). We can then define the density operator at time t = 0 as:

ρ̂(0) =
∑
i

pi|Ψi(0)〉〈Ψi(0)|. (2.17)

It can be shown that the equation of motion of ρ̂(t) is given by the Liouville equation (see
[46], § 4.1):

i~
∂

∂t
ρ̂(t) = [H, ρ̂(t)] (2.18)

and that the expectation value of any operator Â is given by

〈Â〉 = Tr(ρ̂Â). (2.19)

If one of the pi equals 1, say p1 = 1, then |Ψ1〉 represents all the atoms in the ensemble,
and we have what is usually called a “pure state”. Otherwise, we have a “mixed state”.
(“Pure ensemble” and “mixed ensemble” seem to be more suitable names, but we will stick
with tradition.)



2.4. THE BLOCH SPHERE 7

2.4 The Bloch sphere

Figure 2.1: The Bloch sphere – a radius = 1 sphere with its center at the origin. The angles
θ ans φ are the spherical coordinates of a point on the Block sphere.

We can geometrically represent any state of an ensemble of two-state systems on a
three-dimensional unit sphere, known as the Bloch sphere (see Fig. 2.1). Any state |Ψ〉 of a
two-state system can be written as [see Eq. (2.3)]:

|Ψ〉 = C0|0〉+ C1|1〉. (2.20)

Ignoring the global phase, we can re-write Eq. (2.20) as:

|Ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

0 ≤ θ ≤ π

0 ≤ φ ≤ 2π.

(2.21)

The two angles θ and φ represent both the pure state |Ψ〉 and a point on the Bloch sphere
(Fig. 2.1). Thus we can represent the pure state |Ψ〉 as a point on the Bloch sphere.

The “north pole” (θ = 0) represents the pure state |0〉 while the “south pole” (θ = π)
represents the pure state |1〉. Once we establish the correspondence between states and
the Bloch sphere, we can use the Bloch sphere to visualize the system and demonstrate its
evolution (both θ and φ may vary with time).

We now introduce the spin operator S and the Bloch vector v, (which is the unit vector
connecting the origin to a point (θ, φ) on the Bloch sphere) to link together the pure and
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mixed states, the Bloch sphere, and the density operator:

S ≡ ~
2
σ ≡ ~

2
(σx, σy, σz) ≡

~
2

[(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)]
. (2.22)

The Bloch vector components, in Cartesian coordinates, are:

v = (vx, vy, vz) = (sin θ cosφ, sin θ sinφ, cos θ). (2.23)

Calculating the expectation value 〈S〉 for the pure state represented by (θ, φ) we get:

〈S〉 =
~
2

(sin θ cosφ, sin θ sinφ, cos θ). (2.24)

Combining equations (2.19),(2.23) and (2.24) we see that for a pure state we may have:

〈S〉 = Tr(ρ̂S) =
~
2
v, with |v| = 1. (2.25)

Equation (2.25) motivates the definition of the generalized Bloch vector vB (both for pure
and for mixed states) as:

~
2
vB = Tr(ρ̂S). (2.26)

Studying the properties of the density operator and the generalized Bloch vector, we
learn the following:

• The density operator can be written as:

ρ̂ =
1

2
(1 + vB · σ). (2.27)

• The diagonal matrix elements of 〈i|ρ̂|i〉 of the density operator are real; they give the
relative populations of the two basis states |0〉 and |1〉 for the ensemble represented by
ρ̂. Therefore, their sum is 1, or Tr(ρ̂) = 1. (This property of the density matrix is
valid for any number of basis states.)

• The off-diagonal elements of ρ̂ (ρij = ρ∗ji) represent the coherence between the states.

• The equation of motion for vB is:

i~
d

dt
vB =

1

2
Tr(σ[H, (1 + vB · σ)]). (2.28)

Example: when a static magnetic field Bz is applied, the solution of this equation
shows that the Bloch vector precesses about the z axis at the Larmor frequency, given
by ωL = γBz, where γ is the gyromagnetic ratio of the atom. For simplicity, the
dynamics of vB may be calculated in a reference frame that rotates about the z axis
at the Larmor frequency.
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• Finally, the Bloch vector can represent dissipation and dephasing. For that purpose,
we define 3 additional parameters: the longitudinal relaxation time T1, the transverse
relaxation time T2 and v0

z , which is the z component of the Bloch vector at thermal
equilibrium. Adding these parameters to the equation of motion for vB, and solving
in the rotating-frame with no field except Bz, we obtain the following results for the
components of the Bloch vector (see [50], lecture notes 12):

vx(t) = vx(0)e
− t
T2

vy(t) = vy(0)e
− t
T2

vz(t) = [vz(0)− v0
z ]e
− t
T1 + v0

z .

(2.29)

This result is valid only in a very simple case, but it does present the general picture.
We see that if the system starts at t = 0 at some pure state on the surface of the Bloch
sphere, the projection of the Bloch vector on the xy plane will start to shrink to zero at a
rate governed by the T2 time constant, representing a dephasing (or decoherence) process.
In parallel, but at a different rate defined by T1, the z component of the Bloch vector will
decay towards its thermal equilibrium value v0

z .
Let us briefly return to the Majorana population oscillations described in Sec. 2.2. We

now see that there are several requirements if we wish to actually observe the probability
oscillations:

• We need an ensemble of measurements, which can be realized by repeated measure-
ments on a single two-state atom (each time repeating the same preparation), or by
a single measurement of a group of such atoms, or some combination of these two
methods.

• We have to prepare the ensemble so that its initial state is as close as possible to a
pure state. Otherwise, the atoms in the ensemble will have random phases relative to
each other. This will mask any observation of the probability oscillations. Typically,
the ensemble is prepared by some type of optical pumping [51].

• All the operations, including final measurements, must be completed well before the
shorter of the two relaxation times T1 and T2. Failing to do this will again lead to
averaging out the probability oscillations.

• The initial state of the system at t = 0 should not be an eigenstate of the full Hamil-
tonian. If it is, the system will remain in that state indefinitely.

All of these conditions are required if we wish to observe the Majorana population
oscillations, or any other coherent phenomena.

2.5 Rabi oscillations and Ramsey fringes

The two-state atom is described by the Hamiltonian H0, the eigenvalues E0
0 , E0

1 and the
eigenstates |0〉, |1〉 (see Sec. 2.1). When we subject the atom to external periodic excitation
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(e.g., as caused by electromagnetic radiation), the atom is instead described by the full
Hamiltonian Ĥ(t) = H0 + V̂ (t) [see Eq. (2.12)]. For electromagnetic radiation that can be
described as single frequency plane wave with circular polarization we have (see Shore [43],
§3.7):

V00(t) = V11(t) = 0

V01(t) = V ∗10(t) = −~
2
|Ω|e−i(ωt+φ),

(2.30)

where ω is the radiation angular frequency and |Ω| is the Rabi frequency. We already
introduced the symbol Ω as a measure of a static change of the potential (see Sec. 2.2); here
|Ω| is a measure of the strength of the atom-radiation interaction. We use the same name
“Rabi frequency” and the same symbol since the results of the interaction in both cases are
population oscillations at a frequency that is related to |Ω|. Details of the atom-radiation
interaction and the exact definition of the Rabi frequency are presented in Sec. 2.7.2.

Now we can substitute Eq. (2.30) into the time dependent Schrödinger equation in
the form presented by Eq. (2.12) and solve the resulting equations for the probability
amplitudes C0(t) and C1(t). At this point we wish to introduce Shore’s phase-choice method
(see [43] §3.7): we can modify the probability amplitudes by writing the wave function as
|Ψ〉 =

∑
Ci(t)e

−iζi(t)|i〉, i = 0, 1, and still have Pi = 〈i|Ψ〉 = |Ci(t)|2 = |Ci(t)|2 although
Ci(t) and Ci(t) are different functions of time. A proper choice of the phases ζi may lead to
equations that can be solved analytically. Using this method, we get the following equations
for the probability amplitudes ([43], §3.7):

i
d

dt

(
C0(t)
C1(t)

)
=

1

2

(
ω − ω0 |Ω|
|Ω| −(ω − ω0)

)(
C0(t)
C1(t)

)
, (2.31)

where ~ω0 is the energy difference between the states. Solving these equations with the
initial condition that at t = 0 all the population is in the state |0〉, and calculating the
probabilities, we get:

P1(t) = 1− P0(t) =
1

2

(
|Ω|
Ω̃

)2

[1− cos(Ω̃t)], with Ω̃ =
√
|Ω|2 + (ω − ω0)2. (2.32)

We see that the probability of finding the atom in the state |1〉 oscillates indefinitely
(Rabi oscillations) with a frequency that is the square root of the sum of the squares of the
Rabi frequency and the detuning δ = ω − ω0 of the radiation frequency from the frequency
of the atomic transition.

This behavior is similar to the Majorana population oscillations presented in Sec. 2.2.
However, while the amplitude of the Majorana population oscillations depends mainly on Ω,
the amplitude of the Rabi oscillations depends only on the detuning. At δ = 0 the amplitude
is maximal and it drops as the excitation frequency moves away from this resonance point.
Figure 2.2 presents the Rabi probability oscillations for |Ω| = 2 rad/sec and several values
of the detuning. In Fig. 2.3 we plot 〈P1〉, the average population in the excited state as
a function of the detuning. The average population 〈P1〉 can serve as a measure of the
interaction strength (as a function of the detuning). Figure 2.3 shows that 〈P1〉 has a
Lorentzian shaped peak at the resonance frequency. The width of the peak [full width half
maximum (FWHM)] is 2|Ω|. This is called the power broadening, since |Ω| depends on the
radiation power (see Sec. 2.7.2).
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Figure 2.2: Rabi oscillations of the probability P1(t) for finding a two-state atom in the state
|1〉 when the atom is excited by a circularly polarized single frequency plane wave at angular
frequency ω (~ω0 is the energy difference between the two states). The Rabi frequency used
for this figure is |Ω| = 2 rad/sec, and the Rabi oscillations are shown for three values of the
detuning from resonance δ, measured in units of |Ω|: δ = (ω − ω0)/|Ω|.

Figure 2.3: The average population 〈P1〉 in the excited state of a two-state atom, plotted as
a function of the detuning δ = ω − ω0 (the detuning is given in units of |Ω|). The average
population 〈P1〉 can serve as a measure of the interaction strength. The plot is a Lorentzian
and its FWHM is 2|Ω|.
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2.5.1 Rabi pulses

Focusing our attention on the resonance case (the excitation frequency ω = ω0), and following
Kuhr [52], we can represent the effect of the Rabi pulse of duration time t on the Bloch vector
vB(0) [see Eq. (2.26)] by the following 3× 3 matrix:

vB(t) =

1 0 0
0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)

vB(0) ≡ Θ̂θ(t)vB(0)

θ(t) =

∫ t

0

|Ω(t′)|dt′.

(2.33)

In other words, a Rabi pulse rotates the Bloch vector about the x axis by an angle θ(t).
(Note: In general, rotation about any axis is possible). For θ(t) = π/2 and θ(t) = π the
matrices become very simple:

Θ̂π/2 =

1 0 0
0 0 1
0 −1 0

 and Θ̂π =

1 0 0
0 −1 0
0 0 −1

 . (2.34)

Θ̂π is called a π pulse, or Rabi flipping pulse, and Θ̂π/2 is called a π/2 pulse.

The matrix representation for free precession Θ̂free(t) of the Bloch vector is (|Ω| = 0):

Θ̂free(t) =

 cosφ(t) sinφ(t) 0
− sinφ(t) cosφ(t) 0

0 0 1


φ(t) =

∫ t

0

δ(t′)dt′ =

∫ t

0

(ω(t′)− ω0)dt′,

(2.35)

where φ(t) is the accumulated phase as viewed in a reference frame that rotates with an
angular frequency ω, typically referred to as the “rotating-frame” (see Sec. 2.7.3). Note: if

ω(t) = ω0 then the accumulated phase is zero and Θ̂free(t) reduces to the unit matrix.
In Fig. 2.4 we present some examples of Rabi pulses. The Rabi pulses may be utilized

directly to manipulate our two-state atomic system. However, the two-state atom is usually
just an approximate model, where we pick two of its many states and set them to be the
states that will be used to realize a qubit or any other useful device. Depending on this
choice, the frequency of the Rabi pulse may be in the radio frequency (RF) range (typically
when the radiation links two Zeeman sub-levels of an alkali atom) in the microwave (MW)
range (when two hyperfine levels are addressed) or in the optical domain.

2.5.2 Ramsey fringes

Consider the following sequence of operations, performed on an ensemble of two-state atoms
(with an energy separation E between the states):

• prepare the ensemble in the pure state Ψ(0) = |0〉 .
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Figure 2.4: Some examples of Rabi pulses. 99K is the Bloch vector before the pulse, −→
is the vector after the pulse. In (a) we present a general Rabi pulse. The x component of
the Bloch vector is preserved, while its projection on the yz plane is rotated by θ. Case
(b) presents the operation of a π pulse on |0〉: it flips the population from |0〉 to |1〉, which
explains its name – Rabi flipping pulse. In (c) a π/2 pulse takes the population from |0〉 to
a point on the equator representing a coherent equal superposition of the two base states
with no phase difference between them (φ = 0). In (d) another π/2 pulse that is applied
immediately takes the population from that point to |1〉. Case (e) shows free precession of
the Bloch vector in the xy plane. Finally, (f) shows how a π/2 pulse affects the Bloch vector
after being allowed to precess for some time.

• apply a π/2 Rabi pulse using a coherent, monochromatic radiation with angular fre-
quency ω ≈ ω0 (ω0 = E/~).

• block the radiation for time T . (The time T is also referred to as the “integration
time” or “interrogation time”).

• apply a second π/2 Rabi pulse using the same radiation.

• measure the population P1(T ) of level |1〉.

In terms of the Bloch vectors and the matrices defined in Eq. (2.34) and Eq. (2.35), we
can summarize the sequence described above as measuring the z component of vRamsey(T )
defined below:

vRamsey(T ) = Θπ/2 ·Θfree(T ) ·Θπ/2 · v0
B, (2.36)
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where v0
B is the Bloch vector representing the state |0〉. Multiplying these matrices we obtain

the z component of vRamsey(T ):

vRamsey(T )z = − cosφ(T ) = − cos

(∫ T

0

δ(t)dt

)
. (2.37)

Based on the above and on the examples presented in Fig. 2.4, it is clear that the population
in level |1〉, P1(T ), is a periodic function of the accumulated phase φ(T). Even a small value
of δ(t) can change P1(T ) drastically, provided that the integration time T is long enough.

The Ramsey fringes represented by Eq. (2.37) provide a very delicate interferometeric
tool. The interferometeric nature can be revealed if we look at a π/2 pulse as a 50/50
optical beamsplitter. The first pulse splits the atomic wave function into a superposition
of the two states. During the integration time T the relative phase φ(T ) is accumulated.
The second pulse recombines the two states, interferometrically comparing the accumulated
relative phase. Thus, Ramsey fringes constitute a very sensitive probe to compare an external
frequency to atomic transition frequency and to investigate other phenomena related to the
two-state system.

2.6 Dressed states

Our unperturbed two-state atom is described by the Hamiltonian H0, the eigenvalues E0
0 ,

E0
1 , and the eigenstates |0〉, |1〉 (see Sec. 2.1). When we add external interaction, the atom

is described by the full Hamiltonian Ĥ(t). It is of interest to study the full Hamiltonian
eigenstates. Let the interaction with the external excitation (such as a monochromatic laser
beam with angular frequency ω) be:

V̂ (t) =
~
2

(
0 Ω∗eiωt

Ωe−iωt 0

)
, (2.38)

where Ω is the Rabi frequency (see Sec. 2.7.2). The state of the system in the rotating-frame
(see Sec. 2.7.3) is:

Ψ(t) = C0(t)|0〉eiωt/2 + C1(t)|1〉e−iωt/2. (2.39)

Note that the energy zero is midway between the states. Substituting Eq.(2.38) and Eq.
(2.39) into the time-dependent Schrödinger equation (2.12) leads to:

i~
d

dt

(
C0(t)
C1(t)

)
=

~
2

(
−δ Ω∗

Ω δ

)(
C0(t)
C1(t)

)
, (2.40)

where δ = ω − ω0 and ~ω0 = E0
1 − E0

0 . We can see that in the rotating-frame the matrix

representation of Ĥ(t) is time independent, and so are its eigenvalues, given by:

E± = ±~
2

√
|Ω|2 + δ2 = ±~Ω̃

2
. (2.41)
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Calculating the eigenvectors we get (excluding a global phase):

Φ+(t) = eiωt/2

√
1

2

(
1 +

δ

Ω̃

)
|0〉+ e−iωt/2

√
1

2

(
1− δ

Ω̃

)
|1〉

Φ−(t) = eiωt/2

√
1

2

(
1− δ

Ω̃

)
|0〉 − e−iωt/2

√
1

2

(
1 +

δ

Ω̃

)
|1〉.

(2.42)

The states Φ± are called “dressed states”, as opposed to the “bare states” |0〉, |1〉. Thus,
addition of an external perturbation mixes the bare states.

We can utilize the dressed states to manipulate our system of two-state atoms:

• from Eq. (2.42) we can see that |Φ−(t)〉 is mainly |0〉 for far-red detuning, while |Φ+(t)〉
is mainly |0〉 for far-blue detuning.

• we note that if a system is represented at some time by either one of the dressed
states, it will remain in this state indefinitely, as this state is an eigenstate of the full
Hamiltonian.

• it turns out that if we change the frequency of the exciting field slowly, a system that
is in a pure dressed state will remain in this dressed state. Such changes changes are
adiabatic and can be characterized by [53]:

γ =
|Ω|2

dδ/dt
. (2.43)

The probability that an atom will make a transition to another dressed state is P = e−2πγ

so that with large enough γ we can assume that no atom will make a transition to another
dressed state. There are several procedures that utilize adiabaticity to manipulate atomic
ensembles.

2.6.1 Chirped pulses

To demonstrate one such adiabatic procedure, let us start with an ensemble in which all
the atoms are in the ground state |0〉. Then we slowly ramp up the intensity of a far-red
detuned laser field. Since the Φ−(t) dressed state is thereby mainly |0〉, all the atoms will be
in this state initially. Then we sweep the frequency adiabatically up to a far-blue detuned
value, whereby the Φ−(t) dressed state is mainly |1〉. At this point we adiabatically ramp
the intensity down to zero, leaving almost all the atoms in |1〉. Thus we have a chirped pulse
method to manipulate the state of an ensemble of atoms.

2.7 Adding other states - the Λ scheme

Typically, our two-state atom has many other states that are ignored at this level of approx-
imation. Sometimes, however, it is advantageous to bring more states into the game, as well
as additional parameters that may be used to manipulate our two-state system; these can
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facilitate otherwise forbidden transitions and bring to light some hidden properties of the
system. A frequently-used three-state configuration is presented in Fig. 2.5 and is known as
the Λ scheme.

Figure 2.5: The Λ scheme – a three-state configuration. States |0〉 (the ground state) and |1〉
make up the two-state system, with energy separation ~ω01. Typically, these states have the
same parity, so that the |0〉 ↔ |1〉 transition is an electric-dipole-forbidden transition (see
text). The linewidth of these states is usually very narrow. State |2〉 is the auxiliary state
with linewidth Γ, and its parity is opposite to the parity of |0〉 and |1〉. Two light fields are
shown with angular frequencies ωp and ωs, while Ωp, Ωs are the Rabi frequencies (see text).
The terms “Pump laser” or “Pump beam” and “Stokes laser” or “Stokes beam” are the
common terms used in the field of Raman spectroscopy [54]. Also shown is a MW field with
angular frequency ωMW and Rabi frequency ΩMW. δ = |ωp − ωs| − ω01 is the Rabi detuning
and ∆, the difference between ωp and the angular frequency of the |0〉 ↔ |2〉 transition, is
the Raman detuning.

To define a Λ scheme we need to choose three states from the many states that a real
atom has (see, for example the rubidium atom, Sec. 2.10). Once we choose those states, we
need to analyze the response of the atom to two or more light fields. Deeper understanding
of the nature of the interaction of atoms with electromagnetic radiation is needed for these
tasks, and we provide the relevant material (the multipole expansion, the Rabi frequency
and the rotating-frame) in Secs. 2.7.1 – 2.7.4. (Note: parts of the material presented in
these sections are typically included in the discussion of two-state atoms, but we prefer to
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incorporate it into our three-state discussion.) Using that deeper understanding we analyze
some of the applications of the Λ scheme: we describe the method of optical pumping, review
Raman transitions and briefly present the EIT phenomenon.

2.7.1 Multipole expansion

The Hamiltonian of an atom interacting with external fields may be written as (see Sec.
2.1):

H(t) = H0 + V (t)

H0|ψn〉 = E0
n|ψn〉,

(2.44)

where the matrix elements of V (t) are:

Vnm(t) = 〈ψn|V (t)|ψm〉. (2.45)

In this section we outline a method that relates the perturbation term V (t) to the interaction
of the atom with external electromagnetic fields.

Let us consider a collection of particles (electrons, protons and neutrons that make up
an atom). Each particle has charge eα and is at position r(α) relative to the location R of
the center of mass (Fig 2.6). Our aim is to evaluate the energy that these particles possess
when they are subjected to external electric and magnetic fields (external fields are those
that originate in charges and currents outside of the atom).

Figure 2.6: Multipole Coordinates. R – the position the center of mass (atomic center); r-
position of a particle relative to the center of mass. Taken from Shore [43].

To proceed, we introduce the multipole expansion of the desired energy. This expansion
has two parts: one series for the electric energy V elec, and another for the magnetic one V magn.
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Following Shore’s notation ([43], § 2.8) the series for V elec is:

V elec(t) =

[∑
α

eα

]
φ(R, t)−

∑
i

[∑
α

eαri(α)

]
Ei(R, t)

− 1

2

∑
ij

[∑
α

eαri(α)rj(α)

]
∂

∂Rj

Ei(R, t) + · · ·

or, in a shorter notation:

V elec(t) = V E0(t) + V E1(t) + V E2(t) + · · · ,

(2.46)

where φ(R, t) is the external electrostatic potential, Ei(R, t) are the components the external
electric field, the indexes i, j stand for the three spatial direction and the index α runs over
all the particles that compose the atom. The terms in the large square brackets in Eq. (2.46)
are the first three electric multipole moments – the electric monopole, the electric dipole and
the electric quadrupole. Note: the monopole moment in Eq.(2.46) is just the total charge,
which vanishes for a neutral atom.

In a similar way, the energy V magn of the interaction of the atom with the magnetic
field can be written as:

V magn(t) = −
∑
i

[∑
α

µ(α) [gl(α)li(α) + gs(α)si(α)]

]
Bi(R, t) + · · ·

or, in a shorter notation:

V magn(t) = V M1(t) + · · · ,
(2.47)

where for electrons µ(α) = −e~/2mec = −µB (Bohr magenton), for protons and neutrons
µ(α) = e~/2mpc = µN (nuclear magneton), and Bi(R, t) are the components the external
magnetic field. The term in the large square brackets in Eq. (2.47) is the first magnetic
multipole moment – the magnetic dipole moment [see [43], § 2.8 for additional terms and for
the values of the gs(α)]. Note that the nuclear magnetron µN is about 2000 times smaller
than the Bohr magneton µB due to the ratio between mass of the electron to that of the
proton.

Typically, almost-monochromatic lasers and/or RF fields interact with the atoms.
Therefore we assume that these fields can be described as a single frequency plane wave:

E(R, t) = Re
[
ε̂EE0e

i(k·R−ωt)]
B(R, t) = Re

[
ε̂BB0e

i(k·R−ωt)] , (2.48)

where ε̂E, ε̂B are the polarization unit vectors, E0, B0 are the amplitudes and k, ω are the
wave vector and the angular frequency of the fields (|k| = 2π/λ, where λ is the wavelength
of the field). We further assume (the “small atom” assumption) that the size of the atom
(∼ 0.3 nm) is much smaller than λ (∼ 500 nm). Note that this assumption is not always
valid (e.g., for Rydberg atoms with size on the order of ∼ 1000 nm).

When the “small atom” assumption holds, the spatial variation of the field inside the
atom is small, and consequently so are the spatial derivatives of the field. These derivatives
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multiply all the terms in the multipole expansions [Eq. (2.46) and (2.47)] with quadrupole
or higher moments. Thus the multipole expansions are a good mathematical tool, where the
higher terms contribute only minor corrections.

The electric dipole moment. The second term in large square brackets in Eq. (2.46)
is the electric dipole moment d, given below both for a collection of discrete charges and for
a continuous charge distribution ρ(r):

d =
∑
α

eαr(α) =

∫
d3rρ(r)r. (2.49)

For a one-electron atom, the charge distribution of the electron in a state ψn(r) is given by
ρ(r) = −eψn(r)∗ψn(r). Thus the matrix elements of the dipole moment operator d are (note
that each element dnm is a vector with three components):

dnm = −e
∫
d3rψn(r)∗rψm(r) ≡ −e〈n|r|m〉. (2.50)

In particular, the diagonal matrix elements are:

dnn = −e
∫
d3rψn(r)∗rψn(r) ≡ −e〈n|r|n〉. (2.51)

With this definition of the electric dipole moment and Eq. (2.46) we can obtain an
expression for the energy of the electric dipole interaction:

V E1
nm = −dnm · E(R, t). (2.52)

Parity and the electric dipole moment. The parity operator Π, which flips the
sign of the space coordinates with respect to a given origin, is defined by:

Π|r〉 = | − r〉. (2.53)

It can be shown (see [46], §5.1.1) that Π is a unitary operator, that 〈r|Π = 〈−r|, that Π
has two eigenvalues π± = ±1 and that all even and odd states are eigenstates of Π. Also,
Π commutes with the operators rn and pn for even n, and with |r|. Recalling that the
unperturbed Hamiltonian of an atom [Eq. (2.1) or Eq. (2.44)] is a function of p2 and |r| we
have:

[H0,Π] = 0. (2.54)

Equation 2.54 implies that all the eigenstates ψn of H0 are also eigenstates of Π and have
either odd or even parity.

The parity operator can provide us with some information regarding the matrix el-
ements −e〈n|r|m〉 of the dipole operator [Eq. (2.50)]. To see that, note that the anti-
commutator of Π and r, and its matrix element, vanishes:

[Π, r]+ = Πr + rΠ = Πr− Πr = 0⇒ 〈n|[Π, r]+|m〉 = 0. (2.55)
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On the other hand, we have:

0 = 〈n|[Π, r]+|m〉 = 〈n|(Πr + rΠ)|m〉 = (πn + πm)〈n|r|m〉. (2.56)

From Eq. 2.56 it follows that the diagonal elements dnn of the dipole operator vanish. It
also follows that if two states |ψn〉 and |ψm〉 have the same parity, then the dipole matrix
element dnm and the electric dipole interaction V E1

nm vanish [see Eq. (2.52)]. We say that
the electric dipole |ψn〉 ↔ |ψm〉 transition is forbidden, because there is no electric dipole
interaction to induce it. The electric dipole interaction term is much larger than any other
term in Eqs. (2.46) and (2.47), so that any transition between equal parity states will be
induced by much smaller terms (such as the magnetic dipole interaction V M1) and will have
much lower rate.

Going back to the Λ scheme (Fig. 2.5) we note that the states |0〉 and |1〉 have the same
parity, so that d01 = 0. We say that the |0〉 ↔ |1〉 transition is electric-dipole-forbidden.
Such pairs of states are found in the all the alkali elements: we can choose state |0〉 to be one
of the lower hyperfine sub-levels of the ground state and |1〉 to be one of the higher hyperfine
sub-levels of the ground state. (see Sec. 2.10 for the detailed level structure of one alkali
element – the rubidium 87 atom). One consequence of the fact that the |0〉 ↔ |1〉 transition
is a dipole-forbidden transition is that the spontaneous emission rate of atoms in state |1〉 is
very low, and the lifetime of state |1〉 is very long. Another consequence is that transitions
between these states may be induced only by the much smaller magnetic dipole interaction
(see below). The third state in Fig. 2.5, state |2〉, has opposite parity relative to |0〉 and
|1〉, so that both |0〉 ↔ |2〉 and |1〉 ↔ |2〉 transitions can be induced by the electrical dipole
interaction.

The magnetic dipole moment. The first term in Eq. (2.47), (the multipole expan-
sion of the magnetic interaction) is V M1, the magnetic interaction term:

V M1 = −
∑
i

[∑
α

µ(α) [gl(α)li(α) + gs(α)si(α)]

]
Bi(R, t), (2.57)

where for electrons µ(α) = −e~/2mec = −µB (Bohr magenton), for protons and neutrons
µ(α) = e~/2mpc = µN (nuclear magneton), Bi(R, t) are the components the external mag-
netic field, the index i stands for the three spatial components and the index α runs over all
the particles that compose the atom.

In this work we focus an alkali atom, where we have only one outer-shell electron with
charge −e, orbital angular momentum L, and spin S. This electron is bound to a massive
core made up of all the nucleons and the inner electrons, with total charge +e and nuclear
spin I. For this one-electron atom we can write V M1 as µ · B(R, t), where the magnetic
dipole moment µ is given by:

µ =
e~

2mec
(gLL + gSS + gII) = µB(gLL + gSS + gII), (2.58)

where gL ≈ 1, gS ≈ 2, gI ≈ −0.001 (see [45]). We will address angular momentum states in
Sec. 2.8. At this point we just note that the value of the matrix elements of the magnetic
dipole moment µ ·B is typically more than 2 orders of magnitude (or 5 orders of magnitude
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in the transition rate) smaller than the corresponding numbers for the electric dipole (see
[43] § 2.8), so that the magnetic dipole interaction is typically neglected unless the electric
dipole elements vanish. For more details on magnetic dipole transitions see [55], § 15.1.

2.7.2 Rabi frequencies in the Λ scheme

Both the electric dipole interaction [V E1, Eq. (2.52)] term and the magnetic dipole interac-
tion [V M1, Eq. (2.57)] term include an oscillating part at the high angular frequency ω. In
many cases, we can describe the system so that explicit time-dependent oscillating terms will
not appear, via the combined application of the rotating wave approximation (RWA) and a
rotating-frame of reference. Here we review the application of both of these methods to the
electric dipole interaction and, as a part of this development, we define the Rabi frequencies
for the Λ scheme (Fig. 2.5).

Let us go back to Fig. 2.5, and focus our attention on the |0〉 ↔ |2〉 transition:
a transition induced by the “probe laser” beam (with frequency ωp) between two states
separated by an energy of ~ω02. In this case, the probe beam is detuned by ∆ from the
transition frequency ω02. When all the other fields indicated in Fig. 2.5 are turned off, we
can treat these two states and the probe beam as a two-state atom, and its Hamiltonian can
be written [in the dipole approximation, see Eq. (2.52)] as:

H(t) = H0 + V E1(t) = H0 − d · E(R, t) (2.59)

with H0 = ~ω20|2〉〈2|, as the energy zero is fixed at state |0〉.
Applying the identity |2〉〈2|+|0〉〈0| = 1 on both sides of d, and noting that 〈n|d|n〉 = 0,

we obtain:
d = 〈0|d|2〉|0〉〈2|+ 〈2|d|0〉|2〉〈0| ≡ d(+) + d(−). (2.60)

Since the expectation value of |0〉〈2| has the unperturbed time dependence e−iω02t, the time
dependence of d(±) is proportional to e∓iω02t. We have thereby decomposed the dipole oper-
ator into positive and negative “rotating” parts.

The electric field of the radiation, given by Eq. (2.48)

E(R, t) = Re
[
ε̂EE0e

i(k·R−ωpt+φ)
]
, (2.61)

can be similarly decomposed. We will assume that R = 0 (R is the position of the atomic
center of mass), and that k · R ≈ const. = 0 across the atom. We now decompose E into
positive and negative “rotating” components:

E(t) =
E0

2
(ε̂Ee

−iωpt + ε̂∗Ee
iωpt) = E(+) + E(−) (2.62)

with
E(±) ≡ E±0 e

∓iωpt. (2.63)

(Note that ε̂E may be complex, that E±0 includes the phase φ, and that E+
0 = (E−0 )∗).

Substituting E(±),d(±) in the last term of Eq. (2.59) we get:

V E1 = −d · E(R, t) = −(d(+) + d(−))(E(+) + E(−))

= −d(+)E(+) − d(−)E(−) − d(+)E(−) − d(−)E(+).
(2.64)
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The first two terms oscillate as e±i(ω02+ωp)t, while the next two terms oscillate as e±i(ω02−ωp)t.
Since |ω02 + ωp| � |ω02 − ωp|, we can say that first two terms oscillate so rapidly compared
to the other terms that we can replace them by their average value, which is 0. This is the
RWA – the rotating wave approximation. Applying the RWA to Eq. (2.64) and substituting
E(±),d(±) given by Eqs. (2.63) and (2.60), we get:

V E1 = −eiωpt〈0|d · E−0 |2〉|0〉〈2| − e−iωpt〈2|d · E+
0 |0〉|2〉〈0|. (2.65)

We now define the Rabi frequencies Ω02, Ω20 to be

Ω02 ≡
〈0|d · E−0 |2〉

~
≡ Ωp; Ω20 ≡

〈2|d · E+
0 |0〉

~
= Ω∗p. (2.66)

In most cases it is possible to choose a global phase so that Ω02 is real. The Rabi frequency
|Ωp| is independent of both time and frequency and is a measure of the strength of the
interaction between the electromagnetic radiation and the electric dipole of the atom.

In a similar way we can define Ωs, which couples states |1〉 and |2〉 (see Fig 2.5).
However, the definition of ΩMW, linking states |0〉 and |1〉 is somewhat different. Since states
|0〉 and |1〉 have the same parity (see caption of Fig. 2.5), the electric dipole matrix element
vanishes. The next term, V M1 (the magnetic dipole interaction), is the term that can induce
|0〉 ↔ |1〉 transitions. In a way similar to Eq. (2.66), we define:

Ω01 ≡
〈0|µ ·B−0 |2〉

~
≡ ΩMW; Ω10 ≡

〈1|µ ·B+
0 |0〉

~
= Ω∗MW. (2.67)

|ΩMW| is a measure of the the strength of the interaction between the electromagnetic radi-
ation and the magnetic dipole of the atom.

For a laser beam of intensity I (in W/cm2), the Rabi frequencies Ωp, Ωs are given by
(see [43], § 3.3) :

|Ω|
2π

[MHz] = 70.24
|di2 · ε|
ea0

√
I [W/cm2], (2.68)

where a0 is the Bohr radius, di2(i = 0, 1) is the dipole matrix element 〈i|d|2〉 and ε is the
unit vector in the direction of the electric field of the laser light. The value of |di2 · ε| is
typically in the same order of magnitude as ea0. The value of ΩMW, which depends on the
interaction of the electromagnetic field with the magnetic moment of the atom, is typically
more than 2 orders of magnitude smaller than Ωp, Ωs. The transition rate, which depends
on |ΩMW|2, is typically 5 orders of magnitude smaller (for the same intensity of the field).

2.7.3 The rotating frame

Let us now focus our attention back to the |0〉 ↔ |2〉 transition (Fig. 2.5). Combining Eqs.
(2.59), (2.65) and (2.66), we can write the Hamiltonian of this sub-system (in the dipole
approximation) as:

HD(t) = ~ω20|2〉〈2| −
eiωpt

2
~Ωp|0〉〈2| −

e−iωpt

2
~Ω∗p|2〉〈0|. (2.69)
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Substituting a general state |Ψ〉 = C0|0〉+C2|2〉 in the time-dependent Schrödinger equation

i~ ˙|Ψ〉 = HD(t)|Ψ〉 we get:

Ċ0|0〉+ Ċ2|2〉 = −iω20C2|2〉 − i
Ωp

2
C2e

iωpt|0〉 − i
Ω∗p
2
C0e

−iωpt|2〉. (2.70)

Projecting with 〈0| and 〈2| produces the equations of motion of the our sub-system:

Ċ0 = −iΩp

2
C2e

iωpt

Ċ2 = −iω20C2 − i
Ω∗p
2
C0e

−iωpt.

(2.71)

Our next step is to transfer the above equations to a frame of reference that rotates at ωp,
via the rotating-frame amplitude:

C̃2 = C2e
iωpt. (2.72)

In terms of the rotating-frame amplitudes, the equations of motion [Eq. (2.71)] now read:

Ċ0 = −iΩp

2
C̃2

˙̃
C2 = −i(ω20 − ωp)C̃2 − i

Ω∗p
2
C0 = −i∆C̃2 − i

Ω∗p
2
C0.

(2.73)

Thus we have removed all the explicit time dependence from the equations of motion of our
two-state sub-system. Several solutions to these equations (including Rabi oscillations) can
be found in [46], § 5.

2.7.4 Validity of approximations

The time-independent equations of motion [Eq. (2.73)] describe the behavior of an atom
subjected to an external oscillatory electromagnetic radiation field at frequency ωp. In pre-
vious sections, we have used several approximations to develop these equations. We list them
below, and briefly discuss the validity of each.

The “small perturbation” approximation. In the absence of external fields, the
atom has a Hamiltonian H0, with eigenvalues E0

n and eigenstates |ψ0
n〉. We assume that

the external radiation field is a small perturbation upon the internal structure of the atom,
so that the eigenstates |ψ0

n〉 still provide a good basis for the description of the combined
system of atom + field. This small perturbation may be due to the fact that the interaction
of the sub-atomic particles (mainly the electrons) with the external radiation fields is small
compared to the internal interactions, or as a result of strong external radiation fields applied
only for a short duration.

The “near-resonance” approximation. Atoms have an infinite number of bound
states, some of them occupied, and in principle, an external radiation field at a frequency ω
interacts with all of them. However, if there is just one pair of states |0〉, |2〉 with an energy
separation ~ω02 between them such that ω ≈ ω02, we can ignore the interaction of the external
radiation field with all other pairs of states. This is the near-resonance approximation. It
is valid as long as, for any other pair of states |m〉, |n〉 (of which at least one is occupied)
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we have |ω − ωmn| � Γm + Γn + 2|Ωmn|, where ~ωmn is the energy separation between the
states, Γm and Γn are the natural linewidths, and 2|Ωmn| is the power broadening width (see
Fig. 2.3).

The “small atom” approximation. This is the assumption that the spatial vari-
ation of the field inside the atom is small, and so are the spatial derivatives of the field.
Those derivatives multiply all the terms in the multipole expansions (Eq. (2.46) and (2.47)
with quadrupole or higher moments. As a result, the higher terms are much smaller than
the leading terms so that the multipole expansions become very useful tools for such a situ-
ation. This approximation is valid as long as the size of the atom is much smaller than the
wavelength of the radiation.

The dipole approximation. This approximation is a part of the previous one. In
the dipole approximation we ignore all the terms in the multipole expansion [Eq. (2.46) and
(2.47)] except the leading dipole term V E1. This approximation is valid as long as the dipole
term does not vanish, or as long as we do not care about minute details of the interaction,
since the dipole term is at least 2 orders of magnitude larger than any of the following terms.

The rotating wave approximation (RWA). The RWA is useful when an electro-
magnetic field at an angular frequency ω interacts with an atom and ω is near a transition
frequency ωnm between some states |n〉 and |m〉 of the atom. Typically it is possible to
express the interaction energy as a sum of two types of terms: the “high-frequency terms”
that oscillate at the angular frequency of ω + ωnm, and the “near-resonance terms” that os-
cillate at ω−ωnm [e.g. Eq. (2.64)]. As long as the high angular frequency ω+ωnm does not
match any other transition frequency of the atom, we can replace such rapidly-oscillating,
off-resonant terms with their time-averaged values of zero. This is the RWA.

2.7.5 Optical pumping

Optical pumping is a method to create polarization of a macroscopic substance by elec-
tromagnetic radiation. This method was pioneered by Alfred Kastler (Nobel Prize, 1966
[10, 11]). A very detailed review of the optical pumping process was written by W. Hap-
per [34]. Here we will illustrate a very simple example of optical pumping based on the Λ
scheme presented by Fig. 2.5. (This scheme may be realized by picking some states of an
ensemble of alkali metal atoms, such as vapor in a vapor cell). The separation ω01 is on the
order of several GHz, while the thermal energy of room-temperature atoms is approximately
1 THz. Thus we can assume that at room-temperature thermal equilibrium (with all the
fields turned off) the states |0〉 and |1〉 have the same population and there is no coherence
between them. On the other hand, both ω02 and ω12 are in the optical domain – hundreds
of THz – so that the population of state |2〉 is effectively zero.

If we try to utilize the microwave radiation field to induce Rabi oscillations directly
between the |0〉 and |1〉 states (see Sec. 2.5), no such oscillations will be observed, because
the populations are initially equal: the two equal-amplitude Rabi oscillation processes would
always have an opposite effect and they would simply cancel.

However, if we turn off the microwave, turn on just the Stokes laser (Fig 2.5) and tune
its frequency so that ωs ≈ ω12 , then:

• The Stokes laser will excite |1〉 → |2〉 transitions, while state |0〉 will not be affected,
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since ωs is too far detuned from both ω01 and ω02.

• Atoms that are excited to state |2〉 may decay spontaneously (at a total rate Γ) either
to state |0〉 or to state |1〉.

• Those atoms that decay to state |1〉 will be re-excited to state |2〉, but those which end
up in state |0〉 will remain there.

• Eventually almost all the atoms will be optically pumped from state |1〉 to state |0〉.
If we now turn off the Stokes laser and turn on the microwave radiation, we will be able to
observe Rabi oscillations, since all the atoms are in state |1〉 at the onset of the Rabi process,
and the population will oscillate coherently between states |0〉 and |1〉.

The optical pumping process may be used to modify macroscopic properties of the
vapor, such as magnetic moments, via the controlled manipulation of the populations of spe-
cific atomic states. Another macroscopic property that may be modified by optical pumping
is the optical density of the vapor (see Eq. 4.2): as more and more atoms are pumped to
state |0〉, the density of atoms that can interact with the Stokes laser is reduced, and so is
the optical density of the vapor; eventually the vapor becomes transparent.

The optical pumping process of an atomic vapor is governed by several rates:

• the transition rate γ1↔2, which is proportional to |Ωs|2 (see Sec. 2.12 and note that for
optical pumping we tune the Stokes laser frequency so that ωs ≈ ω12).

• the much smaller transition rate γ0↔2, which is proportional to γ1↔2 · |Ωs|2/(|Ωs|2 +ω2
01)

and to a constant K01, which is the square of the ratio of the dipole matrix elements:
K01 = [〈0|εs · d|2〉/〈1|εs · d|2〉]2, where εs is a unit vector in the direction of the electric
field of the Stokes laser beam.

• the spontaneous emission rate Γ of level |2〉.

• the partial spontaneous emission rates γsp2→i to level |i〉; i = 0, 1 (γsp2→0 + γsp2→1 = Γ).

• the thermal relaxation rate 1/T1 [see Eq. (2.29)].

The rate equations for the populations pi (i = 0, 1, 2;
∑
pi = 1) during the optical

pumping process are:

ṗ0 = (p2 − p0)γ0↔2 + (p1 − p0)/T1 + p2γ
sp
2→0

ṗ1 = (p2 − p1)γ1↔2 + (p0 − p1)/T1 + p2γ
sp
2→1

ṗ2 = (p0 − p2)γ0↔2 + (p1 − p2)γ1↔2 − p2Γ.

(2.74)

After some time, the system reaches a steady state and we can substitute ṗi = 0 in Eqs. (2.74)
and solve them. In Fig. 2.7 we plot p0 and p1 as a function of the ratio of thermal relaxation
rate (1/T1) to the excitation rate γ1↔2. Clearly, to effectively pump most of the population
to the state |0〉, we need to have 1/T1 � γ1↔2.

Other parameters in Eq. (2.74), beside the ratio (1/T1)/γ1↔2, influence the effectiveness
of the optical pumping process. Figure 2.8 shows that increasing the ratio γsp2→0/γ

sp
2→1 reduces

the population p1 (meaning more effective optical pumping). In addition, when the energy
separation between states |0〉 and |1〉 is several GHz, the ratio γ0↔2/γ1↔2 is below 10−5, and
its actual value has no significant effect on p1.
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Figure 2.7: Steady-state populations following optical pumping. Plotted are the populations
p0 and p1 as a function of the ratio of thermal relaxation rate (1/T1) to the excitation
rate γ1↔2. (We used the following values: γ1↔2 = 20, 000 s−1, γ0↔2 = 3 · 10−7 × γ1↔2,
Γ = 3.77 · 107 s−1 and γsp2→0 = γsp2→1 = Γ/2.)

Figure 2.8: Steady-state population p1 following optical pumping. Plotted are the popula-
tions p1 for three values of γsp2→0/γ

sp
2→1. (The horizontal axis is the ratio of thermal relaxation

rate (1/T1) to the excitation rate γ1↔2; other parameters have the same values as given in
Fig 2.7).
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2.7.6 Raman transitions

Another way to utilize the Λ scheme presented in Fig. 2.5 is to excite |0〉 ↔ |1〉 Rabi
population oscillations using the two laser fields that link each of these states to |2〉. This is
known as a Raman transition.

In the scheme shown in Fig. 2.5 the two states |0〉 and |1〉 have the same parity, so
that the |0〉 ↔ |1〉 transition is dipole-forbidden, and the linewidth of this transition is
very narrow. The state |2〉 is of the opposite parity. Both the laser beams are turned
on simultaneously (the microwave field is off), and the two laser beams are coherent. (By
“coherent” we mean that the phase of the beat-note of the two light fields is independent of
time – see details in the beginning of App. A.) We define here two Rabi frequencies [see Eq.
(2.66)]: Ωp for the |0〉 ↔ |2〉 transition, and Ωs for the |1〉 ↔ |2〉 transition (we assume here
that the phases of the states were chosen so that the Rabi frequencies are real and positive).
The energy zero is at level |0〉, and ∆, δ and Γ are defined in Fig. 2.5. In this section,
we assume that ∆ � Γ, so that the probability of populating state |2〉 by the |1〉 ↔ |2〉 or
|0〉 ↔ |2〉 transitions is very small. Following Shore [43] and Dotsenko [56], this system can
be described by the wave function

Ψ(t) = C0(t)|0〉+ C1(t)|1〉+ C2(t)|2〉, (2.75)

and its Hamiltonian Ĥ is given by (using the rotating wave approximation):

Ĥ =
~
2

 0 0 Ωp

0 2δ Ωs

Ωp Ωs 2∆

 . (2.76)

Substituting Eq. (2.75) and Eq. (2.76) into the time-dependent Schrödinger equation,
we get equations for the Ci(t)’s. For C2(t) we have:

iĊ2(t) =
1

2
[ΩpC0(t) + ΩsC1(t)] + ∆ · C2(t). (2.77)

Typically ∆� Ωs, Ωp, and we deduce that C2(t) oscillates at high frequency. Therefore
we may replace its time derivative in Eq. (2.77) with its average over a large number of cycles,
namely zero (see [56], page 5). Using the modified Eq. (2.77) to calculate (the time averaged)
C2(t) as a function of the other Ci(t)’s, we get an effective Hamiltonian:

Ĥeff =
~
4

(
Ω2

p/∆ ΩpΩs/∆
ΩpΩs/∆ Ω2

s/∆− 4δ

)
. (2.78)

The off-diagonal elements give the coupling between states |0〉 and |1〉 by the Raman
beams, while the diagonal elements represent the light shift of the energy levels due to
their interaction with the light fields. By solving the time-dependent Schrödinger equation
with this effective Hamiltonian, and calculating the population probabilities (with the initial
condition P0(0) = 1) , we obtain:
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P1(t) = 1− P0(t) =
Ω2
R

Ω2
0

sin2

(
Ω0t

2

)
with ΩR = ΩPΩS/2∆

and Ω0 =
√

Ω2
R + δ2.

(2.79)

Comparing Eq. (2.79) to Eq. (2.32), we see that operating with two light fields in a Λ
configuration induces Rabi oscillations between our two states as if we were coupling them
with the single δ-detuned microwave field with an interaction strength of ΩR.

2.7.7 Electromagnetically Induced Transparency – EIT

The Λ scheme presented in Fig. 2.5 can lead to another set of phenomena, known collectively
as EIT. A detailed review of EIT can be found in [7] and in references therein. In this section
we present a short description of the main features of EIT. Referring to Fig. 2.5, with the
MW radiation off, both pump and Stokes lasers on and coherent, we can calculate the
eigenstates of the full Hamiltonian of the Λ scheme. We can express these eigenstates (the
“dressed states”) as linear combinations of the eigenstates of the atomic Hamiltonian H0

(2.44), (see [7]):
|a+〉 = sin θ sinφ|0〉+ cosφ|2〉+ cos θ sinφ|1〉
|a0〉 = cos θ|0〉 − sin θ|1〉
|a−〉 = sin θ cosφ|0〉 − sinφ|2〉+ cos θ cosφ|1〉,

(2.80)

where the angles θ and φ are defined by:

tan θ =
Ωp

Ωs

tan 2φ =

√
Ω2

p + Ω2
s

∆
.

(2.81)

If we choose the beam intensities such that Ωp � Ωs and ∆ �
√

Ω2
p + Ω2

s , we find that
sin θ → 0, cos θ → 1, tanφ→ 1, and the eigenstates of the full Hamiltonian become:

|a+〉 =
1√
2

(|1〉+ |2〉)

|a0〉 = |0〉

|a−〉 =
1√
2

(|1〉 − |2〉).

(2.82)

The effect of the laser fields on the level structure is presented in Fig. 2.9. We see that
while |a0〉 remains the ground state, the Stokes laser (ωs) “combines” states |1〉 and |2〉 into
the “doublet” |a+〉 and |a−〉.

Some effects of the modified level structure on the response of the ensemble of “three-
level atoms” to the combined light fields are presented in Fig. 2.10. In this figure the
susceptibility χ of the ensemble to the “pump” laser field (called also “probe” field) is plotted
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Figure 2.9: a. The Λ scheme with the two laser fields. b. The dressed states. See text for
details. (This figure is taken from [7]).

as a function of the detuning. Since the susceptibility is complex, the real and imaginary
parts are plotted separately. In the top part we see the absorption [Im(χ)] plotted as a
function of the detuning (δ = ωp − ω02) of the “pump” beam from resonance. When the
Stokes beam (ωs, see Fig. 2.9) is off (dashed line), the absorption reaches a maximum at
the resonance (δ = 0). However, when the Stokes beam is on (solid line), the absorption
at resonance goes down to zero, and the system becomes transparent – hence the name of
the phenomena - “electromagnetically induced transparency”. In the bottom part of Fig.
2.10 we see the refractive index [Re(χ)]. Near resonance, (when the Stokes beam is on –
solid line) the slope of the refractive index plot in the EIT configuration changes sign, and
it is much steeper than the refractive index when the Stokes laser is off (dashed line). This
property is the basis for “slow” and “stopped” light (and related phenomena), as is evident
from the formula for the light’s group velocity Vg = c/(nR + ω · ∂nR/∂ω), where nR is the
real part of the refractive index (see [7, 57]).

Coherent population trapping. A related phenomenon is coherent population trap-
ping (CPT). While EIT refers to the regime where one of the fields is much stronger than the
other (Ωp � Ωs), CPT tends to refer to two fields of approximately equal Rabi frequencies
(see [57], § 3.3). In this case it is preferable to study the Λ system using a different basis –
replacing the states |0〉 and |1〉 with |+〉 and |−〉 defined by:

|+〉 =
1√

|Ωp|2 + |Ωs|2
(Ω∗p|0〉+ Ω∗s |1〉)

|−〉 =
1√

|Ωp|2 + |Ωs|2
(Ωp|0〉 − Ωs|1〉).

(2.83)

It can be shown [58] that when the Rabi detuning is small, δ → 0 (see Fig. 2.5), the
dipole matrix element for the transition |−〉 ↔ |2〉 vanishes, while the matrix element for
the |+〉 ↔ |2〉 transition does not. Thus the |−〉 state is a “dark state” – atoms which are in
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Figure 2.10: Comparison between the susceptibility of a two-level system (dashed line) and
that of an EIT system with a resonant coupling field (solid line). The susceptibility is
plotted as a function of the detuning (ωp − ω02) of the frequency of the pump laser’s field
from the atomic resonance frequency. Top: imaginary part of the susceptibility, determining
absorption. Bottom: real part of the susceptibility, characterizing the refractive properties
of the medium. See text for more details. (This figure is taken from [7])

this state cannot interact with the combined field of the two light beams. When these beams
are turned on, they induce an optical pumping process that “traps” most of the population
in this dark state, and render the system transparent.

The CPT phenomenon has a variety of applications, including several types of atomic
clocks (see [58]).

2.8 Angular momentum states

In Sec. 2.7.1 [see Eq. (2.58)], we presented briefly angular momenta as part of the atomic
Hamiltonian. For one-electron atoms, there are three relevant angular momenta: L, the
electron orbital angular momentum, S, the electron spin, and I, the total nuclear spin. We
will just present here some relevant properties of the angular momentum eigenstates. See
[46], Ch. 7, for a detailed review.
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For any angular momentum operator J the commutator of any two components is:

[Ji, Jj] = i~εijkJk, (2.84)

where i, j, k represent x, y, z and εijk is the Levi-Civita symbol (εijk = 1 if ijk is a cyclic
permutation of x̂, ŷ, ẑ, and equals −1 for an odd permutation and 0 otherwise). J2 commutes
with any component of J, so that we can construct simultaneous eigenstates of J2 and Jz.
We denote these eigenstates |j,m〉, and we have:

J2|j,m〉 = j(j + 1)~2|j,m〉
Jz|j,m〉 = m~|j,m〉,

(2.85)

where j is a positive integer or half-integer and m can assume values of m = −j,−j+1, . . . j.

2.8.1 Adding angular momentum states

Let J1 and J2 be two angular momenta such that their components commute with each other
([J1i, J2j] = 0, where i, j can stand for x, y, z). The eigenstates of the two momenta are
|j1,m1〉 and |j2,m2〉. Since all the relevant components commute, we can define a combined
eigenstate of J2

1, J1z,J
2
2, J2z as:

|j1,m1; j2,m2〉 ≡ |j1,m1〉|j2,m2〉. (2.86)

On the other hand, the vector sum of these two momenta, J = J1 + J2 is also an angular
momentum operator, with eigenstates |j1, j2; j,m〉 that can be written as just |j,m〉. The
quantum numbers j,m of the angular momenta sum must obey:

|j1 − j2| ≤ j ≤ j1 + j2

m = m1 +m2.
(2.87)

The two sets of eigenstates are related by:

|j,m〉 =
∑
m1,m2

(m=m1+m2)

|j1,m1; j2,m2〉〈j1,m1; j2,m2|j,m〉

|j1,m1; j2,m2〉 =
∑
j,m

(m=m1+m2)

|j,m〉〈j,m|j1,m1; j2,m2〉.
(2.88)

The coefficients 〈j1,m1; j2,m2|j,m〉 = 〈j,m|j1,m1; j2,m2〉∗ are the Clebsch-Gordan (CG)
coefficients. Formulae for the calculation of the values of the CG coefficients can be found,
for example, in [46].

2.9 Irreducible tensor operators

The Hamiltonian H0 describing an isolated one-electron atom possesses spherical symmetry,
as it depends just on p2

i and 1/|ri|, where the index i indicates the different particles that
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compose the atom. However, the eigenstates of the H0 Hamiltonian are also eigenstates of
the angular momentum operators L,S,J, I,F and Fz, of which at least one, Fz, points to a
preferred direction (the “quantization axis”). When electromagnetic radiation (such as E)
interacts with the atom and causes transitions between some atomic states |ψ0〉 and |ψ2〉,
matrix elements such as 〈ψ0|d · E|ψ2〉 are needed to calculate transition probabilities and
rates [see, for example, Eq. (2.66)]. When transitions take place in an ensemble characterized
by mixed angular momentum states, several tools such as the Wigner-Eckart theorem (see
Sec. 2.9.4) and the polarization moments (see Sec. 2.11) provide important insight into the
ensemble behavior.

In the next sections we briefly review the rotation operators and the definition of the
irreducible operators, and then introduce the Wigner-Eckart theorem. However, first we need
to introduce a suitable basis – in this case, the spherical basis, which simplifies the relevant
mathematical expressions. As an example, it can be shown that when the electric field of
light radiation is given in the spherical basis, and this light interacts with an ensemble of
atoms, each component of the light induces a transition with a specific change of angular
momentum. This is not the case with the Cartesian components.

2.9.1 The spherical basis

The definition of the spherical basis unit vectors (in terms of the Cartesian unit vectors
x̂, ŷ, ẑ) is:

ê± ≡ ∓
1√
2

(x̂± iŷ) = −(ê∓)∗

ê0 ≡ ẑ = (ê0)∗.

(2.89)

A vector A (with components Ax, Ay, Az in the Cartesian basis) has components A± and A0

in the spherical basis given by:

A± = ∓ 1√
2

(Ax ± iAy)

A0 = Az,

(2.90)

and in the spherical basis the vector A is written as:

A =
∑
q

(−1)qAqê−q =
∑
q

Aqê
∗
q; q = −1, 0, 1. (2.91)

The dot product of two vectors A and B is, in the spherical basis,

A ·B =
∑
q

(−1)qAqB−q =
∑
q

Aq(B
∗)∗q. (2.92)

One example of using this basis is the amplitude of the electric field E of circularly
polarized light propagating in the z direction. Typically it is given as E(x̂ + iŷ). In the
spherical basis it is just Eê+.
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2.9.2 Rotation operators

Let us specify a rotation by a vector ξ; the direction of ξ specifies the rotation axis, and its
magnitude, the rotation angle. The rotation operators R(ξ) rotate the wave function |ψ〉 in
a way that is similar to the rotation of a classical vector: the norm of |ψ〉 is conserved, and
for each rotation R(ξ) there is an inverse rotation R−1(ξ) = R†(ξ) († indicates Hermitian
conjugate) so we have:

R†(ξ)R(ξ) = 1. (2.93)

Using the angular momentum operator J, we define the rotation operator as (see [46], § 7.3):

R(ξ) ≡ e−
i
~J·ξ. (2.94)

The rotation operator can rotate a state:

|ψ′〉 = R(ξ)|ψ〉 (2.95)

or an operator:
A′ = R†(ξ)AR(ξ). (2.96)

For angular momentum states |ψ〉 = |j,m〉, we can evaluate the rotation matrix as:

R(ξ)|j,m〉 =

j∑
m′=−j

D (j)
m′,m(ξ)|j,m′〉

D (j)
m′,m(ξ) ≡ 〈j,m′|e−

i
~J·ξ|j,m〉.

(2.97)

The matrix D (j)
m′,m(ξ) is a (2j+1)× (2j+1) matrix associated with the action of the rotation

operator R(ξ) on a subspace of angular momentum states with fixed j.

2.9.3 Irreducible operators

The action of an operator A on the quantum states {|Ψ〉} can be represented by a matrix
An,m via its action of the basis states |ψn〉. In general, all the matrix elements will have
non-zero values. However, sometimes the matrix possesses a structure similar to the one
presented in Fig. 2.11: blocks of non-zero elements along the main diagonal, and zeros in all
other places. If such a structure is maintained under rotations, we say that the operator A is
“reducible”: we can split the operator A into a sum of other operators Ai (each operating on
a separate subset of the basis states |ψn〉) and this splitting does not change under rotations.
Otherwise we say that A is irreducible [33].

We can classify the irreducible operators by the way they transform under rotations
[see Eq. (2.96)].
Scalar operators. The first type is the scalar operator – it is invariant under rotation:

A′ = R†(ξ)AR(ξ) = A. (2.98)

A scaler operator is known also as a rank (0) operator and is labeled T (0). An important
example of a scalar operator is the Hamiltonian of an isolated atom (that does not interact
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Figure 2.11: Schematic structure of a reducible matrix (from Fano and Racah [33])

with external fields).

Vector operators. Vector operators, or rank (1) operators, have 3 components {T (1)
− , T

(1)
0 ,

T
(1)
+ } and transforms under rotation in the same way as the three components of the position

operator in the spherical basis ({r−, r0, r+}).
In general, an irreducible operator of rank (κ) is a set of 2κ + 1 operators, labeled

T κq , that transforms under rotation in the same way that the states {|j,m〉} (with j = κ)
transform:

R(ξ)T (κ)
q R†(ξ) =

κ∑
q′=−κ

T
(κ)
q′ D (κ)

q′,q(ξ). (2.99)

2.9.4 The Wigner-Eckart theorem

The Wigner-Eckart theorem is an important tool when we wish to evaluate the matrix
element of an irreducible tensor operator component T κq between two angular momentum
states 〈α, F,mF | and |α′, F ′,m′F 〉 (α′, α, stands for all non-angular-momentum quantum
numbers). This theorem states that [46]:

〈α, F,mF |T (κ)
q |α′, F ′,m′F 〉 = (−1)2κ〈α, F ||T (κ)||α′, F ′〉〈F,mF |F ′, κ,m′F , q〉, (2.100)

where
〈α, F ||T κ||α′, F 〉 (2.101)

is the so called “reduced” matrix element, independent of mF ,m
′
F and q, and the last ex-

pression is the same CG coefficient that appears in the addition of two angular momentum
states (see Sec. 2.8.1). Basically, the Wigner-Eckart theorem splits the matrix element of a
component of an irreducible tensor operator into two parts:

• A “physical”, or “reduced”, part that is common to all the possible values of mF ,m
′
F

and q.

• A purely “geometrical” part that depends on mF ,m
′
F and q via the CG coefficients.
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The irreducible tensor operator component T κq transforms under rotation in a way that is
similar to the angular momentum state |F,m〉 (κ = F, q = m), so that evaluating the matrix
element in Eq. (2.100) is similar to combining two angular momenta |F,m〉 and |κ, q〉 into
the final state |F ′,m′〉, which explains the appearance of the CG coefficient in Eq. (2.100).

2.10 The rubidium atom

For more than 60 years, alkali metal vapors [lithium (Li), sodium (Na), potassium (K),
rubidium (Rb), and cesium (Cs)] have been used intensively both in basic research and in
metrology applications, such as atomic clocks, magnetometers and gyroscopes. The alkali
atoms are “hydrogen-like” atoms – they have just one electron in their outer shell, thus
simplifying the calculation of their Hamiltonians, eigenvalues, eigenstates and their interac-
tions with external fields. They have electric dipole transitions in the optical domain and
consequently transitions may be easily excited using commercial. light sources such as diode
lasers. In addition, they all have relatively high vapor pressures at room temperature, so
there is no problem to maintain a workable vapor concentration. In the work described in
this thesis we used 87Rb, a meta-stable isotope of rubidium (half-life of 4.9 × 1010 years).
Naturally occurring rubidium contains ∼ 28% 87Rb, while the rest is mostly 85Rb. A detailed
description of the properties of 87Rb and its first excited levels is presented in [45]. We will
review here some of the relevant details.

The rubidium atom has 37 electrons, of which 36 fill the first four shells, with the single
remaining electron in the fifth shell (principle quantum number n = 5). The other operators
and their quantum numbers specifying the state of the 87Rb atom are:

• L – The orbital angular momentum operator of the electron, with eigenvalues (quantum
numbers) of L2: ~2L(L+ 1); L = 0, 1, 2 . . . . An atom in a state L = 0 is denoted “S”,
an atom in a state L = 1 is denoted “P” and an atom in a state L = 2 is denoted
“D”. The operator Lz, the projection of L on the quantization axis, has eigenvalues
mL = −L,−L+ 1, . . . , L.

• S – The spin angular momentum operator of the electron, with a single eigenvalue
(quantum number) of S2: ~2S(S + 1); S = 1/2. The operator Sz, the projection of S
on the quantization axis, has two eigenvalues: mS = ±1/2.

• J – The total angular momentum operator of the electron: J = L+S, with eigenvalues
(quantum numbers) of J2: ~2J(J + 1); J = |L−S|, |L−S|+ 1, . . . , L+S. For a single
electron, J will always be half-integer. The operator Jz, the projection of J on the
quantization axis, has eigenvalues mJ = −J,−J + 1, . . . , J .

• I – The spin angular momentum operator of the nucleus. For 87Rb, the eigenvalue
(quantum number) of I2 is ~2I(I + 1); I = 3/2. The operator Iz, the projection of I
on the quantization axis, has eigenvalues mI = −I,−I + 1, . . . , I.

• F – The total angular momentum operator of the atom: F = J + I, with eigenvalues
(quantum numbers) of F2: ~2F (F+1); F = |I−J |, |I−J |+1, . . . , I+J . The operator
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Fz, the projection of F on the quantization axis, has eigenvalues mF = −F,−F +
1, . . . , F .

For the ground state of 87Rb, denoted 52S1/2, we have n = 5, L = 0, S = 1/2 and I = 3/2.
Due to the interaction of the nuclear spin I with the electronic spin S, the ground state is
split to two sub-levels:

• |F = 3/2− 1/2 = 1〉 (these two spins are anti-parallel)

• |F = 3/2 + 1/2 = 2〉 (these two spins are parallel)

This is the hyperfine splitting. Both |F = 1〉 and |F = 2〉 have the same parity, so there is no
electric dipole transition between them. We can induce |F = 1〉 ↔ |F = 2〉 transitions via
the magnetic dipole [see Eqs: (2.57), (2.58)] using ∼6.834 GHz microwave radiation. Each
of the states |F = 1〉, |F = 2〉 has 2F + 1 Zeeman, or magnetic, sub-level denoted |F,mF 〉.
With no external fields, all the Zeeman sub-levels of a particular |F 〉 state are degenerate
(all have the same energy). When the atom is subjected to a direct current (DC) magnetic
field, these sub-levels split (see Sec. 2.10.2).

The lowest-energy dipole-allowed transition is from the S (|L = 0〉) orbital angular
momentum state to the P (|L = 1〉) state. Here, too, we have two options for the value of J :
either J = 1/2 (the orbital and spin angular momentum of the electron are anti-parallel), or
J = 3/2 (the orbital and spin angular momentum of the electron are parallel). This is the
fine splitting:

• In the first case we get the 52S1/2↔ 52P1/2, known as the D1 transition, induced by
795nm light.

• In the second case we get the 52S1/2↔ 52P3/2 transition, known as the D2 transition,
induced by 780nm light.

The state 52P1/2 is split into two hyperfine states, typically denoted by F ′: |F ′ = 1′〉 and
|F ′ = 2′〉. Similarly, the state 52P3/2 is split into four hyperfine states: |F ′ = 0′〉, |F ′ = 1′〉,
|F ′ = 2′〉 and |F ′ = 3′〉. Similar to the ground states, each of these F ′ states is further split
into 2F ′ + 1 Zeeman sub-levels. Diagrams of the D1 and D2 transitions for 87Rb [45] are
presented in Figs. 2.12 and 2.13.
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Figure 2.12: 87Rb D1 transition hyperfine structure, with frequency splittings between the
hyperfine energy states (taken from [45]). The relative hyperfine shifts are shown to scale
within each hyperfine manifold (energy level spacings in the different manifolds and the
optical spacing are on different scales). The approximate Landé gF factors for each state are
also given, with the corresponding Zeeman splittings between adjacent magnetic sub-levels.
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Figure 2.13: 87Rb D2 transition hyperfine structure, with frequency splittings between the
hyperfine energy states (taken from [45]). The relative hyperfine shifts are shown to scale
within each hyperfine manifold (energy level spacings in the different manifolds and the
optical spacing are on different scales). The approximate Landé gF factors for each state are
also given, with the corresponding Zeeman splittings between adjacent magnetic sub-levels.
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2.10.1 Doppler broadening

Atomic levels have natural line width (typically noted Γ – see Fig. 2.5) that are related
by the uncertainty principle to the level’s lifetime. This in turn broadens transitions to
this level. Previously we discussed power broadening (see Fig. 2.3); Collisional (pressure)
broadening and shifts will be discussed in Sec. 4.1. Here we discuss Doppler broadening,
and in particular some of its consequences that will be used in the next chapters.

Let us examine the interaction of near-resonant light at frequency fL with an 87Rb vapor
at a temperature T . We assume that the light frequency is near the D2 transition (fL ∼
384.230 THz, see Fig. 2.13). The atoms (of atomic mass m) are in thermal equilibrium, with
average (root mean square (RMS)) speed vRMS =

√
3kBT/m (kB is the Boltzmann constant).

For 87Rb at room temperature, vRMS ≈ 300 m/s. If an atom has a velocity component vk
parallel to the k vector of the light, then frest (the frequency of the light in the rest frame
of the atom) is Doppler shifted by δf = fLvk/c, so that frest = fL + δf . Using the average
speed vRMS above, we obtain a Doppler shift of δfmax ≈ ±380 MHz.
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Figure 2.14: Estimation of the fraction of Rb atoms that interact with a light beam via a
specific |F,mF 〉 → |F ′,m′F 〉 transition (light frequency fL, transition frequency fFF ′ , natural
linewidth Γ). The quantity ∆FF ′ = fFF ′−fL is the detuning of laser light from the transition
frequency, and the solid curve is a plot of the fraction of room temperature 87Rb atoms that
“see” in their rest frame the light Doppler shifted by δf = frest − fL. The hatched area
marks the fraction of atoms that interact with the light (see text).

One consequence of the Doppler broadening is that only a fraction of the atoms interact
with the light. Let us focus our attention on a specific |F,mF 〉 → |F ′,m′F 〉 transition
(transition frequency fFF ′ , natural linewidth Γ),and further assume that the atoms can
absorb light only if its frequency in the atom’s rest frame obeys |frest − fFF ′| ≤ Γ/2. The
atoms are illuminated by a laser beam with frequency fL which is detuned by ∆FF ′ = fFF ′−
fL from this resonance frequency. Only the fraction pint of the vapor atoms having velocities
which Doppler shift the light (in the atom’s rest frame) by ∆FF ′ − Γ/2 ≤ δf ≤ ∆FF ′ + Γ/2
will interact with the laser beam (hatched area in Fig. 2.14). In the case where the Doppler
standard deviation (given by σD = fFF ′ ·

√
kBT/mc2) is much larger the natural linewidth
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Γ, we can estimate this fraction as

pint =
1

2

∫ fFF ′+Γ/2

fFF ′−Γ/2

1√
2πσD

exp

[
−(fFF ′ − fL)2

2σ2
D

]
dfL ≈

Γ

2
√

2πσD

exp

[
−∆2

FF ′

2σ2
D

]
. (2.102)

Another consequence is the merging of several close resonances into one wide resonance
unless their separation is much larger than 500 MHz (see Fig. 2.15).
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Figure 2.15: Doppler broadening of absorption spectra. (a) The measuring scheme. The
laser light passes through the 87Rb vapor, and its exit intensity is measured by a photodiode
(PD). (b) Level diagram showing the 3 allowed transitions |2〉 ↔ |F ′〉 (in red). (c) Level
diagram showing both the 3 allowed transitions |2〉 ↔ |F ′〉 (in red), and the additional 3
allowed transitions |1〉 ↔ |F ′〉 (in purple). (d-f) schematic plots (at different temperatures)
of the exit intensity as the frequency is scanned across the three transitions (b), showing the
broadening from three distinct absorption dips to one wide dip. (g) Schematic plot of the
exit intensity as the frequency is scanned across the six transitions (c), where the separation
between |1〉 and |2〉 is resolved, but the finer details are lost in the broadening.
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2.10.2 87Rb interaction with DC magnetic fields

When a 87Rb atom is subjected to a DC magnetic field B, the direction of the magnetic field
is chosen as the quantization axis, or the z axis of the atomic coordinate system. Thus the
magnetic dipole interaction term V M1 [see Eq. (2.58)] can be written as:

V M1 = µ ·B = µB(gLLz + gSSz + gIIZ)|B| (2.103)

since |B| = Bz.
The linear Zeeman shift. When the magnetic field is small, and the resulting

magnetic interaction is small compared to the hyperfine splitting (∼ 6.8 GHz), we can
assume that F = I + J is a constant of motion, and approximate V M1 as:

V M1
F,mF

= µBgFmF |B|, (2.104)

where µB is the Bohr magneton, gF is the Landé g-factor of the angular momentum state F
(see Fig. 2.12 and Fig. 2.13 for the values of gF ), and mF is the magnetic quantum number.
For the ground state of 87Rb we have approximately [59]:

V M1
F,mF

~
≈ 2π × 0.7MHz/G. (2.105)

The Briet-Rabi formula. In general, a more accurate calculation of the Zeeman
shift involves numerical diagonalization of the interaction Hamiltonian [45]. However, for
J = 1/2 and any value of I and |B|, the Breit-Rabi formula provides an accurate value of
the Zeeman shift [59] (here we express the energy in units of frequency):

EF,mF = − Ehfs
2(2I + 1)

+
µB
h
gImF |B| ±

Ehfs
2

(
1 +

4mF ξ

2I + 1
+ ξ2

)1/2

,

where ξ =
µB(gJ − gI)|B|

h · Ehfs

(2.106)

and where EF,mF is the energy, in Hz, of the |F,mF 〉 state relative to a zero set at Ehfs[1 +
1/(2I + 1)]/2, the ± sign is for F = I ± 1/2, and Ehfs is the hyperfine splitting in units of
frequency. For the calculations of 87Rb energy level data presented later in this work, we use
the following values: I = 3/2, J = 1/2, Ehfs = 6, 834, 682, 610.904Hz, gI = −0.0009951414,
gJ = 2.00233113, µB = 9.27400915× 10−28J/G and h = 6.62606896× 10−34Js.

2.11 Polarization moments

The density operator ρ and the related Liouville equation (see Sec. 2.3) are the tools we
need when we describe an ensemble of atoms and its time evolution. Given some basis
eigenstates |ψn〉 of the system’s Hamiltonian, we can calculate the matrix elements of the
density operator:

ρn,n′ = 〈ψn|ρ|ψn′〉. (2.107)
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In general the density operator represented by ρn,n′ is a reducible operator in the sense
defined in Sec. 2.9.3: it can be converted to a sum of irreducible operators – operators that
transform under rotation as defined in Eq. (2.99). We will demonstrate this conversion by
an example, using the ground state of 87Rb.

The 52S1/2 ground state of 87Rb is split into two hyperfine states: |F = 1〉 and |F = 2〉
(see Fig. 2.12). The former has 3 Zeeman sub-levels (mF = −1, 0, 1) and the latter has 5
sub-levels (mF = −2,−1, 0, 1, 2). All in all, we have a set of 8 sub-levels {|F,mF 〉} that
are a basis of the 87Rb ground state. If we use this basis to calculate the elements of the
density matrix ρF,mF ;F ′′,m′

F ′′ , we obtain an 8 × 8 matrix. In the absence of external fields,
all the elements with F 6= F ′′ vanish. Thus the structure of this density matrix is similar to
the structure presented in Fig. 2.11. We will have one 3× 3 block for elements with F = 1
(ρ1,m1;1,m′

1) and a second 5× 5 block with F = 2 (ρ2,m2;2,m′
2). This structure will not change

under rotation, as the rotation operation cannot mix |F = 1〉 and |F = 2〉 states. So the
first step in the conversion of the density matrix to an irreducible presentation is to treat
each value of F separately.

Let us now focus our attention on an ensemble of atoms that are in the same |F 〉 state.
The density operator is defined as (see Sec. 2.3):

ρ =
F∑

m,m′=−F

ρm,m′ |m〉〈m′|, (2.108)

where the Zeeman sub-levels {|m〉, m = −F, −F + 1, · · · , F} are a basis of the states in
this ensemble. The density matrix elements are then given by:

ρm,m′ = 〈m|ρ|m′〉. (2.109)

This form of the density matrix [Eq. (2.109)] does not have a clear split to irreducible
“blocks” (as shown in Fig. 2.11). Such irreducible blocks represent irreducible operators
(see Sec. 2.9.3). However, we can express the density operator as a sum of the irreducible

operators T
(κ)
q , κ = 0, 1, . . . , 2F , q = −κ,−κ + 1, . . . , κ (see [48], §3.7, §5.7 and [35] for the

definitions and the properties of these operators and for the following representation of the
density operator):

ρ =
2F∑
κ=0

κ∑
q=−κ

ρ(κ)
q T (κ)

q . (2.110)

The quantities ρ
(κ)
q are linear combinations of the elements of the density matrix:

ρ(κ)
q =

F∑
m,m′=−F

(−1)F−m〈F,m′, F,−m|κ, q〉ρm,m′ . (2.111)

The 〈F,m′, F,−m|κ, q〉 are the CG coefficients, used when two angular momenta are summed

(see Sec. 2.8.1). If all the ρ
(κ)
q are known, the density matrix elements can be calculated:

ρm,m′ =
2F∑
κ=0

κ∑
q=−κ

(−1)F−m〈F,m′, F,−m|κ, q〉ρ(κ)
q . (2.112)
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Thus, the quantities ρ
(κ)
q serve as a good representation of the density operator ρ and the

elements ρm,m′ of the density matrix.

In addition, for each κ, the quantities ρ
(κ)
q have a direct physical meaning. The set

{ρ(κ)
q }, called the κth polarization moment (polarization moments (PM)), represent a phys-

ical property of the ensemble of atoms in a particular F state:

• For κ = 0 we have one element, ρ
(0)
0 . This is the monopole moment, and it is directly

related to the population of the state F : ρ
(0)
0 = (2F + 1)−1/2 × population in |F 〉.

• For κ = 1 we have three elements, ρ
(1)
−1, ρ

(1)
0 , ρ

(1)
1 , forming a vector. This is the dipole

moment, sometimes called “orientation”. If we work in the spherical basis (see Sec.

2.9.1), then ρ
(1)
−1, ρ

(1)
0 , ρ

(1)
1 are the three components of the macroscopic magnetic dipole

moment of the ensemble.

• For κ = 2 we have five elements, ρ
(2)
−2, ρ

(2)
−1 ρ

(2)
0 ρ

(2)
1 , ρ

(2)
2 , forming a symmetric traceless

tensor. This is the quadrupole moment, sometimes called “alignment”.

The next moment is the octupole moment, etc.
Below we use the F = 1 state to demonstrate some polarization moments. For F = 1

we have 3 Zeeman sub-levels: mF = −1, 0, 1. Thus the density matrix is:

ρ =

ρ−1,−1 ρ−1,0 ρ−1,1

ρ0,−1 ρ0,0 ρ0,1

ρ1,−1 ρ1,0 ρ1,1

 . (2.113)

Using Eq. (2.111) we first calculate the monopole moment:

ρ
(0)
0 =

1√
3

1∑
m=−1

ρm,m =
1√
3
× population in |F = 1〉 (2.114)

(since we know that ρm,m is the population in the |1,m〉 sub-level).
Next we calculate the 3 components of the dipole moment, by substituting the values

of the CG coefficients (with F = 1) in Eq. (2.111):

ρ
(1)
−1 =

1√
2

(ρ0,−1 + ρ1,0)

ρ
(1)
0 =

1√
2

(−ρ−1,−1 + ρ1,1)

ρ
(1)
1 = − 1√

2
(ρ−1,0 + ρ0,1).

(2.115)

Looking at ρ
(1)
0 , the component parallel to the quantum axis z of the ensemble, we see that

it is equal to the population of atoms in the |m = 1〉 sub-level (those with their magnetic
moment aligned with z) minus the population of atoms in the |m = −1〉 sub-level (those
with their magnetic moment aligned opposite to z). This is actually the net macroscopic z
component of the magnetic moment of the ensemble.

In a similar way one can calculate the five components of the quadrupole moment ρ
(2)
q .
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2.12 Light absorption by alkali atoms

In the next chapter we present our simplified light absorption model, which provides the
theoretical basis for the discovery and calculation of the magic frequency (see Sec. 3.1).
One of the main assumptions we use to construct the model is this: the absorption (= pho-
ton scattering rate) of near-resonant light by a vapor of alkali atoms is proportional to the
square of the dipole matrix element. In other words, if the light is tuned near the frequency
of some |0〉 ↔ |2〉 electric dipole transition, then

γscat ∝ |〈0|ε̂ · d|2〉|2 (2.116)

where γscat is the photon scattering rate, ε̂ the polarization unit vector of the electric field of
the light, d = −ere is the electric dipole moment of the atom, e is the elementary charge and
re is the position of the electron relative to the atomic center of mass. [Note: The value of
γscat is a function of several other physical variables, but in this section we only investigate
the validity of Eq. (2.116).]

We start this study by analyzing a two-state excerpt of the Λ system (Fig 2.5), as
presented in Fig. 2.16 below for clarity.

Figure 2.16: Two state system and a single light field with angular frequency ω. (excerpted
from Fig. 2.5). The transition’s angular frequency is ω0, ∆ is the detuning (∆ = ω − ω0)
and Γ is the spontaneous emission rate.

The Rabi frequency for this system is (see Sec. 2.7.2)

Ω =
〈0|ε̂ · d|2〉E0

~
, (2.117)

where E0 is the amplitude of th electric field of the light.
To investigate the situation, we look at the system’s density matrix ρ:

ρ =

(
ρ00 ρ02

ρ20 ρ22

)
. (2.118)
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The optical Bloch equations for ρ are (see [60], §2.3):

dρ00

dt
=
i

2
(Ω∗ρ̃20 − Ωρ̃02) + Γρ22

dρ22

dt
=
i

2
(Ωρ̃02 − Ω∗ρ̃20)− Γρ22

dρ̃02

dt
= −iΩ

∗

2
(ρ22 − ρ00)− (γ + i∆)ρ̃02

dρ̃20

dt
=
iΩ

2
(ρ22 − ρ00)− (γ − i∆)ρ̃20,

(2.119)

where we use the rotating-frame transformation ρ̃02 = ρ02e
−iωt, ρ̃20 = ρ20e

iωt, Γ is the
spontaneous emission rate (also termed the “longitudinal decay rate”) and γ (typically γ =
Γ/2, see [46], § 5.5) is the decoherence rate (also termed the “transverse decay rate”).

The formal solution for ρ̃20 is:

ρ̃20(t) =
iΩ

2

∫ t

0

dt′[ρ22(t′)− ρ00(t′)]e−(γ−i∆)(t−t′). (2.120)

The integrand in Eq. (2.120) is very small except when t − t′ ∼ 1/γ. For the 52P1/2, and
52P3/2 excited states of 87Rb, 1/γ ∼ 50 nanoseconds. In addition, ρ22(t′) and ρ00(t′) are
almost constant during the short time interval t− t′ ∼ 1/γ, so for times t considerably larger
than 1/γ ∼ 50 nanoseconds (say 200 nanoseconds, which is the integration time for a single
data point in a 5MS/s A/D data acquisition card), we have:

ρ̃20(t) ≈ iΩ

2
[ρ22(t)− ρ00(t)]

∫ t

0

dt′e−(γ−i∆)(t−t′) ≈ iΩ

2(γ − i∆)
[ρ22(t)− ρ00(t)] (2.121)

since the integral at the lower limit is negligible. Similarly, we have:

ρ̃02(t) ≈ − iΩ∗

2(γ + i∆)
[ρ22(t)− ρ00(t)]. (2.122)

Substituting Eqs. (2.121) and (2.122) into the first line in Eq. (2.119) we have:

dρ00

dt
− Γρ22 = −|Ω|

2

4

(
1

γ − i∆
+

1

γ + i∆

)
[ρ22(t)− ρ00(t)] =

=
γ|Ω|2

2(γ2 + ∆2)
[ρ00(t)− ρ22(t)].

(2.123)

The left side of Eq. (2.123) is equal to minus the photon scattering rate (neglecting
stimulated emission – justified later): dρ00/dt − Γρ22 = −γscat. For low beam intensities
(Ω� Γ) the population in the excited state will not build up (due to the large spontaneous
emission rate). Thus ρ22(t) ≈ 0, ρ00(t) ≈ 1. Substituting these values in Eq. (2.123) we see
that γscat ∝ |Ω|2. In addition, the fact that ρ22(t) ≈ 0 justifies our assumption that we can
neglect stimulated emission.

If the beam intensity is higher (Ω ≈ Γ) we cannot assume that ρ22(t) ≈ 0. At the onset
of the light field we have |0〉 ↔ |2〉 Rabi population oscillations, but these oscillations decay
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to some steady-state population split (see [43], § 3.10). The decay time-constant τ is on the
order of 1/Γ, and for 87Rb τ ≈ 26 ns. Thus we can assume that the system converges to the
steady-state some 100 ns after the onset of the light field, so that we can substitute 0 for the
time derivatives on the left side of Eqs. (2.119), and get

ρ22 − ρ00 ≈ −
γ2 + ∆2

Ω2 + γ2 + ∆2
. (2.124)

or, using ρ22 + ρ00 = 1 and γscat = Γρ22:

γscat ≈
ΓΩ2

2(Ω2 + γ2 + ∆2)
. (2.125)

For a light field detuned by no more than ±Γ/2 from resonance, and noting that typically
γ ≈ Γ/2, we have

γscat ≈
ΓΩ2

2(Ω2 + Γ2/2)
. (2.126)

In Fig. 2.17 we plot γscat vs. Ω, and we note that the scattering rate of light by a two-state
atom is proportional to the square of the Rabi frequency only for Ω < Γ/3. On the other
hand, for Ω > 3Γ ≈ 18 MHz we have saturation, and γscat is almost constant.
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Figure 2.17: Photon scattering rate of near resonant light by a “vapor” of two-state atoms,
as a function of the Rabi frequency [Eq. (2.126)]. Inset: zoom on the low Rabi frequency
range, showing that approximately γscat ∝ Ω2 for Ω < Γ/3 ≈ 2 MHz.

So far, we have shown that for a “vapor” of two-state atoms, our assumption [Eq.
(2.116)] is valid for light beams with an intensity that produces a Rabi frequency below Γ/3.
In the next paragraphs we try to estimate the assumption’s validity for real 87Rb atoms
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contained in a vapor cell at room temperature, possibly with some buffer gas or paraffin wall
coating.

Three possible transitions. In general, the light can induce up to three types of
transitions in real 87Rb atoms: σ+, σ− and π. Equation (2.126) provides the scattering rate
for each type separately, so for each of these transitions our assumption is valid up to a Rabi
frequency of about 2 MHz. However, the intensity of the beam is the sum of the intensities
of the components. Thus our assumption [Eq. (2.116)] may be valid for a beam with up to
three times the intensity deduced based on Eq. (2.126).

Adding optical pumping. The next difference between the two-state system studied
above and real 87Rb atoms is that some of the atoms that are excited to the upper state (state
|2〉, Fig. 2.16) emit photons that relax them to states other then |0〉. Consequently, we have
optical pumping to other hyperfine ground states and sub-levels of the atom. Some of these
atoms will be pumped to a state where the beam’s frequency is too far detuned for them to be
exited again – These atoms are “lost” from the two-state system. Shore ([43], § 3.10) provides
a treatment of a two-state system with loss, and shows that for a given light intensity, the
population of the upper state is lower when loss is present.

Optical pumping at room temperature. In Sec. 2.10.1 and Fig. 2.14 we show
that as a result of the Doppler broadening, only a small fraction of the atoms interacts with
a monochromatic laser beam at any given time. If, for example, we assume that:

• at the beginning of the process, all the 87Rb atoms are at the 52S1/2|F = 2〉 hyperfine
ground state;

• the beam is tuned near the 52S1/2|F = 2〉 ↔ 52P3/2|F ′ = 2〉 transition;

• the Rabi frequency is on the order of 20 MHz,

then within 1µs we have several ‘excitation → spontaneous emission’ cycles which lead to
considerable optical pumping to the other hyperfine ground state (52S1/2|F = 1〉). However,
due to the Doppler broadening only a small fraction of the atoms will be pumped, as most
of the atoms do not interact with the light. With time, collisions change the velocities of the
atoms, and a new group of atoms interacts with the light. As evident from out measurements
(see Fig. 4.3) for a vapor cell with 7.5 Torr of Ne buffer gas, the Doppler broadening slows the
optical pumping process by at least 2 orders of magnitude: considerable amount of pumping
takes ∼ 100µs.

All the above indicates that for an actual 87Rb vapor, the range of light intensities
for which γscat ∝ |〈0|ε̂ · d|2〉|2 (or equivalently, γscat ∝ |Ω|2) is much larger than the range
calculated for a two-state system. Our demonstration of the magic frequency (see Ch. 5)
verifies that this is the case.



Chapter 3

The magic frequency

When a near-resonant light passes through an alkali vapor, it is partially absorbed via the
process of atomic excitation and subsequent spontaneous emission (at times this processes
is also called scattering, although scattering can also be coherent). Figure 3.1 illustrates
such a process with 87Rb vapor. Clearly, in this case there is a quantitative relation between
the total population in the |F = 2〉 hyperfine ground state and the absorption. However,
in this example there are some 32 possible ways to excite the atom, each with a different
rate that depends on several parameters, such as the vapor temperature, the frequency and
polarization of the light beam, etc. Because of such differing rates, there has heretofore been
no method to accurately deduce the hyperfine population from absorption measurements.
This work aims to achieve just that. ����
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Figure 3.1: Multi-state absorption of a laser beam by room-temperature 87Rb vapor (illus-
trating only 5 of the 32 possible transitions). Left: experimental configuration. A laser beam
tuned near the 52S1/2|F = 2〉 ↔ 52P3/2|F′ = 2〉 transition passes through the 87Rb vapor cell
and its exit intensity is measured by a detector. Right: the level diagram, showing the
relevant hyperfine states and their Zeeman sub-levels (for completeness, other levels of each
manifold are displayed in gray). 5 of the 32 possible transitions are indicated by red arrows.
Transitions with ∆mF = ±1 are marked σ±; π indicates ∆mF = 0 transitions. Wavy arrows
represent spontaneous emission, which depending on the final state of the atom, may have
one of the three polarizations.
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3.1 Simplified absorption model

The first step toward our goal is to compare the light absorption rate by two groups of alkali
atoms, each in a different Zeeman sub-level of the same hyperfine ground state F . Since we
are comparing rates, we may simplify the mathematics by ignoring all common factors and
build a model just for the relative absorption rates.

Let us examine the absorption of light at frequency fL by an alkali vapor (atomic
mass m, temperature T ). Note that for any |F,mF 〉 → |F ′,m′F 〉 transition (of frequency
fFF ′) the light is detuned by ∆FF ′ = fFF ′ − fL.

Our model is based on the assumptions that the light absorption rate due to a specific
|F,mF 〉 → |F ′,m′F 〉 transition is proportional to:

• the fraction of vapor atoms having the velocities that Doppler-shift the light by ∆FF ′ .
This fraction is approximately proportional to exp[−(∆FF ′/σD)2/2], with the Doppler
standard deviation σD = fFF ′ ·

√
kBT/mc2 (see Sec. 2.10.1).

• the square of the electric dipole matrix element (see Sec. 2.12). Working in the
spherical basis (see Sec. 2.9.1), the Wigner-Eckart theorem (see Sec. 2.9.4) lets us
write this matrix element as [45] (see also App. E.1):

〈F,mF |erq|F ′,m′F 〉 =

〈J‖er‖J ′〉(−1)F
′+J+1+I

√
2J + 1

√
2F ′ + 1

{
J J ′ 1
F ′ F I

}
〈F,mF |F ′, 1,m′F , q〉,

(3.1)

where q = −1, 0, 1 is the spherical basis index, 〈J‖er‖J ′〉 is the reduced matrix element,
J - the total electron angular momentum number, I - the nuclear spin number, the
curly brackets hold the Wigner’s 6J symbol, and the last factor is the Clebsch-Gordan
(CG) coefficient.

• the intensity of the relevant light component |Eq|2.

Based on these assumptions, we define ΓrelmF , the relative light absorption rate by atoms
in a particular mF sub-level as a sum (over all possible transitions) of products of the above
mentioned fraction of atoms, the square of the matrix element, and the intensity of the light
component related to each of these transitions:

ΓrelmF ≡
F ′=F+1∑
F ′=F−1

e
− 1

2

(
∆FF ′
σD

)2

(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2 q=1∑
q=−1

|E−q|2〈F,mF |F ′, 1,m′F , q〉2, (3.2)

where we sum first over all the allowed transitions (∆F = 0, ±1) from a particular hyperfine
ground state F , and then over the three components q of the light’s electric field, corre-
sponding (in the spherical basis) to the three possible transition types (π, σ±) from a given
|F,mF 〉 sub-level. Since we are interested only in relative light absorption rates, we ignore all
factors in the electric dipole matrix element [Eq. (3.1)] that are independent of mF ,m

′
F and

F ′. We also ignore the natural line width, the laser line width and the Zeeman splitting, as
these are all much smaller than the Doppler broadening; for cases in which the pressure shift
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and broadening are significant (e.g. in vapor cells containing buffer gas), we would modify
the transition frequencies fFF ′ with the relevant shifts [61] and replace the Doppler term in
Eq. (3.2) with the appropriate Voigt function [62].

The normalized spherical components Eq (|E|2 = 1) of the light’s electric field are
evaluated in a coordinate system where ê0 is in the direction of the DC magnetic field B
(the quantization axis). We call this system the “atomic coordinate” or “atomic frame”.

In the lab we typically control and evaluate the components of the light’s electric field
in a coordinate system where ê0 (or êz, if we are using Cartesian coordinates) is parallel to
the k vector of the light. We call this coordinate system the “light coordinate” or “light
frame”. Thus, we need to transform the components of the light from the light coordinate
system to the atomic one before we can substitute them in Eq. (3.2).

  ������
  �
  

  

  

Figure 3.2: Relation between the light’s k vector, the DC magnetic field B and the electric
field E of the light. Left: the light’s k vector and the DC magnetic field B define the
B-k plane, and θ is the angle between them. Right: in addition to k and B, we show the
E-plane – a plane perpendicular to k – in which the light’s electric field oscillates. The dashed
line indicates the intersection of the B-k and E planes, and the green arrow indicates the
direction of the oscillating electric field of linearly polarized light. The angle φ is measured
in the E-plane between the dashed intersection line and the green arrow.

Figure 3.2 presents the relation between the light’s k vector, the DC magnetic field
B and the electric field E of the light. We use this figure to illustrate the relation between
the two coordinate systems. The êL

z unit vector (the superscript “L” indicates the light
coordinate system) is parallel to k, and without loss of generality we choose êL

x to be in the
B-k plane. Thus, êL

y is perpendicular to the B-k plane. The êA
z unit vector (the superscript

“A” indicates the atomic coordinate system) is parallel to B (the quantization axis) and
without loss of generality we choose êA

x to be in the B-k plane. Thus, êA
y is also perpendicular

to the B-k plane. Since both êA
y and êL

y are perpendicular to the B-k plane, they are parallel
to each other and we can transform any vector from one system to the other by a rotation
Ry(±θ) around the common y axis.
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Figure 3.3: Normalized (|EA|2 = 1) intensity components of the light’s electric field in the
atomic spherical basis as a function of the angle θ between B and k with φ = 0 (Fig. 3.2).
Top: components of light that is linearly polarized in the light coordinate system. Note that
|EA

+|2 = |EA
−|2, and that there are two values of θ for which all three components are equal.

Bottom: components of light that is circularly (+) polarized in the light coordinate system.

The light’s electric field vector in the light coordinate system, EL, may be specified
either in the Cartesian basis or in the spherical basis, but EA should be specified in the
spherical basis so that we can substitute its components in Eq. (3.2). Thus, if EL is specified
in the Cartesian basis we have:EA

+

EA
−

EA
0

 = UC→sRy(θ)

EL
x

EL
y

EL
z

 , (3.3)

and if EL is specified in the spherical basis:
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EA
+

EA
−

EA
0

 = UC→sRy(θ)U
s→C

EL
+

EL
−

EL
0

 , (3.4)

where Ry(θ) is the rotation matrix and UC→s, U s→C are the transformation matrices between
the Cartesian and the spherical basis:

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 ; UC→s =

−1/
√

2 i/
√

2 0

1/
√

2 i/
√

2 0
0 0 1

 , U s→C = (UC→s)−1

(3.5)
In Fig. 3.3 we present the intensity components |EA

q |2 of the light’s electric field in the
atomic coordinate system for linearly polarized light and for circularly (+) polarized light
(as seen in the light coordinate system) as a function of θ – the angle between the light’s k
vector and the DC magnetic field B.

Note: in the next sections we will drop the superscripts A and L, and unless otherwise
indicated, the components |Eq| are evaluated in the atomic coordinate system.

3.2 Numerical study of the absorption model

The value of ΓrelmF , the relative light absorption rate by atoms in a particular mF sub-level
[Eq. (3.2)], depends on several variables, as we detail below. For the reader’s benefit, we
repeat the definition:

ΓrelmF ≡
F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2 q=1∑
q=−1

|E−q|2〈F,mF |F ′, 1,m′F , q〉2. (3.6)

Beside the magnetic quantum number mF , we have the quantum numbers F and I,
which change from one alkali atom to the other (we are interested in the ground state for
which J = 1/2, so that F = I±1/2). The mass of the alkali atom and the vapor temperature
enter ΓrelmF via the value of Doppler standard deviation σD (see Sec. 2.10.1). The polarization
of the light, as well as the angle θ between the light’s k vector and the DC magnetic field
B affect the value of the components of light intensity |Eq|2. The last variable is the light
frequency fL, which fixes the value of ∆FF ′ = fFF ′ − fL (see Sec. 2.10.1).

For the alkali atoms, the frequency fL of the light that can drive transitions from a
ground state F to an excited-state manifold is on the order of few hundreds of terahertz.
On the other hand, the separation between the hyperfine states within the excited-state
manifold is on the order of few hundreds of megahertz – six orders of magnitude smaller.
For ease of presentation, we denote the light frequency by:

∆L = fL − fmanifold (3.7)

where fmanifold is the energy difference (in Hertz) between ground state F and the lowest
hyperfine state in the excited manifold.
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Plots of ΓrelmF (∆L) for several alkali atoms are presented in Fig. 3.4. These plots are
calculated for linearly polarized light exciting room temperature vapor, with both angles
θ, φ (see Fig. 3.2) equal zero. Note that ΓrelmF = Γrel−mF [see Eq. (3.16) and the subsequent
discussion]. One notices clearly that for each alkali vapor there is at least one frequency (∆M

L )
where all the ΓrelmF (∆M

L ) rates are equal. Here we have an indication that these frequencies
may possess special properties, and we label them the magic frequencies.

To further study the magic frequencies we define several functions of the relative ab-
sorption rate ΓrelmF . The first one is SF (∆L), which is the light absorption rate when the
population is equally distributed amongst the 2F + 1 Zeeman sub-levels:

SF (∆L) ≡ 1

2F + 1

F∑
mF=−F

ΓrelmF (∆L). (3.8)

Since SF (∆L) is the total absorption rate when all the Zeeman sub-levels are equally popu-
lated, there is no preferred direction, and SF (∆L) should be independent of both θ and φ.
We have studied the quantity SF (∆L) numerically, and found that indeed this is the case.
Thus it can serve as a figure of merit of the atom-light interaction strength at a given light
frequency ∆L.

A related value is SM
F :

SM
F = max(SF ), (3.9)

where max indicates the maximal value of SF when varying the frequency ∆L.

We use SM
F to normalize the quantity ∆ΓF , defined below:

∆ΓF ≡
[
max(ΓrelmF )−min(ΓrelmF )

]
/SM

F (max/min scan the mF space). (3.10)

The quantity ∆ΓF is a measure of the maximal difference (span) between the relative ab-
sorption rates ΓrelmF . Clearly, when ∆ΓF = 0, all the ΓrelmF are equal. A three-dimensional plot
of ∆ΓF as a function of ∆L and θ is presented in Fig. 3.5. This plot reveals that there are 4
lines in the ∆L − θ plane along which ∆ΓF = 0.

Two of these lines, at θ = 0.62 and at 2.53 rad, correspond to the values of θ at which
the intensity of all the three components of the light are equal (see top right plot at Fig. 3.5).
It has been known for a long time [45] that when all three light components are equal, the
absorption of light by the atoms is independent of the Zeeman sub-level these atoms are in
(see the discussion following Eq. (3.16) for a mathematical proof of this statement).

However, to the best of our knowledge, the existence of the other two lines, at frequen-
cies ∆L = 385 and −318 MHz for 87Rb (or any similar lines for other alkali atoms), is shown
here for the first time. For now, we will term the first one (at 385 MHz) the “upper magic
frequency” and the second one the “lower magic frequency”.

Next, we wish to analyze the dependence of the magic frequencies on the vapor tem-
perature (the vapor temperature enters ΓrelmF and ∆ΓF via the Doppler standard deviation
σD – see Eq. (3.6) and Sec. 2.10.1). Figure 3.6 presents calculated values of both the “up-
per” magic frequency and the “lower” one as a function of the vapor temperature. Clearly,
the “upper” magic frequency is almost independent of the temperature, while the “lower”
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Figure 3.4: Plots of ΓrelmF (the relative absorption rate by atoms in a specific mF state) as a
function of the light frequency ∆L [see Eq. (3.7)] for different alkali atoms. These relative
absorption rates are calculated using Eq. (3.6) for linearly polarized light exciting room
temperature vapor. The values of both angles θ, φ (see Fig 3.2) is zero. The rates are
normalized so that for each alkali atom max(ΓrelmF ) = 1. Note that ΓrelmF = Γrel−mF .
a. Five plots for 133Cs: 62S1/2|F = 4〉 → 62P3/2 (D2 transition)
b. Three plots for 87Rb: 52S1/2|F = 2〉 → 52P3/2 (D2 transition)
c. Three plots for 23Na: 32S1/2|F = 2〉 → 32P3/2 (D2 transition; note the added zoom)
d. Three plots for 87Rb: 52S1/2|F = 2〉 → 52P1/2 (D1 transition)
The frequencies of the transitions F → F ′ are marked with arrows on the horizontal axis.
(For 23Na, only F ′ = 0 and F ′ = 3 are shown explicitly, because the separation of the
hyperfine states is too small to show all four). Note that as the separation between the
excited F ′ states grows (relative to the Doppler broadening), so does the difference between
the ΓrelmF . However, there is always at least one frequency – the magic frequency ∆M

L – where
all the plots intersect (this intersection also exists for 23Na even though the overlap of all
three curves makes it difficult to see in this plot).
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Figure 3.5: Three-dimensional plot of ∆ΓF (∆L, θ) for the 52S1/2|F = 2〉 → 52P3/2 transition
in room temperature 87Rb induced by linearly polarized light with φ = 0 (see Fig. 3.2).
Bottom: plot of ∆ΓF as a function of the light frequency ∆L [see Eq. (3.7)] and the angle
θ between B and k (see Fig. 3.2). The quantity SF (∆L) is plotted in blue on the θ = π
plane, its maximum SM

F is indicated by an arrow. Note that ∆ΓF = 0 along 4 lines in
the ∆L − θ plane, marked with arrows: two lines with θ = 0.62 or 2.53 rad, and two with
∆L = 385 or − 318 MHz. Top right: a scaled up (x10) portion of the ∆ΓF plot. Top left:
plots of the normalized intensities of the light components (in the atomic frame) as a function
of θ for φ = 0.

one varies considerably with it. In addition we note that the “upper” magic frequency is
located near the peak of SF (∆L) (see Fig. 3.5), indicating strong atom-light interaction,
while the “lower” one is located where SF (∆L) is small, meaning weak interaction between
the (detuned) light and the atoms. For these reasons we focus our attention henceforth on
the “upper” magic frequency – the magic frequency ∆M

L .
Figure 3.7 provides information on the behavior of the quantity ∆ΓF · SMF near the

magic frequency. We see that there is a frequency range of about ±15 MHz within which
the variation of the absorption rate by atoms at different Zeeman sub-levels is less than 1%.
This is a relatively wide frequency range, which means that the probe laser’s accuracy and
stability can easily be achieved, for example by a locked ECDL (see [63]).

In Fig. 3.8 we show how ∆ΓF changes when the light’s polarization angle φ (see Fig.
3.2) is modified. Note that although the general shape of ∆ΓF changes considerably, and for
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Figure 3.6: Calculated magic frequencies (see Fig. 3.5) as a function of the temperature of
87Rb vapor for the 52S1/2|F = 2〉 → 52P3/2 transition induced by linearly polarized light
with φ = 0 (see Fig. 3.2). Note how the “upper” magic frequency remains almost constant
(< 0.025 MHz/K) over a wide range of temperatures.
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Figure 3.7: Contours of ∆ΓF · SMF [see Eq. (3.10)] over the ∆L − θ plane near the magic
frequency ∆M

L . The contours are plotted for the 52S1/2|F = 2〉 → 52P3/2 transition in room
temperature 87Rb vapor induced by a linearly polarized light with φ = 0 (see Fig. 3.2). In
the ∆M

L ± 15 MHz frequency range ∆ΓF · SMF =
[
max(ΓrelmF ) − min(ΓrelmF )

]
< 0.01, meaning

that the variation in absorption rate by atoms in different Zeeman sub-levels is less than 1%.
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φ ≥ 55◦ there are no points where the intensity of all light components is equal, one feature
remains fixed for all values of φ: the magic frequency ∆M

L at which ∆ΓF (∆M
L ) = 0.
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Figure 3.8: Plots of ∆ΓF for the 52S1/2|F = 2〉 → 52P3/2 transition in room temperature
87Rb induced by linearly polarized light with φ ranging from 45◦ to 80◦ (a-d), plotted as in
Fig. 3.5. Note that there are two types of lines along which ∆ΓF = 0. Those parallel to the
∆L axis change position with the value of φ, merge into one line at φ ≈ 55◦ and disappear
for φ > 55◦. In contrast, the line at the magic frequency ∆M

L is independent of φ.

The magnitude of the DC magnetic field is not a variable of our simplified absorption
model. In fact, our model is based on the assumption that we can neglect the matrix elements
of the magnetic interaction which mix between the different hyperfine states of the ground
state. Thus we can use the Wigner-Eckart theorem (see Sec. 2.9.4) to get Eq. (3.1) which is
the starting point of our model. To estimate the influence of the magnitude of the magnetic
field on our model, we adapt a numerical tool (based on the methods developed by W.
Happer [64]) that diagonalizes the full Hamiltonian of the system including the magnetic
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field. We compare the predictions of our model with the numerical calculation and find that:

• For negligible DC magnetic fields (|B| < 0.01 G) the predictions of our model are
identical with those of the numerical calculation.

• For small magnetic fields (|B| ∼ 1 G) the numerical calculation predict a shift of
∼ 1 MHz in the value of the magic frequency compared to the result of our model.
Also, the calculated ∆ΓF (∆M

L ) does not vanish completely, but it is still well below
0.01.

• For larger magnetic fields, (1 G < |B| < 10 G), the numerical calculation predict a
shift of ∼ 1.5 MHz/G in the value of the magic frequency compared to the result of
our model. Also, the value of calculated ∆ΓF (∆M

L ) is now up to 0.05.

• Changing the angle θ between B and k and the polarization angle φ (see Fig. 3.2)
does not affect on the values of either the magic frequency or of ∆ΓF (∆M

L ).

These results confirm that our model is sufficiently accurate for small magnetic fields.

3.3 Mathematical study of the absorption model

The aim of this section is to prove the existence of the magic frequency, at which the ab-
sorption of linearly polarized light by alkali atoms is independent of:

• the specific Zeeman sub-level mF state the atoms are in;

• the angle θ between the external magnetic field B and the light propagation vector k;

• the light polarization angle φ (see Fig 3.2).

To this end, let us take two Zeeman sub-levels of the hyperfine ground-state, |F,m1F 〉 and
|F,m2F 〉, and look for a frequency fL of the light beam so that absorption rate by atoms in
these two Zeeman sub-levels will be the same. By definition, we must have Γrelm1F

= Γrelm2F
, or

[see Eq. (3.2)]:

F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

·
q=1∑
q=−1

|E−q|2〈F,m1F |F ′, 1,m′1F , q〉2

=
F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

·
q=1∑
q=−1

|E−q|2〈F,m2F |F ′, 1,m′2F , q〉2. (3.11)

Note that the beam’s frequency enters Eq. (3.11) three times (for F ′ = F − 1, F, F + 1)
via the terms ∆FF ′ = fFF ′ − fL, where fFF ′ is the frequency of the |F 〉 → |F ′〉 transitions.
Proving the existence of the magic frequency is equivalent to showing that the solution(s)
fL of Eq. (3.11) exist and are independent of m1F , m2F and |Eq|2 (q = −1, 0, 1).
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Equation (3.11) can be simplified:

F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

×
q=1∑
q=−1

(
|E−q|2〈F,m1F |F ′, 1,m′1F , q〉2 − |E−q|2〈F,m2F |F ′, 1,m′2F , q〉2

)
= 0.

(3.12)

Given that our light is linearly polarized and normalized, we know that |E+1|2 = |E−1|2
and |E0|2 = 1− 2|E+1|2. This enables us to write Eq. (3.12) as:

F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

×
[(

1− 2|E+1|2
)(
〈F,m1F |F ′, 1,m1F , 0〉2 − 〈F,m2F |F ′, 1,m2F , 0〉2

)
+ |E+1|2

(
〈F,m1F |F ′, 1,m1F + 1,−1〉2 − 〈F,m2F |F ′, 1,m2F + 1,−1〉2

+ 〈F,m1F |F ′, 1,m1F − 1, 1〉2 − 〈F,m2F |F ′, 1,m2F − 1, 1〉2
)]

= 0.

(3.13)

Let us examine the factor that multiplies (1−2|E+1|2) in Eq. (3.13). Using the explicit
expression for the Clebsch-Gordan coefficients we can show (App. E.2) that this factor equals
(m2

1F −m2
2F ) ·G(F, F ′) where G(F, F ′) is given by:

G(F, F ′) =


1/(F − 2F 2), F ′ = F − 1

1/(F + F 2), F ′ = F

−1/(3 + 5F + 2F 2), F ′ = F + 1.

(3.14)

In addition, we can also show (App. E.2) that the factor that multiplies |E+1|2 in Eq. (3.13)
equals (m2

1F −m2
2F ) · (−G(F, F ′)) – exactly the negative of the previous factor!

Using these results we can re-write Eq. (3.13) as:

(m2
1F −m2

2F ) ·
F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

×
[
(1− 2|E+1|2) ·G(F, F ′)− |E+1|2G(F, F ′)

]
= 0,

(3.15)

which can be further simplified to:

(1− 3|E+1|2) · (m2
1F −m2

2F )

×
F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

·G(F, F ′) = 0.
(3.16)

Equation (3.16) is equivalent to Eq. (3.11); Since its left-hand-side is the product of
three factors, there are three possible circumstances in which it vanishes as we require:
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1. m1F = −m2F , so ΓrelmF = Γrel−mF for all frequencies and intensities of the different
light components. This is a trivial solution which is to be expected from symmetry
considerations.

2. |E+1|2 = 1/3 (i.e., all light components have the same intensity), so that Γrelm1F
= Γrelm2F

for every choice ofm1F , m2F and for every frequency fL of the laser light: the absorption
of such light is independent of the population distribution amongst the Zeeman sub-
levels [45]. (This case corresponds to the ∆ΓF = 0 lines at θ = 0.62 or 2.53 rad in
Fig. 3.5.)

3. m2
1F −m2

2F 6= 0 and 1− 3|E+1|2 6= 0, so we can divide Eq. (3.16) by these two factors
and get:

F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

·G(F, F ′) = 0. (3.17)

Remembering that the solutions fL of Eq. (3.17) are the light frequencies at which
Γrelm1F

= Γrelm2F
, and noting that Eq. (3.17) is equivalent to Eq. (3.11), it is clear that the solu-

tions fL are independent of the particular choice of m1F , m2F and of the value of |E+1|2 (i.e.
the angle θ between B and k and the polarization angle φ – see Fig. 3.2). To see that such so-
lutions exist, note that the left hand side of Eq.(3.17) is a sum of three Gaussian functions of
fL, each with a peak at a different value of fL [see the discussion following Eq. (3.11)]. Each
of these Gaussian functions is multiplied by some expressions of F, F ′, I, J, and J ′ which
are always positive, and by G(F, F ′) [see Eqs. (E.19) and 3.17)]. The function G(F, F ′) is
always positive for F ′ = F and negative for F ′ = F ± 1 [see Eqs. (E.19)]. Consequently
the left hand side will vanish for at least one value of fL. Thus, we have shown that there
exists a magic frequency at which absorption of linearly polarized light by alkali atoms is
independent of the distribution of that population among the Zeeman sub-levels and of the
angles θ and φ.



Chapter 4

Measuring hyperfine populations

At the magic frequency, the absorption of the light by a vapor is not affected by the dis-
tribution of the population of a hyperfine state amongst its Zeeman sub-levels. Thus, light
at that frequency can be used to measure the total population of an hyperfine state. (For
ease of presentation , we will use throughout this chapter the phrase ”hyperfine population”
instead of ”population of a hyperfine state”).

The basic principle is very simple:

• tune a laser beam to the magic frequency;

• irradiate the vapor with the beam;

• measure the absorbance of the beam by the vapor;

• from the absorbance, deduce the hyperfine population (calibration required).

Note that only when the light is tuned to the magic frequency there is a one to one corre-
spondence between the absorbance and the total population in the hyperfine state.

The rest of this chapter is devoted to the description of the measurement method.
Before we go into the method’s finer details, we review (Sec. 4.1) several issues related to
decoherence and relaxation in vapor cells. Then, in Sec. 4.2, we describe the measurement
system, the tuning of its components and the calibration procedure. Several fine-tuning
methods are presented in Sec. 4.3, followed by a review of a measuring example (Sec. 4.4).
We conclude this chapter (Sec. 4.5) with a discussion of the advantages and limitations of
our measurement method.

4.1 Decoherence and relaxation in vapor cells

Most of the discussion in Ch. 3 does not include interactions of the alkali metal atoms with
their environment – the vapor cell, buffer gas, other alkali atoms, etc. In this section we
provide a short review of these interactions and introduce some results that are needed for
the presentation of our hyperfine population measuring method.

61
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Alkali metal atoms in room-temperature vapor cells are in constant thermal motion
at average speeds ranging from 200 to 600 m/s (depending on the mass of the alkali atom).
Their vapor pressure is on the order of 10−6 Torr or less, and if no other gases are present,
the mean free path for atom-atom collision is tens or even hundreds of meters. However,
a typical vapor cell is only a few centimeters long, so the alkali atom collides with the cell
walls within few hundred µs. The atom has a high probability of adsorbing on the cell wall
(typically made of glass) for a time of up to few milliseconds. During that time the alkali
atom interacts with the cell wall so that when the alkali atom desorbs its internal state is
unrelated to its initial state. We say that the internal state has been relaxed by the wall
collision, and consequently the coherence is destroyed (see [38, 65]).

If alkali atoms can be approximated as two-state systems, we can use the T1 and T2

relaxation times of Eq. (2.29) to characterize the effect of atom-wall collisions (and also
atom-atom collisions) on an ensemble of alkali atoms. Let us assume that at t = 0 the atoms
in the ensemble are all in the same coherent superposition |Ψ〉(0) = C0(0)|0〉+ eiφ(0)C1(0)|1〉
of the two states [both C0 and C1 can be real – see Eq. (2.21)]. Collisions cause two processes:

• “thermal relaxation” during which the coefficients C0(t) and C1(t) will change so that
the ratio of their squares will approach the ratio of the thermal-equilibrium populations
of the two states. T1 is the thermal relaxation time.

• “dephasing” (or “decoherence”) of the phase φi(t) of each atom i in the ensemble
so that after a time t � T2 the value of φi(t) − φ(0) is equally distributed between
0 and 2π. T2 is the coherence time.

We note here that alkali atoms are not two-state systems, and typically several relaxation
and decohernece processes occur simultaneously, each with different time constants [34]; the
relaxation times T1 and T2 nevertheless provide a good starting point.

For 87Rb room-temperature vapor in a glass cell, both T1 and T2 are on the order
of 10−5 s (assuming that coherence is completely lost in a single wall collision). However,
more than 60 years ago, two methods were found to lengthen both the relaxation and the
coherence times. One such method is to add a diamagnetic gas (such as noble gases) to the
cell (introduced by A. Kastler and J. Brossel [11]), and the other consists of coating the inner
walls of the cell with paraffin wax. A detailed study of the effect of paraffin coating on the
relaxation and coherence can be found, for example, in a paper by M. Bouchiat [38]. Below
we describe in some detail the effects of adding a buffer gas at low to moderate pressure
(1 to 100 Torr) to the vapor cell.

On the one hand, collisions with the buffer gas atoms drastically reduce the mean
free path of the alkali atoms, thus the alkali-wall and alkali-alkali collision rates decrease,
increasing the relaxation and coherence times. On the other hand, we typically have a large
rate of collisions between alkali and buffer gas atoms. Although an alkali atom can maintain
its coherence through millions of collisions with buffer gas atoms, eventually, at high enough
buffer gas pressure, these collisions will accelerate the relaxation and decoherence processes.
These two opposite effects on the relaxation time are expressed in Eq. (4.1) (see [34, 66, 67]):

T1 =
1

AD0
p0

p
+N0v̄rσ1

p
p0

, (4.1)
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where p the buffer gas pressure, p0 = 760 Torr is the reference pressure, D0 is the diffusion
constant of the alkali atoms in the buffer gas (at p0), N0 is the Loschmidt’s constant, v̄r is the
relative velocity of the alkali and the buffer gas atoms, σ1 is the cross section for collisions
that change the internal state of the alkali atoms (see Table 4.1) and A is a factor that only
depends on the geometry of the cell [34].

Buffer gas D0 (cm2/sec) σ1 (cm2)
Ne 0.31 1.6 · 10−22

Ar 0.22 9 · 10−22

Table 4.1: Diffusion coefficient D0 and cross section σ1 for rubidium atoms in some buffer
gases [67].

The first term in the denominator of Eq. (4.1) describes the relaxation caused by
the diffusion of the rubidium atoms through the buffer gas to the cell walls. This term is
inversely proportional to the buffer gas pressure p. The second term describes relaxation by
collisions between the rubidium atoms and buffer gas atoms; it is proportional to the buffer
gas pressure and can be neglected for buffer gas pressures below ∼ 100 Torr [34].

Adding buffer gas to alkali vapor cells gives rise to several additional phenomena:

• Pressure shift and pressure broadening. When we excite an alkali atom with a
light beam (e.g., a 780 nm light beam driving the 52S1/2|F = 2〉 → 52P3/2 transition
of 87Rb), the frequent collisions with buffer gas atoms cause a shift in the resonance
frequency of the transition, as well as its broadening. The shift and broadening are
both linear functions of the buffer gas pressure. Coefficients for the pressure shift and
broadening for the D2 line of 87Rb by the noble gases are presented in Table 4.2. In
some applications, such as atomic clocks, a mixture of buffer gases (e.g. helium and
neon) is used to minimize the resulting shift.

• Line narrowing (Dicke narrowing). Collisions with buffer gas atoms reduce the
mean free path of the alkali atoms, and cause frequent abrupt velocity changes. When
near-resonance radiation that excites alkali atoms has a wavelength that is comparable
or larger than the mean free path of the alkali atoms, the Doppler broadening of the
transition linewidth is significantly reduced. This “narrowing” of the linewidth results
from the frequent velocity changes that occur while the alkali atoms interact with the
light, so that the “average” speed of the atoms during the interaction is close to zero
(see [16, 68]).

A 87Rb vapor cell we frequently used in the work is a borosilicate glass cylinder
(I.D. 22 mm, length 38 mm) with 7.5 Torr Ne buffer gas. For this cell, the estimated thermal
relaxation time is on the order of 10 ms [see Eq. (4.1)], the pressure shift is 28± 4 MHz and
the pressure broadening (FWHM) is 70± 3 MHz (see Table 4.2).

The Doppler broadening of the D2 transition is much larger than this pressure broad-
ening and we assume that the total broadening in our cell is adequately described by the
Doppler profile of Sec. 2.10.1 with a FWHM of

√
702 + 5052 ' 510 MHz, where 505 MHz is

the room-temperature Doppler FWHM (σD increased from 215 to 217 MHz).
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Buffer gas Shift (MHz/Torr) Broadening (MHz/Torr)
He 2.2± 0.5 22.5± 1.1
Ne −3.7± 0.5 9.4± 0.4
Ar −7.1± 0.8 19.8± 0.5
Kr −8.4± 1.0 17.5± 1.0
Xe −7.0± 1.1 19.8± 0.9

Table 4.2: Pressure shift and broadening of the 52S1/2|F = 2〉 → 52P3/2 (D2) transition
frequencies in room-temperature 87Rb due to several buffer gases [61].

4.2 Detailed description of the population measuring

method

Our population measuring method evaluates the population distribution (p1 and p2 = 1−p1)
between the two hyperfine ground states of alkali atoms in a vapor cell. These populations
are directly related to the zero-order polarization moment (see Sec. 2.11). Typically such
measurements are needed to assess the results of some other manipulations that are per-
formed on the alkali vapor. The method is a destructive one, it applies to that part of the
cell that is illuminated by the measuring light beam (i.e., within the red arrow on Fig. 4.1),
and we assume that just prior to the measurement the values of p1 and p2 are independent
of the position inside the cell.

Figure 4.1: Absorption of a laser beam as it passes through an alkali-metal vapor-cell of
length l. If the density n of the atoms that can interact with the beam is constant across
the cell, and is not affected by the beam, then the Beer-Lambert law [Eq. (4.2)] is valid.

Below we present our method as it applies to 87Rb vapor in 7.5 Torr of Ne buffer
gas (it can easily be modified for every other alkali atom in any other buffer gas or in a
paraffin coated cell). We use the concept of the optical density (OD) which characterizes the
absorption of the light by a substance, such as alkali vapor: when a beam of light of intensity
I0 passes through an alkali-metal vapor-cell of length l (see Fig. 4.1) then the intensity I of
the light as it emerges from the cell is given by the Beer-Lambert law:

I = I0e
−OD = I0e

−σ·l·n·pi (4.2)

where OD is the optical density, n is the density of alkali atoms, pi is the relative population
of the atoms in the hyperfine state |F = i〉 that can interact with the light and σ is the
cross section for interaction of an atom with the light. It is important to note that the
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Beer-Lambert law as given in Eq. (4.2) is valid only if the density n · pi is constant along
the length of the cell and is independent of the light intensity.
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Figure 4.2: Details of the population measurement scheme. BB – Beam blocker; BS – non-
polarizing beam splitter cube; I – iris; L1, L2, L3 – lenses; M – mirror; ND1, ND2 – neutral
density filters; PBS – polarizing beam splitter cube; PD – Photodiode; S – beam sampler.
Red arrows and lines indicate the laser beam; the beam is tuned to the magic frequency for
the 52S1/2|F = 2〉 → 52P3/2 transition in 87Rb (schematic level diagram is presented in the
top right corner). Dashed blue arrows indicate data and control lines. The measuring beam
is produced by the pump-probe laser (so named since, as explained in this chapter, it probes
the population using optical pumping). The polarization-lock sub-system [69, 70] and the
double-pass AOM (see App. B.2) enable tuning of the beam to the magic frequency, and
switching it on and off within 1µs. The lenses L1 and L2 and the iris control the diameter
and the intensity profile of the beam (see Fig. B.3). The beam then passes through the cell
and its exit intensity recorded as a function of time. (The scope is triggered simultaneously
with the onset of the pump-probe laser beam.) This data are used to calculate (see text) the
distribution of the population amongst the two hyperfine ground states (only atoms contained
in the volume of the cell between the dashed red lines are measured). The additional entry
point on the left facet of the non-polarizing beam splitter is used to direct other laser beams
to the cell prior to the measurement (e.g., for optical pumping).

A detailed scheme of the population measurement system is presented in Fig. 4.2. The
value that we wish to measure is ps

2 – the relative population of 87Rb atoms in the |F = 2〉
state just prior to the start of the measuring procedure. (The total population of 87Rb atoms
in the |F = 2〉 state is ps

2 · n · V , where V is the volume of the vapor and n is the density
of the 87Rb atoms). The measuring beam is produced by the pump-probe laser (so named
since, as explained in this chapter, it probes the population using optical pumping). When
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we turn on the pump-probe laser beam, it starts pumping atoms from the |F = 2〉 state to
the |F = 1〉 state (see Sec. 2.7.5). Once this process starts, the relative population p2(t) of
87Rb atoms in the |F = 2〉 state depends on the optical pumping rate, which depends on the
local light intensity, which in turn decreases along the length of the cell due to absorption.
So for any time t > 0, the relative population p2(t) is also a function of the location along
the cell. Since p2(t) is part of the exponent of the Beer-Lambert law [Eq. (4.2)], this law is
not valid. However, there are two instances where it is valid:

• at t = 0 + ε (just after the pump-probe beam is turned on) the density n ·p2(ε) of 87Rb
atoms in the |F = 2〉 state is constant along the cell if the time ε is small enough that
we can neglect the amount of optical pumping during that time. For small enough ε
we have

n · ps
2 ' n · p2(ε), (4.3)

In addition, as our beam is tuned to the magic frequency, the distribution of the
population between the Zeeman sub-levels of the |F = 2〉 state does not affect the
absorption. Thus the intensity Is of the light emerging from the vapor cell at the start
of the optical pumping process is related to ps

2 by the Beer-Lambert law and we have
[see Eq. (4.2)]:

Is ' I0e
−σ·l·n·ps

2 ⇒ ps
2 ' −

ln(Is/I0)

k
; k = σ · l · n. (4.4)

We evaluate the calibration constant k as described in Sec. 4.2.3.

• Asymptotically as t → ∞, provided that the intensity of the pump-probe beam is
strong enough that we can assume

n · p2(t)t→∞ ' 0. (4.5)

In this case the light absorption is very small, so we can neglect its variation along the
cell, and we have:

I(t)t→∞ ' I0e
−σln·p2(t) ' I0e

−σln·0 = I0. (4.6)

Thus, by measuring Is and I0 of Eqs. (4.4),(4.6) (and evaluating the calibration constant k)
we can calculate the hyperfine populations p1 and p2.

4.2.1 Tuning the beam’s intensity

Our first task is to tune the intensity of the pump-probe beam so that both Eqs. (4.3) and
(4.5) are valid. The value of ε is taken to be the integration time of a single data point in
our scope. Based on the considerations to be presented in Sec. 4.2.2, this integration time is
200 ns. The effect of the optical pumping process on the intensity of the pump-probe beam
as it emerges from the vapor cell can be approximated as:

I(t) = I0(1− a · e
t
τp ), (4.7)

where τp is the time constant of the optical pumping process (see Fig. 4.3). This time
constant increases as the light intensity decreases. If we tune the light so that τp � ε, then
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Eq. (4.3) holds. On the other hand, to satisfy Eq. (4.3) we need to have a strong enough
pumping process so that at steady state the remaining population in the |F = 2〉 can be
neglected. The main competing process to the optical pumping is the thermal relaxation,
with time constant T1 (see Sec. 2.7.5) so if we have τp � T1 then the optical pumping will
be strong enough, and Eq. 4.5 holds. For 87Rb vapor with 7.5 Torr Ne buffer gas, T1 ≈ 10 ms
(see end of Sec. 4.1). Thus we need to tune the intensity of the light so that:

200 ns ≈ ε� τp � T1 ≈ 10 ms. (4.8)

Tuning the light intensity is done with a variable neutral-density filter (ND1 in Fig. 4.2).
The value of τp is estimated based on light intensity plot (e.g. Fig. 4.3), and we aim at
50µs < τp < 100µs.
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Figure 4.3: Typical plot of the intensity of the pump-probe laser beam as it emerges from
the vapor cell (Fig. 4.2). The starting time (t = 0) is at the simultaneous onset of the
pump-probe laser and the trigger of the scope (see Fig 4.2). Data is shown in blue, fitted
to an exponential function having the form of Eq. (4.7) shown in red with a time constant
τp = 55.1µs. The inset magnifies the plot during the first few µs. The data recorded during
the photodiode rise time (the first 2 or 3 µs) is excluded from the fitting process. Is, the
intensity at the start of the process, is estimated by extrapolating the fit to t = 0; I0, the
intensity at the end of the optical pumping process, is estimated by extrapolating the fit to
t→∞.
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4.2.2 Tuning the amplifier and the scope

Once the light intensity that enters the cell is tuned, we need to make sure that our photodi-
ode (Thorlabs DAT210, PD in Fig. 4.2) is not saturated. We use a variable neutral-density
filter (ND2 in Fig. 4.2) to adjust the light intensity that reaches the photodiode. The pho-
todiode produces a photocurrent of ∼ 0.45 A/W. Thus, at the typical light intensity of less
than 1 mW the photocurrent is in the range of a few hundred µA. We use a transimpedance
amplifier (Fig. 4.4) to convert this current to a voltage, so that we can record it on the
scope. The capacitor C1 and the resistor R1 are chosen so that the combined rise time of
the photodiode will be minimal while avoiding overshoot.
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Figure 4.4: The transimpedance amplifier. a: circuit diagram; b,c: plots of the response of
the amplifier to turning the light on at t = 0 (for different combinations of R1 and C1). The
plot in (b) shows an overshoot, while the plot in (c) does not. The output voltage in the
first 1 or 2µs (photodiode rise time) is not proportional to the light intensity.

Next, we choose the time scale of the scope. Since we need to estimate the intensity
both at t = 0 and at t → ∞, we typically choose it so that a full scale equals ∼ 10τP. In
Fig. 4.3 (which is typical of our measurements) the full scale is set to 500µs. With 2500
data points for a full screen, each data point represents an integration time of 200 ns. (This
is the source of the value of the short time ε in Eq. (4.8).
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4.2.3 Calibrating the measurement system

Recoding the intensity of the light as it emerges from the vapor cell (such as the plot presented
in Fig 4.3), fitting the plot with the functional form of Eq. (4.7) and extrapolating to t = 0
and t→∞ provides us with both Is and I0 (see Fig. 4.3). Using Eq. (4.4) we can calculate
ps

2 (the hyperfine population in the |F = 2〉 just before the state at the start of the measuring
process) provided that we can evaluate k. To that end, we developed a calibration process
that is a variation of Franzen’s “evolution in the dark” method [37]. The time sequence of
this process is presented in Fig. 4.5. As described in this figure caption, setting T� T1 (T
is the dark time and T1 is the thermal relaxation time constant) ensures that at the start of
the intensity data recording, the vapor is at thermal equilibrium.

��Laser 
intensity 

Time 

Scope 
 trigger 

t=0 

T tp 

Intensity 
data 

Figure 4.5: Calibration time sequence. At the beginning of the sequence, the pump-probe
laser (see Fig. 4.2, used in this stage for pumping only) is turned on for time tp that is
long enough to pump all the population to the |F = 1〉 state. Then it is turned off for a
time T during which the thermal relaxation processes return some of the population back
to the |F = 2〉 state. The laser (now pumping and probing) is turned on again at t = 0 and
simultaneously the scope is triggered to record the transmitted laser intensity. Note that the
population |F = 2〉 returns to its thermal equilibrium value if the time T is long enough.

The thermal energy of alkali atoms at room temperature (in units of frequency) is on
the order of a THz. The ground state hyperfine splitting, which is < 10 GHz, is negligible
in comparison. Based on the Boltzmann distribution we know that the population will
be equally distributed between all the sub-levels of the ground state. On the other hand, a
transition from the ground state to the first excited P state is in the optical range – hundreds
of THz. Thus without external excitation, the population of the excited states is nil.

The |F = 1〉 hyperfine ground state of a 87Rb atom has 3 Zeeman sub-levels, while the
|F = 2〉 state has 5 sub-levels. At room-temperature thermal equilibrium all the population
is equally distributed between these 8 sub-levels. Thus for pTE

2 , the relative population of
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the |F = 2〉 hyperfine state at thermal equilibrium is:

pTE
2 =

5

8
= 0.625. (4.9)

To proceed, we run the calibration sequence with T � T1. We record the intensity of the
light emerging from vapor cell to produce a plot similar to the one presented in Fig. 4.3,
and extract Is and I0 at thermal equilibrium. We mark these values with superscript TE –
“thermal equilibrium”, and substitute them in Eq. (4.4):

0.625 = pTE
2 ' − ln(ITE

s /ITE
0 )

k
⇒ k ' − ln(ITE

s /ITE
0 )

0.625
. (4.10)

Once the value of the calibration constant k is calculated, we can use our method to measure
p2 for any state of the vapor.

Important notes.

1. The quantities I0 and Is that we extract from the intensity plots are only proportional
to the actual light intensities in the vapor cell, since there is absorption by the vapor
cell wall, by the filter ND2 (Fig. 4.2) and amplification by the photodiode-amplifier
combination. However, in Eqs. (4.4) and (4.10) we only have the ratio Is/I0, which is
independent of these factors.

2. In most cases the ratio Is/I0 is close to 1. Taking the first term of the Taylor expansion:

ln(x) =
∞∑
n=1

(−1)n−1 (x− 1)n

n
, (4.11)

we get

ln(Is/I0) ' Is − I0

I0

and ln(ITE
s /ITE

0 ) ' ITE
s − ITE

0

ITE
0

. (4.12)

In some instances (see Sec. 4.3) it may be preferable to replace ln(Is/I0) with (Is−I0)/I0

in Eqs. (4.4) and (4.10).

4.3 Fine tuning of the population measuring method

We developed several procedures to fine tune our population measuring method and fit it
to a specific alkali, a specific vapor cell and varied experimental conditions. The flexible
experimental control system (detailed in App. B.4) provides us with the ability to choose
how the population measurement is performed. There are several options for this fine tuning,
as described below:

• Averaging the plots. Recording a plot such as the one presented in Fig 4.3 may
be done repeatedly and the results are averaged automatically by the scope’s internal
averaging feature. The operator can choose the number of repetitions: if the particular
environment is noisy, more repetitions are needed; however, this will obviously increase
the overall measurement time.
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• Choosing the fit type. In Fig. 4.3 we illustrated the fitting of the intensity plot to the
functional form of Eq. (4.7): I(t) = I0[1−a ·exp(−t/τp)], which is a single-exponential
fit. However, due mainly to the variation in the intensity profile of the laser beam,
atoms that are close to the edge of the beam will be optically pumped at a different rate.
Thus, fitting to a function of the type I(t) = I0[1−a·exp(−t/τp1)−b·exp(−t/τp2)] may
provide a more accurate estimation of Is and I0. This fit is the “double-exponential fit”.
Another option is to fit to the double-exponential function, but with a pre-determined
ratio of the time constants τp1/τp2.

• Choosing the calculation method. The operator can choose whether to calculate
the population by Eqs. (4.4) and (4.10), using ln(Is/I0) – the “ln route”, or by the
“difference route” – using Is − I0 – as modified by Eq. (4.12). The “difference route”
may be preferred if the anticipated values of p2 are small so that Is/I0 ' 1. This is
because in such a case the “ln route” requires to strongly zoon-in on the vertical axis
of the scope around I0, and consequently we will not be able to measure the amplifier
output when the light is off, and variation of the ambient light may introduce noise to
the estimation of I0.

• Adjusting the zero point. The calibration process described in Sec. 4.2.3 is based
on the assumption that the pump-probe laser can, given a sufficiently long time, pump
all the population from the |F = 2〉 state. However, this is not always the case. The
remaining steady-state population can be estimated using the method presented in the
last part of Sec. 2.7.5. If this remaining population is not negligible compared to the
anticipated population to be measured, the system can modify I0 and/or k accordingly.

The experimental control system includes a calibration section that runs the sequence pre-
sented in Fig. 4.5. The operator can choose up to 4 values of T and the system runs the
sequences, downloads and analyzes the data, presents a statistical summary, and then pauses
to let the operator choose the preferred mode of operation.

4.4 Measurement examples

An example of the population measurement method is presented in Fig. 4.6 by plotting the
thermal relaxation process of 87Rb vapor contained in a vapor cell with 7.5 Torr Ne buffer
gas. At t = 0 the vapor is optically pumped by the pump-probe laser to p2 = 0. Following
calibration and fine tuning, we run a sequence similar to the one presented in Fig. 4.5 sixty
times, with T = 0.2 + n · 1 ms, n = 1, 2, . . . 60. We calculate p2 for each such run and
then fit the results to a function of the type p2 = p − a · e−t/τ1 ; we find a fit goodness of
R2 = 0.9992. We then fit the results to a function of the type p2 = p− a · e−t/τ1 − b · e−t/τ1 ,
this time with R2 = 0.9998. The second fit is presented in Fig. 4.6. As detailed in previous
studies [71, 72], the “two exponent” behavior is to be expected. The average deviation of the
data points from the fit is 0.0015, or 0.15% of the full scale. Another measurement example
is presented in App. B.5 for two-photon Rabi oscillations induced in a vapor cell by RF and
MW fields.
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Figure 4.6: Thermal relaxation plot of the relative population in the |F = 2〉 hyperfine ground
state of 87Rb vapor contained in a vapor cell with 7.5 Torr Ne buffer gas. The data points
are measured by the population measurement method. The fitted function (R2 = 0.9998) is
displayed below the plot. As detailed in previous studies of the thermal relaxation process
[71, 72], the double-exponential behavior, as well as the 1 to 8 ratio of the time constants of
the exponents, is to be expected. The average deviation of the data points from the fit is
0.15% of the full scale.

4.5 Advantages and limitations of the population mea-

surement method

The main advantages of our population measurement method is that it is accurate and
fast. In its current form, it can provide population data with a time resolution of 1µs.
However, the limiting factors are our National Instruments NI PCI 6733 control card and
the photodiode amplifier. Both can be replaced with faster hardware, bringing the time
resolution down to 200 ns.

Our measurement method is very stable, as demonstrated by the excellent fit to the
thermal relaxation data of Fig. 4.6. The ability to fine tune the method to each particular
cell and experiment, and to calibrate it prior to each run, enhances this stability. The method
is also insensitive to the fluctuation of the laser power, since each measurement evaluates
both Is and I0 within ∼ 500µs [see Eqs. (4.4), (4.6)]. To further improve accuracy and
stability, we can repeat the measurement several times and average the results.

One important limitation of this method is that it is destructive. We cannot continu-
ously measure the population; if we wish to provide a plot of the population as a function of
some other parameter, we need to prepare the vapor with different values of that parameter
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and then measure the population each time.
Another limitation is our need to use a linearly polarized beam in a π configuration –

having the DC magnetic field parallel to the direction of the electric field of the light. This
is because the magic frequency is valid only for a linealy polarized beam. If we use a linearly
polarized beam whose electric field is not parallel to the magnetic field, the absorption of the
E+ component might not be equal to the absorption of E− component (see discussion of light
components in Sec. 3.1). Thus, even though the light that enters the cell is linearly polarized,
it may acquire elliptical polarization as it propagates through the cell. This limitation can
be avoided if we analyze the light that emerges from the cell by a system that is capable
of separately measuring the intensity of each light component (such as Schäfter & Kirchhoff
Polarization Analyzer SK010PA). We would then be able to use the measured absorption of
the E0 component to calculate p2, the total population in the |F = 2〉 state, in a manner
similar to the one detailed in this chapter. While the linear component deals with the zero
order polarization moment (see Sec. 2.11), we may be able to deduce from the absorption
of the E± components more information on the state of the vapor, and specifically the value
of higher order polarization moments (see also Ch. 6)



Chapter 5

Demonstration of the magic frequency

The experimental demonstration of the magic frequency is based on the hyperfine population
measurement method described in Ch. 4. The idea is simple: we create Rabi population
oscillations between Zeeman sub-levels of the 52S1/2|F = 2〉 hyperfine ground state of 87Rb
vapor, and then measure the hyperfine population p2. We repeat this procedure while de-
tuning the frequency of the measuring beam from the magic frequency. The measurement
results should show Rabi oscillations unless the measuring laser beam is at the magic fre-
quency. This confirms that at the magic frequency, the interaction with light is independent
of the population distribution among the Zeeman sub-levels.

We use our versatile experimental system, described in App. B, to realize this idea.
Table 5.2 shows a brief description of each experimental step (detailed descriptions follow).
For ease of presentation, we use the short form |i, j〉 for the Zeeman sub-level |F = i,mF = j〉.

5.1 The magnetic and RF fields

In this section we describe the parts of the experimental setup needed for the demonstration
of the magic frequency. We then proceed with the description of the demonstration itself.

Our vapor cell is 38 mm long, and the diameter of the laser beams we use in this
experiment is 12 mm. We refer to the illuminated cylindrical volume (diameter 12 mm,
length 38 mm) inside the cell as the “active volume” (this volume is indicated by the dashed
red lines in Fig. 4.2). We subject the Rb atoms in the active volume to an axial DC magnetic
field of 26 G (Table 5.2, step 1). The purpose of the field is to induce a second-order Zeeman
shift between the Zeeman sub-levels, so that each transition between these sub-level has
a distinct frequency. At this field the |2, 2〉 ↔ |2, 1〉 transition frequency is 18.057 MHz
(calculated by the Briet-Rabi formula, see Sec. 2.10.2). The next transition, |2, 1〉 ↔ |2, 0〉,
is at 18.153 MHz – separated by 96 kHz and easily resolvable in our system.

To estimate the required homogeneity of the magnetic field note that in step 3 (Ta-
ble 5.2) we induce Rabi oscillations for up to 400µs by an RF field at 18.057 MHz (we limit
the Rabi oscillations time to 400µs so that the thermal relaxation, with a time constant of
∼ 10 ms, will not reduce the oscillation’s visibility). Since we wish to estimate visibility of
the Rabi oscillations, we need to have several cycles within those 400µs, and consequently,
the Rabi frequency should be ∼ 10 kHz. The resulting power broadening is ∼ 20 kHz (see

74
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Step Details Section
1 We subject a cylindrical 87Rb vapor cell (with 7.5 Torr Ne buffer gas)

to a DC magnetic field of ∼ 26 G along the axis of the cell.
5.1

2 We optically pump the 87Rb vapor population to the |2, 2〉 Zeeman
sub-level, using two circularly polarized laser beams.

5.2

3 We induce Rabi population oscillations between the |2, 2〉 and the |2, 1〉
Zeeman sub-levels with an RF field for a Rabi time t.

5.3

4 We turn off the RF field and adiabatically reduce the DC magnetic
field to 1 G perpendicular to the axis of the cell. The 90◦ rotation of
the field is intended to enable the same optical axis as before to be
used for the production of π polarized light.

5.1

5 We perform a hyperfine “population measurement” sequence as de-
scribed in Sec. 4.2, using a measuring beam detuned by ∆f from the
magic frequency. We denote the measurement result OD(t,∆f).

5.4

6 We repeat steps 2 to 5 for several values of t (0 ≤ t ≤ 400µs) and pro-
duce a plot of OD(t,∆f) as a function of t (with ∆f as a parameter),
to produce a Rabi oscillation plot.

5.4

7 We repeat steps 2 to 6 for several values of the frequency detuning ∆f
(−120 ≤ ∆f ≤ 120 MHz) and estimate for each plot the visibility of
the Rabi population oscillations.

5.5

Table 5.2: Brief descriptions of the steps of the experimental demonstration.

Fig. 2.3). Since a change of the axial DC magnetic field by 0.015 G shifts the transition
frequency by ∼ 10 kHz, we conclude that the uniformity of the magnetic field in the active
volume should be within ±0.015 G, or ±0.06%. Under this condition, most of the Rb atoms
in the active volume can interact with the RF field.

The axial DC magnetic field. The required axial magnetic field is produced by the
axial coil arrangement (Fig. 5.1). This arrangement consists of a main coil and a pair of
auxiliary coils with an adjustable separation. When this distance is larger than the coils’
radius, the field of the auxiliary coils has a dip in its center, which can be adjusted to cancel
the central peak in the field of the main coil (Fig. 5.1b). Magnetic field measurements using
a Lake Shore 460 3-channel Gauss-meter allowed us to ensure field uniformity within the
active volume. In addition, three pairs of compensation coils and an auxiliary pair for the
y axis (shown in Fig. 5.3) are used to cancel the ambient magnetic field (due to the earth’s
field and other sources).

The RF field. As mentioned above, an RF field at 18.057 MHz is needed to induce
Rabi oscillation between the |2, 2〉 and |2, 1〉 Zeeman sub-levels (Table 5.2, step 3). This
transition is a magnetic dipole transition [see Sec. 2.7.1 and Eq. (2.57)], so that the magnetic
component of the RF field should be perpendicular to the quantization axis (z axis). We use
two rectangular loops located above and below the cell to produced the required field (see
Fig. 5.2). The RF signal is produced by an Agilent 33220A 20 MHz function generator and
is fed directly to the loops without any impedance-matching circuit. Since the wavelength
of the RF field (∼ 17 m) is much larger than the size of our loops, we can treat its magnetic
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Figure 5.1: The axial coils arrangement. a: Arrangement overview; the main coil is a single-
layer coil (length 180 mm, inner diameter 106 mm, wire diameter 1 mm); the auxiliary coils
are 36-turns six-layer coils (length 6 mm each, inner diameter 148 mm, wire diameter 1 mm).
The distance between the coils is adjustable. The vapor cell (not shown) is located at the
center of the main coil. b: Calculation of the combined magnetic field of the coils (current
2.6 A in all the coils). The distance between the auxiliary coils is adjusted so that the total
field is uniform along the length of the cell (38 mm). c: Comparison between the calculated
and the measured magnetic fields. The dashed blue lines indicate our ±0.015% tolerance for
the field magnitude along the length of the cell (z axis), and the vertical error bars represent
the ±15 mG repeatability of the Gauss-meter. Both the calculated and the measured fields
are within the acceptable limits (except one measured point at the edge of the cell).

component as near field, i.e. it will be similar to a magnetic field that a DC current in the
loops will produce – almost uniform along the length of the vapor cell. Using a pick-up
loop and a spectrum analyzer we measured the intensity of the RF in the active area (the
vapor cell was not installed during this measurement). We found a uniform intensity to
within ±2%, and as the Rabi frequency is proportional to the square root of the intensity,
we expect a ∼ 1% variation in the Rabi frequency of atoms in different areas of the vapor
cell. Since we have only few Rabi cycles, this variation is acceptable.
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Adiabatic change of the DC magnetic field. During the first three experimental
steps we have an axial DC magnetic field of 26 G. In the fifth we perform a hyperfine-
population measurement with the measuring beam tuned to or near the magic frequency.
We know that the DC magnetic field should not be larger than few Gauss (see discussion at
the end of Sec. 3.2). In addition the beam has to be in a π configuration (see Sec. 4.5) which
means that during this step the DC magnetic field must have only transverse components
to the light propagation axis.

The DC magnetic field must be changed adiabatically to avoid perturbing the popu-
lation distribution between the Zeeman sub-levels. For the change to be adiabatic, it’s rate
should be negligible compared to the transition frequency between the Zeeman sub-levels. In
our case the lowest magnetic field is 1 G, driving the transition frequency to 700 kHz. Thus
changing the magnetic field during more than ∼ 100µs is adiabatic. On the other hand, we
wish to perform the change in a time that is considerably shorter than the 10 ms thermal
relaxation time for this cell (see 4.2.1). In addition, for a typical current driver limited to
voltage Vmax, its ability to rapidly raise the current in an inductive load L is limited by
dI/dt = Vmax/L. Conversely, turning off the current completely can be done much faster,
with the help of specially designed fast current shutters (see App. D). Taking all the above
into consideration, we perform the adiabatic change in the following way:

• The system is initially prepared by tuning the current in the three pairs of the compen-
sation coils so that the magnetic field in the cell is Bcomp = 1ŷG. We tune the current
in the auxiliary y-axis coils (Fig. 5.3), which are connected to their current driver via
a fast current shutter, to produce a magnetic field of Baux = −1ŷG. Thus when the
current in all these coils is on, the total DC magnetic field in the cell is zero.

• In addition to the above currents, we turn on the current in the axial coils (Fig. 5.1)
at the beginning of the sequence (see Table 5.2, step1), producing a magnetic field of
B = 26ẑG. The axial coils are also connected via a fast current shutter.

• The current shutter of the auxiliary y-axis coils is tuned to shut down the current
within ∼ 200µs, while the current in the axial coils arrangement is turned off within
∼ 400µs. At the beginning of step 4 (see Table 5.2) we activate both current shutters,
so that after ∼ 400µs the magnetic field is equal to Bcomp = 1ŷG.

The total magnetic field is always above 1 G during the shutting process, so that the tran-
sition frequency between the Zeeman sub-levels is higher than 700 kHz. Thus the change is
adiabatic, and its ∼ 400µs duration is short compared to the 10 ms thermal relaxation time,
as required.

Following the above description of the parts of the experimental setup required for the
demonstration of the magic frequency, let us now detail the demonstration steps (Table 5.2)
one by one.

5.2 Optical pumping to a Zeeman sub-level

In step 1 (Table 5.2) we turn on the currents just described to produce the DC magnetic
field B = 26ẑG. A level diagram describing the beams, polarizations and levels of optical
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Figure 5.2: The RF loops arrangement. The RF field is created by the two rectangular loops,
held in place by the loop frames. The supports hold the RF loop coils and the vapor cell
together. The whole RF loops arrangement is inserted into the axial coil arrangement (see
Fig. 5.1). Note that the RF magnetic field oscillates along the x direction, while the DC
magnetic field is along the z axis.
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Figure 5.3: Front view (left) and side view (right) of the vapor cell environment prepared
for the demonstration of the magic frequency. In the front view, we label the supports that
hold the vapor cell and the RF loop arrangement (see Fig. 5.2) inside the main coil. In the
side view we label the auxiliary coils, the compensation coils, and the auxiliary coils for the
y axis.
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pumping process in step 2 is presented in Fig 5.4. We excite the Rb atoms with two circularly
polarized laser beams. Beam 1 is tuned to the 52S1/2|F = 2〉 ↔ 52P1/2|F ′ = 2〉 transition,
and it can excite Rb atoms that are in the |F = 2〉 state except those in the |2, 2〉 Zeeman
sub-level. Beam 2, which is tuned to the 52S1/2|F = 1〉 ↔ 52P3/2|F ′ = 2〉 transition, is too
far detuned to excite atoms that are in the |2, 2〉 sub-level, so this sub-level is a “dark state”.
Atoms that reach this dark state via excitation and subsequent spontaneous emission would
remain there indefinitely, but the thermal relaxation processes cause a “leak” characterized
by the 10 ms thermal relaxation time. If the pumping rate of the two laser beams is fast
enough compared with this relaxation, most of the population will accumulate in the |2, 2〉
Zeeman sub-level. The efficiency of this optical pumping depends on two additional factors:

• The ellipticity of the Beam 1 polarization which would pump population away from
the |2, 2〉 sub-level so that it would not be “dark” any more. We measured the beam
ellipticity by passing Beam 1 via a linear polarizer, rotating it and measuring the
emerging power as a function of the polarizer angle. For a perfectly circularly polarized
beam, the power should be independent of the angle. In our setup this variation was
less than ±1.5%.

• The angle between the DC magnetic field and the k vector of the light. Since the
magnetic field defines the quantization axis, any non-zero angle leads to the appearance
of both π and σ− components in the atomic coordinate system (see Fig. 3.3), and again
the |2, 2〉 sub-level will not be a dark state. During the optical pumping step, the DC
magnetic field is in the axial (z) direction, and we keep both beams parallel to this
field to within 0.002 radian.

We produce the two pumping laser beams using the lasers described in App. B.1 – “The laser
module”. The auxiliary laser produces Beam 1, and the (un-modulated) Raman laser pro-
duces Beam 2. The “Beam management module” (App B.2) is used to combine the beams,
make their polarization circular and turn them on and off. We then use the “Additional
entry point” (Fig. 4.2) to feed the pumping beams to the vapor cell. Based on arguments
to be presented in Sec 5.6, we pump more than 90% of the population to the |2, 2〉 Zeeman
sub-level.

5.3 RF induced Rabi oscillations

Once a large part of the population is pumped to the |2, 2〉 Zeeman sub-level, we move to
step 3 (Table 5.2) – Rabi oscillations. We keep the DC magnetic field on at B = 26ẑG, turn
off the pumping beams and turn on the Agilent 33220A 20 MHz function generator. This
generator feeds an RF signal at 18.057 MHz to the RF loops arrangement (Fig. 5.2) that
induces the |2, 2〉 ↔ |2, 1〉 Rabi population oscillations. The RF is turned off after a time t.

In general, these population oscillations affect the absorption of light by the vapor; the
absorption by atoms in |2, 1〉 is not equal to the absorption by atoms in |2, 2〉 unless the
light is tuned to the magic frequency. Thus we can observe the oscillations by measuring the
absorbance of the vapor with a laser beam tuned away from the magic frequency (see Sec.
5.4 and Fig. 5.5). We use this data to tune the power of the function generator so that the
Rabi frequency will be ∼ 10 kHz.
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Figure 5.4: Optical pumping to a Zeeman sub-level. We use two circularly polarized laser
beams. Beam 1 is tuned to the 52S1/2|F = 2〉 ↔ 52P1/2|F ′ = 2〉 transition and beam 2 to
the 52S1/2|F = 1〉 ↔ 52P3/2|F = 2〉 transition. The Zeeman sub-level |2, 2〉 (marked by a
blue circle) is a “dark state”: Beam 1 cannot excite atoms that are in this state because
the 52P1/2|F ′ = 2〉 does not have an |mF = 3〉 sub-level, which is necessary to conserve the
angular momentum, and beam 2 is too far detuned. The optical pumping cycle includes
spontaneous emission back down to the 52S1/2 ground state that does populate the dark
state
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5.4 Absorbance (optical density) measurements

Following the end of the Rabi oscillations step (Sec. 5.3) we adiabatically change the DC
magnetic field from B = 26ẑG to B = 1ŷG as described in the last part of Sec. 5.1. This
is step 4 (Table 5.2). Then we move on to step 5 – performing a population measurement
sequence as described in Ch. 4.

The frequency of the measuring beam (pump-probe laser, Fig. 4.2) is set by a combina-
tion of the polarization locking point and the frequency of the double-pass AOM (see App. B.2).
The beam is linearly polarized in the y direction, parallel to the DC magnetic field – thus the
beam is in the π configuration, as required. Note (see Fig. 3.5) that the magic frequency for
the |F = 2〉 hyperfine state of 87Rb vapor is at ∆L = 385 MHz. In addition, we have 7.5 Torr
of Ne buffer gas in the cell, which shifts the transition frequencies by 7.5 · (−3.7) = −28 MHz
(see Table 4.2), so the calculated magic frequency for our cell is:

Magic frequency7.5 Torr Ne = 385− 28 = 357 MHz. (5.1)

For ease of presentation, we denote the frequency of the measuring beam by its detuning ∆f
from the magic frequency:

∆f = Measuring beam frequency −Magic frequency7.5 Torr Ne. (5.2)

The population measurement sequence (step 5, Table 5.2) produces a value which we
denote OD(t,∆f). This value is a “calibarted” absorbance of the vapor [absorbance divided
by the calibration constant k of Eq. (4.4)]. We then modify the Rabi oscillation time t and
repeat steps 2 to 5 for several values of t, 0 ≤ t ≤ 400µs (this is step 6, Table 5.2).

In Fig. 5.5 we present such a plot of OD(t,∆f) as a function of t for a measuring beam
detuned by ∆f = −125 MHz from the magic frequency. Each data point is an average of
6 measurements, and we fit the data to the functional form below:

OD(t) = a+ b · t+ c · e−t/τ1 sin(t/τ2 + φ); t in µs. (5.3)

The fitted parameters are listed in Table 5.4:
In Fig. 5.5 we clearly notice the Rabi oscillations since the measuring beam is detuned

from the magic frequency. The parameter “c” (Table 5.4) is the main parameter of interest
here: it is expected go to zero as the measuring beam’s frequency approaches the magic
frequency.

5.5 Rabi visibility vs. the measuring beam detuning

In the last step of our demonstration (step 7, Table 5.2) we repeat the absorbance measure-
ment as described in Sec. 5.4, each time changing the detuning ∆f of the measuring beam
and recording optical density plots such as the one presented in Fig. 5.5. Several such plots
are shown in Fig. 5.6. We then modify the entire procedure described in this chapter by
pumping the population to |2,−2〉 instead of |2, 2〉. This is done by reversing the direction
of the magnetic field produced by the axial coils arrangement (Fig. 5.1), causing the σ+

polarized beams to become σ− polarized. The dark-state is now |2,−2〉 (see Fig. 5.4) and
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Parameter Value Notes
a 0.947± 0.001 a-c/2 is the calibrated optical density at the be-

ginning of the Rabi oscillations (t = 0). Note that
φ ≈ π/2. When the measuring beam is tuned to
the magic frequency, “a” becomes the relative pop-
ulation in the |F = 2〉 hyperfine state.

b (3.57± 0.5) · 10−5(µs)−1 b approximates the thermal relaxation rate of the
population in the |F = 2〉 hyperfine state.

c 0.0209± 0.0021 this parameter defines the visibility, or contrast, of
the Rabi oscillations.

τ1 (212± 35)µs τ1 characterizes the decay, or decoherance, of the
Rabi oscillations

τ2 (15.73± 0.2)µs τ2 defines the frequency of the Rabi oscillations.
For this plot we have: fRabi = 1/(2π·15.73·10−6) =
10.1 kHz

φ 1.86± 0.1 rad. φ is the phase of the oscillations, which is the case
is a 0.6π – slightly higher than π/2, as is clear from
the plot.

Table 5.4: List and description of the parameters fitted to the calibrated OD plot in Fig. 5.5
according to the functional form given by Eq. 5.3. Note that OD, as well as a and c are
pure numbers (no units).
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Figure 5.5: Absorbance plot showing Rabi oscillations. Plotted is the calibrated absorbance
vs. the Rabi time t for a measuring beam detuned by ∆f = −125 MHz from the magic
frequency. The blue data points are the average of 6 runs of the experiment, and the average
standard deviation is 0.003. The fit has the functional form given by Eq. (5.3), and the fit
parameters are listed in Table 5.4.

the pumping is therefore to this sub-level. The |2,−2〉 ↔ |2,−1〉 Rabi oscillations are now
induced by an 18.34 MHz RF field. The plots resulting from this modified procedure are
presented in Fig. 5.7.
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Figure 5.6: Several optical density plots showing |2, 2〉 ↔ |2, 1〉 Rabi oscillations. Each
plot is recorded as described in Sec. 5.4 with the measuring beam detuned from the magic
frequency by ∆f (the magic frequency is 357 MHz). This detuning is noted above each plot.
The data points are the average of 6 runs of the experiment, and the standard deviation
is 0.003 for most of the plots, except for those with ∆f = −47 and − 7 MHz, where it is
0.005. The data are fitted to the functional form of Eq. (5.3). The plots show that the
Rabi visibility, or contrast, decreases almost to zero as the frequency of the measuring beam
approaches the magic frequency (∆f → 0).
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Figure 5.7: Several optical density plots showing |2,−2〉 ↔ |2,−1〉 Rabi oscillations, obtained
as in Fig. 5.6, with with two changes: At step 2 (see Table 5.2) the direction of the magnetic
field is reversed to optically pump the population to the |2 − 2〉, and the frequency of the
RF field that induces the Rabi oscillations is changed to 18.34 MHz (step 3, Table 5.2)

Our aim in this demonstration is to show that when the measuring beam is tuned to
the magic frequency, the Rabi oscillations are not noticeable, although they do exist. The
plots in Figs. 5.6 and 5.7 clearly show that. In addition, in Fig. 5.8 we plot the Rabi contrast
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(parameter “c”, Table 5.4) as a function of the detuning ∆f of the measuring beam from the
magic frequency. We see indeed that the Rabi contrast, or visibility, vanishes near the magic
frequency. We also note that it flips sign at the magic frequency which is equivalent to the π
phase shift in the optical density plots (Figs. 5.6 and 5.7) at the same point. This happens
because when the frequency of the measuring beam is lower than the magic frequency the
absorption by atoms in |2, 2〉 is higher than by those in the |2, 1〉 sub-level, and the reverse
is true when the frequency of the measuring beam is higher than the magic frequency.
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Figure 5.8: Rabi contrast vs. measuring beam detuning ∆f . The Rabi contrast is defined as
the parameter “c” [Eq. (5.3)] in the functional form of the curves fitted to the data presented
in Figs. 5.6 and 5.7. The solid line is a 2nd order polynomial fit to the data; the two dashed
lines are fitted to the upper and lower ±10% uncertainty limits of c (see Table 5.4). At
vanishing contrast, the detuning of the measuring beam is ∆f = −18 ± 5 MHz. Note that
the contrast flips sign at the magic frequency, which reflects the π phase shift observed in
the optical density plots (Figs. 5.6 and 5.7) when ∆f changes sign (see text).

Figures 5.6 and 5.7 validate qualitatively our theory: the absorbance of a light beam
tuned within ±15 MHz of the magic frequency is independent of the distribution of the pop-
ulation amongst the Zeeman sub-levels (see Fig. 3.7). Figure 5.8 lets us measure the magic
frequency by fitting a curve to the Rabi contrast data (the parameter “c” - see Table 5.4)
and finding its intersection with the horizontal axis (vanishing contrast). The result is that
the contrast vanishes at ∆f = −18 MHz. The two dashed lines on Fig. 5.8 represent the
upper and lower limits of the parameters “c” (see Table 5.4), and their intersections with
the horizontal axis provide the upper and lower error on the measured magic frequency:
±5 MHz. Thus there is a difference of ∆f = −18 ± 5 MHz between the measured magic
frequency and the calculated value.
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Let us now estimate the possible sources of this difference.

• Uncertainty of the measuring beam frequency. We estimate the uncertainty of
the frequency of the measuring beam at ±2 MHz due to uncertainty in the laser locking
point.

• Uncertainty of the pressure shift. The pressure shift is part of the calculation of
the magic frequency [see Eq.(5.1) and preceding text]. There are two ways to estimate
the uncertainty in the pressure shift:

1. Calculation. Based on supplier data, we estimate the Ne pressure at 7.5±0.5 Torr;
the shift/Torr data are given by Table 4.2: −3.7±0.5 MHz/Torr, thus the pressure
shift is −28± 4.2 MHz (summing in quadrature the fractional uncertainties).

2. Independent measurement. The pressure shift can be measured; such a mea-
surement was performed [73]. The resulting pressure shift is −26 MHz and the
estimated overall uncertainty is ±10 MHz.

Using a middle value of ±7 MHz for the uncertainty of the pressure shift, and summing in
quadrature all uncertainties, we get that the difference between the calculated and measured
magic frequency is −18±8.8 MHz, or a deviation of about 2σ. Thus we can conclude that we
have observed a good (but not perfect) agreement between our theory and the experimental
results.

5.6 Final notes on our population measurement method

We have seen in this section that our measuring method is capable of providing absorbance
data with a temporal resolution of ∼ 5µs, and clearly noticing variations of less than 1% in
the measured absorbance. We also validated our theory that at or near the magic frequency
the absorbance of an alkali vapor is independent of the distribution of population amongst
the Zeeman sub-levels.

Furthermore we note that at the magic frequency (when ∆f ≈ 0) the calibrated ab-
sorbance data in Figs. 5.6 and 5.7 is equal to the value of p2, the population in the |F = 2〉
hyperfine state. Thus we see that the optical pumping process manages to raise the popu-
lation of the |F = 2〉 hyperfine state to 93% (Fig. 5.6, ∆f = −7 MHz) and 96% (Fig. 5.7,
∆f = −7 MHz). Since only the external |2, 2〉 Zeeman sub-level is a dark state, it is reason-
able to assume that most of the population is accumulated there. So we have an indication
that our pumping process is effective.



Chapter 6

Conclusions and outlook

In this thesis we present a simple model for the interaction of linearly polarized light with
alkali atoms. The model reveals a magic frequency for which light is equally scattered by all
the Zeeman sub-levels of the hyperfine ground state. We show analytically that such a magic
frequency always exists based on the Wigner-Eckart theorem and on inherent properties of
Clebsch-Gordan (CG) coefficients. We explore numerically the properties of the model,
and use an exact calculation to determine its validity in the presence of a magnetic field.
We experimentally demonstrate the magic frequency. We expect the magic frequency to be
useful in a wide range of applications, in addition to the robust measurement of the hyperfine
population ρ(0). From a fundamental point of view, the magic frequency represents a unique
cancellation effect in which light-matter interaction becomes rotationally invariant although
the atomic sample as well as the light beam and its polarization all have a well defined
direction. As ρ(0) is the only polarization moment which is a scalar, this means that the
contributions of all other polarization moments cancel out, a phenomenon which may shed
interesting new light in the realm of group theory.

Note: After this thesis was completed, our attention was drawn to previous works
by W. Happer and B. S. Mathur. In a 1967 paper [74] Happer and Mathur present an
effective operator formalism for optical pumping, and later [75] Mathur, Tang and Happer
apply this formalism to study light propagation in optically pumped alkali vapors (focusing
on 87Rb). From the results of these works one may infer the existence of such a magic
frequency. Taking the above into account, the novelty in our work is the development of the
simplified model which predicts the phenomenon and enables a direct calculation of the role
of different parameters. Furthermore, our work provides the first experimental confirmation
of the effect. We survey the previous work in App. F.

Our work may have opened the way for several interesting studies. Below we briefly
outline some suggestions.

Upgrade of the measurement method. The population measuring scheme we
developed utilizes a π polarized light beam and a single photodiode that records the intensity
of that beam as it emerges from the vapor cell (Fig. 4.2). Note that the emerging beam
remains π polarized. (Reminder: in a π configuration, the electric field of the light oscillates
parallel to the direction of the DC magnetic field: θ = π/2 and φ = 0 in Fig. 3.2).
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A possible upgrade of the measuring method may include:

• using a linearly polarized light that is not in the π configuration (θ 6= π/2 and/or
φ 6= 0);

• using a polarization analyzer that can measure the intensity of each component of the
light emerging from the vapor cell.

We know the angles θ and φ, and with the polarization analyzer (or similar equipment)
we may be able record the intensity of each of the emerging light components. Using the
transformations of Sec. 3.1 [Eqs. (3.3) and (3.4)] we may be able the produce intensity plots
similar to Fig. 4.3 for each of the light components E0, E+ and E−.

As can be seen by inspection of Eqs (3.13), the same magic frequency exists separately
for the absorption of the E0 component and separately for absorption of the sum of the E+

and E− components. Thus we will by able to use the plot of E0 to measure the hyperfine
population in a manner similar to that described in Ch. 4. In addition, we probably will be
able to deduce additional information of the state of the vapor from the plots of the E+ and
E− components.

Magic frequencies for other atoms. Our simple model (Sec. 3.1) is developed for
alkali atoms, which have just one valance electron in a |J = 1/2〉 ground state. Exploring
such models for atoms with more complex electronic structure may reveal similar magic
frequencies, representing possible invariance in the interaction of light with these atoms.

Study of the CG coefficients. Although these coefficients were introduced more
than 60 years ago, there is still an ongoing research into their properties and calculation
methods (see [76] and references therein). We have seen in Eqs. (3.13) and (E.19) that two
completely different sums of CG coefficients cancel: one was equal to the negative of the
other. This may be an isolated case, but it can also points to more fundamental properties
of the CG coefficients. A detailed study into the source of this cancellation may shed new
light on some hidden properties of the the CG coefficients.
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Appendix A

The modulated laser subsystem

Two coherent laser beams with a fixed frequency difference are an important spectroscopy
tool. Such beams are needed to induce Raman transitions (see Sec. 2.7.6) or to investigate
EIT phenomena (see Sec. 2.7.7). In this appendix we will review the design, setup and
performance of the “Raman system”, a system capable of producing such a pair of coherent
beams − the “Raman beams”. Before we describe the system, we need to define what we
mean by the coherence of two beams with different frequencies, and describe a method to
measure it. For this purpose, let the electric field of one beam be E1 = E0

1 sin[ω1t + φ1(t)]
and the second E2 = E0

2 sin[ω2t+φ2(t)], where E0
i describe the amplitudes and polarizations,

ωi the angular frequencies and φi(t) are the random phases. For ease of presentation, we
assume that E0

1 = E0
2, and both beams propagate collinearly to a fast photodiode. The

combined electric field on the photodiode is the sum of the two fields:

E1 + E2 = E0
1

(
sin[ω1t+ φ1(t)] + sin[ω2t+ φ2(t)]

)
= E0

1 sin
(ω1 + ω2)t+ φ1(t) + φ2(t)

2
cos

(ω1 − ω2)t+ [φ1(t)− φ2(t)]

2
.

(A.1)

The sine factor in Eq. (A.1) oscillates at a frequency ∼ (ω1 + ω2)/2, which is the
average of the two frequencies and is in the optical domain. The argument of the cosine
factor is

(
[ω1 − ω2] + [φ1(t)− φ2(t)]

)
/2. When this factor vanishes, the two beams interfere

destructively, and the total amplitude is 0. When it equals 1, the two beams interfere
constructively, and the total amplitude is maximal. These amplitude oscillations are termed
the “beat-note”, and if φ1(t)− φ2(t) = constant then the amplitude oscillation frequency is
the beat frequency ωbeat:

ωbeat = |ω1 − ω2|, (A.2)

which is twice the argument of the cosine in Eq. (A.1).
We are now in a position to both define and measure the coherence of two laser beams:

two laser beams of frequencies ω1 and ω2 are coherent if their beat-note frequency ωbeat [see
Eq. (A.2)] is time independent. In other words, the beams are coherent if φ1(t) − φ2(t) =
constant independent of time. To measure the coherence of the two beams, we aim the beams
at an AC photodiode fast enough to respond at the frequency |ω1 − ω2|, feed the output of
the photodiode to a spectrum analyzer, and measure the width of the beat signal.
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Since we work with 87Rb, both the Raman beams’ wavelengths are near 780nm (the
wavelength of the D2 transitions), and their frequency difference equals the 87Rb hyperfine
splitting frequency : fHS = 6, 834, 682, 610Hz (see Fig. 2.13).

The Raman system includes three lasers: A modulated master laser and two slave
lasers.

A.1 The modulated master laser

The modulated master laser is an ECDL (See [63]) where the DC current input to the laser
diode is modulated by a microwave signal at a frequency fHS/2, and where the grating
assembly is mounted on a 25 mm micrometric translation stage (see Fig. A.1).

Similar to other ECDLs, when only DC current is fed to the laser diode, and the grating
is properly aligned, the beam generated by the laser diode bounces back and forth between
the grating and the back facet of the laser diode, creating the external cavity. (The back
facet is the uncoated facet of the laser diode, see bottom part of Fig. A.1.) The wavelength
λ of the laser beam is given by the constructive interference condition of the grating (dgrating

is the grating spacing):

sinα =
λ

2dgrating

. (A.3)

Tuning of the beam’s wavelength is possible by adjusting the angle α. Coarse tuning is done
by a tuning screw, and fine tuning by a piezoelectric transducer (PZT) (not shown).

The anti-reflection (AR) coating on the front facet of the laser diode eliminates the
internal cavity, so that the resonance condition of the external cavity dominates the possible
(un-modulated, or “carrier”) frequencies fcr of the laser beam:

fcr = M
c

2leff

, (A.4)

where M is an integer, c is the speed of light and leff is the effective cavity length that is
related to the refractive index nLD of the laser diode (see Fig. A.1):

leff = L1 × nLD + (L2 − L1)× nair. (A.5)

Since the refractive index nLD is a function of both the laser diode temperature and the DC
current through it, the current and temperature must be stabilized. Modifying any of them
can be used to tune the laser frequency. The free spectral range (FSR) of this laser, which
is the difference, in frequency, between two consecutive modes [two consecutive values of M
in Eq. (A.4)], is:

FSR =
c

2leff

. (A.6)

In our system we use AR-coated laser diodes (Eagleyard Photonics EYP-RWL-0780-
00100-1000-SOT01). To modulate the master laser beam we superimpose on the DC input
current a microwave current at frequency fMW via the “MW feed” port of the bias T (see
Fig. A.1). The resulting spectral composition of the laser beam now includes, in addition
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Figure A.1: The modulated master laser. Top: picture of the laser. Bottom: schematic
diagram of the main components. AR coating – anti-reflection coating. See text for details.

to the main (also called the “carrier”) frequency fcr, sidebands at frequencies fcr± k× fMW,
where k is an integer.

The laser beam modulation is of a type known as phase modulation, and the electric
field of the light is given by:

E = E0e
iωcrt+m sin(ΩMWt); ωcr = 2πfcr, ΩMW = 2πfMW, (A.7)

where m is the modulation index – a parameter that indicates the depth, or strength,
of the modulation. We can develop Eq. (A.7) and have (for simplicity, we dropped the
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subscripts cr, MW):

E = E0

( ∞∑
k=0

Jk(m)ei(ω+kΩ)t +
∞∑
k=0

(−1k)Jk(m)ei(ω−kΩ)t

)
, (A.8)

where Jk(m) is the kth Bessel function of the first kind. Each term in Eq. (A.8) with k ≥ 1
represents a “sideband” – a part of the beam that oscillates at the frequency fcr± k× fMW,
with a relative sideband amplitude of Jk(m). In Fig. A.2 we plot the first three Bessel
functions as a function of the modulation index m. We see that as the modulation index
increases, the amplitude of the carrier (J0) decreases while the amplitudes of the first and
second sidebands go up. For a modulation index of 2.4, the amplitude of the carrier goes
down to zero. This point is called “full carrier suppression”.

Figure A.2: The first three Bessel functions of the first kind, as a function of the modula-
tion index m. Note that J0(2.4) = 0, which means that the amplitude of the carrier (the
component with the unmodulated frequency) is zero. This point is known as “full carrier
suppression”.

A.2 Enhanced modulation method

Typically, as the modulation frequency goes up, the modulation index goes down, for several
reasons.

One reason is the decay of the MW component of the feed current as it flows through
several wires and connectors from the bias T to the laser diode. To overcome this problem,
we prepared a 50 Ω microstrip on a printed circuit board (PCB), welded a “subminiature
version a (SMA)” connector on one side of the microstrip, and welded the laser diode leads
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directly to the other side of the microstrip. We used an SMA–SMA 10GHz coaxial cable to
connect the output of the bias T to the microstrip’s connector. The PCB and the cable are
visible in the top part of Fig. A.1.

Another reason that the modulation index degrades is the fact that as the modulation
frequency goes up, the sideband frequency gets further away from the carrier frequency, which
is the resonance frequency of the external cavity. Thus, the cavity suppresses the sidebands,
and their amplitude goes down rapidly. In our setup, as the modulation frequency approaches
1GHz, the modulation index almost vanishes. Since we need to modulate at about 3.4GHz,
this obstacle seems almost prohibitive.

We found an innovative solution to this problem. Our grating assembly is mounted on
a 25 mm micrometric translation stage, and we have several locations to connect the grating
assembly to the stage, so that we are able to vary L1, the length of our external cavity,
from 12 mm to about 50 mm. Thus we were able to tune the external cavity so that its
FSR [see Eq. (A.6)] is equal to our modulation frequency. Now the cavity supports both the
carrier frequency as well as the sidebands, and the modulation index goes up dramatically.

We published a detailed description of this method and its results [77], and submitted
a patent application for this modulation enhancement method [78].

A.3 The full Raman laser system
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Figure A.3: The full Raman laser system. BB – beam blocker; DC – direct current;
FB – Fabry-Perot interferometer; FPD – fast photodiode (10GHz); I – optical isolator;
M – mirror; MW – microwave NC– non-polarizing beam-splitter cube; S – beam sampler
(5%); λ/2, λ/4 – wave plates. Laser beams are marked in red. Schematic spectra are shown
above the modulated laser, beside the slave lasers and above the beam output.
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The full Raman laser system includes three lasers: the modulated master laser and
two slave lasers. This system is presented in Fig. A.3. The modulated laser, operating
using the enhanced modulation method (see Sec. A.2), produces two frequency sidebands,
as shown by the schematic spectra drawn above it in Fig. A.3. These beams pass via
the optical isolator to the slave lasers. Three beam samplers deflect small portions of this
double-frequency beams; two of those go to the laser lock units (see Sec. A.5) and the third
goes to the beam analysis part of the system (see Sec. A.4). Two additional beam samplers
direct part of the double-frequency beam to each of the slave lasers. The slave lasers each
contain a single-mode ∼ 780 nm edge-emitting diode lasers (such as Thorlabs L785P090) in
a temperature-controlled collimation tube with a collimation lens (Thorlabs LT230P-B) and
a combination temperature controller/DC current driver (such as Thorlabs ITC 510).

When free-running, the slave laser produces a beam with a width of several tens of MHz
– quite broad, compared to the 1MHz width of each of the components of the modulated
beam. The slave laser frequency is controlled by the current and temperature of the laser. To
inject the slave laser with the modulated beam, we need to match their modes. First, both
beams must be co-linear (we achieve co-linearity < 1 mrad). Then, using a λ/2 wave-plate,
we align the linear polarization of the modulated beam to be parallel to the polarization of
the slave laser beam. The last step in the injection of the slave laser is to scan the current of
the laser diode until the slave’s free-running frequency is close to one of the frequencies of the
modulated beam. When this happens, the slave laser “locks” on to one of the components of
the modulated beam and produces a strong and narrow (∼1MHZ) beam that is coherent with
one of the components of the modulated beam. In the same manner, the second slave laser
is locked to the other component of the modulated beam. This is shown in the schematic
spectra beside each of the slave lasers in Fig. A.3. Note that the “locking” can occur for
only one frequency, so each slave current is tuned so that it selectively amplifies only one of
the sidebands.

While each component of the modulated beam has a power of about 1-2mW, each slave
produces a beam of about 70mW. Consequently we now have two 70mW, spatially separated
coherent laser beams with a fixed frequency difference. We can tailor their polarization
separately with the λ/2 and the λ/4 wave-plates. The two slave laser beams are then
combined in the non-polarizing beam-splitter cube to produce the output beam.

A.4 Analysis of the Raman beams

The Raman beam analysis section is shown at the bottom of Fig. A.3. A beam sampler
deflects part of the output Raman beam to the top facet of a non polarizing beam splitter
cube (lower NC in Fig. A.3). This cube serves as the “input” of the analysis section of
the system. Another sampler directs a part of the modulated beam to the left facet of
the same cube. Each of these beams emerges from the two remaining facets: one facet
is aimed at a fast photodiode (EOT ET-4000, labeled FPD in Fig. A.3) and the other
at a scanning Fabry-Perot interferometer (Toptica FP 100, labeled FP in Fig. A.3). The
Fabry-Perot interferometer produces the spectral composition of its input beam(s). By
blocking/unblocking any of the input beams we can get a combined spectrum of all the
beams, a spectrum of just the modulated beam, or a spectrum of just the the output beam.
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Figure A.4: Spectrum of the output beam of the Raman laser system registered by the Fabry-
Perot interferometer (FP in Fig. A.3). The un-modulated beam (“carrier”, labeled “0”) is
at 780.24 nm, the modulation MW frequency is 3.417GHz, and the MW power is 17dBm
(∼0.06mW). Note that the intensity of the two side bands (labeled −1 and +1) is much
higher that that of the carrier, which is almost completely suppressed. (Taken from [70].)

A spectrum of the output beam is presented in Fig. A.4. Note that most of the intensity is in
the two sidebands (marked −1 and +1) , while the carrier (marked “0”) is almost completely
suppressed.

The two sidebands in the output beam reach the fast photodiode together, resulting in
a beat-note [see Eq. (A.2)]. The fast photodiode signal is fed to the spectrum analyzer, and
results in a beat-note spectrum. Such a spectrum is presented in Fig. A.5. The beat-note
width as seen in this spectrum is ∼ 1Hz, which is 6 orders of magnitude lower than the few
MHz spectral width of each of the side bands. This narrow beat-note width verifies that
the term [φ1(t) − φ2(t)] [see Eq. (A.2)] is independent of time to within 1Hz and the two
sidebands can be regarded as coherent for any process having a time scale not larger than
1 second. We note that the observed width of 1Hz is probably determined by the spectrum
analyzer capabilities rather then the true width of the beat-note.

A.5 The Raman laser lock units

The modulated laser, like any other ECDL, needs a locking unit if we wish to stabilize its
frequency. To lock an ECDL we typically use a method based on Doppler-free spectroscopy
in a vapor cell [69, 79]. “Laser lock 1” (see Fig. A.3) is based on polarization Doppler-free
spectroscopy in a Rb vapor cell, known as a “polarization lock” [69, 70]. Later, we added
“Laser lock 2”, which is based on a retro-reflecting polarization Doppler-free spectroscopy
method developed in our group [80]. We evaluated the performance of “Laser lock 2”, and
verified that it was as effective as the more traditional “Laser lock 1”.
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Figure A.5: Spectrum of the beat-note of the two sidebands in the output beam of the
Raman laser system (see Fig. A.4), as registered by the fast photodiode labeled FPD in Fig.
A.3. The narrow width (1Hz) of the beat-note confirms that the two sidebands are coherent.

A.6 Future work on the Raman system

The combination of the modulated laser and the retro-reflecting polarization Doppler-free
spectroscopy section (“Laser lock 2”) opens some interesting possibilities. A minor modifi-
cation to the “Laser lock 2” subsystem can add CPT [58] capabilities to the system. This
may lead to the utilization of the retro-reflecting polarization spectroscopy unit both for
laser locking and for CPT-based magnetometry.



Appendix B

Details of the experimental system

The experimental system is a versatile system aimed at the study of the response of a variety
of rubidium vapor cells to several types of radiation and fields. The system has four main
modules, listed briefly below:

• The laser module. In addition to the modulated laser system (see App. A) operating
at ∼780nm, we have two additional lasers: the auxiliary laser, operating at ∼795nm,
and the pump-probe laser, operating at ∼780nm (see Sec. B.1).

• The beam management module. This module includes means for switching the laser
beams on and off, for controlling the beams’ size, shape and polarization, and for
combining beams and directing them to the vapor cell (see Sec. B.2).

• The vapor cell environment. This module includes the mechanical holder of the cell,
enabling accurate positioning and easy replacement of vapor cells. In this module we
control the magnetic field in the cell, and transmit electromagnetic radiation (from
1MHz up to 6.8GHz) to the cell (see Sec. B.3).

• The experimental control and data acquisition system. This module controls the ex-
perimental sequence including light, RF and MW fields as well as static magnetic fields,
which the cell is exposed to. It also acquires and analyzes the data (see Sec. B.4).

A schematic description of the four modules of the experimental system is presented
in Fig. B.1. In general, the pump-probe laser is utilized to initiate the state of the vapor
by optically pumping all the population to one of the hyperfine ground states, and then it
is switched off. Two lasers are required to pump the entire population to a specific Zeeman
sub-level, for which we add the auxiliary laser. Next, the vapor atoms are irradiated by
light, MW, or RF or by some combination of them. Vapor properties such as the internal
state population distribution, its polarization, etc. are determined using the pump-probe
laser and the measuring method described in Ch. 4.

Sections B.1 - B.4 provide descriptions of each module, while in Sec. B.5 we present
an illustrative example. The experimental system is very flexible and was frequently re-
configured for different studies of atom-light interaction.
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Figure B.1: Schematic of the experimental system. The laser module includes the Raman
laser system, operating at 780nm and producing two beams (see App. A and Sec. B.1),
an auxiliary laser operating at 795nm, and the pump-probe laser, operating at 780nm. The
beam management module contains: (a) passive optical elements such as wave plates,
lenses, mirrors, filters etc. that tailor the shape, size, intensity and polarization of each
beam; (b) polarizing and non-polarizing beam splitter cubes used to combine beams; (c)
acousto-optic modulators (AOMs), capable of blocking each beam and modifying the beam
frequencies. The overall role of the beam management module is to produce a tailored
sequence of beam pulses to the vapor cell (see details in Sec. B.2). The vapor cell envi-
ronment produces and controls the DC magnetic field inside the cell, as well as provides
means to transmit to the cell both RF radiation via an axial coil and MW radiation via a
MW patch antenna (see details in Sec. B.3). The control and data acquisition mod-
ule controls the other modules, and analyzes the data received via the photodiode PD (see
details in Sec. B.4).

B.1 The laser module

the laser module includes three continuous wave (CW) laser sources, as shown in Fig. B.1

• the Raman laser system, operating at ∼ 780 nm, is capable of producing either a
∼ 30 mW, un-modulated laser beam or a double-frequency laser beam (see App. A);

• the auxiliary laser, operates at ∼ 795 nm and produces a ∼ 50 mW beam;

• the pump-probe laser, operating at ∼ 780 nm, producing a ∼ 50 mW beam.
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The auxiliary and the pump-probe lasers are ECDLs [63], each equipped with a polarization
lock based on a Rb vapor cell [69, 70]. The auxiliary laser may be locked on any of the
hyperfine 52S1/2 ↔ 52P1/2 (D1) transitions (see Fig. 2.12), and the pump-probe laser may
be independently locked on any of the hyperfine 52S1/2 ↔ 52P3/2 (D2) transitions (see Fig.
2.13). When locked, these lasers provide stable single-frequency light with spectral widths
of ∼ 1 MHz.

B.2 Beam management module

The experimental system was designed to be flexible so that it may easily accommodate
different experimental schemes. The beam management module provides this flexibility.
The module includes three acousto-optic modulator (AOM)s, two of which are used in a
double-pass configuration [81]. Each double-pass AOM is capable of switching a beam on
and off within less than a microsecond and with an extinction ratio of 10−7. The double-pass
AOM shifts the beam’s frequency by ±2×(100±20) MHz. Thus, combining the AOM’s shift
with the transition used to lock the laser (see Fig. B.2), we can tune its frequency to any
value within a few hundred MHz around the D1 and D2 transition frequencies of 87Rb (the
accuracy of the beam’s frequency is ±2 MHz). The third AOM is a single-frequency, single-
pass AOM used to switch the modulated beam on and off. The AOMs enable precise timing
of the laser beams directed into the vapor cell via commands from the control computer (see
Fig. B.1 and Sec. B.4).
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Figure B.2: Polarization spectroscopy plots, providing laser locking frequencies (adapted
from [82]). Left: polarization spectroscopy of transitions from the 52S1/2|F = 1〉 hyperfine
ground state to the excited 52P3/2 manifold. The laser frequency is denoted by ∆L as defined
in Eq. (3.7). Li denotes the transition to the |F ′ = i〉 excited state and Xij denotes the
crossover frequencies. Right: polarization spectroscopy from the 52S1/2|F = 2〉 state to the
52P3/2 manifold. We can lock the laser on the zero-crossing point of any of the slopes (see
[80, 82] for additional details).

In addition to the AOMs, the beam management system includes:

• wave plates for adjusting the required polarization of each beam;
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• filters for managing the intensity of the beams;

• mirrors and cubes to combine the beams and direct them to the vapor cell;

• beam expanders and irises to improve the uniformity of the beam’s intensity (see
Fig. B.3).

The specific arrangement of these elements changes from experiment to experiment.
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Figure B.3: Improving beam uniformity with a beam expander. Left – optical arrangement
(f1/f2 ≈ 20, iris aperture is 1 to 25 mm). Right – beam intensity profiles for two values of
the iris setting. With the iris set to 25 mm, only about 25% of the cross section of the beam
has a light intensity above 0.5 mW/cm2. With the iris set to 12 mm, 50% of the beam’s cross
section has a light intensity above 0.5 mW/cm2.

B.3 The vapor cell environment

A general view of the vapor cell environment is presented in Fig. B.4 with a more detailed
view shown in Fig. B.5. The vapor cell environment enables us to control and modify the
magnetic field as well as to irradiate the vapor cell with both MW and RF fields and with
a combination of laser beams.

Magnetic fields. Three pairs of square Helmholtz coils produce fields of up to ±1.5 G
along each axis of the cell (Fig. B.4). Each pair is connected to an independent DC current
source. The magnetic field (measured by a Lake Shore 460 3-channel Gauss-meter) is uni-
form to within 0.005G over the dimensions of the cell [diameter – 25 mm (along x̂ and ŷ),
length – 40 mm (along ẑ)]. Thus, the earth magnetic field can be compensated, bringing the
total magnetic field inside the cell to |B| = 0±0.005G. Alternatively, we can set the magnetic
field components inside the cell to any value -1G< Bi < 1G, where i can stand for x, y, z.
The current drivers that supply these coils are manually controlled, so the above mentioned
magnetic fields are fixed throughout the experimental sequence. In addition, we have two
computer-controlled current drivers. One of them is connected to a fourth set of Helmholtz
coils aligned in the y direction, producing a controllable -1G< By < 1G component. The
other current driver feeds an axial coil (see Fig. B.5). We have several such axial coils,
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Figure B.4: General view of the vapor cell environment. The outermost parts of this envi-
ronment are the compensation coils: one pair of square Helmholtz coils for each axis and an
additional pair for the y axis. The mirror seen at the bottom of the photograph directs the
laser beams through the cell.
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Figure B.5: Detailed schematic of the vapor cell environment. Left – full view of the axial
coils base. Right – a cut through the axial coils base. For reference, the length of the axial
coil base is 200 mm. The aim of the design is to assure easy and accurate positioning of the
vapor cells. The two cradles (left) are positioned and locked such that the laser beam will
pass through the centers of their semi-circle top part. The cradle adapters interface with the
base of the axial coils such that its axis is co-linear with the beam’s center. The cell holders
(right) position the cell so that the cell’s axis is also co-linear with the beam. This enables
us to replace cells and/or axial coils bases, with no need to realign the beam direction or to
re-adjust the magnetic fields. The axial coils base seen contains two parallel spiral slots for
two separate, but coaxial, coils: one for DC current, and one for RF (∼ 1MHz). Also seen
is the “patch type” MW antenna (∼6.8GHz).
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capable of producing a field of up to Bz = ±30G. The computer-controlled current drivers
are equipped with specially designed current shutters (see App. D), capable of cutting the
current to an inductive load with adjustable (few microseconds to few milliseconds) shutting
time.

RF and MW fields. The MW field is transmitted by the MW patch antenna (see
Fig. B.5), located about 2 cm above the vapor cell axis. There are several arrangements
for transmitting RF. In the one presented in Fig. B.5, one of the two axial coils is used to
generate RF radiation along the axis of the vapor cell.

B.4 Control and data acquisition

The control system is based on a National Instrument NI PCI 6733 high-speed analog output
card, installed on a desktop computer with a Windows 7 operating system. The main control
program (MCP) of the experimental system was developed on the LabView 2010 graphical
programming platform. The PCI 6733 card includes its own memory, a central processing
unit (CPU) and a clock which enables “real time” operation of some parts of the experimental
sequence (time resolution of 1µs). The MCP provides the required man-machine interface,
coordinates and sequences the operation of all the other devices, and controls the transfer of
digital data to and from these devices via the digital communication provided by the general-
purpose interface bus (GPIB). However, while the card’s outputs can be programmed with
a time resolution of 1µs, the GPIB-based data transfer may take a few milliseconds, much
too slow for accurate experimental control and furthermore it may be interrupted by the
Windows operating system.

The PCI 6733 card’s analog outputs directly control the following elements:

• AOM 1: AOM type 3080-122, with 1080AF-AENO 2.0W AOM driver, both made
by Crystal Technology Inc. Frequency range is 50 to 100 MHz. One analog output
controls the driver’s frequency, and another controls the driver’s power. This second
output is also used to switch the AOM driver on and off.

• AOM 2: AOM type 3110-140, with 1110AF-DEFO 1.5W AOM driver, both made by
Crystal Technology Inc. Frequency range is 110±25 MHz. One analog output controls
the driver’s frequency, and another controls the driver’s power. This second output is
also used to switch the AOM driver on and off.

• AOM 3: AOM type 3080-125, with 1080AF-AIFO 1.0W AOM driver, both made by
Crystal Technology Inc. Operating at a fixed frequency of 80 MHz only one analog
output is needed to control both the AOM power and to switch it on and off.

• Current shutters: Our current shutters are made in-house, and are capable of switching
off an inductively-loaded current within ∼ 2µs. The shutting time can be lengthened
up to several milliseconds by changing some internal components. The current shut-
ters are activated by a transistor-transistor logic (TTL) digital signal from the digital
outputs of the NI PCI 6733 card.
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The following devices are primarily controlled via digital communication provided by the
GPIB. Some of the devices are controlled both by GPIB based data transfer and by digital
and/or analog signals provided by the NI PCI 6733 card.

• Agilent 66312A 20V, 2A DC current source: The MCP sets the current and the voltage
of the source and turns it on and off. This current source supplies current (via a current
shutter) to the additional y-axis Helmholtz coils (see caption of Fig. B.4).

• HP 6632A 20V, 5A DC power supply: The MCP sets the current and the voltage of
the power supply and turns it on and off. This power supply supplies current (via a
current shutter) to the axial coil (see Fig. B.5).

• Rodhe & Schwarz SMR 20 (10 MHz to 20 GHz) signal generator: The MCP sets the
frequency and amplitude of the signal, turns it on and off, and selects modes of op-
eration (CW, pulsed, frequency sweep etc.). The digital output of the PCI 6733 card
provides accurate triggering of pulses and frequency sweeps.

• Agilent 33220A 20 MHz arbitrary waveform generator: The MCP sets the frequency
and amplitude of the signal, turns it on and off, and selects modes of operation (CW,
pulsed, frequency sweep etc.). The digital output of the PCI 6733 card provides accu-
rate triggering of pulses and frequency sweeps.

• Tectronix TDS 1002 60 MHz 2-channel 8-bit digital oscilloscope: This scope reads the
current of the photodiode marked “PD” (see Fig. B.1). The MCP can, via the GPIB
digital communication, set the modes of operation and download waveform data from
the scope. A digital output of the PCI 6733 card is connected to the external trigger
port of the scope, providing accurate triggering.

• Accubeat AR40A 10 MHz frequency standard (Allan deviation below 3×10−12 @100 s,
aging < 1× 10−9/year). The standard produces an accurate 10 MHz signal, serving as
an external reference to the signal generators and to other devices.

The experiment’s control system is based on the PCI 6733 and on the independent control
features of the above mentioned devices, all coordinated by the MCP. The purpose of the
MCP is to subject the vapor cell to a predetermined sequence of different fields (DC, RF,
MW and optical light) and measure and analyze the light intensity emerging from the vapor
cell (see Fig B.1). The MCP is flexible and can be easily modified to fit different experiments.
The general structure of the MCP is listed below (see also the flowchart in Fig. B.6). An
example illustrating the operation of the control system is presented in Sec. B.5.

• Parameters input. All the experimental parameters are loaded via the control panel
[graphical user interface (GUI)] of the LabView based MCP.

• Initiation. This sequence initiates, via GPIB, all the external devices to the correct
modes of operation and sets relevant parameters, such as current levels for DC power
supplies or frequencies for signal generators.
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Figure B.6: Flowchart of the main control program (MCP). The black color refers to the
parts of the flowchart that are executed by the Windows based desktop computer; the blue
– to the real-time segments executed by the CPU of the PCI 6733 card and the green color
indicates the control features of the external devices, such as the averaging feature of the
scope. See text for details.



106 APPENDIX B. DETAILS OF THE EXPERIMENTAL SYSTEM

• Sub-sequence definitions. Based on the experimental parameters, the MCP defines
experimental sub-sequences needed to perform the full experiment. One or more of
the experimental parameters (e.g. time, length or frequency of a MW pulse) change
from one experimental sub-sequence to the next. These sub-sequences are performed
as follows:

1. Preparation of sub-sequence data-set. Based on the sub-sequence defini-
tions, the MCP calculates the data-set, which includes timed sets of output volt-
ages of the PCI 6733 needed to perform the required experimental sub-sequence.
This data-set is then uploaded to the card’s memory.

2. Sub-sequence execution. Control is transferred to the PCI 6733 card’s CPU,
and the experimental sub-sequence is performed in “real time” with 1µs resolution.
During the execution of the sub-sequence, the response of the photodiode PD (see
Fig. B.1) is recorded in the scope memory. The experimental sub-sequence may
be repeated several times, using the scope to average the photodiode response.

3. Data acquisition and initial analysis. The MCP downloads (via GPIB) the
recorded data from the scope and saves it in the main computer’s memory. Initial
data analysis may be performed to produce values needed for the next experi-
mental sub-sequence.

• Repeat sub-sequences operation. Steps 1–3 are repeated until the last experimen-
tal sub-sequence is executed.

• Final data analysis. Following the execution of the last experimental sub-sequence,
final data analysis is performed. See next section (Sec. B.5) for an example of the
operation of the MCP and of the data analysis.

B.5 Example: Detecting two-photon transitions

In this section we illustrate the operation of the experimental system with an example in
which we study two-photon transitions between Zeeman sub-levels of the ground-state of
87Rb atoms in a room-temperature vapor cell filled with 70 Torr of Ne buffer gas. In this
experiment we apply a DC magnetic field of Bz = 3.23 G, produced by the compensation
coils and the axial coil of the vapor cell environment (see Figs. B.4 and B.5), inducing a
Zeeman sub-level splitting of 2.1 MHz.

The aim of the experiment is to induce Rabi population oscillations between the |1,−1〉
and the |2, 1〉 Zeeman sub-levels, as shown in Fig. B.7. In total, three radiation fields are
used:

• MW radiation is transmitted via the MW antenna (see Fig. B.5) and is blue detuned
by ∆ ≈ 1 MHz from the |0〉 ↔ |2, 0〉 transition frequency (∼ 6.8GHz).

• RF radiation is transmitted by the second axial coil (see Fig. B.5) and is chosen so
that the sum (ωMW + ωrf )/2π is δ detuned from the |0〉 ↔ |1〉 transition frequency
(ωrf/2π ≈ 1 MHz).
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Figure B.7: Zeeman sub-levels of the ground state of 87Rb subjected to a DC magnetic
field of 3.23 G. All three sub-levels of the |F = 1〉 hyperfine state and all five sub-levels of
the |F = 2〉 state are shown. The separation between two adjacent Zeeman sub-levels is
∼ 2.1 MHz. The transition studied is from the |1,−1〉 sub-level (marked |0〉) to the |2, 1〉
sub-level (marked |1〉). This is a ∆mF = 2 transition, requiring two photons to provide two
angular momentum quanta. The two-photon transition is driven coherently by MW and RF
sources at frequencies ωMW and ωrf , respectively.

• The pump-probe laser beam (see Sec. B.1) is tuned near the frequency of the D2
52S1/2|F = 2〉 ↔ 52P3/2|F = 3〉 transition. The beam management module of the
experimental system (see Sec. B.2) expands the beam and directs it to the vapor cell
via a double-pass AOM that can switch the beam on and off. The pump-probe laser
beam is used both to initiate the experiment by pumping all the population to the
|F = 1〉 hyperfine state and to probe the population in the |F = 2〉 hyperfine state
after the interaction of the vapor with the combined RF and MW radiation (for details
of the population measurement method see Ch. 4).

Both the MW and the RF signal generators are synchronized to an external 10MHz rubidium
frequency standard with 5× 10−11 relative frequency accuracy (AccuBeat AR40A), making
the MW and RF radiation coherent in the sense described at the beginning of App. A. Thus
the combined radiation can induce Raman transitions (see Sec. 2.7.6). This experiment has
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three stages that need to be performed in “real time”:

Stage 1: Initiation. Optically pumping all the vapor atoms to the |F = 1〉 hyperfine state.

Stage 2: Evolution. Turning on the RF and MW radiation for a “evolution time” tevol.

Stage 3: Evaluation. Measuring the population in the |F = 2〉 hyperfine state.

These three stages are repeated N times for different values of the “evolution time”

tevoln = tstart + n∆t, n = 0, 1, 2 . . . N. (B.1)

The experiment is performed as follows:

• Parameters input. The experimental parameters (such as tstart, N , ∆t of Eq. (B.1),
and the MW and RF frequencies) are loaded via the control panel [GUI] of the LabView
based MCP.

• Initiation. The relevant external devices (signal generators, scope) are initiated via
GPIB to the correct modes of operation.

• Sub-sequence definitions. Based on the experimental parameters, the MCP defines
experimental sub-sequences that include states 1–3 defined above. The value of tevoln
changes from one sub-sequence to the next as defined by Eq. (B.1).

1. Preparation of sub-sequence data-set. Based on the sub-sequence defini-
tions, the MCP calculates the data-set, which includes timed sets of output volt-
ages of the PCI 6733 needed to perform the required experimental sub-sequence.
This data-set is then uploaded to the card’s memory.

2. Sub-sequence execution. Control is transferred to the PCI 6733 card’s CPU,
and the experimental sub-sequence is performed in “real time”. During the eval-
uation stage (stage 3 above - measuring the population in the |F = 2〉 hyperfine
state) the response of the photodiode PD (see Fig. B.1) is recorded in the scope
memory. The experimental sub-sequence may be repeated several times, using
the scope to average the photodiode response.

3. Data acquisition and initial analysis. The MCP downloads (via GPIB) the
recorded data from the scope and calculates the population in the |F = 2〉 hyper-
fine state (see Ch. 4)

• Repeat sub-sequences operation. Steps 1–3 are repeated for n = 0, 1, 2 . . . N [Eq.
(B.1)].

• Final data analysis. Following the execution of the last experimental sub-sequence,
final data analysis is performed, producing a plot of the population in the |F = 2〉
hyperfine state vs. tevoln
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Figure B.8: Typical plots of the 87Rb vapor population in the |F = 2〉 hyperfine state
(see Fig. B.7) as a function of the evolution time tevol [see Eq. (B.1)]. The vapor cell
contains neon buffer gas at 70 Torr. Red plot: |F = 2〉 population when the evolution stage
(Stage 2) is “in the dark” (all fields off). This red plot shows the thermalization process,
with a relaxation time of about 30 ms. Black plot: |F = 2〉 population when the RF and
MW fields are on during the evolution stage, showing two-photon Rabi oscillations at about
170Hz superimposed upon the thermalization process. The thermalization process is also
responsible for the fast decay of the oscillations.

The full experimental sequence is run twice: once with the RF and MW radiation
turned on during stage 2 above, and once when these fields off, so that we can measure the
evolution of the population in |F = 2〉 “in the dark”. With all fields off, we can observe
the thermalization process, causing the return of the population in |F = 2〉 to its thermal
equilibrium value of 5/8 = 0.625. Typical results of such an experiment are presented in
Fig. B.8. For a full review of this experiment, see [83].



Appendix C

Vapor cell filling system

Alkali vapor cell filling, and in particular, filling cells with paraffin wall coating, is a difficult
art, mastered in only a few places. Apart from standard cells, the lead time for vapor cells
purchasing is long, and the quality of commercially available cells is not always good. We
therefore built our own vapor cell filling system as described below.

Figure C.1 displays the system in its final stage of construction and its schematic
design.

Buffer gas 
inlets 

Vacuum pump 

Metal to 
glass 

Glass 
manifold 

Vapor cell 

Central cross 

Figure C.1: Left: the vapor cell filling system in its final stage of construction. Right: vapor
cell filling system schematic. The central cross is connected to the vacuum pump (top), to
the glass manifold that contains the cells (bottom), to the buffer gas inlets (left) and to a
vacuum gauge (right, not shown). Details of the glass manifold are presented in Fig. C.2.

The central cross serves both as the mechanical support for the system and as the
connector between all other parts of the system. The vacuum pump (Varian Turbo V70LP)
provides vacuum down to 10−7 Torr. The buffer gas inlets allow mixing of up to two buffer
gases, and can easily be expended to allow mixing of more buffer gases. The glass manifold
with the vapor cells (see details in Sec. C.1) is connected to the system via a valve and a
metal-to-glass connector.
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C.1 Glass manifold for paraffin coating

A typical design of a glass manifold is presented in Fig. C.2. In this design two vapor cells
are connected to the main pipe and both may be filled with Rb and coated with paraffin.
The glass manifold is connected to the vacuum system via a metal to glass connector (see
Fig. C.1). Once the glass manifold is under vacuum, a removable oven (not shown) “bakes”
the vapor cells at a temperature of about 200◦C for six to eight hours, until a stable vacuum
of below 5 × 10−7 Torr is reached. During baking, the needles (see Fig. C.2) are in the
“retracted” position, so that the paraffin (tetracontane) on their tips will not melt.

Rb 
reservoir  

Hammer  

To vacuum 
system 

Needle tip 
with paraffin  

Retracted 
needle  

Vapor cells  

Back pipes  

Main pipe  

Figure C.2: Design of the glass manifold for paraffin coating. Two vapor cells are connected
by a short glass pipe to the main pipe. Two “back pipes” (with a movable needle placed
inside each of them) are connected to the main pipe so that the internal needle can move
freely from the retracted position (shown in the left back pipe) to the forward position where
the needle tip is inside the cell (right back pipe). When the the glass manifold is constructed,
a drop of paraffin is applied to each tip. The needles are made of copper with a short iron
end, so that they can be manipulated by an external magnet. A sealed Rb reservoir is also
connected to the main pipe, with an iron hammer, that is later used to break the seal of the
Rb reservoir.

Then we proceed according to the following stages:

Filling stage 1: Paraffin evaporation. After backing, the needles are moved (with a hand-
held magnet next to the back pipe) so that their tips are inside the cells.
We then insert a coil around the back pipe, and use an induction-heating
system to heat the needle until the paraffin on the tip evaporates and covers
the inner cell walls (see Fig. C.3). Then we move the needles back to the
retracted position (see Fig. C.2).
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Filling stage 2: Opening the rubidium reservoir. An iron hammer is located above the
sealed rubidium reservoir (see Fig. C.2). Using a magnet, we lift the hammer
and let it fall on the seal several times, until it breaks.

Filling stage 3: “Chasing” rubidium. We use an hot air fan to heat the rubidium in the
reservoir and “chase” some of the rubidium into the main pipe towards the
vapor cells until some is deposited on the walls of the short pipe connecting
the vapor cells to the main pipe. Care is taken to ensure that no rubidium
metal is deposited on the vapor cell walls.

Filling stage 4: Vapor cell sealing. We wrap a wet cloth around both cells, and using a
torch, start heating the short pipe connecting the vapor cell to the main pipe
until it becomes flexible. (We keep the vapor cell itself cold by a constant
drip of ice cold water on the cloth wrapped around the cell). Pulling the cell
gently away from the main pipe while heating the short pipe, the short pipe
becomes narrower until it completely seals the vapor cell and disconnects
from the main pipe.

Filling stage 5: Final baking. We bake the cells in an oven for two days at a temperature
of 45◦C.

�
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�

Induction heating coil Needle 

Paraffin 

Figure C.3: Paraffin evaporation method. Top: the induction heating coil wrapped around
the glass pipe with the needle inside. The tip of the needle is inside the vapor cell. (This
picture was taken during heating tests). Bottom left: drop of molten paraffin hanging from
the tip of the needle inside the vapor cell, just before it evaporates. Bottom right: vapor cell
after paraffin evaporation. (The coating is not uniform, but it does cover all the inner walls
of the cell.)
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C.2 The moving plug method

The paraffin coating and Rb filling method described in the previous section is very similar
to most vapor cell filling methods described in the scientific literature (see, for example, [84]
and references therein). These methods involve significant manual labor and require highly
experienced glass-blowers. We have developed a novel vapor cell filling method, which can
streamline the vapor cell production and considerably reduce the required labor. (A patent
application [85] was submitted.) Cell production according to the new method is split into
two separate procedures:

• preparation of rubidium coated glass plugs.

• production of the vapor cells, utilizing the coated glass plugs

To Rb source 

Magnet To vacuum 
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Glass plug 

Iron insert 
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Figure C.4: Plugs for vapor cells production. Left: a glass plug. The plug diameter is
2−3mm, length ∼ 15mm. The iron insert enables manipulation of the glass plug inside the
glass piping of the vapor filling system (using an external magnet). The iron insert is covered
completely by glass, to avoid contamination of the inside volume of the vapor filling system.
Right: several glass plugs hanging (magnetically) from the ceiling of the glass chamber. The
glass plugs can be moved in and out of the chamber via the “Plug entry point”.

Figure C.4 illustrates the plugs’ coating procedure. Several glass plugs are suspended
magnetically from the ceiling of an evacuated glass chamber. Rubidium is chased from a
reservoir (not shown) into the chamber so that rubidium is deposited on the lower part of
the glass plugs. Then the top magnet is removed and an additional small hand-held magnet
(not shown) is used to manipulate the rubidium coated glass plugs out of the chamber.

The next step in the procedure is the preparation of a glass manifold similar to the
one presented in Fig. C.2. The only difference is the replacement of the Rb reservoir with a
reservoir of rubidium-coated glass plugs. Then paraffin evaporation is performed as described
earlier (Sec. C.1). A magnet is then used to transfer a rubidium-coated glass plug from its
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reservoir to the short pipe connecting the vapor cell to the main pipe, positioning the glass
plug as shown in Fig. C.5. The rubidium coated side of the glass plug faces the hole in
the cell wall, and the iron insert is located away from the cell. Then a torch is used to the
separate the vapor cell from the glass manifold along the separation position (Fig. C.5) so
that the iron insert is not part of the separated vapor cell.

We position an additional glass ball between the glass plug and the hole in the wall
of the vapor cell and verify during the separation of the vapor cell that the ball remains
pressed against the hole. The purpose of the glass ball is to reduce the cross section area
for rubidium vapor to move between the cell and the rubidium deposited on the glass plug
in the cell’s stem (see [40] on the importance of reducing this cross section). Since the flow
of atoms that leave the vapor cell to the stem (as well as atoms that enter the cell from
the stem) reduce the coherence time of rubidium vapor in the cell, this arrangement may
increase the coherence time of the vapor cell.
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Figure C.5: Location of a glass plug in the vapor cell. Left: vapor cell with a glass plug
just before the vapor cell separation from the glass manifold. Right: schematic diagram of
the vapor cell and the glass plug. A glass ball is located between the hole in the wall of the
vapor cell and rubidium coated on the glass plug (not realized in the picture for the actual
setup). This arrangement limits the diffusion of rubidium atoms between the vapor cell and
the rubidium deposited in the cell’s stem – after the completion of the production process.

The combination of the glass plug and the induction heating methods described in
this appendix may lead to a reliable vapor cell production technology that can produce high
quality, low cost vapor cells for quantum metrology applications (such as optical magne-
tometers and atomic clocks). However, so far we have done only preliminary tests showing
that a vapor cell can be produced in this way. Additional tests and characterization work,
as well as a major engineering effort, are required in order to develop a reliable production
and quality assurance procedures based on this technology.



Appendix D

Fast current shutter

The vapor cell environment (App. B.3) includes coils producing DC magnetic fields. During
the current shutting time a voltage V = L · dI/dt develops across the coil (L is the coil’s
inductance). Typically, the voltage of a commercial power supply is limited, and the current
shutting time may be too long. Our current shutters (Fig. D.1) provide fast and adjustable
current shutting time.
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Figure D.1: Fast current shutter circuit. PS – power supply. The current shutter is operated
by a digital output. Green arrows indicate the current route when the shutter is open; red
arrows show the route of the transient current during the current shutting time. Current
shutting time is inversely proportional to the varistor voltage rating. The L1 coil (optional)
increases the shutting time.
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Appendix E

Supplementary algebraic calculations

In Ch. 3 we develop our simplified absorption model and prove the existence of the magic
frequency. For clarity, we did not include all the algebraic calculations in the body of the
text. The required calculations are detailed in this appendix.

E.1 Derivation of the dipole matrix element

The expression of the matrix element 〈F,mF |erq|F ′,m′F 〉 for an |F,mF 〉 → |F ′,m′F 〉 dipole
transition [Eq. (3.1)] is the basis of our simplified absorption model (Sec. 3.1). Our aim here
is to detail the derivation of this expression:

〈F,mF |erq|F ′,m′F 〉 =

〈J‖er‖J ′〉(−1)F
′+J+1+I

√
2J + 1

√
2F ′ + 1

{
J J ′ 1
F ′ F I

}
〈F,mF |F ′, 1,m′F , q〉,

(E.1)

and we will follow the derivation presented by Stack [46]. We start with the Wigner-Eckart
theorem [see [46], § 7.3.4 and Eq.(2.100] which states that

〈α, F,mF |T (κ)
q |α′, F ′,m′F 〉 = (−1)2κ〈α, F ||T (κ)||α′, F ′〉〈F,mF |F ′, κ,m′F , q〉, (E.2)

where α stands for the quantum numbers that are not related to angular momentum, T (κ)

is a tensor operator of rank κ, and 〈α, F ||T (κ)||α′, F ′〉 is the reduced matrix element:

〈α, F ||T (κ)||α′, F ′〉 = (−1)2κ
∑
m′
F ,q

〈α, F,mF |T (κ)
q |α′, F ′,m′F 〉〈F,m|F ′, κ,m′F , q〉, (E.3)

For a two-component system with electron angular momentum J and nuclear angular mo-
mentum I, a resultant angular momentum F , and a tensor T (κ)(J) that acts only on J (I and
mI are not affected) we can transform Eq. (E.3) into the uncoupled states (see [46], § 7.3.6.1):

〈F ||T (κ)(J)||F ′〉 = (−1)2κ
∑
〈F,mF |J,mJ , I,mI〉〈J ′,m′J , I,mI |F ′,m′F 〉×

〈F,mF |F ′,m′F , κ, q〉〈J,mJ |T (κ)
q (J)|J ′,m′J〉,

(E.4)
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where the summation is over mF , q, mJ , m′J and mI , and we have dropped α (T (κ)(J) does
not act on the part of the state represented by α). We now apply the Wigner-Eckart theorem
to the matrix elements in Eq. (E.4), and use the symmetry relation ([46], § 7.1.3.5)

〈J1,m1, J2,m2|J3,m3〉 = (−1)J1+J2−J3〈J2,m2, J1,m1|J3,m3〉 (E.5)

to get:

〈F ||T (κ)(J)||F ′〉 =
∑
〈J,mJ , I,mI |F,mF 〉〈J ′,m′J , I,mI |F ′,m′F 〉×

(−1)F
′+κ−F (−1)J

′+κ−J〈κ, q, F ′,m′F , |F,mF 〉×
〈κ, q, J ′,m′J , |J,mJ〉〈J ||T (κ)(J)||J ′〉.

(E.6)

Next, we use the relation ([46], § 7.1.4.1)

{
j1 j2 j12

j3 j j23

}
=

(−1)j1+j2+j3+j√
(2j12 + 1)(2j23 + 1)

∑
〈j12,m12, j3,m3|j,m〉〈j1,m1, j2,m2|j12,m12〉

〈j1,m1, j23,m23|j,m〉〈j2,m2, j3,m3|j23,m23〉,
(E.7)

where the term in the curly brackets is the 6J symbol, and the summation is over m1, m2,
m3, m12 and m23. Identifying κ → j1, J ′ → j2, I → j3, F → j, J → j12, F ′ → j23 and
exchanging the first and last columns of the 6J symbol, we get:

〈F ||T (κ)(J)||F ′〉 =(−1)F
′−J+κ−I−2F

√
(2F ′ + 1)(2J + 1)

{
J J ′ κ
F ′ F I

}
〈J ||T (κ)(J)||J ′〉.

(E.8)
Using the fact that F + J + I must be an integer (otherwise the 6J symbol vanishes),

we can add 2(F + J + I) to the exponent of (−1) in Eq. (E.8), and we obtain:

〈F ||T (κ)(J)||F ′〉 =(−1)F
′+J+κ+I

√
(2F ′ + 1)(2J + 1)

{
J J ′ κ
F ′ F I

}
〈J ||T (κ)(J)||J ′〉. (E.9)

Noting that the κ = 1 dipole operator er operates only on J , it can replace T κ(J) in
Eq. (E.9) to get an expression for the reduced matrix element 〈F ||er||F ′〉. Substituting it
in the Wigner-Eckart theorem [Eq. (E.2)] we then obtain Eq. (E.1).

E.2 Calculation of Clebsch-Gordan (CG) coefficients

One of the necessary steps for proving the existence of the magic frequency involves factoring
the dependence on m1F and m2F out of the CG coefficients in Eq. (3.13). For clarity, we
rewrite this equation:
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F ′=F+1∑
F ′=F−1

exp

[
−∆2

FF ′

2σ2
D

]
(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

×
[(

1− 2|E+1|2
)(
〈F,m1F |F ′, 1,m1F , 0〉2 − 〈F,m2F |F ′, 1,m2F , 0〉2

)
+ |E+1|2

(
〈F,m1F |F ′, 1,m1F + 1,−1〉2 − 〈F,m2F |F ′, 1,m2F + 1,−1〉2

+ 〈F,m1F |F ′, 1,m1F − 1, 1〉2 − 〈F,m2F |F ′, 1,m2F − 1, 1〉2
)]

= 0.

(E.10)

Our specific aim is to factor the dependence on m1F and m2F out of the expression in
the square brackets in Eq. (E.10). To this end, we use an explicit expression for the CG
coefficients [86]:

〈j,m|j1, j2,m1,m2〉 = δm,m1+m2

√
(2j + 1)(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!

(j1 + j2 + j + 1)!
×√

(j +m)!(j −m)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)! ×∑
k

(−1)k

k!(j1 + j2 − j − k)!(j1 −m1 − k)!(j2 +m2 − k)!(j − j2 +m1 + k)!(j − j1 −m2 + k)!

(E.11)
where the summation is over all integers k for which all the factorials have a non-negative
argument, and it is assumed that m ≥ 0 and j1 ≥ j2. In case we have CG coefficients with
m < 0 and/or j1 < j2, we use the following relations to convert them to CG coefficients that
can be calculated by Eq. (E.11):

〈j,m|j1, j2,m1,m2〉 = (−1)j−j1−j2〈j,−m|j1, j2,−m1,−m2〉
〈j,m|j1, j2,m1,m2〉 = (−1)j−j1−j2〈j,m|j2, j1,m2,m1〉.

(E.12)

In the square brackets in Eq (E.10) we have 6 CG coefficients, and we need to calculate
each of them 3 times: for F ′ = F − 1, F ′ = F and F ′ = F + 1. In total, we need to calculate
18 CG coefficients. Let us start by calculating the first pair of CG coefficients that appears
in the first large brackets in Eq. (E.10): 〈F,m|F ′, 1,m, 0〉 for the case F ′ = F . Substituting
j = j1 = F , j2 = 1, m1 = m and m2 = 0 in Eq. (E.11) we get:

〈F,m|F, 1,m, 0〉 =

√
(2F + 1)(1)!(2F − 1)!(1)!

(2F + 2)!
×√

(F +m)!(F −m)!(F +m)!(F −m)!(1)!(1)! ×∑
k

(−1)k

k!(1− k)!(F −m− k)!(1− k)!(F − 1 +m+ k)!(k)!
.

(E.13)
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Noting that only for k = 0, 1 the arguments of all the factorials in Eq. (E.13) are non-
negative, we get:

〈F,m|F, 1,m, 0〉 =

√
1

2F (2F + 2)
(F +m)!(F −m)! ×(

−1

(F −m)!(F +m− 1)!
+

1

(F −m− 1)!(F +m)!

) (E.14)

which can be further simplified to:

〈F,m|F, 1,m, 0〉 = −

√
1

2F (2F + 2)
2m = −

√
1

F 2 + F
m. (E.15)

Using Eq. (E.15) we can now evaluate the first large brackets in Eq. (E.10) for the
case F ′ = F :

〈F,m1F |F, 1,m1F , 0〉2 − 〈F,m2F |F, 1,m2F , 0〉2 = (m2
1F −m2

2F )
1

F 2 + F
. (E.16)

In the square brackets in Eq (E.10) we have 6 CG coefficients, and we need to calculate
each of them 3 times: for F ′ = F − 1, F ′ = F and F ′ = F + 1. In total, we need to calculate
18 CG coefficients. So far we have calculated just 2 CG coefficients for the case F ′ = F .
The algebraic calculation of the other 16 CG coefficients in Eq. (E.10) was done using the
“Wolfram Mathematica” software. The results are:

〈F,m1F |F ′, 1,m1F , 0〉2 − 〈F,m2F |F ′, 1,m2F , 0〉2 = (m2
1F −m2

2F )G(F, F ′), (E.17)

and

〈F,m1F |F ′, 1,m1F + 1,−1〉2 − 〈F,m2F |F ′, 1,m2F + 1,−1〉2+

〈F,m1F |F ′, 1,m1F − 1, 1〉2 − 〈F,m2F |F ′, 1,m2F − 1, 1〉2 = −(m2
1F −m2

2F )G(F, F ′),
(E.18)

where G(F, F ′) is given by:

G(F, F ′) =


1/(F − 2F 2), F ′ = F − 1

1/(F + F 2), F ′ = F

−1/(3 + 5F + 2F 2), F ′ = F + 1.

(E.19)



Appendix F

An additional explanation of the
magic frequency

In a 1967 paper [74] Happer and Mathur present an effective operator formalism for optical
pumping, and later [75] Mathur, Tang and Happer (M&H) apply this formalism to study
light propagation in optically pumped alkali vapors (focusing on 87Rb). Their results can be
used to explain the existence of the magic frequency, as detailed below.

At that time the available light source for optical pumping experiments was a resonance
lamp which has a spectral width much larger than the hyperfine splitting. M&H represent
this kind of light by an ensemble of many monochromatic plane waves at different frequencies
and with random phases. The light was considered weak (the rate of induces absorption is

much smaller than the spontaneous decay rate). Under this condition, a plane wave ~E induces

in the vapor a dipole moment ~P :

~P = 〈←→α 〉~E , (F.1)

where ←→α is the polarizability tensor of the atom, and its expectation value is given by:

〈←→α 〉 = Tr[←→α ρ], (F.2)

where ρ is the density matrix of the atomic ground state [see Eqs. (4), (5) in M&H] .
The polarizability ←→α determines the way in which light propagates through a vapor.

Working in the spherical basis (see 2.9.1) and utilizing the polarization moments (see 2.11),
M&H write the polarization operator as a sum of four components [Eq. (39) in M&H]:

←→α = αeq + αhps~I · ~J + i
∑
f,f ′

αgt(f, f
′) ~J(f, f ′)×+

∑
f,f ′

αbr(f, f
′)
←→
Q (f, f ′) (F.3)

where the × sign after the third term indicates the vector cross product (note that ←→α
operates on ~E), and f, f ′ are the ground state hyperfine quantum numbers. Terms with
f 6= f ′ are relevant only if hyperfine coherences are present in the ground-state density
matrix of the vapor (see M&H for more details).

This polarizability tensor operator includes isotropic, or scalar component (the first
two terms), dipolar component and quadrupolar component. Since photons have spin 1,
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higher order atomic density matrix multipole components do not affect the way in which
light propagates through a vapor.

The first term, αeq, is a complex scalar response function of the light frequency, rep-
resenting a state-independent interaction of the light with the atoms. The second term,
αhps~I · ~J , has a nonzero expectation only when some population imbalance 〈~I · ~J〉 exists
between the population of the lower and upper hyperfine states.

Together the first two terms compose the isotropic polarizability operator α0 [see Eq.
(40) in M&H], which transforms under rotations as a scalar (tensor of rank 0). The absorption
of the light due to α0 is independent of the light polarization.

The third term, the “gyrotropic polarizability”, which transforms under rotations as a
vector (rank 1 tensor) is related to the absorptivity of circularly polarized light (see M&H).
Since in this thesis we work exclusively with linearly polarized light, this term does not
contribute to the absorption of the light that we use.
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Figure F.1: This figure is a slightly modified copy of Fig. 10 of M&H [75]. Plotted are the
real (’) and imaginary (”) parts of the birefringent response functions abr(1, 1) and abr(2, 2)
for the D2 transition in 87Rb. The horizontal axis is the detuning of the light frequency, in
milli-Kayser (1 Kayser=1 cm−1) from νc.g., the “center of gravity” of the D2 transition (This
frequency is the 52S1/2 ↔ 52P3/2 transition frequency given in Fig. 2.13). The three red
arrows marked 1’, 2’, 3’ indicate the location of the |52S1/2, F = 2〉 ↔ |52P3/2, F

′ = 1, 2, 3〉
transition frequencies, respectively.

The fourth term, the “birefringent polarizability” is related to the quadrupolar absorp-

tion [see Eq. (58) in M&H for the definition of the quadrupole operators
←→
Q (f, f ′)], and

it transforms under rotations as a rank 2 tensor. Plots of two of the birefringent response
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functions, abr(1, 1) and abr(2, 2) [see Eq. (F.3)] for the D2 transition in 87Rb are presented
in Fig. F.1. We note that the imaginary part of each of them has a zero crossing near the
center of the transition. In particular, the zero crossing of a′′br(2, 2) is located at a detuning of
82 milli-Kayser, (1 Kayser=1 cm−1) which agrees to within 1 milli-Kayser (∼ 30 MHz) with
the location of the magic frequency evaluated in Sec. 3.2.

It can be seen from Eq. (61) in M&H that in the absence of hyperfine coherences,
the quarupolar absorptivity of a monochromatic light tuned near the transition frequency
from a hyperfine ground state f to an excited state is proportional to the imaginary part
of the relevant birefringent response function abr(f, f). Thus for a light tuned to the magic
frequency, the imaginary part of the relevant birefringent response function is zero and
the quarupolar absorptivity vanishes. We note here that a DC magnetic field introduces
hyperfine coherences to the density matrix of the ground state of alkali vapor, and as shown
in the end of Sec. 3.2, at large enough magnetic field the magic frequency phenomenon
disappears – i.e. the ΓrelmF curves (see Fig. 3.4) do not all intersect at the same point.

The arguments presented above show that in the absence of hyperfine coherences, the
absorption of linearly polarized light tuned to the magic frequency by 87Rb vapor transforms
under rotations as a scalar, so that this absorption is independent of the direction of the
polarization and of the distribution of the vapor amongst the sub-levels of the ground state
– a conclusion similar to the results detailed in Ch. 3 of this thesis.

We note here that the simplified model developed in this thesis addresses each Zeeman
sub-level separately, so that it can support a more detailed study of the interaction of lineally
polarized light with the vapor.
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  צירתק

הבליעה  שבובתזה זו אני מנתח באופן תאורטי ומדגים נסיונית את הקיום של תדר קסום, 

 ההאוכלוסיילוג יתלויה בפ נארית ע"י אדים של מתכת אלקלית היא בלתימקוטב לי אור של

התופעה כי אני מראה שדה מגנטי חיצוני. בין קרן האור ל תובזווי, רמות זימן השונות-תתבין 

א יגבוהים של מטריצת הצפיפות האטומית, וה מומנטיםנובעת מביטול התרומות של 

  גורדן.-מי קלבשתכונות של מקדהאקרט ו-מתוארת באמצעות משפט ויגנר

שתמש בו מאני ו ,יםקרן אור על ידי אדים של אטומים אלקלי בליעתל מודל פשוט פיתחתי

מוצא תלות חלשה מאד של התדר הקסום בטמפרטורה,  : אניםור הקסתדאת ה אפייןכדי ל

בהתפלגות  התלוי הרץ סביב התדר הקסום הבליעה אינה-מגה 10ומדגים כי גם בתחום של כ 

  שדה מגנטי חיצוני.ל קרן האורזווית בין או ב ןזימרמות -האוכלוסייה בקרב תת

ה בכל אחת לוסייאוכה למדידת כמות פיתחתי ומימשתי שיטהם ור הקסתדהבהתבסס על 

למדוד את  היכול השיטהש של האטומים האלקליים, הוכחתימשתי רמות היסוד 

 שלשהיציבות והרגישות  ומצאתישניות, -קרומי מספר שלזמן  תרזולוציבהאוכלוסייה 

  .1%מ  טובים שיטהה

 צורך בחינתל גמישה וניתנת בקלות להתאמה לניסויים שוניםמערכת ניסיונית כמו כן בניתי 

קרינת עם מגוון רחב של שדות אלקטרומגנטיים (אור,  87רובידיום ינטראקציה של אדי הא

. אני קבועיםבסביבה מבוקרת היטב של שדות מגנטיים  , וזאת)מיקרוגל וקרינה בתדר רדיו

, ה בתדר רדיונקריהקמה והתפעול של המערכת, הכוללת מקור את התאר את התכנון, מ

 - ה לייזריםשלוש ים קבועים וכןמגנטי ותשד המייצריםסלילים  מספר, מיקרוגלגנרטור 

כאשר הפרש  קוהרנטיותמסוגל לייצר שתי אלומות אור הן רמשאחד מהם הוא לייזר 

שיטה חדשנית  זה מבוסס עלמן רלייזר התדרים בין הקרניים מגיע למספר ג'יגה הרץ. 

ל זרם ההזנה של של מודלוציה ש את עוצמת פסי הצד הנוצרים כתוצאה מגבירההשפיתחתי 

  .לייזר ע"י זרם בתדר מיקרוגלהדיודת 

כמו כן אני מתאר את התכנון, הבנייה וההפעלה של מערכת למילוי תאי אדים המסוגלת 

לייצר תאי אדים של צזיום ורובידיום עם ציפוי פראפין על הקירות הפנימיים ו/או עם גזים 

תאי אדים, שיכולה להיות בסיס אצילים. המערכת כוללת הדגמה של שיטה חדשנית למילוי 

  לשיטת ייצור תעשייתית של תאי אדים אמינים במחיר סביר.

   

  



 

 

  הצהרת תלמיד המחקר עם הגשת עבודת הדוקטור לשיפוט

  

  

  ה בזאת: (אנא סמן):/מצהיר אני החתום מטה

  

   מנחה.החיברתי את חיבורי בעצמי, להוציא עזרת ההדרכה שקיבלתי מאת  

  

   ד/ת מתקופת היותי תלמיהחומר המדעי הנכלל בעבודה זו הינו פרי מחקרי

  .1מחקר

  

 שיתוף עם אחרים, למעט עזרה טכנית  בעבודה נכלל חומר מחקרי שהוא פרי

כך מצורפת בזאת הצהרה על תרומתי ותרומת הנהוגה בעבודה ניסיונית. לפי

  .2שותפי   למחקר, שאושרה על ידם ומוגשת בהסכמתם
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