Retrieval of seasonal dynamics of forest understory reflectance from semiarid to boreal forests using MODIS BRDF data

Jan Pisek1, Jing M. Chen2, Hideki Kobayashi3, Miina Rautiainen4,5, Michael E. Schaepman6, Arnon Karnieli7, Michael Sprinstin8, Youngryel Ryu9, Maris Nikopensius1, and Kairi Raabe1

1Tartu Observatory, Tõravere, Estonia, 2Department of Geography and Program in Planning, University of Toronto, Toronto, Ontario, Canada, 3Department of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan, 4School of Engineering, Department of Built Environment, Aalto University, Aalto, Finland, 5School of Electrical Engineering, Department of Radio Science and Engineering, Aalto University, Aalto, Finland, 6Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland, 7Remote Sensing Laboratory, Jacob Blaustein Institute for Desert Research, Ben Gurion University of the Negev, Be’er Sheva, Israel, 8Forest Management and GIS Department, Jewish National Fund-Keren Kayemet LeIsrael, Jerusalem, Israel, 9Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea

Abstract Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. In this communication, we retrieved seasonal courses of understory normalized difference vegetation index (NDVI) from multiangular Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function (MODIS BRDF)/albedo data. We compared satellite-based seasonal courses of understory NDVI to understory NDVI values measured in different types of forests distributed along a wide latitudinal gradient (65.12°N–31.35°N). Our results indicated that the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated.

1. Introduction

Ground vegetation (understory) is an important component of forest ecosystems typically supporting the majority of total ecosystem floristic diversity [Gilliam and Roberts, 2003; D’Amato et al., 2009]. Understory plays a central role in the dynamics and functioning of forest ecosystems by influencing long-term successional patterns [Hart and Chen, 2006; Nyland et al., 2006] and facilitates nutrient cycling and energy flow as ecosystem drivers [Chapin, 1983; Chastain et al., 2006; Nilsson and Wardle, 2005]. The understory layer can go through versatile spectral changes during the growing period. The strength of the cycle depends on site fertility [Rautiainen et al., 2011]. The understory might also differ in phenology and in response to the seasonal shifts of light intensity [Koizumi and Oshima, 1985; Richardson and O’Keeffe, 2009]. Importantly, the understory layer provides an essential contribution to the whole-stand reflectance signal in many boreal, subboreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modeling efforts [Gemmell, 2000; Kobayashi et al., 2007; Suzuki et al., 2011; Lukët et al., 2013; Gonsamo and Chen, 2014]. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing.

Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of overstory and understory [Schaepman et al., 2009], and its variable nature [Miller et al., 1997]. Understory can consist of several sublayers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, and bare soil) and has spatially temporarily variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations [Peltoniemi et al., 2005; Rautiainen and Heiskanen, 2013]. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales [Pinty et al., 2008].

In this communication, we follow upon our previous effort at mapping understory reflectance dynamics using multangle remote sensing observations [Canisius and Chen, 2007; Pisek and Chen, 2009; Pisek et al., 2010, 2012,
2015a, 2015b; Jiao et al., 2014). Here we focus on the validation of those approaches using MODIS bidirectional reflectance distribution function (BRDF)/albedo data [Schaaf et al., 2002] against an extended collection of different types of forest sites with available in situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern Hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semiarid pine plantation in Israel. The wide range of included different forest types allows us to better understand possibilities and limits of our method and its performance under various growing conditions. Specifically, we seek to answer the following questions:

1. Is it possible to track actual understory normalized difference vegetation index (NDVI) dynamics throughout the whole growing season using MODIS BRDF data?
2. Are there important differences in seasonal dynamics of understory NDVI between different sites?
3. Can we detect and track any differences between the seasonal dynamics of forest overstory and understory layers with this approach?
4. What are the limitations of the proposed retrieval method?

2. Materials

2.1. Study Sites

The study sites comprise different types of forest along a wide latitudinal gradient. Detailed site descriptions are provided in Table 1.

There are two North American boreal evergreen needleleaf stands: a sparse black spruce forest in Poker Flat Research Range, AL, USA (PFRR; 65.12°N, 147.5°W) and a dense black spruce forest near Sudbury, ON, Canada (47.16°N, 81.76°W). Both sites lack tall understory vegetation. The forest floor vegetation is composed of low shrubs and herbs such as Labrador tea (Ledum groenlandicum), bog bilberry (Vaccinium uliginosum), dwarf birch (Betula nana), and cloudberry (Rubus chamaemorus) in PFRR [Kobayashi et al., 2014]. The understory vegetation at Sudbury site consisted mainly of feather moss (Hylocomium splendens) with varying contributions from Labrador tea (Ledum groenlandicum) and leather leaf (Chamaedaphne calyculata) [Pisek et al., 2010].

A southern boreal zone in Europe is represented by two stands in Hyytiälä in central Finland. Dominant tree species are Scots pine (Pinus sylvestris) at the xeric heath forest (61.81°N, 24.33°E) and birches (Betula pubescens and Betula pendula) at the herb-rich site (61.84°N, 24.32°E). The growing season typically begins in early May and senescence in late August. The xeric heath forest understory is dominated by lichens and heather. The herb-rich heath forest understory is dominated by herbaceous species and graminoids. Raatikainen et al. [2011] provide more detail.

There are two different forest stands from the adjoining hemiboreal zone in Estonia. The Järveleja RAMI (Radiation Model Intercomparison) [Widlowski et al., 2007] pine stand (58.31°N, 27.30°E) grows on a transitional bog. The understory vegetation is composed of sparse labrador tea (Ledum palustre), cotton grass (Eriophorum vaginatum), and a continuous Sphagnum ssp. moss layer. The RAMI birch stand (58.28°N, 27.33°E) can be described as an herb-rich forest, dominated by the herbaceous species and graminoids; moss layer is sparse or missing [Nikopensius et al., 2015]. The understory vegetation, in general, is more abundant and hosts more species in hemiboreal Järveleja than in boreal Hyytiälä.

The CarboEurope forest flux site Laegern (47.48°N, 8.35°E) in Switzerland represents a temperate mixed forest. The overstory is dominated by European beech (Fagus sylvatica) and Norway spruce (Picea abies). The understory vegetation is rather scarce and consists mainly of Allium ursinum [Eugster et al., 2007]. Overstory [D’odorico et al., 2014] and understory [Leiterer et al., 2015] vegetation behavior is characterized using a multitude of methods. Guwangneung, a core site of KoFlux network, is a broadleaf stand in a cool temperate forest in Korea (37.75°N, 127.15°E). Overstory canopy consists of Quercus acutissima, Quercus serrata, and Carpinus laxiflora. Dominant understory species include Euonymus oxyphylus and Cornus kousa. Both overstory and understory species are deciduous [Ryu et al., 2014; Song and Ryu, 2015].

Yatir forest in Israel (31.35°N, 35.03°E) is a monoculture semiarid plantation dominated by Aleppo pine (Pinus halepensis Mill.) [Maseyk et al., 2008]. Sparse understory vegetation develops only during the rainy season (November–March) [Grünzweig et al., 2003].
Table 1. Study Site Descriptions

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Location</th>
<th>Latitude (deg)</th>
<th>Longitude (deg)</th>
<th>Overstory</th>
<th>LAle (m)</th>
<th>Mean tree height (m)</th>
<th>LAIe</th>
<th>Tree density (trees ha(^{-1}))</th>
<th>Crown radius (m)</th>
<th>Dominating understory species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFRR</td>
<td>AL, USA</td>
<td>65.12°N</td>
<td>147.5°W</td>
<td>PM</td>
<td>0.62</td>
<td>3978</td>
<td>0.4</td>
<td>300</td>
<td>n/a</td>
<td>Vaccinium corymbosum, moss, and lichen</td>
<td>Kobayashi et al. [2014]</td>
</tr>
<tr>
<td>Sudbury</td>
<td>ON, Canada</td>
<td>47.16°N</td>
<td>81.76°W</td>
<td>PM</td>
<td>2.08</td>
<td>4000</td>
<td>0.5</td>
<td>1838</td>
<td>2.8</td>
<td>Vaccinium vitis-idaea, Calluna vulgaris, mosses, and lichens</td>
<td>Pisek et al. [2010]</td>
</tr>
<tr>
<td>Hyytiälä Xeric</td>
<td>Finland</td>
<td>61.81°N</td>
<td>24.33°E</td>
<td>SP</td>
<td>1.5</td>
<td>790</td>
<td>n/a</td>
<td>n/a</td>
<td>1.86</td>
<td>Vaccinium myrtillus, Vaccinium vitis-idaea, Deschampsia flexuosa, and Calamagrostis spp.</td>
<td>Rautiainen et al. [2011]</td>
</tr>
<tr>
<td>Hyytiälä Herb Rich</td>
<td>Finland</td>
<td>61.84°N</td>
<td>24.32°E</td>
<td>SB</td>
<td>3.5</td>
<td>990</td>
<td>n/a</td>
<td>n/a</td>
<td>2.8</td>
<td>Ledum palustre, Erethophorum vaginatum, and continuous Sphagnum spp.</td>
<td>Rautiainen et al. [2011]</td>
</tr>
<tr>
<td>Järvselja RAMI Pine</td>
<td>Finland</td>
<td>58.31°N</td>
<td>27.30°E</td>
<td>SP</td>
<td>1.75</td>
<td>1122</td>
<td>1.86</td>
<td>2</td>
<td>2</td>
<td>Anemone nemorosa, Oxalis acetosella, Agrostis Stolonifera, and Sphagnum spp.</td>
<td>Nikopensius et al. [2015]</td>
</tr>
<tr>
<td>Järvselja RAMI Birch</td>
<td>Estonia</td>
<td>58.28°N</td>
<td>27.33°E</td>
<td>BP, AG, PT</td>
<td>2.94</td>
<td>992</td>
<td>2</td>
<td>18</td>
<td>2.8</td>
<td>sparse; Allium ursinum L.</td>
<td>Schneider et al. [2014]</td>
</tr>
<tr>
<td>Laegern</td>
<td>Switzerland</td>
<td>47.48°N</td>
<td>8.35°E</td>
<td>FS, PA</td>
<td>3.6</td>
<td>1838</td>
<td>2.8</td>
<td>10</td>
<td>2.3</td>
<td>Euonymus oxyphyllus and Cornus kousa</td>
<td>Ryu et al. [2014]</td>
</tr>
<tr>
<td>Gwangneung</td>
<td>Korea</td>
<td>37.74°N</td>
<td>127.14°E</td>
<td>QA, QS, CL</td>
<td>3.6</td>
<td>838</td>
<td>2.8</td>
<td>18</td>
<td>2.3</td>
<td>sparse grass</td>
<td>Sprintsin et al. [2011]</td>
</tr>
<tr>
<td>Yatir</td>
<td>Israel</td>
<td>31.35°N</td>
<td>35.03°E</td>
<td>PH</td>
<td>1.74</td>
<td>300</td>
<td>2.8</td>
<td>18</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)PM, Picea mariana; PS, Pinus sylvestris; BP, Betula pendula; AG, Alnus glutinosa; PT, Populus tremula; FS, Fagus sylvatica; PA, Picea abies; QA, Quercus acutissima; QS, Quercus serrata; CL, Carpinus laxiflora; PH, Pinus halepensis; LAle, estimates of LAI from ground measurements of gap (green) fraction for a specific configuration, assuming random distribution of the elements within the canopy volume (i.e., no clumping).
2.2. In Situ Measurements

In this work the reflectance factors measured by the field spectrometers are referred similarly to the satellite-derived hemispherical-directional reflectance factors (HDFRs, terminology following Schepman-Strub et al. [2006]). We approximate the field of view of the ground spectrometers to be angular, and some anisotropy was captured corresponding to normal remote sensing viewing geometry. Overview of individual in situ campaigns is provided in Table 2.

At PFRR, spectral HDFRs of the black spruce forest floor were measured in July 2010 under clear skies. Kobayashi et al. [2014] used a spectrometer (MS-720, EKO, Inc.) that measures from 350 to 1050 nm with a 3 nm spectral resolution. The measured spectral HDFRs were weighted for incoming solar fluxes.

The sunlit reflectance of the present forest floor types at Sudbury was reported by Pisek et al. [2010] using a FieldSpec Pro spectrometer (ASD, Analytical Spectral Devices, Inc., Boulder, CO, USA). Pisek et al. [2010] took several sets of spectral reflectance measurements at different locations within the forest stand in June 2008. All spectral reflectance measurements were taken in the nadir direction under clear sky conditions ~3 cm above sunlit targets (leaves or moss/lichen layer and ground). No fore-optics was used. The measurements were standardized to reflectance using a Spectron diffuse reflectance target (Labsphere Inc., North Sutton, NH, USA). The average HDFR was obtained based on the reflectance of the cover types weighted by their area fractions as derived from photos taken at the site.

The understory spectra at Hyytiälä [Rautiainen et al., 2011], Järvselja [Nikopensius et al., 2015], and Yatir sites were obtained following the protocol of Rautiainen et al. [2011]. The understory spectra were measured under diffuse light conditions with fiber input supplied ASD FieldSpec Pro spectrometer, covering 350–1050 nm region. The sampling interval was 1.4 nm with the resolution 3 nm at full width at half maximum at 700 nm. All measurements were taken when the Sun was completely blocked by the clouds, or direct solar radiation was totally attenuated by the long path length in tree crown layer at low solar elevations close to sunset. The understory spectra were measured along respective transects across each stand, resulting in 40–50 measurement points (with three understory spectra per each measurement point) per transect. Three spectra above a Spectron white panel were recorded at the beginning and end of each transect and also along it after every four understory spectra measurement points.

Spectral measurements were then processed to correspond to HDFRs. Two Spectron reflectance measurements made before and after each understory spectrum quadruplet along given transect were interpolated linearly in time to estimate the spectral irradiance for the moments when the understory spectra were recorded. A hemispherical-conical reflectance factor was obtained with an “uncalibrated” Spectron reflectance spectrum and the interpolated irradiance.

ASD FieldSpec Pro measurements were performed under fully illuminated conditions at Laegern in September 2011 [Schneider et al., 2014]. The objects were placed and measured in full sunshine on a fully absorbing background (black cloth). The average HDFR background signal was estimated by linear mixing of the percentages of understory vegetation coverage (>3 m, 5%; 0–3 m, 32%), unvegetated areas (18%), and litter (45%).

At Gwangneung site, light-emitting diode (LED) sensors were installed at four canopy depths using a flux tower structure [Ryu et al., 2014]. LED sensors as spectrally selective light detector were reported and tested.
in a previous study [Ryu et al., 2010]. LEDs in the sensor heads were housed beneath Teflon (Teflon®, DuPont, Wilmington, DE, USA) to diffuse the incoming light at Gwangneung. One sensor head was directed to the zenith and the other toward the nadir direction, which enabled monitoring bihemispheric reflectance. We assembled four-band (red, green, blue, and near-infrared (NIR)) LED sensors and used red and NIR channels to compute NDVI. As overstory canopy was distinct above 12 m height [Song and Ryu, 2015], we used LED sensors data collected at 12 m height to retrieve understory NDVI. CR1000 data loggers (Campbell Sci., Inc., CSI, Logan, UT, USA) sampled irradiance from each spectral channel every 30 s and stored half-hour mean values throughout the growing season in 2013. Series of concurrent LED measurement- and ASD measurement-based NDVI values showed good agreement in the fall 2015 (results not shown).

A relative spectral response function used to simulate Moderate Resolution Imaging Spectroradiometer (MODIS) data from in situ spectrometer measurements was used to compute broadband HDRFs for red (620–670 nm) and NIR (841–876 nm) wavelengths at each site. Finally, a broadband normalized difference vegetation index (NDVI) [Rouse et al., 1973] was calculated from these red and NIR bands. The variability in the understory NDVI due to the spatial heterogeneity of understory vegetation differed between sites. The rather infertile sites (e.g., Järvselja RAMI pine; Yatir) had lower variability in field measurements (standard deviation (SD) ~ 0.06), while more fertile sites (e.g., Järvselja RAMI birch) had higher variability (SD ~ 0.13).

2.3. MODIS Data

The MODIS BRDF/albedo product (MCD43A1, version 5) [Lucht et al., 2000; Schaaf et al., 2002] is a MODIS standard product that provides the weighting parameters associated with the RossThick-LiSparse BRDF model that describes the reflectance anisotropy at 500 m resolution. The BRDF parameters are produced every 8 days with 16 days of acquisition using both Terra and Aqua data [Schaaf et al., 2002]. We retrieved the forest understory signal using the BRDF model parameters (isotropic, volumetric, and geometric kernel weights) [Roujean et al., 1992] for MODIS band 1 (red, 620–670 nm) and band 2 (NIR, 841–876 nm). MODIS data used in this study were acquired for tiles covering the test sites and years with available in situ measurements described in section 2.1. For each date, we reconstructed the bidirectional reflectance factor (BRF) values for required geometries (see section 3). All the MCD43A1 data were downloaded from the Data Pool of Land Processes Distributed Active Archive Center. The associated data quality (MCD43A2) product was also downloaded from the same source and was used to analyze the effect of retrieval quality on the accuracy of calculating understory reflectance.

3. Retrieval Method

The total top-of-canopy reflectance (*R*) can be expressed as a linear combination of the contributions from the sunlit and viewed and shaded and viewed components [Li and Strahler, 1985; Chen et al., 2000; Bacour and Bréon, 2005; Chopping et al., 2008]:

\[
R = R_{T}k_T + R_{G}k_G + R_{ZT}k_{ZT} + R_{ZG}k_{ZG}
\]

where \(R_{T}, R_{G}, R_{ZT},\) and \(R_{ZG}\) are the reflectance factors of the sunlit crowns, sunlit understory, shaded crowns, and shaded understory, respectively. \(R_{G}\) can be considered the BRF of the target (understory). The \(k_i\) is the proportion of these components at the chosen view angle or in the instantaneous field of view (IFOV) of the sensor at given irradiation geometry. Based on the assumption that the reflectance factors of the overstory and the understory at the given illumination geometry differ little between chosen view angles, one can derive the understory reflectance factor \(R_g\) [Canisius and Chen, 2007]. Pisek et al. [2015a] recently identified the most suitable viewing configuration for the \(R_g\) retrieval using a new high angular resolution BRF data set of Kuusk et al. [2014] with accompanying in situ measurements of understory reflectance [Kuusk et al., 2013]. Following Pisek et al. [2015a], the reflectance at nadir \((R_{Tt}, view \text{ zenith angle (VZA) = 0°})\) and another zenith angle \((R_{Tn}, VZA = 40°)\) with solar zenith angle corresponding to the Sun’s position at 10:00 local time for given day and relative azimuth angle (PHIi = 130°) can be expressed by equations (2) and (3):

\[
R_{n} = R_{T}k_{Tn} + R_{G}k_{Gn} + R_{ZT}k_{ZTn} + R_{ZG}k_{ZGn}
\]

\[
R_{g} = R_{T}k_{Tg} + R_{G}k_{Gg} + R_{ZT}k_{ZTg} + R_{ZG}k_{ZGg}
\]

The reflectance of shaded tree crowns \((R_{ZT})\) and understory \((R_{ZG})\) can be expressed dynamically as functions of their sunlit fractions and the multiple scattering factor \(M\) [White et al., 2001, 2002], giving \(R_{ZT} = M \cdot R_{T}\) and
The seasonal trajectory of understory NDVI reflects the longer growing season in the temperate forests at Laegern (Figure 1g) and Gwangneung (Figure 1h). At the same time, there is a clear mismatch between the retrieved range of understory NDVI values and available in situ measurements at Laegern. Laegern has a closed canopy with LAIe up to 5.5 and very big trees (h > 30 m; max. crown radius > 10 m; Table 1). The dense and closed canopy obscures understory especially at off-nadir angles [Rautiainen et al., 2009]. Figure 1g shows that under such circumstances the correct independent estimation of understory signal is not possible. Gwangneung (Figure 1h) has sparser, more open canopy and smaller trees (h = 18 m; Table 1) relative to Laegern, and the understory NDVI values are aligned with in situ measurements much better than in case of Laegern.

Yatir is a semi-arid plantation with well-visible ground. The distinct understory phenology (disappearance of understory vegetation after March) is properly reflected in the trajectory of understory NDVI retrieved with

Table 3. Stand Parameters for the Four-Scale Model

<table>
<thead>
<tr>
<th>Stand Density (trees/ha)</th>
<th>Deciduous</th>
<th>Coniferous</th>
</tr>
</thead>
<tbody>
<tr>
<td>500,1000,2000</td>
<td>500,1000,2000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>1.87</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.23</td>
<td>1.23</td>
<td></td>
</tr>
</tbody>
</table>

\[R_{ZG} = M \cdot R_G \text{ where } M = R_2/R \text{ for a reference target. } M \text{ is predetermined by the four-scale geometric-optical model inversion [Chen and Leblanc, 1997]. The proportions of the components } (k_j) \text{ for each stand were retrieved with the four-scale model [Chen and Leblanc, 1997] using parameters for generalized deciduous and coniferous tree stands (see Table 3) common to European boreal/hemiboreal zone [Kuusk et al., 2013; Crowther et al., 2015]. Combining and solving equations (2) and (3) and inserting the MODIS-derived } R_n \text{ and } R_G \text{, the understory reflectance } R_G \text{ for red and NIR band and the resulting understory NDVI (NDVI}_u \text{) value can be calculated. For the general retrieval of understory signal over large areas, the input stand parameters from Table 2 may not be always precisely known. Gemmell [2000] also found that specifying the correct range/constraints for understory alone greatly reduced the errors in the retrieved overstory parameters [Gemmell, 2000]. Following Gemmell [2000], we opted for reporting a general range of understory NDVI values using the combinations of parameter values from Table 3 for each site and date. }

4. Results

The retrieval method was able to track seasonal dynamics of understory over a very wide NDVI range (Figure 1). The PFRR site has the smallest overstory effective leaf area index (LAIe = 0.62) [Kobayashi et al., 2014], the understory is well exposed, and the retrieved understory NDVI range aligns well with the in situ measurements at day of year (DOY) 188 (Figure 1a). The high understory visibility with a weak seasonality of overstory LAI throughout the growing season [Yang et al., 2014] translates into a rather narrow range and lower uncertainty of understory NDVI values.

Black spruce also dominates overstory in Sudbury, but the site is more fertile and the measured in situ understory NDVI value (0.76) is higher than in PFRR. The canopy is rather closed and prevents a correct retrieval of understory NDVI dynamics at 500 m spatial resolution (Figure 1b).

The site fertility is well reflected in the seasonal variation of understory NDVI measurements of the southern boreal and semiboreal forest sites as well (Figures 1c–1f). The fertile sites both in Hyytiälä (Figure 1c) and Järvselja (Figure 1e) experience a rapid understory NDVI increase at the beginning of the season, followed by a clear understory NDVI decrease in the fall. There is also a visible shift in the earlier development of understory in the more southern Rami birch site in Järvselja (Figure 1e) compared to the similar stand in Hyytiälä (Figure 1c) that is observed both by in situ and satellite data. The less fertile sites (Figures 1d and 1f) showed progressively smaller variations with a more gradual increase in understory NDVI and not very pronounced signs of senescence. Importantly, results from the European boreal forests (Figures 1c–1f) confirm that the retrieval method is indeed capable of tracking the actual understory NDVI dynamics throughout the whole growing season. Rautiainen et al. [2011] previously noted that the understory and tree canopy layers develop at a similar pace in the spring in boreal Hyytiälä. Nikopensius et al. [2015] illustrated that in the case of the fertile sites in more southern semiboreal forests of Järvselja, there is a clear early understory development prior to canopy development due to the presence of spring ephemerals. However, it should be noted that such mismatch in the seasonal development of understory and tree canopy layers might not be always detectable while using NDVI from satellite images as the indicator [Rautiainen et al., 2011].
the satellite data (Figure 1i). The measured in situ value at DOY 54 in 2015 (0.29) also falls well within the estimated understory NDVI range from MODIS.

The obtained results allow better understanding of limitations of the retrieval method over the wide range of forest types. Understory signal retrieval is possible in sparse and clumped canopies, where the scattering within the tree crowns and from understory is likely to be predominantly volumetric. The influence of understory signal cannot be neglected under such circumstances. The retrieval method showed its capabilities over a wide range of understory NDVI values and its effectiveness in tracking the seasonal dynamics irrespective of the timing of the main growing period.

The retrieval method was originally proposed for a boreal forest, and yet our results indicate that it may well perform outside this forest type as well, given the understory is visible at the required off-nadir angle configuration (VZA = 40°; PHI = 130°). Importantly, in agreement with simulations by Pisek et al. [2010], the performance of the method was shown not to be critically sensitive to the assumed stand density in case of low to intermediate densities, when the influence of the background reflectance on the total canopy signal is the greatest [Rautiainen et al., 2007].

The performance of the method is severely limited in rather closed canopies such as Sudbury or Laegern. The dominant scattering effect is geometric-optic (shadowing) in such stands. There is only a negligible understory influence on the top-of-canopy signal. The understory signal retrieval is then not independently possible. At the same time, under such circumstances the missing information about the understory signal does not hinder the remote sensing of biophysical properties of prime interest—LAI and fraction of absorbed photosynthetically active radiation (fAPAR) of forest canopy layer [Garrigues et al., 2008; Weiss et al., 2014].

Figure 1. Seasonal profiles of understory NDVI (NDVI$_u$) ranges (blue bars) and their comparison with in situ measurements (purple dots) and computed nadir NDVI values from MODIS BRDF/albedo data (green lines). Gray bars indicate MODIS BRDF parameters with lower quality flags; black bar indicates no data available. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Conclusions

We report on the performance of physically based approach to estimate understory NDVI from MODIS BRDF/albedo data and its seasonal dynamics over a wide range of forest types. Our results indicate that the retrieval method performs well over different types of open forests. We also demonstrate the limitations of the method, particularly in closed canopies, where the understory signal retrieval is not possible independently from the overstory. The retrieval of understory signal can be used, e.g., to improve the estimates of leaf area index (LAI) [Gonsamo and Chen, 2014], FAPAR in sparsely vegetated areas [Weiss et al., 2014], and also to study the phenology of understory layer [Richardson and O’Keefe, 2009]. Our results are particularly useful to producing Northern Hemisphere maps of seasonal dynamics of forests [Park et al., 2015], allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty [Garonna et al., 2014]. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons [Petchey et al., 2015] of vegetation dynamics.

Acknowledgments
J.P., M.N., and K.R. were funded by Estonian Science Foundation grant PUT232 “EST-SEEDS.” The contribution of MES is supported by the UZH Research Priority Program on “Global Change and Biodiversity” (URPP GCB). We thank R. Leiterer for Laegern data. Financial support to J.P. by the Transnational Access to Research Infrastructures activity in the 7th Framework Programme of the EC under the ExpeER project for conducting the research at Yatir site is gratefully acknowledged. The reflectance data of the forest at PFRR were acquired through the activity of JAMSTEC-IAR Collaboration Study (Pt. Rikie Suzuki, Japan Agency for Marine-Earth Science and Technology, M.R. was funded by the Academy of Finland. The previously unpublished spectra reported in this study will be made publicly available through SPECCHIO Online Spectral Database (http://www.specchio.ch/).

References