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Abstract: Coordinating a mobile sensor team (MST) to cover targets is a challenging problem in many mul-
tiagent applications. Such applications are inherently dynamic due to changes in the environment, technology
failures, and incomplete knowledge of the agents. Agents must adaptively respond by changing their locations
to continually optimize the coverage of targets.

We propose DCOP MST, a new model for representing MST problems that is based on Distributed
Constraint Optimization Problems (DCOP). In DCOP MST, agents maintain variables for their physical po-
sitions, while each target is represented by a constraint that reflects the quality of coverage of that target. In
contrast to conventional, static DCOPs, DCOP MST not only permits dynamism but exploits it by restricting
variable domains to nearby locations; consequently, variable domains and constraints change as the agents
move through the environment.

DCOP MST confers three major advantages. It directly represents the multiple forms of dynamism in-
herent in MSTs. It also provides a compact representation that can be solved efficiently with local search
algorithms, with information and communication locality based on physical locality as typically occurs in
MST applications. Finally, DCOP MST facilitates organization of the team into multiple sub-teams that can
specialize in different roles and coordinate their activity through dynamic events.

We demonstrate how a search-and-detection team responsible for finding new targets and a surveillance
sub-team tasked with coverage of known targets can effectively work together to improve performance while
using the DCOP MST framework to coordinate. We propose different algorithms to meet the specific needs
of each sub-team and several methods for cooperation between sub-teams. For the search-and-detection team,
we develop an algorithm based on the DSA that forces intensive exploration for new targets. For the surveil-
lance sub-team, we adapt several incomplete DCOP algorithms, including MGM, DSA, DBA, and Max-sum,
which requires us to develop an efficient method for agents to find the value assignment in their local envi-
ronment that is optimal in minimizing the maximum unmet coverage requirement over all targets.

The disadvantage of dynamic domains based on physical locality is that adaptations of standard local
search algorithms tend to become trapped in local optima where targets beyond the immediate range of the
agents go uncovered. To address this shortcoming we develop exploration methods to be used with the local
search algorithms.

Our algorithms are extensively evaluated in a simulation environment. We use a reputation model to
determine the individual credibility of agents and consider both additive and sub-modular joint credibility
functions for determining coverage of targets by multiple agents. The performance is measured on two ob-
jectives: minimizing the maximum remaining coverage requirement, and minimizing the sum of remaining
coverage requirements. Our results show that DSA and MGM with the exploration heuristics outperform
the other incomplete algorithms across a wide range of settings. Furthermore, organizing the team into two
sub-teams leads to significant gains in performance, and performance continues to improve with greater co-
operation between the sub-teams.
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1 Introduction

Coordinating mobile sensor teams (MSTs) is at the core of many exciting multiagent sys-
tems such as rescue teams searching for survivors after a disaster, unmanned vehicles track-
ing enemy targets on a battlefield, and mobile sensor platforms providing environmental
monitoring. The fundamental problem is to position the agents1 to adequately monitor points
of interest generally called “targets” (e.g., disaster survivors, military targets, or pollution
spills). Sensors have limited effective ranges and the quality of readings may depend on the
agents’ locations and environmental conditions. Furthermore, multiple agents must often
cooperate to provide sufficient coverage of individual targets, for example triangulating po-
sition using readings from multiple sensors or providing redundancy to provide robustness
against sensor failure. Optimally choosing where to position agents to meet the coverage
requirements in a static setting is a known NP-hard optimization problem.

Distributed constraint optimization problems (DCOPs) are a general model of multi-
agent coordination that has been successfully applied to several problems in sensor net-
works [51, 11, 41, 36]. A DCOP is constituted of agents, variables, and (soft) constraints
between sets of variables that reflect the costs of assignments to the variables. Each agent
has exclusive control over a subset of the variables and knows information relevant to its
variables, such as the values that can be assigned (their domains) and the constraints involv-
ing them. The goal is to minimize the aggregated costs of the constraints.

In many ways DCOPs are a natural fit for MSTs, which are inherently decentralized.
For each agent there is a variable for its location and for each target there is a constraint with
costs equal to the unmet coverage requirements of the target for each joint positioning of the
agents. Each agent has exclusive control of its own location and has limited computational
and communication resources due to cost, size, and power restrictions. These limitations
necessitate that computation be distributed over the entire team in order to use all available
computational resources (which scales with the number of agents) and avoid a single point
of failure. It also allows agents to make use of local knowledge to avoid communication
bottlenecks or unacceptably long delays, which is important because agents can typically
only communicate directly with other nearby agents. The constraint-based formulation of
costs is general enough to model a wide variety of real-world objective functions.

However, DCOPs fall short in two ways. First, all constraints may involve all agents,
because every agent can be positioned anywhere in the environment and thus is eligible for
covering any of the targets. This results in an exponential-sized constraint structure, which
is difficult to solve. Second, DCOPs are static models [24, 26, 31, 50, 13]. In contrast, the
coverage problem confronting the agents in realistic applications is highly dynamic.

There are three types of dynamism in MSTs: changes in the environment external to the
agents, including targets arising, moving, and disappearing, or target coverage requirements
being modified by an outside authority; changes inherent to the agents, including sensor fail-
ures [5, 12] resulting in targets being missed or false information being disseminated [22];
and changes in the agents’ knowledge of the environment, such as the presence of targets
and the quality with which they can be sensed from different locations. Because of this last
type of dynamism, agents must balance “exploration” (e.g., finding new targets or better
sensing locations) with “exploitation” (e.g., deciding where to position themselves based on
existing information). This tradeoff is complicated by the fact that considering alternative

1 In this paper we assume that each agent resides on a mobile sensor and we use the terms agent and sensor
interchangeably.
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locations is not just an abstract computational step but involves a physical movement to the
new location.

In this paper we propose a new model, DCOP MST, that extends DCOP for the kinds of
dynamic changes encountered by MSTs, which may be arbitrary and unpredictable (e.g., the
designation of new targets by a human authority), while simultaneously exploiting structure
in the MST problem to improve locality in the constraint network. Instead of choosing from
among all possible locations, each agent considers only nearby locations. Constraints thus
need not involve all agents at all times but only the agents who are close enough to possi-
bly cover the target. The local environment of an agent that is defined by its location, its
effective sensing range and the distance it can consider traveling to (i.e. its mobility range).
Both domains and constraints change as the agents move. We note that such a dependency
between the selection of a value assignment by the agent to its variable and the content of its
local environment is novel but not necessarily unique to MST applications. Thus, we present
a more abstract DCOP model that allows the representation of assignment dependent local
environment problems, ADeLE DCOP, which DCOP MST is a specific instance of.

The quality of agents’ sensing abilities (i.e., their “credibility”) in DCOP MST is cal-
culated by a reputation model, a widely used technique in multiagent systems and sensor
networks2 [49, 35, 10]. Each constraint is efficiently represented as the remaining level
of coverage given the joint credibility of agents within sensing range. The environmental
requirements specify the desired level of coverage for targets. Both the environmental re-
quirements and the agent credibilities are updated dynamically and distributedly.

Agents in DCOP MST compute new positions using distributed constraint optimization.
Due to the dynamic nature of the problem and the large number of possible assignments
(even in the reduced DCOP MST model), complete algorithms are not practical and we
focus on incomplete local search algorithms instead.

While agents in traditional DCOPs all execute the same algorithm, in this paper we
demonstrate that the tension between exploration and exploitation in DCOP MST is better
resolved by using two different algorithms. We partition the agents into two sub-teams, the
surveillance sub-team and the search-and-detection sub-team, and develop different algo-
rithms for each. The primary responsibility of the surveillance agents is to maintain cover-
age over the known targets, with only minor exploration to find new targets or better sensing
locations; in a homogeneous team, all agents would be surveillance agents. The search-and-
detection agents are chiefly responsible for finding new targets and in an application would
likely be equipped with advanced mobility and accurate sensing equipment.

For the surveillance agents we develop two distributed, self-adjusting algorithms based
on the Maximum Gain Messages (MGM) algorithm [24, 30] and the Distributed Stochastic
Algorithm (DSA) [50], two well-known DCOP algorithms with typically fast convergence,
an essential property in a dynamic environment. Both algorithms require agents to be able to
efficiently find the best alternative assignment (position), which in DCOP MST is not trivial.
We propose a method that guarantees local optimality, in terms of the maximal remaining
coverage requirement, in polynomial time.

The drawback of these algorithms is that they tend to converge to local minima. We
show that existing techniques to escape local minima are unsuited for DCOP MST as they
are unable to maintain high-level surveillance in the presence of dynamic events. We thus
develop alternative exploration methods that allow the mobile agents to explore the area
while maintaining a high level of coverage of the targets that were previously detected. Em-
pirical evaluation with both additive and non-additive (submodular) functions for calculating

2 We leave the problem of handling inconsistent information caused by malicious activity for future work.
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joint coverage demonstrated the superiority of our algorithms over standard state-of-the-art
DCOP algorithms.

The search-and-detection team requires a higher level of exploration, but only limited
coordination because agents are individually capable of detecting new targets and no conver-
gence as agents should continually search for new targets. Thus, we designed an innovative
algorithm based on DSA in which the agents use a function that initially includes only
probabilistic knowledge of the location of the targets. The agents update this function by
reducing the importance of areas that they recently visited to reflect the reduced probability
of finding new targets there. Agents select their next positions according to this function.
Our experiments show that in contrast to standard DSA, our algorithm does not suffer from
thrashing as the probability for changing locations increases.

Although the sub-goals of the two sub-teams are different and require different algo-
rithms, awareness of the global goal and the subtask of the other sub-team can enable agents
to contribute to the effort of agents in the other sub-team [38, 15, 16]. We propose several
levels of cooperation and evaluate their impact on the two sub-teams individually and the
team as a whole. Agents can easily make use of information they receive from agents of the
other team because the DCOP MST algorithms are already robust to dynamic changes. Our
empirical evaluation reveals that a higher level of cooperation improves the performance of
both sub-teams and the overall performance of the global team.

The remainder of this paper is organized as follows. Section 2 formalizes the MST cover-
age problem and presents the DCOP representation and our innovative DCOP MST model.
Section 3 presents local search algorithms for DCOPs and describes in detail the local search
algorithms proposed for solving DCOP MST, for both the surveillance and the search-and-
detection sub-teams. Section 4 proposes levels of cooperation between agents from the two
sub-teams. Section 5 includes an evaluation of the proposed algorithms performed by the
two sub-teams, the complete team performing together and the effect of the increased levels
of cooperation on the performance. Related work is presented in Section 6. Our conclusions
are presented in Section 7.

2 Problem Statement

In this section we formalize the problem confronting mobile sensor teams, then describe
the conventional DCOP representation followed by the description of the novel assignment-
dependent local environment (ADeLE) DCOP model. Finally we present our DCOP MST
formulation as a specific instance of ADeLE DCOP. A simple example problem that will
serve to illustrate the different aspects of the model is depicted in Figure 1 and explained in
Section 2.1. Definitions of commonly-used notation defined in this section is presented in
Table 1.

2.1 Mobile Sensor Teams

The agents A = {A1, A2, . . . , An} in a mobile sensor team are physically situated in the
environment, modeled as a metric space with distance function d. The current position of
agent Ai is denoted by cur posi; we assume that this position is accurately known by the
agent.3 We assume that the locations (or positions) that can be occupied by agents are a finite

3 This is a reasonable assumption considering that GPS receivers are used.
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Fig. 1 DCOP MST example with three agents. Faint outer rings around each agent depict the mobility range.
Dark inner rings show the sensing range with the numeric agent credibilities. Ovals represent the targets with
their coverage requirement. “X”s depict possible locations where the agents can position themselves.

set of discrete points that form a subset of the total environment. These points can either be
a discretization of the underlying space or locations that dominate other nearby points in
terms of the sensing quality they afford agents located there. In Figure 1 the environment is
the Euclidean plane, agents are depicted by small robots, and possible locations are shown
by “X”s.

We assume that time is discretized so that agents compute movements between possible
positions. The maximum distance that Ai can travel in a single time step is its mobility
range MRi. The mobility range of each agent is shown in Figure 1 by the fainter, outer
circle centered on the agent. All “X”s within the circle are locations that the agent can move
to in a single time step from its current position.

Agents are only able to effectively sense targets within a limited sensing range. Agents
may be equipped with different kinds of sensors, resulting in heterogeneous sensing ranges;
the sensing range of agent Ai is denoted by SRi. Because of the sensing range constraint,
each agent Ai can observe all targets within a distance SRi from cur posi, and cannot
observe any target that is farther away. The sensing ranges are depicted in Figure 1 by the
darker, inner circle centered at each agent.

Agents may also differ in the quality of their sensing abilities, a property termed their
credibility. The credibility of agent Ai is denoted by the positive real number Cred i, with
higher values indicating better sensing ability. We assume that Cred i is exogenously pro-
vided (for instance, calculated by a reputation model) and accurately represents the agent’s
sensing ability; dealing with inaccurate scores is of interest but beyond the scope of this
work. When using reputation models in multiagent systems, e.g., SPORAS [49], agents
grade each other according to previous actions and use these grades to tune their expec-
tations of each other. In our model, for example, an agent that carries expensive, accurate
sensing equipment will start with a high credibility grade. However, if it would transmit
conflicting reports, its credibility grade will drop. An agent’s credibility changes over time
due to sensor failures, environmental conditions, and movement of the agent. A major con-
sequence of this is that an agent cannot know its credibility at a location without moving to
that location. In Figure 1, the credibility of each agent is shown as a white number in a blue
square on the agent’s sensing range circle.
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Notation Description

A Set of agents, A = {A1, . . . , An}
cur neii Current neighbors of agent Ai,

cur neii = {Aj | d(cur posi, cur posj) ≤ MRi +MRj + SRi + SRj}.
cur posi Current position of agent Ai.
Credi Credibility of agent Ai.
Cur REQ(p) Remaining coverage requirement of p, Cur REQ(p) = max{0,ER(p)	 F (SR(p))}.
d Distance function, with d(p, p′) ≥ 0 the distance between positions p and p′.
ER(p) Environmental requirement of p.
F (S) Joint credibility of S ⊆ A.
MRi Mobility range of agent Ai.
SRi Sensing range of agent Ai.
SR(p) Agents within sensing range of p, SR(p) = {Ai ∈ A | d(p, cur pos|i) ≤ SRi}.
	 Environmental requirement reduction operator, 	 : R×R→ R

Table 1 Formal notation for DCOP MST.

The individual credibilities of agents sensing the same target are combined using a joint
credibility function F : 2A → R, where 2A denotes the power set ofA. We require that F be
monotonic so that additional sensing agents can only improve the joint credibility. Formally,
for two sets S, S′ ⊆ A with S ⊆ S′, we require that F (S) ≤ F (S′).

The targets are represented implicitly by the environmental requirement function ER

which maps each point in the environment to a non-negative real number representing the
degree of coverage (as we define shortly) required for that point to be adequately sensed.
In this representation, targets are the points p with ER(p) > 0. Because targets may arise,
move, disappear, ER changes dynamically. Moreover, ER can change as the agent team
becomes aware of new targets. A major aspect of the mobile sensing team problem is to
explore the environment sufficiently to be aware of the presence of targets. In the exam-
ple presented in Figure 1 there are five targets shown as red/dark ovals and their numbers
represent their ER values.

Agents within sensing range of a target p are said to cover the target. Given a target p,
the set of agents within sensing range of p is

SR(p) = {Ai ∈ A | d(p, cur posi) ≤ SRi}.

The remaining coverage requirement of target p is the environmental requirement of p di-
minished by the joint credibility of the covering agents, down to a minimum value of 0:

Cur REQ(p) = max{0,ER(p)	 F (SR(p))},

where 	 : R × R → R is a binary operator (written in infix notation) that decreases the
environmental requirement by the joint credibility. For x, y, z ∈ R with y > z, we require
that x 	 y < x 	 z, so that decreasing the environmental requirement by a higher joint
credibility results in a lower remaining coverage requirement.

The global goal of the agents is to position themselves in order to minimize the values of
Cur REQ for all targets. In some cases it may be possible to reduce the values of Cur REQ

to zero for all targets, reflecting perfect coverage. However in other cases this may not be
possible, either because of insufficient numbers or quality of agents, or by definition of F
and 	 (we will see an example of this in Section 2.1.1). For these cases we consider two
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specific objectives. The first is to minimize the sum of remaining coverage requirements for
all targets, while the second is to minimize the maximum remaining coverage requirement
over all targets.

Minimizing either of these objectives is NP-hard [46], as seen by reduction from the set
cover problem [29]. In the set cover problem, there is a set of elements (called the universe)
and a family of subsets of the universe whose union contains all elements of the universe. A
set cover is a subfamily of these subsets whose union contains all elements of the universe.
The set cover problem is to find the set cover containing the minimum number of subsets.
The idea of the reduction is to create a target for each element and a location for each
subset, defining distances so that the location is within sensing range of all elements in its
corresponding subset. A set cover of size k then exists if and only if it is possible to minimize
either the sum or maximum of Cur REQ to 0 using k agents.

2.1.1 Examples

We now consider three specific choices of F and 	 that may arise in different applications.
The sum joint credibility function simply sums the individual credibility of agents:

Fsum (S) =
∑
Ai∈S

Cred i

This can be used to model applications of tracking targets with simple sensors such as re-
ceived signal strength indicators (RSSIs) capable of determining distance but not direction.
Triangulating the position of a target requires readings from three different agents, repre-
sented by ER(p) = 3 for each target p, binary credibilities of 1 for functioning sensors and
0 for non-functioning sensors, and choosing 	 to be the standard subtraction operator. The
sum joint credibility function can also be used to protect against sensor failure with ER(p)

being the desired level of redundancy for target p. This approach can be extended to sensors
that may have different failure rates, as reflected by non-binary credibilities.

A more nuanced approach for robustness models sensor failures probabilistically and
seeks to guarantee that each target is covered by a working sensor with some minimum,
target-specific probability. In this case, Cred i is the probability that the sensor on Ai will
not fail and ER(p) is the minimum desired probability that target p is covered by at least one
working sensor. This is represented with the complementary probabilistic joint credibility
function

Fcprob(S) = 1−
∏

Ai∈S

(1− Cred i)

to compute the probability that at least one working sensor covers the target and choosing 	
to be the subtraction operator.

A related approach can be used for applications that detect sporadic events with sensors
that may give false negatives. The goal is to minimize the probabilities that events occur
without being detected. In this case Cred i is the probability of an accurate reading from
Ai and ER(p) is the probability that the event occurs at p. This is modeled using Fcprob

to compute the probability that no sensor detects an event, and the probabilistic reduction
operator, 	prob :

ER(p)	prob F (SR(p)) 7→ ER(p) · (1− F (SR(p))),

so that Cur REQ(p) is the probability that an event occurs at pwithout being detected. Note
that it is not possible to reduce Cur REQ(p) to 0 for targets with this choice of F and 	.
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2.1.2 Sensor Team Organization

As explained earlier, the ER function represents the targets in the environment. In practice
the agents’ knowledge of the targets will be neither static nor complete, due to the limited
observational abilities of agents in MSTs and the inherent dynamism in the problem. We
assume that if targets appear, disappear, or move, this can only be directly detected by agents
within sensing range of the target; if no agent is within range, the change will not be detected.
Thus agents must move not only to optimize their coverage of known targets, but also to
explore unobserved parts of the environment in order to detect changes in the ER function.
Because the purpose of this exploratory movement is very different from that of coverage-
optimizing movement, it is reasonable to expect different algorithms to be better suited for
the different purposes.

One way to implement this in an MST is to organize the team into two disjoint sub-
teams of agents running different algorithms specialized to each purpose. The surveillance
sub-team is primarily responsible for optimizing coverage of targets assuming that their
knowledge of the ER function is accurate. The search-and-detection sub-team is primarily
responsible for exploring the environment and communicating detected changes in the ER
function to the rest of the team. The exact mechanism of disseminating these changes to the
rest of the team is dependent on the specific communication capabilities of the agents and is
beyond the scope of this paper. The simplest approach is to broadcast the change to all agents
if possible, or to propagate via flooding if an ad hoc network is used for communication.
More sophisticated approaches may restrict changes to specific parts of the team based on
geographic location [9] or may utilize the search-and-detection agents as data ferries to
physically carry data between parts of the team that are not in communication [17].

While the two-sub-team approach can be used with homogeneous agents, agent hetero-
geneity offers the possibility of specialization according to relative strengths of the different
agents. In general, determining target importance often requires more sophisticated capa-
bilities than merely covering the target. For example, in a military application, determining
importance may require a high resolution camera to identify the potential target and perform
a threat assessment, while covering the target can be performed with a lower resolution cam-
era. Thus we assume that search agents have superior technology and can therefore perform
surveillance with relatively high credibility, while surveillance agents cannot determine the
importance of a target.

2.2 The DCOP MST Model

2.2.1 Standard DCOP

Distributed constraint optimization is a general formulation of multiagent coordination prob-
lems that has previously been used for static sensor networks and many other applica-
tions. A distributed constraint optimization problem (DCOP) is a tuple 〈A,X ,D,R〉 where
A = {A1, A2, . . . , An} is a finite set of agents , X = {X1, X2, . . . , Xm} is a finite set
of variables (with m ≥ n), D = {D1, D2, . . . , Dm} is the set of finite domains for the
variables, and R is a finite set of relations, also called constraints. Each variable Xi is
held (or owned) by an agent who chooses a value to assign it from the finite set of val-
ues Di; each agent may hold multiple variables. Each constraint C ∈ R is a function
C : Di1×Di2× . . .×Dik → R+∪{0} that maps assignments of a subset of the variables to
a non-negative cost. The cost of a full assignment of values to all variables is computed by
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aggregating the costs of all constraints. Addition is the aggregation operator most commonly
considered so that the total cost is the sum of the constraint costs, but other operators, such
as the maximum, have also been considered [37, 26]. The goal of a DCOP is to find a full
assignment with minimum cost.

Control in DCOPs is distributed, with agents only able to assign values to variables
that they hold. Furthermore, agents are assumed to know only of the constraints involving
variables that they hold, thereby distributing knowledge of the structure of the DCOP. In
order to coordinate, agents must communicate via message passing. It is commonly assumed
that agents can only communicate with agents who hold variables constrained with their own
variables, called their neighbors [48, 51, 26, 30]. While transmission of messages may be
delayed, it is assumed that messages sent from one agent to another are received in the order
that they were sent.

2.2.2 DCOP with Assignment-Dependent Local Environment (ADeLE DCOP)

The model we propose for representing problems that include teams of mobile sensing
agents is based on the standard DCOP model presented above and includes multiple dy-
namic elements. Some, e.g., a change in the utility derived when the sensor is located in
some position due to the failure of a sensor, were formalized in previous work on dynamic
distributed problems as changes in the problem’s data, which are independent of the as-
signment selection of agents [32, 47]. However, other dynamic elements in our model are
changing due to the value assignment selection of agents. While this property is inherent in
applications that include teams of mobile sensing agents, it exists also in other scenarios and
applications e.g., when planning a trip, the decision to stop in some city can raise multiple
concerns and possibilities that were not considered if this stop was avoided.

Thus, we formalize an innovative framework, ADeLE DCOP, that is based on DCOP
and can represent problems in which the content of the local environment of agents depends
on their value assignment selection. Then, we will detail DCOP MST as a specific instance
of this framework. In ADeLE DCOP there is a general domain of values g-domi for each
agent i that includes all values that it can take. An agent i also holds a current domain
cur domi ⊆ g-domi that includes all the value assignments that an agent can assign to its
variable with respect to its current value assignment (denoted by cur assi).4 The content of
cur domi is determined by a function Ψ(i, v) that takes into consideration the current value
assignment v of agent i to its variable. Furthermore, for each value v ∈ g-domi there is
a set of values it is constrained with that are included in the g-doms of other agents. Two
agents i and j in ADeLE DCOP are considered neighbors if and only if there exists values
v ∈ cur domi and v′ ∈ cur domj that are constrained.

Thus, the local environment of an agent i includes two dynamic sets, its current domain
(cur domi) that its content is dependent on the agent’s current assignment (cur assi), and
the set of current neighbors (cur neii) that depend on the context of cur domi. Hence, the
content of both sets is dynamic and determined by the value assignment selection of the
agent.

2.2.3 DCOP MST

In formulating the mobile sensor team problem as an ADeLE DCOP, each agent Ai holds
a single variable for its position with a general domain g-dom that includes all possible

4 For simplicity of presentation and without loss of generality we assume that each agent holds a single
variable
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locations. For each target p there is a constraint Cp that relates the agents’ positions to the
remaining coverage requirement Cur REQ(p). Because every agent can take a position
within sensing range of p in some combination, Cp is an n-ary constraint. The cost of Cp

for each combination of values is equal to Cur REQ(p) given the agents positions.
The inherent dynamism of the mobile sensor team problem means that the DCOP prob-

lem changes over time. The set of constraints R changes over time as targets arise and
disappear and agents discover new targets. The cost functions represented by the constraints
also change over time due to target movement, sensor failures, and changing agent under-
standing of sensing quality at different locations due to changing environmental factors.

Even as a static problem this is a very challenging DCOP due to the n-ary constraints,
which are known to be problematic for many DCOP algorithms in practice. Furthermore, the
standard assumption of communication locality based on constraint participation is rendered
meaningless, with every agent able to communicate with every other. This is in stark con-
trast to actual mobile sensing applications, where communication between agents is usually
limited by physical distance.

The DCOP MST model is a dynamic ADeLE DCOP formulation that exploits the struc-
ture of mobile sensor team problems without requiring an explicit model of the dynamics.
Instead, the agents consider local changes in their position, and react to changes as they oc-
cur. As an instance of the ADeLE DCOP framework presented above, agents hold variables
that take value assignments from a dynamic domain. Specifically, each agent Ai holds a
variable for its position that can take a value from a dynamic domain. The function Ψ(i, v)
includes in cur domi all locations within MRi of cur posi; Thus, as the agent moves loca-
tions, the content of the current domain changes.

Dynamic domains induce a change in the constraints. Because of the restricted domains,
not all variables can take values within sensing range of all targets, and hence the constraints
need no longer be n-ary. Instead, the constraint Cp for a target p only involves those agents
Ai whose domains include a location within SRi of p. As the domains change, the con-
straints change as well.

The local environment of agent Ai is the joint area within SRi from all positions within
MRi from cur posi, i.e., it includes all targets that the agent can cover after a single move.

A consequence of this is that the set of neighbors for each agent is no longer the full
team and it changes over time as the agents move. In DCOP MST, two agents are considered
neighbors if their local environments overlap, i.e., their sensing areas overlap after they both
move as much as possible in a single time step toward each other. Denoting the set of neigh-
bors of Ai by cur nei i, we formalize this by cur nei i = {Aj | d(cur posi, cur posj) ≤
MRi + MRj + SRi + SRj}. Because agents can only communicate with their neighbors,
agents in DCOP MST can only communicate with other agents who are physically nearby,
which is more realistic than the conventional DCOP formulation. As with domains and con-
straints, neighborhoods in DCOP MST are dynamic.

3 Algorithms for Solving DCOP MSTs

After defining a model for representing mobile sensor team problems, the next step is to pro-
pose algorithms for agents in the DCOP MST model to use in order to select their position.

The choice of local search for solving problems of the DCOP MST model is supported
by the common standard considerations for selecting local over complete search, namely
time limitations and the limit on the size of problems that can be practically solved by
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complete algorithms. In addition, the following special properties of a MST problem also
encourage the choice of a local search algorithm:

1. Exploring the entire search space, as required for complete search, would mean that
agents take each and every possible position. This is not practical for sensors with lim-
ited mobility in a large area.

2. Dynamic changes limit the time that agents have to execute a complete algorithm, be-
cause changes that occur during the search for the optimal solution render the computed
solution obsolete.

3. The algorithm is expected to maintain reasonable coverage while adjusting to the changes
in the problem [25, 19]. While complete search is guaranteed to find the optimal solution
in finite time, this may take a very long time and there are no guarantees on the degree
of coverage while the optimal final configuration is being computed.

The simplicity of the framework of local search algorithms makes it compatible with
a dynamic environment. Many local search algorithms (such as MGM and DSA [30, 50])
evaluate only the current state in each iteration, while in complete algorithms, agents con-
sider information that was inferred in previous steps of the algorithm (e.g., nogoods [39]).
This information might not be valid after the problem changes.

3.1 Local Search Algorithms for Solving DCOPs

The general design of most state-of-the-art local search algorithms for DCOPs is synchronous.
The MGM algorithm is a simpler version of the DBA algorithm [48, 50]. In every syn-
chronous step, each agent sends its current value assignment to its neighbors and collects
their current value assignments. After receiving the assignments of all its neighbors, the
agent computes the maximal improvement (reduction in cost) to its local state it can achieve
by replacing its assignment and sends this proposed reduction to its neighbors. After col-
lecting the proposed reductions from its neighbors, an agent changes its assignment only if
its proposed reduction is greater than the reductions proposed by all of its neighbors (ties
are broken by agents’ indices). A sketch of the MGM algorithm is depicted in Figure 2.
After selecting a random value to its variable (line 1), the agent enters the loop where each
iteration is a step of the algorithm. After sending its value assignment to its neighbors and
collecting their assignments (lines 3,4), the agent calculates its best cost reduction and sends
it to its neighbors (lines 5,6). After receiving the possible cost reductions of all of its neigh-
bors the agent decides whether to replace its assignment and on a positive decision reassigns
its variable (lines 7-10).

The DSA algorithm is very simple and requires fewer messages than MGM. After an
initial step in which agents pick a value for their variable (randomly according to [50]),
agents perform a sequence of steps until some termination condition is met. In each step, an
agent sends its value assignment to its neighbors in the constraints graph and receives the
assignments of its neighbors. After collecting the assignments of all its neighbors, an agent
decides using a stochastic strategy whether to keep its value assignment or to change it. A
sketch of DSA is presented in Figure 3. The difference from the MGM algorithm is that the
LR values are not exchanged and that the replacement decision (in line 5) is stochastic. More
specifically, in DSA, the replacement decision takes into account whether a replacement of
assignment will improve the local state of the agent. If so, a change is made with probability
defined by parameter p. Zhang et al. showed that the value of p has a major effect on the
quality of solutions found by DSA [50].
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MGM
1. value← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. LR← BestPossibleLocalReduction()
6. Send LR to neighbors
7. Collect LRs from neighbors
8. if (LR > 0)
9. if (LR > LRs of neighbors (ties broken using indices))
10. value← the value that gives LR

Fig. 2 Standard MGM.

DSA
1. value← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. if (ReplacementDecision())
6. select and assign the next value

Fig. 3 Standard DSA.

3.2 Algorithms for the Surveillance Sub-team

In this section we assume that the ER function used by the surveillance team is complete
and accurate, and we develop algorithms for the agents in the surveillance team. Note that
locality (i.e. the partial information held by agents) in DCOP MST is implied by the posi-
tions, mobility ranges, and sensing ranges of the agents. Thus, only by taking the assignment
and physically moving to the the position can an agent compute and adjust its domains and
constraints.

3.2.1 Selecting the optimal position in range

A crucial requirement for distributed local search algorithms such as MGM or DSA is for
agents to be able to efficiently evaluate alternative positions and select the optimal one from
among them. While this evaluation of values is trivial in standard DCOPs, it is not straight-
forward in DCOP MST. Moreover, the selection algorithm should serve the global objective
of the entire team, heuristically guiding the local search process toward high quality local
optima. In this section we propose a method that is optimal for the objective of minimizing
the maximum remaining coverage requirement, allowing us to effectively adapt local search
algorithms to DCOP MST .5

An immediate, trivial algorithm would be for each agent to choose a position from its
domain that covers a target with the highest Cur REQ . However, there may be multiple
positions that enable coverage of such a target and the agent must choose between them.
The intuitive heuristic that we apply is that the agent should choose the position that further
enables coverage of additional targets with a smaller Cur REQ . To this end, we propose a
recursive method, select pos, for an agent to select its position; pseudocode is presented in
Figure 4. There are two inputs: pos set is the set of possible positions to be considered, and

5 In Section 5 we present experimental results showing that our approach is also effective for the objective
of minimizing the sum of remaining coverage requirements.
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select pos(pos set , func)
1. if (| pos set | = 1)
2. return pos set.content
3. target set←points within SRself from some pos ∈ pos set

with largest func value (must be larger than zero)
4. if (target set is empty)
5. return some pos ∈ pos set
6. if (no pos ∈ pos set is within SRself from all the points in target set)
7. target set← largest subset of target set within SRself from some pos ∈ pos set
8. possible pos← all positions in pos set which are within SRself from all points in target set
9. intersect area← area within SRself from all pos ∈ possible pos
10. new func← func \ func.intersect area
11. return select pos(possible pos , new func)

Fig. 4 Method for selecting the best alternative position.

func is a function that specifies a value for each target within sensing range of the positions
in pos set. The algorithm behaves as follows:

1. In the first call, pos set is the set of all positions within the agent’s mobility range MRself

of its current position, and func = Temp REQ, the current coverage requirement func-
tion excluding the coverage of the agent performing the calculation (Aself). Formally,

Temp REQ(p) =

{
max{0, ER(p)	 FAi∈(SR(p)\Aself)Credi} if Aself ∈ SR(p)

Cur REQ(p) otherwise.

2. A set target set containing all targets with maximum func value and within sensing
range of a position is computed (line 3).

3. Two termination conditions are checked:
(a) If there is only one possible position, it is selected (lines 1 –2).
(b) If there are no remaining targets (target set = ∅), then any possible position can be

selected (lines 4 – 5).
4. If neither of the termination conditions is met, the agent computes a new set of possible

positions, possible pos. Ideally, these are positions from which the agent can cover all
of the targets in target set, but it may be that no such location exists. In this case, the
agent chooses a subset of targets to cover (lines 6–7). In particular, the agent chooses the
largest subset of target set that can be covered from a single position in pos set. This
can be accomplished be iterating over all pairs of pos ∈ pos set and target ∈ target set
and checking if d(pos, target) ≤ SRself ; this takes |pos set| · |target set| time. The
agent then computes possible pos to be the positions in pos set within sensing range of
all targets in the possibly reduced target set (line 8).

5. A new function new func is then computed, equal to func but excluding targets that
are covered from all positions in possible pos (lines 9–10).

6. The final step is a recursive call to select pos using possible pos and new func (line 11).

Figure 5 presents an example of the local method described above. Figure 5(a) shows the
first call to select pos, with the circle representing the agent’s sensor range and the framed
number its credibility (5). Points marked by “X” are alternative positions in pos set. Tar-
gets (as identified by func) are depicted by ovals with a number showing their importance,
and the shaded oval (for the target with importance 7) indicates target set. In the second
invocation of select pos (Figure 5(b)), target set contains the two targets with importance
5 and pos set is limited to those positions that were within sensing range of the importance
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(a) Elimination of irrelevant positions and identi-
fication of the most important target in range.

(b) Second elimination of irrelevant positions and
mutual targets.

(c) Third elimination of irrelevant positions and
mutual targets.

(d) Final selection.

Fig. 5 Local method example.

7 target in the previous call. In the third call (Figure 5(c)), pos set contains only two posi-
tions, neither of which is within sensing range of the target with importance 4. As a result,
the target set contains the two targets with importance 3. Because neither of these allows
coverage of both targets, target set will be further reduced to a single target in line 9, and
hence in the following invocation of select pos, pos set will contain a single location and
the first termination condition will hold. Figure 5(d) shows the final selection of the algo-
rithm, along with the sensing range around that point and the four targets that are covered
from there.

3.2.2 Theoretical properties and bounds

The first bound that needs to be established is that the local method performed by each agent
in each iteration is efficient, otherwise it is not realistic to assume that agents can complete
computation of the optimal alternative position in a single iteration of the algorithm.6

Lemma 1 Assuming the maximal number of possible positions within distance MR of an
agent is m, the maximum number of calls to method select pos that this agent will make in
a single iteration of the algorithm is m+ 1.

6 In our proof we assume that there are no plateaus (continuous areas with the same ER value) and that
the number of points of the same (highest) value can be found efficiently. If plateaus do exist, the proof is still
valid; however, there is a need to use geometric computation in order to evaluate areas instead of points.
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Proof: When method select pos is called for the first time, the set of possible positions
includes a maximum of m members. In each further call to the method, the values of points
which are covered from all possible positions (the intersect area) are not included in the
function (lines 9–10 of Figure 4). Consequently, the points in the next generated target set
cannot be in sensing range from all possible positions. Because only positions that are in
sensing range from all the points in target set are included in the next generated set of
possible positions (line 8), in every recursive call the set of possible positions is smaller.
Thus, the function can be called m + 1 times at most. Note that pos set is not allowed to
become empty due to the second termination condition (lines 4–5). �

Lemma 2 Assuming the maximal number of possible positions in the SR of an agent from
any target point is s, the number of calls to method select pos this agent will make in a
single iteration of the algorithm is s+ 1.

Proof: In each call of method select pos a target set is generated. Only positions within
sensing range from all the points in the target set are considered when the function is called
again. Therefore, after the first call, the set of possible positions generated cannot be larger
than the number of positions within SR from the points in the target set. The rest of the proof
is similar to the proof of Lemma 1. �

The conclusion from Lemma 1 is that in the worst case, the runtime complexity of
a single iteration is: m2 · |target set| (where m is defined as in Lemma 1), since in each
recursive call each possible position is checked to see if it affords coverage of the target set.
Furthermore, the conclusion from Lemma 2 is that the worst case runtime complexity of a
single iteration is (m+ s2) · |target set| (where m and s are defined as in Lemmas 1 and 2).
Thus, the runtime of a single iteration is the minimum of the two.7

Next, the (local) optimality of the method for selecting an agent’s position is established
(it is optimal if only the actions of a single agent are considered). The locally optimal se-
lection is essential to ensure the maximum gain property in the MGM algorithm, which
is needed to guarantee convergence. We call a position optimal if it minimizes the cover-
age requirements according to the Cur REQ function, i.e., if it minimizes the maximum
Cur REQ value among all points within the sensing range of all the positions that are in
the mobility range of the agent.

Lemma 3 In each recursive call of the select pos method, the set of possible positions
includes the optimal position.

Proof: In the first call for the select pos function, all positions within mobility range are
considered. Thus, the optimal position is considered as well. Assume that the selection of
possible positions in the ith call to the recursive method select pos by agent Aj is the first
that does not include the optimal position. We differentiate two cases:

1. There exists at least one possible position in the possible positions set of the i − 1 call
that is within the sensing range of all the points in the target set generated in the i− 1

iteration.
2. No possible position in the possible positions set of the i − 1 call is within the sensing

range of all points in the target set generated in the i− 1 iteration.

7 In contrast to the assumptions made, in case the initial possible position set or target set are too large and
the method cannot be completed in reasonable time, the method can be stopped and one of the positions in
pos set can be selected. However, in this case local optimality is not guaranteed.
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MGM MST
1. value← SelectedValue()
2. while (true)
3. send cur pos to each Ai ∈ cur neiself
4. collect positions of each Ai ∈ cur neiself
5. LR← BestPossibleLocalReduction()
6. Send LR to each Ai ∈ cur neiself
7. Collect LRs from each Ai ∈ cur neiself
8. if (LR > 0)
9. if (LR > LRs of each Ai ∈ cur neiself (ties broken using indices))
10. cur pos ← the position that gives LR

BestPossibleLocalReduction()
11. possible pos← positions within MRself from cur pos
12. Temp REQ← Cur REQ − self coverage
13. new pos← select pos(possible pos , Temp REQ)
14. cur cov ← highest Temp REQ among points within SRself

from cur pos and not within SRself from new pos
15. new cov ← highest Temp REQ among points not within

SRself from cur pos and within SRself from new pos
16. return min(cur cov − new cov,Credself )

Fig. 6 MGM MST.

The consequence of the first case is that there exists an optimal position pos′ that was
included in the possible positions of the i − 1 call and is not selected to be included in the
new set of possible positions. This means that pos′ is not within SRself (the sensing range
of Aj) of all points in the target set (line 6 of Figure 4). However, the goal is to minimize the
Cur REQ function and the target set includes the points with the largest Cur REQ values
not within sensing range from all possible positions found in the i − 1 iteration. Thus, the
fact that there exists a position that enables coverage of all points in target set contradicts
the optimality of pos′.

For the second case, any selection of position will give the same largest remaining re-
quirement. Thus, any selection is locally optimal and the choice of selecting the position that
covers the largest number of points in the target set is a heuristic, which hopefully would
help in most cases to achieve the global goal. �

The optimality of the select pos function is an immediate corollary from Lemma 3.
Since the select pos method returns either a position that was left last in the possible po-
sitions set or one position from a set of positions from which the agent does not have any
coverage differences, this selection is optimal with respect to the position selection of a
single agent.

The intuition for the heuristic we use in the method is that covering the largest number
of points with maximal coverage requirement would leave fewer such points to cover by the
other agents and will contribute more to the joint effort.

3.2.3 Adapting local search algorithms to DCOP MST

After designing an efficient method for finding the optimal position within range for each
agent, we can complete the adaptation of the MGM and DSA algorithms to DCOP MST.
It is important to mention that as self-adjusting algorithms, the algorithms should run in-
definitely, i.e., after the algorithm converges to a solution it remains active in order to be
sensitive to changes [8].
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DSA MST
1. value← SelectedValue()
2. while (true)
3. send cur pos to each Ai ∈ cur neiself
4. collect positions of each Ai ∈ cur neiself
5. possible pos← positions within MRself from cur pos
6. Temp REQ← Cur REQ − self coverage
7. new pos← select pos(possible pos , Temp REQ)
8. if (ReplacementDecision())
9. cur pos ← new pos

Fig. 7 DSA MST.

Figure 6 presents the code of the MGM MST algorithm. The main loop of the algorithm
remains almost unchanged from standard MGM presented in Figure 2. The agents send their
assignments (current positions) to the agents that are currently their neighbors. We assume
that agents can detect the agents whose ranges overlap with its own as defined in Section 2
and update its set of current neighbors.8

Method BestPossibleLocalReduction calls method select pos to find the best alterna-
tive position. After it is found, the method returns the improvement that would be achieved
by changing to the selected alternative position. This improvement (or “reduction”) is the
difference between the highest Cur REQ values, not including the credibility variable of
Aself (Temp REQ), which are covered by the agent when it is located in one of the two po-
sitions (the current and the new) and uncovered when it is located in the other (lines 13–15).
The possible improvement cannot be larger than the agent’s credibility variable, Credself ,
since that is the agent’s maximal contribution to the coverage of any point in the area (line
16).

Figure 7 presents the code of the DSA MST algorithm. The decision of whether to
change position is stochastic and does not require agents to exchange their largest reductions
(LR values). The replacement decision used is the same as in standard DSA.

3.2.4 Runtime example

Figure 8 presents an example of a DCOP MST solved by the MGM MST algorithm. The
team includes five mobile sensors. The dashed lines circling each of the sensors depicts their
sensing range. This example uses the sum joint credibility function, Fsum and the standard
subtraction operator for 	. The mobility range for each agent is considered to be twice the
sensing range (this range was left out of the figures in order to simplify the presentation).
The agents are required to cover a number of target areas, which are depicted by complete
circles each containing a number. The number represents the environmental requirement
function ER. In the initial state of this example (Sub-figure 8(a)), there are three target
areas with ER = 3 and one with ER = 10. The initial credibility assigned to each agent
is 5 (depicted as a framed digit above each dashed circle). In the initial state presented
in Sub-figure 8(a), all targets are covered as required. The example includes two events.
Sub-figure 8(b) presents the state after the first event, which is a conflict in the reports that
triggered a decrease in the credibility of sensors 1 and 2. As a result, the difference between
the requirements on the target and the sum of the credibilities of agents 1 and 2 is 4. Agent
5 is currently covering a target with ER value of 3. Thus, it moves to a position where it

8 If not, agents would need to inform all other agents when they change position so that they can update
their set of neighbors accordingly.
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(a) initial state. (b) credibility change for some of the sensors.

(c) first step of adjustment. (d) second step of adjustment.

(e) environmental change. (f) final adjustment.

Fig. 8 Runtime example

covers the target that is considered more important. The resulting state is presented in Sub-
figure 8(c). Agent 4 can improve its local state by moving to a position from which it covers
the target it covered before and the target that agent 5 left uncovered (resulting in the state
presented in Sub-figure 8(d)). Notice that agent 4 moves although it is already covering a
target with ER = 3, since even though it is covering the point with the largest Cur REQ

value in its range, the recursive function requires it to keep considering the different positions
that cover this point and possibly additional points with a similar or smaller Cur REQ

value. Sub-figure 8(e) presents the state after an environmental change (the second event).
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A new target was added with ER = 3. Agent 1 changes its position since its contribution to
the coverage of the target it is currently covering is less than its contribution when covering
the new target. The final state is presented in Sub-figure 8(f).

3.2.5 Exploration methods

Classic local search combines exploitation methods in order to converge to local optima with
exploration methods in order to escape them [52]. The proposed MGM MST algorithm is
strictly exploitative. It benefits from quick convergence and avoids costly moves by the sen-
sors. However, once a target is beyond the agent’s range it remains uncovered. DSA MST
has an inherent exploration element. However, the results presented in Section 5 will reveal
that this element is not enough to escape local optima in MST problems. Algorithms that im-
plement methods that enhance local search were proposed for standard DCOPs [24, 50, 30].
However, some of the methods that are most effective in standard DCOP are not expected
to be effective for DCOP MST.

For standard DCOPs, a K-opt solution that can be found by a K-opt algorithm [30] gives
an upper bound on the distance from the optimal solution. This guarantee is achieved by al-
lowing any group ofK agents to consider all the constraints they are involved in. As a result,
all of the problem’s constraints are considered by groups of K agents. In DCOP MST, if a
target is not in the range of any agent it will not be considered. Therefore, a K-opt algorithm
is expected to allow agents to converge to a deployment that results in better coverage of the
targets in range, but it cannot offer the same guarantees as in standard DCOPs when there
are targets outside of the agents’ ranges.

Another method that is most effective for standard DCOPs is the anytime framework
proposed in [53]. In this framework, agents are storing the best solution that was explored
in memory and this solution is reported when the algorithm is terminated. In DCOP MST,
agents change their physical position and are expected to maintain coverage of targets that
were detected. Changing to the best solution can require agents to travel a long distance
and at the same time leave targets uncovered. In addition, the method is effective only for
static problems since there are no guarantees on the quality of the solution when the problem
changes. Thus, holding the best position found so far in memory while exploring for new
targets is not expected to be effective for DCOP MST.

In order to explore the area for new targets while maintaining coverage of targets that
were previously detected we propose three simple but powerful exploration methods, two
are combined with the MGM MST algorithm and one with DSA MST. These three methods
change the parameters of the algorithm temporarily in order to escape local minima. This
approach was found successful for local search in DisCSPs [3].

1. MGM with Periodic Double Mobility Range (MGM PDMR) simply allows an agent to
consider points within a larger (double) range than their MR for a small number of iter-
ations. This method assumes that a wider range is possible even though the iteration will
take longer. Therefore, the agents consider a wider range only in part of the algorithm’s
iterations, which repeat periodically (in our experiments, for example, for two iterations
out of every five we used 2 ·MR instead of MR).

2. MGM with Periodic Incremented Largest Reduction (MGM PILR) allows agents in
some iterations to move to a position that results in an increase of the Cur REQ func-
tion up to a constant bound c. More specifically, line 8 of the algorithm is changed in
these iterations to:
8. if (LR+ c > 0)



20

Again, this reduced condition is only temporary and is applied periodically. This would
mean that for a small number of iterations the importance (coverage requirement) of
targets in the area is reduced. Notice that the c parameter defines by how much they are
reduced and thus, fine tuning it would avoid abandoning targets.

3. DSA PILR is similar to MGM PILR, only here the same approach of periodic reduced
condition is implemented within the DSA algorithm and not within MGM. More specif-
ically, in the iterations where the condition is reduced, the algorithm performs moves
even if the reduction is negative up to c.

In all of the proposed methods, agents are not expected to leave targets with high impor-
tance in order to search for new targets. This is obvious in MGM PDMR since, as in the case
of MGM MST, only moves that result in a gain are performed. In the case of MGM PILR
and DSA PILR, the c parameter defines the reduced importance of the targets that are al-
ready covered. Thus, in MGM PILR c is a bound on the increase to the Cur REQ function
that the method can create by a single move.

3.2.6 Adapting incomplete inference algorithms to DCOP MST

The algorithms discussed until now have been local search algorithms. Another family of
approaches for solving DCOPs are inference algorithms, in which agents do not propa-
gate assignments but rather calculate utilities (or costs) for each possible value assignment
of their neighboring agents’ variables. One of the most popular incomplete algorithm at
present is Max-sum, which has been the subject of intensive recent study [11, 41, 54]. Max-
sum operates on a cyclic, bipartite factor graph of variable-nodes and function-nodes which
represent the agents’ states and constraints, respectively. The complexity of a single iteration
of Max-sum is exponential in the degree of the function-nodes (i.e., the constraint arities).9

We note that in Max-sum agents act on behalf of variable-nodes and function-nodes in the
factor graph. Commonly, agents act on behalf of variable-nodes representing their own vari-
ables. Function-nodes can be allocated to agents arbitrarily, deterministically, e.g. by index
(as in [54]) or by representing the allocation problem itself as a DCOP and solving it using
local search methods (as suggested in [28]). In any case, the allocation does not affect the
actions performed by the algorithm. However, if the allocation is not balanced then the com-
plexity of an iteration can increase (when many function-nodes are allocated to the same
agent).

Previous work that investigated applications including mobile sensors that need to fol-
low a path and gather information, modeled such scenarios using the Distributed Constraint
Optimization Problem (DCOP) framework by representing mobile sensors as agents that
need to select locations and their tasks/targets as constraints, and suggested to solve them
using the Max-sum algorithm [41]. However, if all possible future moves of dynamic agents
are considered, then all agents are considered for each task and the constraints arity is linear.
Thus, the problem becomes unsolvable for Max-sum even though it is an incomplete algo-
rithm. Previous work deals with the inherent dynamism of such scenarios by suggesting an
iterative process. In each iteration a DCOP instance is built representing the current situation
(e.g., sensor positions) and in which only limited movements of the agents are considered.
Agents run a distributed algorithm (that might involve several communication cycles) to de-
cide what would be the best next joint move. After they execute the selected joint move,

9 The details of Max-sum are beyond the scope of this paper. The reader is referred to the following papers
for a description of the algorithm [11, 54].
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they build a new DCOP instance considering their new positions [41]. This approach gen-
erates inherent locality for agents, i.e., in each iteration an agent only considers alternative
positions it can move to (in this iteration) and tasks it can fulfill (targets it can cover) when
located at these positions.

Thus, we apply Max-sum to DCOP MST by adjusting the framework suggested in [41]
as follows:

1. Select a random assignment.
2. Generate a factor graph according to the current assignment where each sensor is a

variable-node and each target is a function-node. Variable-node i is connected by an
edge to a function-node if and only if the distance between them is less than or equal to
the sum of MRi + SRi, i.e., the sensor can cover the target after a single move.

3. The agents execute the Max-sum algorithm for a predefined number of iterations.
4. The sensors move to the best position (value assignment) as calculated by the algorithm.
5. A new factor graph is generated according to the new assignment selection and the

process repeats itself.

In general this algorithm could consider targets that can be covered after multiple moves
by an agent. However, this would result in more sensors in range of each target, thereby
increasing the degree of each function-node. This is problematic for Max-sum as it would
exponentially increase the running time of each Max-sum iteration.

The number of iterations that Max-sum performs before each assignment (position) se-
lection must be selected with care. On one hand, we would like to allow the information
regarding the coverage capabilities of sensors to propagate to other sensors. On the other
hand, selecting a large number of iterations can cause a deterioration in the quality of the so-
lution as a result of cycles as reported in [11, 54]. Furthermore, these iterations of Max-sum
constitute only a single iteration in the global, multi-iteration deployment algorithm, thus,
we do not want to generate unnecessary delays. In our experiments we found that Max-sum
converges very quickly and thus, a small number of iterations (5) was sufficient to get best
performance.

As mentioned above, the complexity bottleneck of Max-sum is the generation of mes-
sages by the function-nodes (targets in the case of DCOP MST). This complexity is known
to be exponential in the number of neighboring agents where, in standard Max-sum, the
base in the power formula is the domain size and the exponent is the number of variables
involved in the function (the degree of the constraint). A number of papers proposed tech-
niques to reduce the complexity of the calculation required for the generation of messages
by the function-nodes in Max-sum [41, 23]. We implemented all of the proposed methods
in Max-sum MST, the version of Max-sum we adjusted to DCOP MST. It is important to
note that while these techniques reduce the effective domain size to two, they do not reduce
the exponent of the complexity and thus, the effective number of neighboring sensors that a
target can have is limited (and small).

3.3 Algorithm for the Search-and-Detection Sub-team

The first step toward including a search-and-detection team in DCOP MST is relaxing the
assumption that there exists an ER function that includes the accurate importance of every
point in the area. Instead, we assume that the function initially includes some distribution
that reflects the probability over the existence of targets in the area. This assumption makes
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Fig. 9 Example of the initial state of the full scenario.

the model compatible for any level of uncertainty from complete entropy (as in [19]) to
complete knowledge (as we assume in the section above).

Figure 9 illustrates the initial state of a problem. The example includes two types of
agents with different credibility variables. The search-and-detection sub-team is composed
of the agents with the higher credibility while the agents with the lower credibility are in the
surveillance sub-team. The distribution over the probability to find targets in the area is not
uniform. The darker areas are the areas with higher probability. The locations of the targets
in this example are as in Figure 8, but are concealed at this point. The initial ER function
includes this probabilistic information, giving points in areas with higher probability for a
target a larger value.

The initial ER function containing the probabilistic information is copied to another
(initially identical) function we refer to as the search map (SM ). Search agents use the SM
when they decide on their path in order to detect targets, and they generate and update a
new ER function with the targets they find. The surveillance agents use only the new ER

function, in the same way as described in Section 3. Thus, the newER function is the device
used for communication between the two teams.

The search agents use the SM function to communicate to each other where they have
recently visited and therefore the probability of the existence of a new target is low. This is
done as follows:

1. The base value of a point in the SM function, Basep, is equal to the value in the initial
ER function. Thus, initially, all points in the SM function are equal to their base value
(notice that these points may have different base values according to the probability for
a target to exist at them).

2. A search agent sa located at some point p at iteration t, causes a decrease in the value
of all points p′ within the sensor range of p. The new value of these points is:
SM(p′, t) = max{0, Basep′ − Credsa}.

3. At each iteration t in which there is no search agent in sensing range from point p, the
SM value of p is incremented as follows:
SM(p, t) = min{SM(p, t− 1) + z,Basep}.
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DSA SAT
1. cur posself ← select init pos()
2. while (true)
3. foreach (point p within SR from cur posself )
4. SM(p)← max{0, Basep − Credself}
5. ER(p)← importance(p)
6. next pos← get best pos()
7. rand← random([0, 1])
8. if (rand < prob)
9. cur posself ← next pos

get best pos()
10. possible pos← positions within MRself from cur pos
11. max val← 0
12. foreach pos ∈ possible pos
13. psr ← {p| p within SR from pos}
14. if (

∑
p∈psr SM(p) > max val)

15. next pos← pos
16. max val←

∑
p∈psr SM(p)

17. return next pos

Fig. 10 DSA SAT.

The selection of the value of z determines the intensity in which agents will revisit loca-
tions in the area. It should be adjusted to the expected frequency of target appearances.

Figure 10 presents the adjusted DSA algorithm for a Search Agent Team (DSA SAT)
in DCOP MST. As in the case of the Distributed Simulated Annealing algorithm [2], in
DSA SAT the coordination among agents does not rely on a constant probability alone. In
each iteration of the algorithm the SM value of all points within sensor range of the agent
are set to a lower value according to the agent’s credibility (lines 3,4). In addition, the agent
updates the ER function with the true importance of the points in its sensing range.10 Then,
the agent selects the best position it can move to by calling function get best pos(). The
agent moves to this position with probability prob (lines 7,8).

Function get best pos() selects the point within mobility range for which the sum of the
SM values of points within sensing range from it, is maximal.

4 Cooperation Between Sub-teams

In the previous sections we described two sub-teams performing in the same area, each with
its own task, and a means for communication between them via the ER function. However,
it is reasonable to assume that cooperation between agents from different sub-teams can lead
to better results for the following reasons:

1. Although each sub-team has its own task, they are both working towards a common
goal.

2. Agents’ efficiency depends on their location. Therefore, it may be the case that an agent
from one sub-team is in a position that allows it to serve the task of the other sub-team
best.

10 importance(p) in line 5 is the true importance of point p sensed by the agent.
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Common practice in multiagent systems include hierarchical plan structures that allow
agents to assist others when working towards a common goal [38, 15, 16]. Specifically to the
applications at hand, we assume that search agents have superior technology and can there-
fore perform surveillance with relatively high credibility, while surveillance agents cannot
determine the importance of a target. Thus, we describe the following possible collabora-
tions between the two teams:

1. Search support (SS): search agents take an active role in the surveillance of targets
within their sensing range. In practice, we consider the credibility of the search team
agents when calculating the current requirement for coverage of targets within the sens-
ing range of search agents.

2. Alert: agents from the surveillance team increase the value of points in the search map
where they suspect there might be a target. Thus, search agents are encouraged to search
at these locations. In more detail, a monitoring (surveillance) agent that suspects that
there is a target within its sensing range changes the value of this point in the search
map SM to be very large. As a result, search agents are drawn to it.

3. Avoid Abandoning (AA): search agents do not move to a new location when they are
covering targets which are not reasonably covered by surveillance agents, i.e., search
agents that locate a target wait for it to be covered by surveillance agents before they
continue their search.

All three modes of cooperation described above require agents to be aware of the task
of the other team. The Alert and AA modes further require that agents communicate with
agents in the other team via either the ER or the SM functions.

5 Experimental Evaluation

The proposed DCOP MST model was evaluated using a simulator for mobile sensor team
problems. The problems simulated are of an area in which the possible positions are a 100-
by-100 grid. Each of the points in the area has an ER value between 0 and 100. The ER
function initially included 10 random points with maximum requirement of 100. Each prob-
lem features 50 agents with their initial positions chosen uniformly at random. The mobility
and sensing ranges are given in terms of distance on the grid and are varied in our experi-
ments to demonstrate their effect on the success of the algorithms. We consider the Fsum

joint credibility function with subtraction operator and Fcprob joint credibility function with
	prob operator (Section 2.1.1).

In experiments using Fsum , the credibility of surveillance agents was initially set to
30 and the credibility of search-and-detection agents was initially set to 50. These values
were chosen so that targets with maximum importance (100) require the cooperation of
multiple agents. In addition, this setup allows complete coverage (i.e., Cur REQ = 0) in
the optimal case and thus we can evaluate the success of the proposed algorithms relative to
the optimum. In experiments using Fcprob , the credibility of surveillance agents was 0.3 and
the credibility of search agents was 0.5. The importance of targets was again set to 100 (i.e.,
events occur with probability 1, expressed as a percentage). Notice, Fcprob is not additive
but rather sub-modular.

The reputation model used in our experiments was inspired by SPORAS [49]. As in
SPORAS, all agents are initiated with similar credibility (or “reputation value” [49])11 and

11 In contrast to SPORAS, the initial credibility is not zero since in MSTs we are not concerned with agents
using different pseudonyms.
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Fig. 11 Effect of varying mobility range on MGM MST with additive joint credibility function Fsum .

the effect of the events on the credibility of agents is with respect to their current level of
credibility. The experiments included three types of events:

1. An environmental event that increases a point in the area to a maximum ER value. This
event can represent an intelligence report that some enemy activity is about to happen at
a specific location.

2. The credibility of two neighboring agents decreases by 25% (to 75% of what they had
before the event). This event represents a conflict in the reports of the two neighboring
agents.

3. The credibility of a single agent decreases by 50%. This event represents an agent suf-
fering from some technical problem.

All results presented in this section are averaged over 50 runs of the algorithm solving
50 independently-generated random problems; most graphs include error bounds, except for
dense graphs where they were omitted for readability. The random elements in each problem
were the location of the targets and the initial location of the agents. Dynamic events were
also selected randomly.

5.1 Evaluation of the Surveillance Sub-team

In the experiments described in this section only the surveillance team was evaluated, i.e.,
the ER function that the agents used was accurate and was updated after each dynamic
event. Although agents used methods that find a locally optimal assignment in terms of the
maximum current coverage, we present two global metrics, the maximum remaining cover-
age requirement over all targets in the area and the sum of remaining coverage requirements
over all targets.

5.1.1 Effects of Technology on MGM MST

The first set of experiments examined the effect that technology (i.e., the sensing and mo-
bility ranges) had on the quality of the basic MGM MST algorithm. These experiments
used problems with 15 dynamic, random events. After each event, we allowed the agents
15 iterations to adjust their positions, then recorded the remaining coverage requirements.
The results when joint credibility is calculated using Fsum are shown in Figures 11 and 12.
Figure 11(a) shows the maximum remaining coverage requirement for teams of agents with
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Fig. 12 Effect of varying sensing range on MGM MST with additive joint credibility function Fsum .
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Fig. 13 Effect of varying mobility range on MGM MST with submodular joint credibility function Fcprob .
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Fig. 14 Effect of varying sensing range on MGM MST with submodular joint credibility function Fcprob .

different mobility ranges and a fixed sensing range, while Figure 11(b) presents the sum of
the remaining coverage requirements for the same teams. Similar results for teams with a
fixed mobility range and varying sensing ranges are shown in Figure 12. Figures 13 and 14
present similar results when the method used for calculating joint coverage is Fcprob .

It is clear from these figures that in order for the MGM MST algorithm to perform well,
at least one of the parameters MR or SR should be high. Otherwise, the algorithm cannot
handle events beyond the agents’ ranges and the difference between the coverage require-
ments and the actual coverage remains high. In other words, in order to benefit from the
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Fig. 15 Effect of mobility range on convergence of MGM MST for sum of remaining coverage requirements.
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Fig. 16 Effect of sensing range on convergence of MGM MST for sum of remaining coverage requirements.

quick convergence and monotonicity of the MGM algorithm, the agents must be equipped
with technology that enables either a large sensing range or a large mobility range. When
the technology is limited, exploration methods are required.

Figures 15 and 16 demonstrate the convergence of the sum of remaining coverage re-
quirements by presenting the result for 25 iterations with no dynamic events.12 In Figure 15
the sensing range is fixed and the mobility range varies; in Figure 16 the sensing range varies
while the mobility range is fixed. The results demonstrate a different pattern in convergence.
When the sensing range is static and the mobility range grows, the improvement is approxi-
mately steady throughout the run. This is because the fixed mobility range results in a fixed
domain size, i.e., a fixed number of alternative positions are considered. Thus, the effect of
a larger sensing range from each of them is immediate. On the other hand, when the sens-
ing range is static and mobility range changes, the number of alternative positions available
for agents is different; thus, multiple iterations may be required for an agent to detect high
quality locations.

Tables 2 and 3 demonstrate that these ranges also have an effect on the communication
load. When the ranges are larger, agents may have more neighbors and therefore the number
of messages per iteration grows. The results in both tables are similar because the neighbor-
ing agents are determined by the sum SR + MR. These results were not dependent on the
method used for calculating joint coverage.

12 We omit the maximum remaining coverage here because the effect is not notable until all targets are
located.
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SR/MR

10/3 10/6 10/9 10/12 10/15

Messages 932 1298 1673 2054 2432

Table 2 Number of messages per iteration of MGM MST for varying mobility ranges.

SR/MR

3/10 6/10 9/10 12/10 15/10

Messages 918 1273 1659 2057 2455

Table 3 Number of messages per iteration of MGM MST for varying sensor ranges.

5.1.2 Comparison of Algorithms and Exploration Methods

While monotonicity has its benefits, e.g., fast convergence and minor movement by the
agents, a monotonic algorithm like MGM MST is limited (and performs poorly) when tar-
gets are beyond the agents’ ranges. In order to overcome this limitation, we implemented
the three exploration methods — MGM PILR, MGM PDMR, and DSA PILR — described
in Section 3.2.5 and compared them to three alternative, explorative DCOP MST algo-
rithms and four baseline algorithms. In this set of experiments, the ranges for all agents
were SR = 5 and MR = 10. The parameter c in the PILR algorithms was set to 20. In all
the figures in this set we have the experiments in which Fsum was used depicted on the left
of the figures and the experiments in which Fcprob was used depicted on the right.

The first alternative DCOP MST algorithm was DSA MST, described in Section 3. In
our experiments the replacement decision was made with probability p = 0.6 when the
alternative position had positive reduction (i.e., DSA-A [50]). The second was DBA [50],
adapted to DCOP MST. In DBA MST, agents that detect that they are in a quasi-local min-
ima (i.e., their LR is non-positive and so is the LR of their neighbors) change the ER
function by reducing the value of all the points in their sensing range by one. The third
was DSAN MST, an adaptation DSAN [2], a distributed simulated annealing algorithm for
DCOPs. Under this algorithm, each agent chooses a random alternative position within their
mobility range in each iteration. If this improves local coverage, the agent moves to the
alternative position. If this does not improve local coverage, the agent moves there with a
probability that depends on the magnitude of worsened coverage and a temperature which
decreases over time. When new events are detected, the temperature is reset.

Speaking generally, DSA MST is the least explorative of these algorithms, always con-
sidering the most locally improving position and only decreasing coverage when neighbor-
ing agents both update their positions at the same time. DBA MST is more explorative, pos-
sibly decreasing coverage after becoming trapped in a quasi-local minimum. DSAN MST
is the most explorative, considering random locations and decreasing coverage when neigh-
boring agents simultaneously move or if an agent stochastically decides to take a locally
non-improving step.

The first baseline algorithm was a naive, random algorithm (“Random”) in which agents
move to a random alternative position within their mobility range in each iteration. The sec-
ond was a naive, greedy algorithm (“Greedy”) in which agents move to the position within
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Fig. 17 Comparison of DCOP MST algorithms for maximum remaining coverage requirement.
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Fig. 18 Comparison of DCOP MST algorithms for sum of remaining coverage requirements.

their mobility range that offers the local best coverage in each iteration, given their local
knowledge. The other two baselines were greedy algorithms very similar to the approach
taken by Krause, Singh, and Guestrin [20]. In the centralized baseline (“Centralized”),
agents were sequentially placed at the positions that minimize the remaining coverage re-
quirement given the collective knowledge of all agents in the team. These positions did not
have to be within the mobility range of the agent placed there, and agents were assumed to
be instantaneously positioned in the new locations, without needing to travel from their old
positions. Thus, the centralized solution is presented as a purely theoretical approximation
of the optimal solution at each point in time, without considering whether that configura-
tion of agents could have been achieved. The full knowledge baseline (“Full knowledge”)
is similar to Centralized but assumes complete, accurate information of the environmental
requirements, including any targets which have not been detected by any agent.

The results in Figure 17 present the maximum remaining coverage requirement for all
eleven algorithms. As in the previous set of experiments, after each of the 15 events, the
DCOP algorithms ran for 15 iterations and the results presented are the remaining cover-
age requirements at the end of these 15 iterations. Unsurprisingly, Random does the worst
with at least one target completely uncovered. DBA MST initially does well but finds pro-
gressively worse solutions as its objective function becomes distorted by trying to escape
quasi-local minima. DSA MST, Greedy, and MGM MST all perform comparably and are
generally outperformed by DSAN MST, although this gap becomes insignificant after 14
random events with the additive joint credibility function.
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Fig. 19 Comparison of local search algorithms and Max-sum for sum of remaining coverage requirements.

The three proposed exploration methods, MGM PILR, MGM PDMR, and DSA PILR,
perform similarly and outperform the other approaches by a large amount. Coverage qual-
ity also converges to that of Centralized, supporting the conclusion that the proposed ap-
proaches move sensors into effective placements. However, the substantial gap in perfor-
mance between the Centralized and Full knowledge algorithms indicates that in some prob-
lems at least one target that could theoretically be covered is still not covered, even with
increased exploration.

Figure 18 presents the sum of remaining coverage requirements for ten of the eleven
algorithms; Random performed very poorly and is omitted. These results verify that the
proposed exploration methods considerably outperform the classic DCOP algorithms. As
before, DBA MST and DSA MST did not outperform MGM MST, while DSAN MST
did. The proposed exploration methods all significantly outperformed DSAN MST, with
DSA PILR performing the best. The differences between the algorithms are less apparent in
the experiments using Fcprob , but the same order is maintained on the quality of the results
produced by the algorithms. Furthermore, the relative difference between the Full knowl-
edge performance and DSA PILR (which converges to the Centralized coverage quality) is
much smaller than in Figure 17, indicating that although DSA PILR occasionally does not
cover every target, it does not leave many targets uncovered.

Figure 19 compares the standard local search algorithms, local explorative algorithms,
baseline algorithms, and Max-sum. The setup in these experiments is the same as in the
experiments presented in Figure 18 except that the sensing and mobility ranges have been
reduced to SR = 3 and MR = 3. This was necessitated by the running time of Max-sum,
which is exponential in the number of agents that can sense a target after a single move. We
present only the sum of coverage requirements results because the use of small sensing and
mobility ranges resulted in targets being uncovered; thus, all algorithms had similarly large
maximum remaining coverage requirements.

The results13 indicate that Max-sum performs similarly to standard local search algo-
rithms while the explorative algorithms produce sensor deployments of much higher qual-
ity. The differences are substantial for both joint credibility functions. It is important to note
that while Max-sum produced similar results to standard local search algorithms in these
experiments the standard local search algorithms are able to benefit from larger sensing and
mobility ranges while Max-sum cannot due to its computational limitations. Surprisingly,
MGM PILR, MGM PDMR, and DSA PILR all outperform Centralized after several ran-

13 The results in Figure 19 for DBA MST, DSA MST, MGM MST, Greedy and Max-sum are similar and
therefore the lines representing their results in the graphs seem unified.
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Fig. 20 Maximum remaining coverage requirements of intensive exploration methods when domains and
neighbors sets are fixed.
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Fig. 21 Sum of remaining coverage requirements of intensive exploration methods when domains and neigh-
bor sets are fixed.

dom events. This is because the small values of SR and MR cause many targets to remain
undetected with the Centralized algorithm, which is purely exploitive. By performing ex-
plicit exploration, MGM PILR, MGM PDMR, and DSA PILR can detect these new targets
and thus adjust positions to cover them.

In the next set of experiments, the importance of the use of dynamic domains and dy-
namic sets of neighbors (constraint network) in the proposed model was evaluated. Fig-
ures 20 and 21 compare the MGM MST algorithm and the two exploration methods, MGM PILR
and DSA PILR, which were found to be successful in the experiments of the proposed
model (presented in Figures 17 and 18), only using a fixed constraint network and fixed
domains.14

The results indicate that when fixed domains and a fixed constraint network are used,
as in the standard model, the exploration methods are not effective. In fact, MGM and the
explorative algorithms produced similar results. It is clear that the dynamic elements in the
proposed model enable efficient exploration.

The success of the proposed exploration methods has a cost as well. Table 4 presents
the average distance an agent moves in 15 iterations for the different exploration methods,
which improve the performance of MGM MST and for MGM MST itself. This measure
is important since autonomous mobile sensors are expected to have limited battery power.
Unsurprisingly, we observe a large difference between the movement in the monotonic al-

14 Notice that the MGM PDMR method reduces to MGM MST when the domains are fixed and therefore
is not evaluated in this experiment.
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F MGM MST MGM PDMR MGM PILR DSA PILR

Fsum 0.3 5.5 53.9 52.4

Fcprob 0.36 5.5 41.8 42.6

Table 4 Average distance an agent moves in 15 iterations for different exploration methods.
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Fig. 22 Effect of varying period of DSA PILR.

gorithms and the PILR algorithms. It is interesting to notice that although MGM PDMR
allows larger mobility ranges in some iterations, the average motion is much smaller than
both PILR versions.

We further evaluate the success of the algorithm that offered the best results in terms of
coverage (DSA PILR) with respect to the frequency of dynamic events. Figure 2215 presents
the results of an experiment in which events were triggered with different but constant fre-
quency.16 When the number of iterations of the algorithm between events is small (5), the
algorithm produces a lower quality solution (larger remaining coverage requirements). It is
apparent that a larger number of iterations allows the agents to detect the targets and cover
them. On the other hand, as more targets are added, there are fewer “free” agents, and thus
the advantage of additional iterations becomes minor.

In order to investigate the success of our proposed algorithm with respect to the optimal
solution, we ran experiments on much smaller scenarios for which we were able to solve
the problem optimally using brute force search. We considered problems with 4 agents in a
12-by-12 grid world, with 2 initial targets and 5 other targets that were added as dynamic
events. The rest of the details of the experiments were similar to the previously-presented
experiments. Figure 23 presents the solution quality as a percentage from the optimal solu-
tion. For example, if the sum of the remaining coverage requirements of the optimal solution
was 10 and the sum for the MGM MST algorithm was 15, we report 150%. Obviously, when
we add enough targets, even the optimal algorithm cannot produce a high quality solution;
thus, the differences became smaller with additional targets.

15 Beginning with this experiment, we present only the results for the Fsum method. The results in the
experiments using Fcprob were consistently similar with less apparent differences between the algorithms.

16 We do not present error bars in this graph because they make the figure unreadable due to the similarity
of the results.
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Fig. 23 Performance of DCOP MST algorithms relative to the optimal deployment for additive joint credi-
bility function Fsum .
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Fig. 24 Number of targets found by search agents using different levels of exploration.

5.2 Evaluation of the Complete Team

In the following experiments, the performance of the complete team including the search-
and-detection sub-team was evaluated. The problem simulated is similar to the problems in
the experiments above, only in most of the experiments presented in this section, 10 of the
50 agents were search agents and 40 were surveillance agents. The ER function initially
had all points equal to 0 (no known targets). The credibility of search agents was set to
50 and the credibility of surveillance agents was set to 30. The sensing ranges of search
agents was set to 8, and for surveillance agents set to 5 as before. The mobility range of
search agents was set to 15 while the mobility range of surveillance agents was set to 10.
The surveillance agents executed DSA PILR, while the DSA SAT algorithm was executed
by the search agents. There were 20 targets with importance 100 which were only revealed
once a search agent was located within sensing range of them. Surveillance agents could
only cover targets that were previously detected by search agents. However, a target that
was not yet detected by a search agent raises the suspicion of a surveillance agent.

In order to present the convergence speed of the algorithms using different levels of
cooperation, the following graphs include results according to the agents’ locations after
each iteration of the algorithm.

In the next set of experiments we evaluated the success of the algorithm we proposed
for the search agent team, DSA SAT, with respect to the value of the prob parameter, which
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Fig. 25 Total remaining coverage requirements for different levels of cooperation (no search).

determines the level of concurrency and exploration. The LHS of Figure 24 presents the
number of targets detected by the search agents as a function of the number of iterations
performed since the search started. The different lines represent different prob values used
by the search agents in the DSA SAT algorithm. It is clear that the algorithm is most suc-
cessful for high values of prob. In contrast to standard DSA, high level of exploration does
not cause thrashing. This is because the search agents are not required to converge to a so-
lution, as in standard DCOP, but rather keep on searching for additional targets. In standard
DCOPs, a high probability to change an assignment causes neighboring agents to change
assignment concurrently. As a result, the algorithm fails to converge since a change in an
assignment does not result in the desired decrease in cost when neighboring agents change
assignments as well. Here, the task of all agents is to explore the area and the success of
agents decisions is less dependent on the decisions of others. However, for large prob values
(e.g., 0.7 and 0.9), there is no notable difference in performance. The RHS of Figure 24
presents the same phenomenon when Alert cooperation mode is used. This figure demon-
strates the benefit of using this mode of communication between the surveillance agents and
the search agents for faster detection of targets.

Figure 25 presents the sum of the coverage requirements over all targets in the area. 17

In this set of experiments, the initial ER function included all targets. Thus, there was no
need to perform search. The results in Figure 25 demonstrate the effect of the different levels
of communication on the performance of the surveillance team. It is clear from the result
that when the search agents participate in the surveillance procedure (SS mode) but are
not committed to it, the improvement in performance is minor. However, when the search
agents are aware of the level of coverage on targets found and leave targets only if they
are reasonably covered (AA mode), the performance in terms of surveillance substantially
improves.

Figure 26 presents results of a complete experiment, i.e., target locations are not known
in advance and the results are in terms of surveillance coverage (both sub-teams need to
perform their sub-task). The results presented demonstrate how each additional level of co-
operation between the two sub-teams improves the overall performance of the entire global
team of sensing agents (plain means no cooperation at all). It is notable that the SS mode
by itself results in a very small improvement. It turns out that the assistance of the search

17 In the rest of the figures the error bounds were omitted due to the density of the graphs.
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Fig. 26 Sum of remaining coverage requirements for different levels of cooperation.
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Fig. 27 Sum of remaining coverage requirements for different levels of cooperation (a closer look).

agents to the surveillance process is effective only if they are somewhat committed to this
task. The effect of the Alert mode is more apparent in the first iterations when surveillance
agents are waiting for targets to be discovered. The AA mode triggers the most substantial
improvement in coverage. To emphasize the difference in performance, we take a closer
look at the last iterations in Figure 27 and see that towards the end of the run, in the highest
level of cooperation, the coverage of the team is improved by a factor larger than two.

Figure 28 presents the results when there are different proportions between the sizes of
the search sub-team and the surveillance sub-team. The experiments presented on the LHS
included 45 surveillance agents and 5 search agents. The experiments presented on the right
included 35 surveillance agents and 15 search agents. It is clear that the number of search
agents affects the time until targets are detected and therefore a large search team allows
faster convergence.

Table 5 presents the average number of messages per iteration when using the different
levels of cooperation. As expected, the search support mode has a small impact on the
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(b) 35 surveillance agents, 15 search agents.

Fig. 28 Sum of remaining coverage requirements for different divisions of agents between the sub-teams.

Cooperation level

Plain SS SS + Alert SS + Alert + AA

Messages 1164 1171 1189 1191

Table 5 Number of messages per iteration for different levels of cooperation.
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Fig. 29 Total remaining coverage requirements for different levels of cooperation when the initial search map
(initial ER) is non-uniform.

total communication and the alert mode has some additional impact as well. The avoid
abandoning mode has minimal impact since it does not require additional messages.

Figure 29 presents results of the same experiment on a non-uniform search map. In this
experiment the search map contained three 10-by-10 areas with higher probability for the
existence of a target. The probability for a target to exist in one of the points in the first
special area was twice that of the points outside the high probability areas; the probability
for a target in the second special area was three times as great as outside the high probability
areas. In the third area, the probability of a target in one of the points was four times that
in standard points. The results indicate that the targets are found very quickly and there is a
smaller difference in coverage between the different modes in the later iterations. Indeed, ad-
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Fig. 30 Total remaining coverage requirements for different levels of cooperation on problems with dynamic
events.

ditional information helps the search agents detect targets faster. Interestingly, it is apparent
that the alert mode is more successful in the early iterations than the plain and SS mode.
One could have expected that the alert mode will be less effective here since the search map
includes more information for the search agents. This can be explained as follows. There is
still a chance that targets will appear outside the special areas. These targets can be missed
by the search agents (which are drawn to areas with higher probability) unless there is an
alert from surveillance agents.

In the last experiment we investigated the effect of dynamic events on the performance
of the full team. The scenario was similar to the previous experiments with dynamic events,
however here, the search agents had to find additional appearing targets and add them to the
ER function. The results indicate that the higher levels of cooperation were beneficial. The
largest difference found was between the search support mode and the avoid abandoning
mode. Thus, the awareness of the global team objective allowed search agents to balance
between their support of the surveillance agents and their own task of detecting new targets.

6 Related Work

DCOP is a general model for distributed problem solving that has generated significant in-
terest from researchers [24, 26, 31, 50, 7, 14]. A number of studies on DCOPs presented
complete algorithms [26, 31, 39, 13]. However, since DCOPs are NP-hard, there has been a
growing interest in the last few years in local (incomplete) DCOP algorithms [30, 50, 53, 43,
45]. Although local search algorithms do not guarantee that the obtained solution is optimal,
they are applicable for large problems and are compatible with real time applications. The
study of DCOP algorithms in dynamic environments is emerging recently [25, 32, 33, 21].
Mailler adapted two distributed constraint satisfaction (DisCSP) algorithms to solve dy-
namic problems [25]. This pioneering work was the first to evaluate algorithms according to
their performance through time and not just after convergence. On the other hand, the prob-
lems on which the algorithms were compared were three coloring problems that included
dynamic constraints but no other dynamic elements. In this paper we address distributed
optimization problems that include more realistic dynamic elements. A short paper by Lass,
Sultanik, and Regli [21] called to the DCR community to show interest and propose mod-
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els and algorithms for dynamic distributed constraint optimization problems. Our work is
clearly a reaction to their call. A different approach was taken by Petcu and Faltings [32, 33],
which adjust a complete inference algorithm (DPOP) to a dynamic environment by design-
ing it as a continuous self stabilizing algorithm. Furthermore, by adding costs to assignment
changes dynamically, the stability of the solutions obtained was increased [33]. Another
study that investigates the adaptation of complete algorithms to a dynamic DCOP is [47].
In this study the authors propose the use of bounds that were found when running a branch
and bound based asynchronous distributed algorithms (BnB-ADOPT) when using the al-
gorithm again after the problem changes, in case the dynamic events did not affect their
consistency. Obviously the approaches presented above of adjustments of complete search
algorithms cannot be applied to scenarios with large teams of mobile sensing agents where
agents have limited local environments as we address in this paper.

Previous attempts to cope with the dynamic properties of mobile sensors have focused
on a specific element of the problem. One example (mentioned above) is the detection of
failing agents, which can be solved by avoiding interaction with them [12]. Although in the
case of failure of agents, detection is a first and important step towards the generation of a
robust network, detection alone may not be enough. First, the indications for a failure might
not be conclusive. Second, a change in the environment can cause the position of the agent
to no longer be adequate. Thus, it would probably be more effective to relocate the agent
than to avoid interactions with it. Third, in the case of an agent’s failure in an area with high
importance, it is not enough to avoid interactions with it. The goal of the team is to maintain
high level coverage on such delicate areas; thus, other functioning sensing agents should be
moved in that direction.

Another example is the deployment of sensors in an area in order to achieve maximal
coverage [18, 34]. In these studies agents make use of virtual potential fields in order to
maintain an adequate distance from one another and, thus, maximize the area they cover.
In our work, a wider range of problems and tasks of mobile sensor teams is considered
that include areas of high importance that require overlapping coverage and sensors with
different level of credibility, etc. We note that the max-coverage problem (i.e., cover the
largest area) is a specific case of the problems to which our proposed model applies.

Placement of sensors in a static network was studied by Krause, Singh, and Guestrin [20].
Instead of covering discrete targets, the goal was to maximize the mutual information of
spatially distributed phenomena (such as temperature in a building) modeled as a Gaus-
sian process. While solving the problem is NP-hard, the authors presented a near-optimal
polynomial-time algorithm that exploited the submodularity of the objective function. This
is an example of greedy heuristics providing near-optimal solutions for maximizing sub-
modular functions [27]. While not directly applicable to the MST coverage problem, it may
explain why the local search algorithms we developed tend to find high quality solutions.

A number of papers considered DCOP for solving static sensor networks. Some exam-
ples are [4, 43]. In [19, 42], the performance of DCOP local search algorithms when the
reward function is uncertain is investigated. This property is related to mobile sensor nets
when agents do not know the reward of taking a position (value assignment) before they
actually take it. Jain et al. [19] reported experiments in which DCOP algorithms were used
to solve a realistic problem of robots seeking to maximize radio signals were presented. In
[42] the trade-off between the choice to explore new territories vs. the choice to exploit the
available information to maximize performance was investigated. These studies clearly put
the focus on different elements of mobile sensor applications than our study. The assump-
tion made in our study is that two different teams of agents exist, one whose task is detection
and the other whose task is coverage. The search-and-detection team faces uncertainty and
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provides accurate information for the surveillance team. We propose and evaluate means for
cooperation among the two teams.

Stranders et. al. investigate scenarios in which mobile sensing agents must follow a path
and gather information [41, 40]. Their approach is similar to ours in the use of the DCOP
model having sensors represented by agents and sensing tasks by constraints. The solution
method they proposed stemmed from the Max-sum algorithm. Max-sum, however, is not
compatible for problems in which constraints have high arity (many agents involved). Thus,
in [41] an iterative framework was proposed in which only a limited movement for each
agent is considered in each iteration, hence the local environment of agents was limited and
the complexity bottleneck of constraint arity reduced. We demonstrate in our empirical study
that when applying Max-sum to DCOP MST using this framework the resulting algorithm
outperforms other standard incomplete algorithms that are adjusted to DCOP MST, but is
inferior to specially designed explorative local search algorithms. Moreover, in contrast to
local search algorithms, which benefit from a large local environment, Max-sum becomes
infeasible when the agent’s local environment grows and the constraint arity with it.

The model presented in this paper is constructed on the ability of a reputation model to
detect the quality of agents’ reports (i.e., their credibility). Here we follow common practice
in multiagent systems in general and in sensor networks specifically [49, 35, 6, 10]. The
following description of the role of a reputation model explains our choice: “Reputation
models enable agents to gather information in richer forms from their environment and
make rational inferences from the information obtained about their counterparts” [35]. The
information in a reputation model is shared via interactions of agents. This information
takes the form of a performance rating that is shared by the nodes in the network [35]. In
this paper the rating is used to determine the credibility of agents. Although we present in
our experiments a simple model based on SPORAS [49], any model that assigns a numeric
scalar value to agents can be used.

The problems we address in this paper and the model presented have some similar el-
ements to the Predator/Prey problem that is studied and draws interest in the multiagent
systems community [1]. The similarity comes from the need of multiple predator agents to
be within range of a prey in order to accomplish their tasks. In addition, a prey agent is dy-
namic, as targets can be in our model. The difference is in the requirements of a solution that
are much more constrained in the Predator/Prey problem. In the model of Abramson, Chao,
and Mittu [1], the predator agents are required to surround a prey from four different sides.
Therefore, the solutions proposed consider role allocation that defines which predator will
be placed on which side of the prey. For a single prey, the problem can be solved efficiently
(by a tractable algorithm) and therefore the most successful algorithm proposed involved
predator agents sharing their information and all agents computing the final allocation. The
problem with multiple prey agents is NP-hard.

Cooperation among heterogeneous sensors was found to be effective for static sen-
sor/camera networks [44]. Our investigation of cooperation between teams with different
types of mobile sensing agents with different tasks, while applying to a different scenario is
another indication that efficiency can be achieved via cooperation.

7 Summary and Conclusions

In this paper we proposed a new model for representing dynamic coordination problems
confronting teams of mobile sensing agents. Our model, DCOP MST, extends the well-
known distributed constraint optimization problem framework to dynamic settings, and al-
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lows the agents to efficiently coordinate their actions while remaining robust to environmen-
tal changes, modifications of the team’s sensing goals, and dynamic variability in the quality
of agents’ reports as can be caused by technology limitations or hardware failures.

We demonstrated how the flexibility of DCOP MST in representing and coping with
dynamic elements easily facilitates the organization of the agents into a surveillance sub-
team and a search-and-detection sub-team. This enables more efficient use of heterogeneous
agents (e.g., dedicating agents equipped with advanced mobility technology to finding new
targets) and allows the system designer to deploy algorithms that are suited to each sub-
team’s goal. We also develop several methods of increasing cooperation between sub-teams,
and empirically show how increasing levels of cooperation improves the performance of
both sub-teams individually as well as the team as a whole.

For the search-and-detection agents we proposed an algorithm based on DSA that our re-
sults demonstrated was most successful with a high level of exploration. For the surveillance
team, we developed an efficient method that allows agents to find the (locally) optimal al-
ternative assignment/position. We showed how this method can be used to adapt incomplete
DCOP algorithms such as MGM, DSA, DBA, and Max-sum to the DCOP MST model. Our
experimental study found that the local search algorithms (MGM, DSA, and DBA) became
trapped in local optima due to insufficient exploration. We thus developed three new explo-
ration methods that enable agents to search for targets that are currently beyond their sensing
range while maintaining acceptable coverage on previously detected targets. Our experimen-
tal results demonstrated the superiority of using these exploration methods compared to the
naive local search algorithms or Max-sum.

While our paper focused on applications that include teams of mobile sensing agents
we note that the special type of dynamism inherent in DCOP MST, i.e., the assignment-
dependent local environment, is also relevant in many other applications. Thus, we presented
the more abstract ADeLE DCOP model for representing such problems, which DCOP MST
is a specific instance of. Our results encourage further investigation of distributed AI appli-
cations that fall under this category and can be represented as ADeLE DCOPs, e.g., robot
movement and distributed planning, in which the set of alternative assignments and relevant
constraints depend on the current assignment of agents. Prior to our study, DCOP was not
considered as an appropriate choice for representing such applications because of its static
model. We are convinced that our main contribution is the broader set of applications for
which DCOP will be used to represent and solve in the future.

In future work we intend to relax some of the assumptions used in the model, e.g., the
accuracy of the reputation model and the ability of search agents to precisely evaluate the
importance of targets. Such inaccuracy is expected to require solutions that are more robust.
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