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Abstract

This work models human behavior and interactions, particularly in domains

where there are results indicating that game theoretic solutions diverge from

real world dynamics. We do so by extending existing models to incorporate

better heuristics and approximations of how people behave and interact.

We begin with voting and social-choice where, as the Gibbard-Satterthwaite

theorem states, no reasonable voting rule is strategyproof; i.e., there will

always be scenarios in which voters are better off mis-reporting their pref-

erences and voting strategically. This suggests that in order to understand

election results, we should look at Nash equilibria – states where no voter

wishes to change their vote. However, not only are there many equilibria,

but a significant number of them would never be the outcome of real world

votes. We propose several enhancements to the standard voting model to

handle these problems: assumptions on voters’ nature (a slight preference of

voters to vote for what they truly believe); assumptions on voters’ dynamics

(they participate in an iterative process, in which each voter changes their

preference if they believe it will change the outcome); and a more complex

model where voters have a view of “plausible” election outcomes based on

some notion they have of how others will vote (e.g., a poll). In addition to

theoretical proofs and characterizations, we also provide simulation results

indicating that these models give us more realistic outcomes.

We continue with a similar problem in which Nash Equilibrium, as a so-

lution concept, does not correspond to real world outcomes. All-pay auctions

model various human endeavors such as the development of medical drugs
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or crowdsourcing, in which many participants exert effort, but only one wins

(e.g., a drug patent) while the rest lose their investment. A naive analysis

indicates that no one should participate in such auctions, as the expected

profit is zero. We show that assuming players collude (i.e., cooperate with-

out other players’ knowledge) increases the colluders’ expected profit, and in

some cases increases the expected profit of the non-colluders as well, due to

their ignorance of the collusion. We further address the same problem via

a different path, and show that assuming auction participants are not fixed,

but rather have a certain probability of participating (as in, for example,

crowdsourcing), the expected profit is positive as well.

We conclude with two different approaches to using graphs and networks

for modeling interactions. Using cooperative game theory we analyze weakest

link games, in which a path between a source and a target is valued as the

weight of the lightest edge in the path. We show algorithms for finding stable

solutions, and the NP-completeness of finding optimal coalition structure (as

well as an appropriate approximation algorithm). In particular, we focus on

cost of stability calculations, which determine how much more needs to be

given to the game scenario to ensure its stability. We then turn to utilizing

the graph in a different manner, as representing a social graph, to parts of

which we wish to give group recommendations (e.g., what restaurant shall

a group of friends go to, or what game should they play together). We

pursue an axiomatic approach, in which we specify desirable features, showing

that some are incompatible, while some result in a unique recommendation

algorithm.

Improved models enable a better understanding of humans, capturing

in each setting the most salient features that allow us to better represent

interactions. Second, they enable us to design agents that react and interact

with people, understanding, albeit to a limited degree, how people behave in

certain settings. Finally, this enables better mechanism design, giving system

designers better models and tools to construct their solutions.
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Lord, what fools these mortals be!

William Shakespeare, A Midsummer

Night’s Dream

Chapter 1

Introduction

1.1 The Context of Modeling Human

Behavior

Understanding and analyzing human behavior has been attempted since the

dawn of human societies, as rulers (and their nascent bureaucracies) have

struggled to understand how they can implement their policies with little

resistance, and how they can motivate people towards their desired goals.

Naturally, philosophers have ventured to answer this, and diverse schools of

thought – from Plato and his Greek contemporaries to Confucius in China

– have tried to understand human behavior and develop “mechanisms” that

would change this behavior more to their liking.

These attempts – and the attempts in the millennia that followed – were

mostly based on an effort to generalize human behavior from people’s ob-

served actions in particular times and places. This was usually done through

a moral prism, often influenced by the theological views of the time.

While the philosophical efforts and debates continued unabated, the ad-

vent of the modern age during the late 18th century and early 19th century,

made the need for a generalized analysis of human behavior even more acute

and necessary [103, 234, 221]:

1



2 CHAPTER 1. INTRODUCTION

• The large state: Countries began increasing in size, and along with

the speeding of communication, this meant many decision were taken

in central bureaucracies, where detailed knowledge of local conditions

was limited, to a large extent.

• Democracy: Slowly, mass participation democracy was beginning to

spread. This, combined with the previous point, meant there were ded-

icated parties whose purpose was to understand people’s opinions and

influence them (in contrast to appeals to particular influential individ-

uals in the past).

• Capitalism: The growth of large companies, selling a wide range of

products and serving customers in diverse locations and situations,

meant that there was a “private interest” in understanding people’s

behaviors and conduct in a general way, and not just understanding

their practices in particular settings (as a small shopkeeper may be

concerned with).

The 19th century saw a huge growth in disciplines trying to explain var-

ious aspects of human behavior – economics, sociology, anthropology, etc.

Each tried to explain humanity using a certain view of what people are and

what society is. In this climate game theory began developing in the 20th

century, gathering pace mid-century, as the cold-war and the nuclear age in-

creased the need to analyze long-term, large scale military conflicts. Game

theory tries to explain people’s behavior as stemming from the interaction of

rational individuals. The reasoning of individuals is not part of the model,

allowing a great flexibility in modeling people, and the use of mathematical

tools allows a more rigorous consideration of the effects of various policies

and programs, while also forcing the formalization of various assumptions on

the nature of people and their interactions.1

1While it is outside of the scope of this work, the main criticism against game theory,

challenging the assumption of rational agents [226, 123, 227], has been attempted to be

formalized within various game theoretical models as well, as various human non-rational
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Game theory accords a special place to the concept of stability or equilib-

rium – a situation or state all parties to a certain scenario are content with,

and in which they do not seek to modify their behavior. Among the various

stability notions suggested, one of the most widely used is the Nash Equilib-

rium [171]. Nash’s model assumes participants in some situations will modify

their actions according to the scenario they are in and to other participants’

actions, in order to improve the outcome for them, until some stable situation

is reached (if it exists). The situation in which no participant can improve

their outcome by modifying their behavior is the Nash equilibrium. Side by

side, the theory of cooperative game theory developed to handle cases where

we allow participants to cooperate, and assume they can find a way to divide

their proceeds among themselves (hence these are also called “transferable

utility games”) .

The flip side of being able to better analyze various scenarios is that it

enables better planning – by understanding what is a more desirable outcome

for a system planner and by understanding the effects of various attempts to

bring it about. Indeed, this embodies the concepts of mechanism design, in

which we attempt to design a system that fulfills a set of desirable proper-

ties. Mechanism design goes hand-in-hand with work intending to flesh out

what are the precise desirable properties of various complex tasks using the

axiomatic approach, in which we try to enumerate properties which system

planners might find attractive, and attempt to understand which mechanisms

fit each set of properties.

Naturally, the complexity of the human condition does not allow us a

grand, overarching, model of human behavior in the foreseeable future. How-

ever, in an ever expanding number of cases and situations, our models are

better and better, and can ably analyze human behavior. As can be ex-

pected, one of the earlier cases where game theory showed its contributions

was in scenarios which contained strict monetary compensation, simplifying

greatly the issue of determining the desires of the players and their possible

actions are better understood and classified.
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actions.

Other human endeavors, which could be modeled less easily, require us to

attempt to delve deeper into the scenarios and more thoroughly understand

peoples’ reasoning and motives. This attempt is at the core of this work, as we

strive to better understand several facets of human behavior. When setting

up the models, we wish to provide a framework with a greater descriptive

power of people’s conduct while utilizing the great power given to us by the

fundamental game theoretic field. When pursuing mechanism design and

axiomatic approaches we relied on the cooperative aspects of the theory,

while bringing to the fore the network structure of people and societies to

aid in understanding human actions.

1.2 Decision Making and Elections

The fundamental problem of soliciting people’s opinions on an issue, and

reaching a decision based on these opinions has accompanied humans for

millennia. However, as large democratic countries began appearing, in the

latter half of the 18th century, a far greater interest in these decision making

processes took place, symbolized by such researchers as the French Jean-

Charles de Borda and Nicolas de Condorcet.

The first major issue that needed to be handled was determining what is a

preferable outcome. Different approaches to this question result in different

voting rules used to determine the winner in the elections. However, one

can broadly portray some rules as striving towards a consensus, such as the

Condorcet winner, which is one for which no other candidate can gather

enough support to win against. However, as Condorcet himself noticed, this

type of winner does not always exist (the so-called “Condorcet paradox”),

requiring some decision mechanism to determine what is preferable when

there is no Condorcet winner. Other voting techniques, such as plurality,

wish to rely, on the other hand, on a strong core of supporters. This division

touches on the difference of the voting problem from “regular” game theoretic
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problems – we do not know voters’ strength of beliefs (or “utility functions”),

only their ranking of options.

The second major issue was that people try to “game” the voting mech-

anism: they understand that in many cases they can guarantee an outcome

more to their liking if they vote for an option that is not their true belief. In

other words, we might design a perfect voting technique, taking into consid-

erations all opinions, and delivering its perfect outcome, but as long as voters

are incentivized to misreport their beliefs, it cannot be implemented. While

Borda is said to have remarked “my election method is only for honest men”,2

in real life scenarios this is a significant issue, and various thinkers tried to

find a voting method that would be strategyproof – in which participants

cannot improve their situation by being non-truthful.

However, in the 1970s, mathematicians Gibbard and Satterthwaite (build-

ing on Arrow’s impossibility theorem [14]) proved [109, 206] that there can

never be a reasonable voting system that guarantees that truthfulness is the

best strategy for voters. Fifteen years after this result, Bartholdi, Tovey and

Trick [54] began a line of research that discusses the complexity facing voters

when they try to find a good non-truthful vote that will change the outcome

more to their liking. While this line of work continued [53, 73, 188, 161, 236],

its focus on finding beneficial voter manipulations, raised a more fundamental

issue – even disregarding complexity issues, can we say something on what

results of an election will look like under some voting rule?

The answer to this question can return us also back to the issue of com-

paring the outcomes of voting methods. Manipulations have, in a sense,

made the issue of selecting a good voting technique moot – the properties of

the technique have limited application when voters are not truthful. Using

the models by which we try to find election outcomes, along with the simula-

tion framework we built, election methods can be compared, using whatever

criterion of “good outcome” desired.

2There are several English translations of Borda’s remark, but the French original

appeared in Sylvestre François Lacroix’s Eloge Historique de Borda in 1800.
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1.3 All-Pay Auctions

Auctions, in general, are a way to allocate indivisible goods to those which

desire these goods. There are many, many types of auctions, but among

them, the all-pay auction seems a bit odd. All-pay auctions are mechanisms

in which participants are vying for some object. Each of them gives a bid,

and the participant with the highest bid receives the item. However, unlike

most auctions, all players must pay their bids, whether they obtained the

object or not. Despite this mechanism’s oddity, all-pay auctions model very

common human contests: when medical companies are racing to develop and

patent a drug, they are all putting in a large amount of effort, which they

will not get back, but only one company – the one that will patent the drug

– will actually reap the benefit of the effort. In the past decade, all-pay

auction mechanism have proliferated as crowdsourcing in various sites (e.g.,

Topcoder.com [138]), in which multiple participants are trying to solve a

problem, but only one will manage to do so and get the benefits of their

success.

Prima facie, this mechanism seems to lie in the realm of easy to analyze

game theoretic problems, as it involves pure monetary rewards. However,

simple analysis [55, 56] shows that participants’ expected profit to be zero,

i.e., there is little reason for them to actually participate. As these mech-

anisms actually exist in the real world, this seems to indicate a flaw in the

model. The attempt to bring more real-life conditions to this model is what

animates the second part of this work, as we make our participants more

realistic in their strategies – they may cooperate, collude, or choose to avoid

participation in an auction.

1.4 Networks – Human and Otherwise

While game theory – cooperative and non-cooperative alike – is based on the

interaction between participants, hence on the existence of society, dealing

with the general case of all possible interactions is often intractable. Hence,
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using networks to model human relations and interactions is a common tool

when trying to bring some order to the various variations of human connec-

tions. Furthermore, networks do not model only human interactions, but

represent other interconnected systems: from organizational structure, de-

scribing the hierarchy and working of an organization, to communication and

computer network, including the whole spectrum from global sized networks

(such as the internet) to small, local networks.

Dealing with network structures allows us to survey several different areas

which can be expressed in this manner. While they are different from each

another, they are both joined by the centrality of the network structure to

the fundamental problem, as well as in their practical appliance, which we

try to address, by giving results to aid a system designer encountering such

settings.

Weakest Link Coalitions

In some scenarios, a group’s value is the strength of its most extreme member.

Whether it is a minimal quality of various parts forming a product, the

maximal allowed weight when traveling along different types of road, or the

safety distance from a factory, all these problems rely on examining the

various components of a process, and finding the most stringent constraint.

In many cases, such as a manufacturing process or travel destinations, these

components can be represented by a graph.

As we seek to choose which components to make up our output to have

the best “weak” part, we are less concerned with the particular division

of profit between the components, but more in creating a stable situation

where all parts manage to choose the best path. Hence, using cooperative

game theory, in which we look for a group that performs a task without

deep consideration for the particular “profit” or utility made by each agent,

but rather – looking at the “big picture”: whether or not a good yet stable

situation may be reached, and it it cannot, how can we induce it externally.
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Recommendation Systems

The ability to recommend items to people based on their preference of other

items has been a subject of research in the past few centuries, as large

scale markets presented people with a much greater variance within the var-

ious items they could purchase (e.g., books), along with the spread of mass

communication methods, which allowed people to receive recommendations

from people they have never met. Moreover, online markets in the past two

decades have brought this problem to the fore, as companies strive to main-

tain buyers’ interest by pushing them to purchase more. Emblematic of this

attempt has been Netflix’s wish to present movie recommendations to their

viewers based on the movies they have indicated they enjoyed, leading to the

“Netflix challenge” [57, 114], in which Netflix offered a million dollars to the

best performing algorithm.

However, the “holy grail” of recommendations remains that of the family

and friends in the social circle of the person being recommended to [216].

This brought about in the last decade an attempt to model a person’s social

sphere using a graph structure and, utilizing knowledge of friends and family

preferences, attempt a recommendation. In some sense, this is similar to

elections using a social component. Furthermore, in the last few years, with

the growth of social networks and the general trend of online social activity

(e.g., networked game play), a more complex recommendation problem arose

– that of group recommendations. In group recommendations we seek to

give a joint recommendation to a group of people, e.g., a group of friends

searching for a restaurant to go to for a dinner together.

Group recommendations make the usage of the social structure of the

recommended group almost imperative: how can a group of independently

minded individuals be recommended the same as a group consisting of an

influential individual to which all other group members accede? However, this

field of research is so young, that it is not entirely clear what are desirable

properties for such systems, a lacuna we try to correct, along with suggesting

an algorithm to fulfill some of these properties.
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1.5 A Note on Papers

I was not able to put all my relevant papers in this work, as in the interest

of creating a more flowing, coherent structure, various different approaches

would have taken too much space and would have reduced the readability

of this work (for example, [4, 136, 145] and several papers in submission).

Even included papers had some material excluded from them in the interest

of coherence and (relative) brevity (this also necessitated moving all proofs

to appendices). I wish to note the papers upon which this work was based,

and deeply thank my co-authors:

Chapter 3 “Empirical Aspects of Plurality Election Equilibria” [224] (AA-

MAS 2013) with David R.M. Thompson, Kevin Leyton-Brown and

Jeffrey S. Rosenschein; and “Beyond Plurality: Truth-Bias in Binary

Scoring Rules” [175] (ADT 2015) with Svetlana Obraztsova, Evangelos

Markakis, Zinovi Rabinovich and Jeffrey S. Rosenschein.

Chapter 4 “Convergence of Iterative Voting” [144] (AAMAS 2012) with

Jeffrey S. Rosenschein; and “Analysis of Equilibria in Iterative Vot-

ing Schemes” [189] (AAAI 2015) with Zinovi Rabinovich, Svetlana

Obraztsova, Evangelos Markakis, and Jeffrey S. Rosenschein.

Chapter 5 “A Local-Dominance Theory of Voting Equilibria” [159] (EC

2014) with Reshef Meir and Jeffrey S. Rosenschein.

Chapter 7 “Mergers and Collusion in All-Pay Auctions and Crowdsourcing

Contests” [143] (AAMAS 2013) with Maria Polukarov, Yoram Bachrach

and Jeffrey S. Rosenschein.

Chapter 8 “Agent Failures in All-Pay Auctions” [147] (IJCAI 2013) with

Yoad Lewenberg, Yoram Bachrach, and Jeffrey S. Rosenschein.

Chapter 10 “Cooperative Weakest Link Games” [36] (AAMAS 2014) with

Yoram Bachrach, Shachar Lovett, Jeffrey S. Rosenschein, and Morteza

Zadimoghaddam.
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Chapter 11 “An Axiomatic Approach to Group Recommendations” (in

submission) with Moshe Tennenholtz.
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Decision-Making and Elections
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It might not have been a question of right

and wrong. Which is to say that wrong

choices can produce right results, and vice

versa. I myself have adopted the position

that, in fact, we never choose anything at

all. Things happen. Or not.

Haruki Murakami, The Second Bakery

Attack

Chapter 2

Decision-Making Overview &

Preliminaries

People have been reaching decisions using voting for millennia, and people

have been trying to understand and predict election results for nearly that

long. However, trying to analyze elections has been hampered by the inability

to trust voters are truthful in their voting. Indeed, throughout history, many

commentators have noticed voters are able to improve the chance of selecting

a candidate they find more favorable by misreporting their true beliefs.

However, the quest to find a voting system that is impregnable to such ma-

nipulations turned out to be futile: according to the Gibbard-Satterthwaite

theorem [109, 206], every “reasonable” election system that is not a dicta-

torship has scenarios where voters are better off voting differently than their

true beliefs. This result led to the line of research commenced by Bartholdi,

Tovey, Trick and Orlin [54, 53], and expanded further by many researchers

[73, 188, 187, 236, 247, 246] (see overviews in [200, 65]), which tries to as-

sess the complexity of finding a beneficial manipulation for voters in various

settings.

Despite the significant strides in this line of research, it has not helped

us in analyzing election results: when many voters are strategic and manip-

ulating, we are still at loss to understand which election results are possible

13
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and which are not, not to mention trying to understand possible truthful

preferences when presented with election results.1 Furthermore, while game

theory is often a powerful tool when analyzing situations where participants

manipulate, voting scenarios have some properties that make them harder to

analyze: participants only supply a ranking of their preferences, rather than

the utility value of each option (as is typical in monetary settings), and there

is a common assumption that participants have a good perception of others’

utilities. In any case, looking at equilibria in voting settings results not only

in an enormous amount of equilibria (hundreds of thousands even in small

games – 10 voters, 5 candidates), but much worse from an analysis viewpoint:

many Nash equilibria are practically useless for any analytic purpose, and do

not represent a realistic possible end-state of an election. For example, even

if all voters rank the same candidate in last place, there are Nash equilibria

where it wins (e.g., in plurality, all voters voting for this candidate is a Nash

equilibrium). This renders Nash equilibria useless as an analytical tool, de-

spite their fundamental relevance as showing stable states which incorporate

voters’ manipulations, and makes analysis of actual election outcomes very

limited.

This part will introduce several paths in the effort to make election analy-

sis more realistic by combining theoretical analysis with simulations that help

examine whether the models are producing results that resemble real-world

cases. In the course of this work we have released an open-source framework

for election simulations which is extensible and modular to enable various

research both extending our own, or radically different from it.2

Assumption on nature of voters: This includes truth-bias, the idea

that all things being equal, voters prefer to vote truthfully. While voters are

1This problem is exacerbated when considering independent computerized agents. They

are motivated to manipulate, and may have the computation resources to calculate the

particular strategy to do so optimally.
2Code is at https://github.com/omerl/IterativeVotingSimulator and instruc-

tions are at http://www.preflib.org/tools/ivs.php.

https://github.com/omerl/IterativeVotingSimulator
http://www.preflib.org/tools/ivs.php
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still strategic, they have an innate preference to voting as they truly believe,

and they will do so, if they are not adversely effecting the election result.

The model introduced by Desmedt and Elkind [80] can be similarly framed

as lazy-bias, in which voters choose to abstain and not vote if they believe

they have no influence over the outcome. We examine if the Nash equilibria

produced more meaningful results than those encountered with non-biased

voters.

Assumption on voting mechanism: Using the iterative voting model

introduced by Meir et al. [160], in which voters may amend their vote, we

examine the bounds of the model by expanding it to more voting rules,

different tie-breaking rules, etc. This dynamic means we can discuss “reach-

able” states, i.e., outcomes which can be reachable using this dynamic from

a truthful starting-point.

Assumption on both voters and voting mechanism: We try to unite

both approaches by examining type of voters within the iterative voting

model. However, our work culminates in a more robust and general model,

local dominance, in which the previous models are just a particular instan-

tiation.

2.1 Preliminaries and Definitions

We shall first set out to define elections: an election E is composed of several

elements:

• Candidates : A group C of m elements.

• Voters : A group V of size n. Each voter i ∈ V is associated with

an element ai ∈ π(C), where π(C) is the set of linear orders of the

elements of C. This represents the truthful preferences of a particular

voter. To make this similar to common game-theoretic settings, we can

associate this preference order with some utility function ui : C → R,
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in which there is a higher utility from higher ranked candidates, but

this utility function is hidden from anyone but the voter itself. We

mark this preference order by �i.

• Voting function: A function f : (π(C))n → C which takes in a set of

preferences from each voter and outputs a winner. See further details

below.

As a voter can be strategic, it may report to the voting rule a different

preference than its truthful �i preference order. That is, each voter i is

reporting to the voting rule bi ∈ π(C) and bi might not equal ai. A set of all

n reported votes is a voting profile, which we shall generally mark with b.

Definition 2.1. A strategic deviation by voter i in a profile b in which each

voter j 6= i is reporting a vote bj ∈ π(C), is when there is a preference order

b̂i ∈ π(C), b̂i 6= bi such that

f(b1, . . . , b̂i, . . . , bn) �i f(b1, . . . , bi, . . . , bn)

We denote the profile b without the voter of voter i ∈ V , as b−i.

The Gibbard-Satterthwaite theorem tells us that all reasonable voting

rules have a profile for which there are voters which have a strategic deviation

from the truthful profile.

Definition 2.2. A profile b is a Nash equilibrium when no voter has a

strategic deviation from the profile. So for any voter i,

f(b1, . . . , bi, . . . , bn) �i f(b1, . . . , b̂i, . . . , bn)

for any b̂i ∈ π(C).

We use the terminology of Nash equilibria in voting scenarios to refer only

to pure Nash equilibria, as real-world voters seem averse to the randomiza-

tions involved in a mixed Nash equilibrium (and they are not .
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A voting function f : (π(C))n → C is actually compromised of two parts

– the voting rule f̂ : (π(C))n → 2C itself, and a tie-breaking rule t : 2C → C.

Thus, f = t(f̂).

Definition 2.3. A tie-breaking rule is a function t : 2C → C, which takes a

subset of C and returns a single candidate. A particular type of tie-breaking

rules is linear tie-breaking rules which are defined by an order a ∈ π(C), and

for Ĉ ⊆ C, t(Ĉ) is c ∈ Ĉ which is the highest ranked member in Ĉ according

to the order a (i.e., for all c′ ∈ Ĉ, c′ 6= c, c �a c′).

2.1.1 Voting Rules

Many voting rules have been suggested throughout history, though we shall

focus only on a few of them. In particular, we will pay much attention to a

particular family of voting rules:

Definition 2.4. A scoring rule is a voting rule defined by a vector

(α1, α2, . . . , αm−1, 0)

in which α1 ≥ α2 ≥ αm−1 ≥ 0. Each voter’s vote contributes α1 points

to the highest ranked candidate in its reported preference, α2 points to the

second ranked candidate and so on. Finally, the candidates which scored the

maximal number of points are the winners.

Many commonly used voting rules are scoring rules. In particular, we

shall focus on:

Plurality The most widely-used voting rule. Equivalent to the scoring rule

(1, 0, . . . , 0).

Veto A voting rule diametrically opposed to plurality. Equivalent to the

scoring rule (1, 1, . . . , 1, 0).

k-approval/k-veto Lying between plurality and veto, in which we fix the

number of candidate getting a score of 1, or the number of those getting

a score of 0. Equivalent to the scoring rule (1, . . . , 1, 0, . . . , 0).
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Borda The scoring rule defined by (m− 1,m− 2, . . . , 1, 0).

A different concept of winner has been developed in the late 18th century,

by the Marquis de Condorcet:3

Definition 2.5. A Condorcet winner is a candidate c such that for all other

candidates ĉ ∈ C

|{v ∈ V | c �v ĉ}| > |{v ∈ V | ĉ �v c}|

In other words, there is a majority of voters which prefer c over any other

specific candidate.

As Condorcet himself realized, the existence of a Condorcet winner is not

assured. Furthermore, Fishburn [100] showed no scoring rule is Condorcet

consistent, ensuring that if there is a Condorcet winner it will be selected.

However, there are several Condorcet consistent voting rules, of which we

shall only mention Maximin

Definition 2.6. The Maximin voting rule assigns each candidate a score,

which is the number of voters it is guaranteed to support it against any other

candidate:

sc(c) = min
ĉ∈C,c6=ĉ

|{v ∈ V | c �v ĉ}|

The maximin winner is the candidate with the maximal score – maxc∈C sc(c).

From here on, when discussing voting rules, we assume they are part of

voting rule families, such that they are defined for any n voters.

3Though this is, apparently, a re-development of the idea. The concept of a Condorcet

winner was developed by the 13th century Majorcan writer Ramon Llull, whose writings

on elections were rediscovered in 2001.
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2.1.2 Voters: Truth-Bias and Lazy-Bias

Beyond purely truthful voters (who do not strategize, but always vote their

truthful preference), and strategic voters, introduced above, we deal with

voters with a slightly biased nature. Unlike voters so far, their utility does

not just stem from the outcome of the election, but also from what they

themselves vote. We wish them to be strategic, but have some tendency

when they do not have any strategic move.

Definition 2.7. A truth-biased voter is a voter i with a truthful vote ai,

such that in a profile b where it has no strategic deviation, and if

f(b1, . . . , bi, . . . , bn) = f(b1, . . . , ai, . . . , bn)

reverts to its truthful vote.

More formally, using the voter’s hidden, underlying, utility function, we

define εi = 1
2

minc,c′∈C |ui(c) − ui(c′)|. We now define a new utility function

for the voter, in which it gains εi utility if it is truthful (no other change from

the utility function based on the election outcome).

A further explanation of truth-bias and its uses will be given in Chapter 3.

Similarly, we can define lazy-biased voters (introduced, in a different name

and notation, in Desmedt and Elkind [80]), which are similar to truth-biased

voters, except that they abstain from voting, rather than reverting to their

truthful preferences.

Definition 2.8. A lazy-biased voter is a voter such that in a profile b where

it has no strategic deviation, and if

f(b1, . . . , bi, . . . , bn) = f(b1, . . . , bi−1, bi+1, . . . , bn)

(i.e, without its participation), does not participate.

More formally, using the voter’s hidden, underlying, utility function, we

define εi = 1
2

minc,c′∈C |ui(c) − ui(c′)|. We now define a new utility function

for the voter, in which it gains εi utility if it is does not participate (no other

change from the utility function based on the election outcome).
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In our work it will be useful to define a subset of candidates which are

viable options to become a winner:

Definition 2.9. A runner-up in a voting profile b when using a scoring rule

as a voting rule, is a candidate that is not the winner, but if it would gain

an extra point would become the winner. This means it either has the same

score as the winner, but is ranked lower in the tie-breaking rule, or its score

is 1 below the winner’s, but it is ranked above the winner in the tie-breaking

rule.

Other form of biases by voters are, of course, possible, but we focus on

these two biases, which have been, to a certain extent, explored in some

previous literature.

2.1.3 Iterative Voting

This is a description of the dynamic introduced in Meir et al. [160]. In that

model, voter are assumed to be myopic, so they only look at the current situa-

tion and are not planning ahead. Without any fixed order (but one-by-one4),

voters may choose to change their vote if they have a strategic deviation from

the current profile. This fundamental question for this dynamic is whether

it converges to a stable state (actually, a Nash equilibrium) or not. While

it is straightforward to see that allowing voters any strategic deviation may

lead to cycles under iterative plurality, the original paper was able to show

the following theorem:

Theorem 2.1 (Meir et al. [160], Theorem 3). An iterative setting with the

following conditions:

• An iterative plurality game.

• A linear tie-breaking rule.

• Voters are myopic.

4Parallel updates can be easily shown to not converge, as shown in [160].
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• Voters pursue a best-response strategy, so of possible strategic devia-

tions, the voter implement the one that will make its most highly ranked

candidate the winner. Moreover, the best-response must be of a partic-

ular structure: if a voter can make some candidate the winner, it votes

for this candidate (this is not a real limitation for the voter, as for any

best-response strategy in plurality, this is also a best-response).

will always reach a Nash equilibrium in O(m2n2) steps.

As mentioned, the original paper was only able to show that best-response

is a required property (since then this requirement has been slightly more

refined in [176, 157]).
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Chapter 3

The Truth(-Bias) is Out There:

Truth-Biased Voters

3.1 Introduction

Attempts to try and analyze elections following the understanding that all are

manipulable (Gibbard-Satterthwaite theorem [109, 206]) have mostly focused

on ways of limiting manipulations. Approaches included using the complexity

of manipulations in certain voting rules [54, 53, 236]; limiting the range

of possible preference orders of the voters (e.g., single-peaked preferences,

for which there exist strategyproof mechanisms [95]); various randomization

mechanisms [110, 186], and others. Moreover, much of this research focuses

on the case where we have a single aim for manipulations, such as an attempt

by a group of voters to make some specific candidate the winner, while all

other voters are truthful and non-strategic.

Much less effort has been given to analyzing what happens when all vot-

ers are strategic, rather than only some. The natural tool for analyzing

this would be Nash equilibria, as these are states of stability, following the

strategic moves of all voters. However, using the Nash equilibrium presents

a significant hurdle: the number of equilibria in a voting scenarios is stagger-

ing (in a simple plurality election with 5 candidates and only 10 voters we

23
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have over 300, 000 equilibria). An even more problematic issue is that many

equilibria are useless in any analysis of election results, as they would never

occur, such as the situation when using plurality, when all voters rank the

same candidate last, if all of them voted for it that would be an equilibrium.

Instead, we try to make a reasonable assumption on the nature of our

voters, and use it to see if we get more reasonable equilibria, and in particular,

equilibria that resembles more closely what we would expect to see in real-

world elections. Our restriction is assuming voters are slightly truth-biased.

That is, they gain a small amount of utility by voting truthfully. This amount

is small enough so that if they can make a strategic deviation and improve

the election outcome in their view, they would do so. But all things being

equal, voters would prefer to voter truthfully.

We approach the simplest – and most common – voting rules: scoring

rules composed of two values, mainly plurality and veto, but also touching

on k-approval/veto. We do so by first evaluating the model using a simu-

lation. This has not been done prior to this work due to the huge size of

the game, but we leverage recent work in compact representation of games,

and in particular, action-graph games (AGGs) [121, 120] and the support-

enumeration method [223], enabling us to run simulations and see all of the

Nash equilibria of a particular game.

We then turn to veto and analyze it analytically,1 and go beyond just

finding the complexity of finding the Nash equilibria and their winners, but

manage to find a sub-family of problems in which we are able to find a

constructive algorithm to find the equilibrium, if it exists.

3.1.1 Related Work

Analyzing election equilibria has been the focus of much research, with vari-

ous researchers proposing different frameworks with limits and presumptions

to deal with both the sheer number of equilibria, as well as with situations

1Following the publication of these simulation results in [224], plurality was analyzed

by Obraztsova et al. [177]
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where there is limited information. Early work in this area, by McKelvey

and Wendell [156], allowed for abstentions and defined an equilibrium as one

with a Condorcet winner. As this is a very strong requirement, such an

equilibrium does not always exist, but they established some criteria for this

equilibrium that depends on voters’ utilities.

Myerson and Weber [170] dealt with the Nash equilibria of voting games

by building a model which assumes voters only know the probability of ties

occurring between each pair of candidates, and that voters may abstain (for

which they have a slight preference). They showed that multiple equilibria

exist, and noted problems with Nash equilibrium as a solution concept in

this setting. The model was further studied and expanded in subsequent

research [76, 127]. Assuming a slightly different model, Messner and Pol-

born [167], dealt with perturbations (i.e., the possibility that the recorded

vote will be different than intended), and showed that equilibria only includes

two candidates (“Duverger’s law”).

Looking at other limitations, Feddersen et al. [97] chose (like Laffont [137])

to limit preferences to single-peaked preferences. Others, like Hinich et

al. [116], for example, chose to change the single-peak limitation to a spe-

cific probabilistic model of voters over a Euclidean space of candidates, while

changing other parts of the model (such as allowing for abstentions). A

somewhat different approach, taken by Messner and Polborn [166], analyzed

equilibria by coalitional manipulation (hence, using a stronger equilibrium

than Nash – a method also utilized by Dhillon and Lockwood [81]). However,

one of the main limitations of many of the papers mentioned above is that

they assume some knowledge of other players’ preferences.

Looking at iterative processes makes handling the complexity of consider-

ing all voters as manipulators simpler, but this literature is more thoroughly

examined in Chapter 4.

Dealing more specifically with the case of abstentions, Desmedt and

Elkind [80] examined both a Nash equilibrium (with complete information of

others’ preferences) and an iterative voting protocol, in which every voter is
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aware of the behavior of previous voters (a model somewhat similar to that

considered by Xia and Contizer [235]). Their model assumed that voting has

a positive cost, which encourages voters to abstain; this is similar in spirit to

our model’s incentive for voting truthfully, although in this case voters are

driven to withdraw from the mechanism rather than to participate. However,

their results in the simultaneous vote are sensitive to their specific model’s

properties.

Rewarding truthfulness with a small utility has been used in some re-

search, though not in our settings. Laslier and Weibull [141] encouraged

truthfulness by inserting a small amount of randomness to jury-type games,

resulting in a unique truthful equilibrium. Dutta and Laslier [86] attempted

to inject truthfulness directly into a voting rule combined of approval voting

and veto, but only found a few existence results that show truthful equi-

libria exist in that case. A more general result has been shown in Dutta

and Sen [87], where they included a subset of participants which, as in our

model, would vote truthfully if it would not change the result. They show

that in such cases, many social choice functions (those that satisfy the No

Veto Power) are Nash-implementable, i.e., a mechanism exists in which Nash

equilibria correspond to the voting rule. However, as they acknowledge, the

mechanism is highly synthetic, and, in general, implementability does not

help us understand voting and elections, as we have a predetermined mech-

anism.

3.2 Simulation Methodology

In order to find all the Nash equilibria in a certain game, we need to repre-

sent the game in a form that the algorithm can use. As normal form games

require a space that is exponential in the number of players, this representa-

tion is not useful for games with more than a few players. There are various

suggestions in the literature regarding “compact” game representations that

require exponentially less space to store games of particular types, such as
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congestion [199], graphical [128], and action-graph games [121]. Action-graph

games (AGGs) are the most useful for our purposes, because they are very

compactly expressive (i.e., if the other representations can encode a game in

polynomial-space then AGGs can as well), and fast tools have been imple-

mented for working with them.

Action-graph games achieve compactness by exploiting two structural

properties in a game’s payoffs:

Anonymity A player’s payoff depends only on its own action and the num-

ber of players who played each action.

Context-specific independence A player’s payoff depends only on a sim-

ple sufficient statistic that summarizes the joint actions of the other

players.

These two properties fit scoring rules perfectly, as they are not only anony-

mous, but as they require a simple adding of points, are simple to calculate.

Moreover, it fits truth-biased voters as well, as anonymity allows for a player’s

utility function to make use of its own strategy.

Encoding our plurality voting game as action-graph games is relatively

straightforward: for each set of voters with identical truthful preference, we

created one action node for each possible way of voting. For each candidate,

we created an “adder” node that counts how many votes the candidate re-

ceives. Directed edges encode which vote actions contribute to a candidate’s

score, and that every action’s payoff can depend on the scores of all the can-

didates (see Figure 3.1). We used a simple Borda score as the basic utility

function values (e.g., in a 5 candidate contest, if a voter’s favorite candidate

wins, the voter gets a utility of 4), to which we added a small ε value – 10−6

– when a voter is being truthful.

While various algorithms exist to find pure Nash equilibria in action-graph

games [121, 75], we used the support enumeration method (SEM) [185, 223]

exclusively as it allows Nash equilibria enumeration. This algorithm works

by iterating over possible supports, testing each for the existence of a Nash
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A B 

A B 

A B 

A>B 

B>A 

Figure 3.1: An action graph game encoding of a simple two-candidate plu-

rality vote. Each round node represents an action that a voter can choose.

Dashed-line boxes define which actions are open to a voter given its prefer-

ences.

equilibrium. In the worst case, this requires exponential time, but in practice

SEM’s heuristics (exploiting symmetry and conditional dominance) enable it

to find all the pure-strategy Nash equilibria of a game quickly.

3.3 Simulation Results

To examine how election equilibria look like, we ran 1, 000 voting experi-

ments using plurality as a voting rule, with 10 voters and 5 candidates, with

preferences chosen from a uniform distribution . Using regular voters, such

games have hundreds of thousands of Nash equilibria. However, adding a

small truthfulness incentive (ε = 10−6) lowers these numbers significantly.

Not counting permutations of voters with the same preferences, every game

had 25 or fewer equilibria; counting permutations, the maximum number

of equilibria was still only 146. Indeed, an overwhelming number of these

games (96.2%) had fewer than 10 equilibria (27 with permutations). More
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surprisingly, a few (1.1%) had no pure Nash equilibria at all,2 and this num-

ber seems to vary with the parity of the voter number – when it is odd, there

are more games where there is no equilibrium at all. To assess the impact of

the truthfulness incentive, we also ran 50 experiments without it; every one

of these games had over a hundred thousand equilibria.
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Figure 3.2: CDF showing the fraction of games having the given number of

pure-strategy Nash equilibria or fewer (including permutations)

We shall examine two aspects of the results: the preponderance of equi-

libria with winners being the voting method’s truthful winners (which, when

expanded to more voting rules, may be an interesting comparative metric

between voting mechanisms), and Condorcet winners. Then, moving to the

wider concept of social welfare of the equilibria, we examine the social welfare

of the truthful voting rule, using Borda-like utility functions.

We first examined how likely it was for the real winners – those that would

have won had all voters been truthful – to win in an equilibrium. While in

63.3% of the games truthful preferences were a Nash equilibrium, even when

voters were not being truthful, the likelihood of the real winner to win in

equilibrium was high: 80.4% of the games had at least one equilibrium with

2This is particularly relevant to voting procedures relying on the existence of pure Nash

equilibrium, and seeking to “find” one, such as the one proposed in Meir et al. [160].
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Figure 3: Empirical CDF of social welfare

3 Social Welfare Results

Without the ✏ preference for truthful voting, every outcome is always possible
in some PSNE. (This implies that the price of anarchy is unbounded, while
the price of stability is one.) With it, the worst case-outcome is almost always
impossible in PSNE (92.8%). Sometimes (29.7%) the best case outcome is also
impossible (29.7%). The gap between best and worst PSNEs can be very large,
though both can lead to the worst-case outcome. (Thus, the price of anarchy and
price of stability are unbounded if I normalize social welfare from worst to best
outcome. I think I need a new way of normalizing.) In the majority of games
(59%), truthful voting will lead to the best possible outcome. Nevertheless, the
best-case PSNE still stochastically dominates truthful voting.

In games where truthfulness is a PSNE, truthfulness is closer to the best-
case PSNE, but still stochastically dominated. In games where truthfulness is
not a PSNE, the equilibrium outcomes and truthful outcomes tend to be worst
than went it is.

Note: for welfare results I omit the games with no PSNEs.

4 Condorcet Winners

Of the 1000 games tested, 931 games had a Condorcet winner. In fact, 204
games had multiple Condorcet winners. (See Figure 5.) As with social welfare,
when comparing the relative probability of having a Condorcet winner win the

3

Figure 3.3: The social welfare distribution

the truthful result, and looking at the multitudes of equilibria, the average

share of truthful equilibrium (i.e., result was the same as with truthful vote)

was 41.56% (out of games with the truthful vote as an equilibrium, the

share was 51.69%). Without the truthfulness incentive, the average share of

truthful equilibrium was 21.77%.

Looking at Condorcet winners, 92.3% of games had Condorcet winners,

but they were truthful winners only in 44.7% of the games (not a surprising

result, as plurality is far from being Condorcet consistent). However, out of

all the equilibria, the average share of equilibria with a victorious Condorcet

winner was 43.49% (we ignore games without Condorcet winners). When the

Condorcet winner was also the truthful winner, its average share of equilibria

is 56.96%.

Looking at the wider picture (see Figure 3.4), the addition of the truthful

incentive created games with very few Nash equilibria. They, very often, re-

sulted in the truthful winner. As the number of equilibria grows, the truthful

winner part becomes smaller, as the Condorcet winner part increases.

Turning to look at the social welfare of equilibria, once again, the exis-
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Figure 3.4: The number of truthful and Condorcet winning equilibria, de-

pending on total number of equilibria per experiment. Note that in the “tail”,

the data is based on only a few experiments.

tence of the truthfulness incentive enables us to reach “better” equilibria.

In 92.8% of the cases, the worst-case outcome was not possible at all (recall

that without the truthfulness incentive, every result is possible in some Nash

equilibrium), while only in 29.7% of cases, the best outcome was not possi-

ble. We note that while truthful voting led to the best possible outcome in

59% of cases, it is still, of course, dominated by best-case Nash equilibrium,

i.e., there were cases were the best Nash equilibrium was not truthful (see

Figure 3.3).

When looking at the distribution of welfare throughout the multitudes

of equilibria, one can see that the concentration of the equilibria is around

high-ranking candidates, as the average share of equilibria by candidates

with an average ranking (across all voters in the election) of less than 1

was 56.38%. Even if we exclude Condorcet winners (as they are, on many

occasions, highly ranked), the average ranking of less than 1 was 46.56% (ex-

cluding truthful winners resulted in 27.48% with average ranking less than
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1). Fully 71.65%, on average, of the winners in every experiment had above

(or equal) the median rank, and in more than half the experiments (52.3%)

all equilibria winners had a larger score than the median. As a compari-

son, the numbers from experiments without the truthfulness incentive, are

quite different: regardless of their average rank, candidates won, with minor

fluctuations, about the same number of equilibria (57% of winners, were, on

average, above or equal to the median rank).

3.4 Analytical Results

Following the publication of the above simulations, Obraztsova et al. [177]

proved some analytical properties on truth-biased voters using the plurality

voting rule with a fixed linear-ordered tie-breaking rule. For completeness,

we mention these results before delving into our analysis for the veto voting

rule.

Theorem 3.1 (Obraztsova et al. [177], Theorem 4). Given an election with
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truth-biased voters using the plurality voting rule with a linear-ordered tie-

breaking rule and a specific candidate, deciding if there is a voting profile

which is a Nash equilibrium in which the candidate is victorious is NP-

complete.

They also note a particular characteristic of the equilibria in these elec-

tions:

Observation 3.1 (Obraztsova et al. [177], Lemma 1). Given an election with

truth-biased voters using plurality with a linear-ordered tie-breaking rule, in

any Nash equilibrium, all non-truthful voters are voting for the winner.

The reasoning behind this observation is straightforward: if a voter is non-

truthful and voting for a losing candidate, it would be better off reverting to

its truthful vote, as its manipulation is not making the candidate it is voting

for the winner, and reverting to the truthful vote would gain the voter at

least an extra ε of utility.

3.4.1 Veto Voting Rule

When discussing Nash equilibria of truth-biased voters using the veto voting

rule (with some tie-breaking rule), it is helpful to understand the structure

of these equilibria. For that, it is handy to look at a particular runner-up

candidate:

Definition 3.1. A threshold candidate in a voting profile b when using a

scoring rule is a runner-up candidate that would become the winner if the

current winner lost a single point.

Notice that if a profile has runner-ups, there is a threshold candidate.

Before noting the complexity of finding a Nash equilibrium, we note a

few characteristics of all Nash equilibria with truth-biased voters using the

veto voting rule
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Observation 3.2. Given an election with truth-biased voters using veto and

a linear-order tie-breaking rule, in any Nash equilibrium the score of the

winner does not change from the score it received in the truthful vote. All

non-truthful voters veto runner-ups.

(Proof is in Appendix A)

Observation 3.3. Given an election with truth-biased voters using veto and

a linear-order tie-breaking rule, in any Nash equilibrium which is not the

truthful profile, all voters except those vetoing the winners or runner-ups

prefer the winner to the threshold candidate.

(Proof is in Appendix A)

Theorem 3.2. Given an election with truth-biased voters using the veto

voting rule with linear-order tie-breaking and a specific candidate, deciding if

there is a voting profile which is a Nash equilibrium in which the candidate

is victorious is NP-complete.

(Proof is in Appendix A)

3.4.2 A Constructive Algorithm

Despite the NP-completeness of the general problem, we are able to find a few

conditions that make it tractable in certain cases, in which the tie-breaking

rule is linear-ordered:

Condition 1 Let t ∈ C be the candidate right below w in the tie-breaking

order (i.e., the tie-breaking order is in the form · · · � w � t � · · · ).
Then the score in the truthful profile of t is at least as high as the

truthful score of w.

Condition 2 Let t ∈ C be the candidate right below w in the tie-breaking

order (i.e., the tie-breaking order is in the form · · · � w � t � · · · ).
Then every voter that does not rank w last truthfully ranks w above t.
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These conditions ensure that the threshold candidate would be t, and

that the stability of the Nash equilibrium would not be reliant on voters

trying to make the threshold candidate the winner. However, before showing

the tractability of the problem with these two conditions, we show both are

required.

Theorem 3.3. Given an election with truth-biased voters using the veto vot-

ing rule and a specific candidate, assuming Condition 1 is true and Condition

2 is not, deciding if there is a voting profile which is a Nash equilibrium in

which the candidate is victorious is NP-complete.

(Proof is in Appendix A)

Showing Condition 2 without Condition 1 is NP-complete is shown in the

construction in Theorem 3.2’s proof.

We now turn to the proof of our constructive theorem:

Theorem 3.4. Consider a candidate w ∈ C and a truthful profile for which

both Condition 1 and Condition 2 apply. Then finding if there is a voting

profile for truth-biased voters under the veto voting rule which is a Nash

equilibrium where w is the winner can be done in polynomial time (as well

as finding the Nash equilibrium profile itself) of O(2n2m).

(Proof is in Appendix A)

3.4.3 k-Approval

k-approval has very similar structure to both veto (which is, in a sense, m−1-

approval) and plurlity (1-approval). We provide 2 examples that show some

changes in the characteristics of k-approval in comparison to these two voting

rules.

Example 3.1. Consider 2-approval with the lexicographical tie-breaking rule

(a � b � c � d � e). Suppose the truthful profile is:

• a � b � c � d � e.
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• e � d � a � c � b.

• 2 voters with preference d � b � a � c � e.

• 2 voters with preference a � d � b � c � e.

• e � c � a � b � d.

The equilibrium profile changes the last but one voters (i.e., one out of

the two identical voters with preference a � d � b � c � e), to a � e � b �
c � d, and the last voter changes to e � a � c � b � d.

In this example, the score of the winning candidate (candidate a) in the

equilibrium profile is higher than in the truthful profile. On the other hand,

the score of a runner-up candidate (in this example, d, which is also the

threshold candidate here) decreases in the equilibrium compared to the truthful

profile score.

Example 3.2. Consider 2-approval, with the tie-breaking order d � a � b �
c. The truthful preferences are as follows:

a � b � c � d a � c � b � d

c � d � a � b d � b � a � c

a � d � b � c
An equilibrium can be constructed by making only one change – the last

voter changes to a � b � d � c. The score of a runner-up candidate (candi-

date b, which is also a threshold candidate) increases.

3.5 Summary

In this chapter we have investigated truth-bias. We started out by examining

if our intuition – that voters often will revert to their truthful vote, all things

being equal – has any promise. We did so by simulating many voting scenarios

and looking at the resulting Nash equilibria in these settings using plurality.

We saw that we get both a lower number of Nash equilibria, as well as
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higher quality ones: many “silly” equilibria which occur with non truth-

biased voters disappeared, while the higher ranked candidates were much

more significantly represented as winners in the truth-biased equilibria. This

bodes well both for using this as a requirement of synthetic voters in an

environment constructed of rational agents, forcing better equilibria; and

also might indicated closer relation to what people actually do, as results are

more like we would expect when running elections – highly ranked candidates

win, while lower ranked candidates rarely do.

However, truth-biased voters open up the possibility that there are no

Nash equilibria at all for some candidate or all of them (a situation which

cannot happen with regular voters3). This raises the question of the complex-

ity of knowing this in advance. Hence, we continued with analytical work

on the complexity of finding if an equilibrium exists in which a particular

candidate wins in binary scoring rules (constructed only of values of 1 and

0). We also looked into various equilibria characteristics. These analytical

results are summed in Table 3.1.

Conditions Veto Plurality k-approval

A B

Existance equilibrium with winner w ∈ C NP-hard P NP-hard NP-hard

Winner score may grow in equilibrium No Yes Yes

Winner score may drop in equilibrium No No No

Runner-up score may grow in equilibrium Yes No Yes

Runner-up score may drop in equilibrium Yes No Yes

Table 3.1: Summary of our truth-bias voter Nash equilibrium complexity

and several characteristics.

A: At least one of Condition 1 or Condition 2 does not hold.

B: Both Condition 1 and Condition 2 hold.

3When all voters put the same candidate in first place, and each other candidate is put

in last place by at least b nmc voters, no single voter can change the outcome in any scoring

rule, Condorcet consistent voting rule or STV.
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Chapter 4

Don’t stop ’Til You Get

Enough: Iterative Voting

4.1 Introduction

Understanding what are possible (and reasonable) election outcomes when

voters are manipulating has been a persistent problem once it was realized

(Gibbard-Satterthwaite theorem [109, 206]) that there is no point in seeking

a reasonable, non-dictatorial, voting system in which voters cannot benefit

from manipulation, as such a voting rule does not exist. While much research

has been done on manipulations (see Introduction to Chapter 3), such as on

the complexity of manipulation [54, 53, 236, 188, 247, 246], it has commonly

analyzed cases where the manipulators are working to make some specific

candidate the winner, rather than when all voters are strategic.

While the Nash equilibrium is a natural tool to analyze what happens

when all participants manipulate, it is not a usable tool for elections, as not

only are there an extraordinary amount of equilibria even in small elections

(see Chapter 3), but many equilibria describe results which would never occur

in real-life setting (e.g., even if all voters rank the same candidate last, using

plurality it is a Nash equilibrium for all voters to vote for it).

One approach to try and describe reasonable election results is to make

39
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certain assumptions on the nature of the voters. Such an approach, described

in the previous chapter (Chapter 3) is truth-bias, which assumes voters gain

a certain small amount utility when they vote their truthful preference. An-

other such approach is lazy-bias, presented by Desmedt and Elkind [80],

which assumes that all things being equal, voters would prefer to abstain

and not participate at all in the elections.

A different approach, taken here (following Meir et al. [160]), does not try

to make certain assumptions on the nature of the voters, but rather on the

dynamics in which manipulations are conceived and carried out. Consider,

for example, a group of friends, trying to decide on a movie to watch. Once

everyone’s preferences are tallied and participants know the outcome for each

option, a voter may realize that by altering their vote, the outcome might

be more to their liking. Once this voter makes this change, a different voter

realizes that under this new situation, it can change its vote as well and

make the winner a different winner. As voters slowly, iteratively, adjust their

votes (there is no fixed order on the voters), the question of convergence

arrises, i.e., does this iterative process ever end in a stable state (which is,

by definition, a Nash equilibrium). Assuming that it does converge (Meir et

al. [160] proved it for plurality, as well as showing it does converge if we allow

for parallel updates), we can define a subset of the Nash equilibria – those

that are reachable, using the iterative process, from some profile serving as

a starting point (a natural choice for it, which we pursue here, is taking the

truthful preferences as the starting point).

Note that whether there is an explicit iterative process or not, the iterative

process may portray various elections, as voters use the information they have

(e.g., polls), to understand whether they should change their vote or not.

Exploring the iterative model framework, we start by picking apart the

various conditions set in Meir et al. [160]’s result, and try to examine them

to the limit, to understand how applicable is the model. In this process

we look at tie-breaking rules and their necessity as well as at voting rules

and convergence. We find appropriate tie-breaking rules are necessary for
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convergence, and more surprisingly, that it is guaranteed only for plurality

(shown in [160]) and veto, while any other scoring rules can be shown to

reach cycles for some profiles.

We then look into combining assumptions on the nature of voters with the

assumption on their dynamic, and examine the characteristics (and existence)

of Nash equilibria when the iterative process involves truth-biased voters,

and well as the properties (and existence) of the Nash equilibrium when the

voters are lazy-biased. In both cases we are able to present an algorithm

to find all the equilibria, and also manage to portray the structure of the

equilibria reached when the iterative process starts from the voters’ truthful

preferences.

4.1.1 Related Work

The common game-theoretic approach to iterative processes is subgame-

perfect Nash equilibrium, which entails a backwards induction from potential

results. This has mostly been used to analyze open serial elections (e.g., roll-

calls) and sequential elections with 2 candidates [217, 155, 78]. However,

these are not common, as people are notoriously bad at doing backward in-

duction [122], and in our iterative setting, with its limited information (on

other voters’ preferences) and non-deterministic voting ordering it makes it

even less applicable and realistic.

While we use the framework established by Meir et al. [160], the notions

of an iterative approach to voting, as well as of seeking election equilibria,

exist in previous research. An iterative process for reaching decisions was

offered for agents in Ephrati and Rosenschein [94], but it uses a mechanism

to transfer money-like value among agents, and hence is irrelevant to our vot-

ing procedures. Several researchers have considered reaching an equilibrium

with an iterative (or dynamic) process, in particular when deciding on an

allocation of public goods. A summary of much of that work can be found

in Laffont [137], which details various approaches, including different equi-

libria choices (Nash, local dominant, local maximin) and methods. However,
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in order to reach an equilibrium, they limit the possible preference choices

to single-peaked preferences. More recently, Reijngoud and Endriss [191] ex-

plored an iterated poll setting, but as theirs had only one round where voters

change their vote according to a fixed order, the type of questions discussed

here does not arise.

Another branch of research deals with a process of having a player propose

a change in the current state, and hold a vote on its acceptance. Such a

model was used by Shepsle [214], who chose to force an equilibrium by using

a combination of preference limitation and organizational limitations. De

Trenqualye [77] chose to achieve an equilibrium by using a specific voting rule

and Euclidean preferences. More recently, Airiau and Endriss [2] examined

– theoretically and experimentally – the possibility of an equilibrium in such

games, using plurality-type voting rules (the threshold can be different than

50% for a change to be accepted).

Attempting to investigate the role of knowing other players’ knowledge,

Chopra et al. [71] examined iterative voting with plurality, and showed the

effects of limiting a player’s knowledge of the other players’ preferences. An-

other interesting model, proposed in Myerson and Weber [170], found a Nash

equilibrium for scoring rules, assuming that voters have some knowledge of

which candidates have a better chance of winning (based, for example, on

pre-election polls), but this does not mean that every election results in

an equilibrium. Further research of analyzing the Nash equilibria of voting

games (without iteration) is discussed in Chapter 3, in addition to discussion

of previous research on truth-biased and lazy-biased voters.

The iterative model presented in Meir et al. [160] has attracted research

other than that detailed in this chapter. There has been effort to understand

the need for the “best response” strategy requirement, which was analyzed

in Obraztsova et al. [176], looking into strategies that might ensure conver-

gence in an iterative voting process (and not just best-response), a direction

that was also explored in Grandi et al. [112]. Brânzei et al. [66] addressed

some notions of price of anarchy in the context of iterative plurality, showing
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winners will have a very high truthful score. We note that following the

publication of the following section on iterative veto, another proof for the

same result was published by Reyhani and Wilson [196].

4.2 Tie-Breaking Rules

We start our analysis of the iterative voting model, by examining if the

requirement for linear-ordered tie-breaking rules is necessary. Indeed, we

show that using arbitrary voting rules is not just harmful to the convergence

of plurality, but that it prevents convergence for any scoring rule.

Theorem 4.1. An iterative scoring rule election with a deterministic tie-

breaking rule, even for voters using best-response strategies and starting from

the truthful state, will not converge for some preferences.

(Proof is in Appendix A)

4.3 Voting Rules

We now seek to understand in which voting rules does the iterative model

guarantee the process will converge to a stable state (i.e., a Nash equilib-

rium) and in which voting rules there are cases which result in a cycle, never

reaching an equilibrium.

4.3.1 Veto

Definition 4.1. A best response in the case of the Veto voting rule implies

that the current (undesired) winner is vetoed.

Theorem 4.2. Iterative Veto elections with deterministic linear-order tie-

breaking and voters which use a best-response strategy, converge even when

not starting from a truthful state.

(Proof is in Appendix A)
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4.3.2 Other Scoring Rules

Apart from plurality (shown in [160]) and veto (shown above), no scoring rule

family (i.e., one that can be applied for any number of candidates) converges

in the iterative process.

Theorem 4.3. Under the iterative procedure, using a best response strategy

and when voters are myopic, no scoring rule apart from plurality and veto

converges.

(Proof is in Appendix A)

4.4 Voter Types

We now combine our work on iterative voting with changing our assumption

on the nature of voters, and assuming some properties on these. We address

the plurality voting rule, as it is the most common and widely used. We focus

on analyzing equilibria that are reachable from a truthful starting point.

4.4.1 Regular Voters

While we wish to be able to point out what are the reachable Nash equilibria

from the truthful starting point, as an approximation of the way people vote,

the complexity of finding what these state are posses a difficulty.

Theorem 4.4. Given a truthful profile a and a profile b distinct from a, it

is NP-complete to decide if b is reachable by iterative plurality with linear-

ordered tie-breaking using best-response updates, starting from a.

(Proof is in Appendix A)

4.4.2 Truth-Biased Voters

We start with a few characteristics of the Nash equilibria of truth-biased

voters using iterative plurality. Recall Observation 3.1, that noted that all

non-truthful voters in an equilibrium vote for the equilibrium winner.
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First, we note convergence is no longer guaranteed:

Example 4.1. Suppose tie-breaking rule is a � b � c � d, and voters’ true

preferences are:

Voter 1: a � b � c � d

Voter 2: b � a � c � d

Voter 3: c � d � a � b

Voter 4: d � c � a � b

The winner is a, but voter 3 can improve their outcome by changing to

d � c � a � b, and making d the winner. Then voter 1 changes its vote as

well to b � a � c � d, making b the winner. However, at this point, voter 3

has no manipulation open to it, so due to truth-bias it returns to its truthful

vote. At this point voter 1 has a beneficial change, and by reverting to its

truthful vote, it creates a cycle, making a the winner again.

Now we continue with finding the characteristics of the Nash equilibria,

when they are reached:

Lemma 4.1. In a non-truthful Nash equilibrium with truth biased voters

under iterative plurality with linear-ordered tie-breaking, starting the process

with their truthful preferences, the winner will always be a runner-up candi-

date in the original state, with only a single voter being untruthful.

(Proof is in Appendix A)

Note that this means that if there is an iterative path towards a state,

there is a path of length 1 (the untruthful voter changes its preferences).

We shall now show there is a simple, polynomial algorithm to find all the

equilibria for truth-biased voters when starting from the truthful starting

position.

Theorem 4.5. Algorithm 1 finds all Nash equilibria reachable from the truth-

ful starting point (a) in an iterative plurality model with truth-biased voters

and linear-ordered tie-breaking.
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Algorithm 1 Finding all truth-biased Nash equilibria

The input is the truthful profile (a)

1: ∀c ∈ runnerup(a), eq[c]← 0 . An array holding number of equilibria

for every potential winning candidate

2: V, V ′ sets of all voters

3: for all c ∈ runnerup(a) do

4: for all v ∈ V do

5: if v ∈ V ′, top(v) 6= winner(a) and top(v) 6= c then

6: if c is the highest ranked candidate in (W (a)∪H(a))\{top(v)}
then

7: eq[c]← eq[c] + 1 . This voter will deviate to make c win

8: V ′ ← V ′ \ v . If this voter deviates for c, it will not

deviate for any other

9: end if

10: end if

11: if there is c′ ∈ runnerup(a) such that if c′ has higher score in a

than c or same as c but higher in the tie-breaking rule; c′ 6= top(v); and

c′ �v c then

12: eq[c]← 0 . This is a blocking voter

13: break . No point in examining this candidate further; return

to line 3 (next candidate)

14: end if

15: end for

16: end for

return eq

(Proof is in Appendix A)

Algorithm 1 will not work for non-truthful starting position, as it works

by exploring reachable positions from truthful starting states, and there are

Nash equilibria for truth-biased voters that cannot be reached from a truthful
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starting position.1

4.4.3 Lazy-Biased Voters

Allowing voters to abstain and then rejoin the elections in iterative voting

settings, is equivalent to letting voters choose a strategy that while may

cause the outcome to change, it will not necessarily lead to a best response

change, and therefore we know does not ensure convergence ([160], Theorem

3). Moreover, for lazy-biased voters, we know it cannot change the winner

to a candidate more preferable to them (as otherwise they would have a

voting strategy to acheive the same end). Therefore, we suggest a model in

which once voters abstain they cannot rejoin the game. Hence, once a player

abstains, we are left with an iterative plurality election with a potentially

non-truthful starting point and one less voter. We are guaranteed that these

will converge, and therefore, after a finite number of abstentions, we will

reach a stable state.

As in truth-bias, we notice a structure of stable states (and Nash equilib-

ria):

Lemma 4.2. A stable state with lazy-biased voters under iterative plural-

ity with linear-ordered tie-breaking, starting the process with their truthful

preferences will only have a single participating voter.

(Proof is in Appendix A)2

However, as the election Nash game is defined as a “one-off” (i.e., not

repeated or turn-based game), on a fixed set of strategies, and so do not

1For example, 4 voters with preferences a � b � c, and 2 voters preferring c � b � a.

The only equilibrium reachable from the starting position is the starting position itself.

However, the state in which 3 of the first 4 voters vote b � a � c and the rest are truthful

is a Nash equilibrium for truth-biased voters.
2This appears to be quite synthetic equilibria, stemming from the constraints of the the

lazy-bias, as well as as from those of the iterative dynamic, being fundamentally myopic.

Ways to address such these limitations, while conserving the lazy-bias, will be discussed

in the Chapter 5.
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enable us to “remove” the strategy of rejoining, notice that these stable

states are not necessarily Nash equilibria:

Example 4.2. Suppose tie-breaking rule is a � b � c and voters’ true pref-

erences are:

Voter 1: a � b � c

Voter 2: c � b � a

Voter 3: c � b � a

The only Nash equilibrium here is for voter 1 to participate and the other

abstain. However, in the iterative process, voter 1 cannot do anything, so

it abstains, and then voter 2 or 3 abstain, leaving a single voter voting for

c. This is not an equilibrium, as if voter 1 could rejoin it would change the

outcome to a.

We now show a polynomial algorithm to find all the Nash equilibria for

lazy-biased voters (in contrast to the regular, non-biased ones, for which

there is no such algorithm):

Theorem 4.6. Algorithm 2 finds all Nash equilibria reachable from the truth-

ful starting point (a) in an iterative plurality model with lazy-biased voters

and linear-ordered tie-breaking.

(Proof is in Appendix A)

4.5 Summary

In this chapter we examined iterative voting. We have attempted to stretch

its limits and see if its various conditions are truly necessary or not. We have

seen that the tie-breaking mechanism is actually critical for iterative voting’s

convergence, and we have extended the convergence of iterative plurality to

iterative veto, while detailing the limitations of the model, which does not

converge for any scoring rules but plurality and veto.
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When seeking to utilize the model in order to examine the equilibria

reachable from a starting point of the iterative process, we discovered that

finding these equilibria will be a difficult task, as it is NP-complete. How-

ever, when merging our assumption of voters’ nature – truth or lazy bias –

with the assumption made on voters’ dynamics and decision process – the

iterative model – we were able to find polynomial algorithms to expose the

Nash equilibria to us. Moreover, we were able to characterize some of the

features of the resulting Nash equilibria. These equilibria, with their some-

what synthetic structure, entice us to keep looking for a better and more

robust model – in the next chapter. . .
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Algorithm 2 Checking reachability of Nash equilibrium under lazy voting

Input: The initial profile a, and the voter v to be checked, with prefer-

ences in the form z � . . .

1: if z cannot be a winning candidate in a Nash equilibrium – if there

are voters which rank above z a candidate that is higher that z on the

tie-breaking order. then

return No

2: end if

3: if a is a Nash equilibrium in the basic model (without abstentions) then

4: if z is a winner of a then

return Yes

5: end if

6: if ∃c̃ 6= z, v′ ∈ V s.t. c̃ �v′ z ∧ z �v′ winner(a) then

return Yes

7: end if . At this point, every voter whose top choice is not z, prefers

winner(a) to z.

8: C ′ ← {c ∈ C \ {z, winner(a)} s. t. in a, c’s score is ≥ 2 or c’s score

is 1 and c � winner(a) in tie-breaking. } . Potential Nash equlibrium

winners.

9: if there is a voter z � . . . � c � . . . � winner(a) � . . . for some

c ∈ C ′ then

return Yes

10: end if

11: if there is c̃ 6= z, and c ∈ C ′ such that there exists a vote in the form

c̃ � . . . � c � . . . � winner(a) � . . . then

return Yes

12: end if

return No

13: end if

. From now on we can assume a is not a Nash equlibrium
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Algorithm 2 Algorithm continued. . .

14: if z is not the winner nor a runner-up in a then

return Yes

15: end if

16: if z is a runner-up in a then

17: if For a runner up b 6= z there is a voter 6= v with preference . . . b �
. . . � winner(a) then

return Yes

18: end if

19: if |V | ≥ 4 then

Goto line 6

20: else return No

21: end if

22: end if

. We can now assume z = winner(a)

23: b← Voter profile after running iterative plurality (without abstentions)

while preventing v from deviating . from Meir et al. [160] this is

polynomial

24: if z = winner(b) then

return Yes

25: end if

26: if z in not a runner-up in b then

return Yes

27: else Goto line 19 using b instead of a. . z a runner-up in b

28: end if
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Chapter 5

Think Local, Act Global: Local

Dominance Voting

5.1 Introduction

As the previous chapters have noted, following the realization that all “rea-

sonable” election systems are prone to manipulation (Gibbard-Satterthwaite

theorem [109, 206]), much work was devoted to manipulation techniques and

complexities [54, 53, 236, 110, 186]. Less work was devoted to analyzing

the outcome of elections when assuming all voters are manipulators (i.e., the

Nash equilibria), due to the number of equilibria being extremely large, and

the preponderance of equilibria which are not useful (e.g., it is an equilibrium

in plurality when all voters have the same least liked candidate and vote for

it). Thus, there has been a significant limit on the ability to analyze elections

and to try and understand which candidates might emerge to be victorious

based on truthful preferences (or calculate potential truthful preferences from

election results).

By assuming various models on the voting environment we are able to

eliminate many of these problems, with models dealing with the nature of

voters (Chapter 3) or with the voting procedure, whether explicit or implicit

in the voters’ thinking process (Chapter 4), and joining the two. However,

53
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these models assume a fairly precise knowledge by voters on the election

situation, such as knowing how many voters are voting for each candidate.

Naturally, such knowledge is quite rare in real-world situations.

Here, we try to combine the previous models, alongside a different infor-

mation model. Instead of assuming our voters have an accurate view of the

election results, we assume a far more realistic option – they have a vague

anchor of information, similar to an election poll, but they do not know the

exact expected outcome. Furthermore, we assume they do not have an exact

probabilistic knowledge on the exactness of the poll (and how likely each dif-

ferent variation from it is), but rather a binary understanding of the expected

results – whether a situation is possible or not.

Hence, a voter faced with a poll decides how much variation from the poll

does it consider realistically conceivable (the voter’s “radius”), and thus has a

local “area” around the poll which it regards as the set of possible outcomes.

Faced with these potential outcomes it chooses its vote (we assumed it is

voting for the dominant candidate), and this changes (slightly) the poll. As

all voters undergo this process, we show that in many cases this dynamic does

converge, and moreover, we show that this model results in highly realistic

voting patterns. Moreover, we show that there is a level of maximal variation

from the poll in which most manipulations occurs which combines with the

radius in which the most realistic – and, arguably, best – results happen.

Beyond this analysis, we have released our simulation code to the pub-

lic, so that other researchers may use it. It is constructed in a modular

way, allowing other models, voting systems, and assumptions to be made,

without necessitating a massive code rewrite. We have put the links and

instruction to the code on Preflib.org [152] at http://www.preflib.org/

tools/ivs.php, while the code itself is at https://github.com/omerl/

IterativeVotingSimulator.

Preflib.org
http://www.preflib.org/tools/ivs.php
http://www.preflib.org/tools/ivs.php
https://github.com/omerl/IterativeVotingSimulator
https://github.com/omerl/IterativeVotingSimulator
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5.1.1 Related Work

Much of the research relevant to this work has been mentioned in Chapter 4

as we use the iterative model here as well. However, we have not focused

there on the information model, which is a key difference in this model.

While lack of information has been a key explanatory tool in understand-

ing why people bother to vote when the likelihood of there vote having an

impact is low [180], the models using this uncertainty have not always been

applicable to the way people vote, and though they do not assume full knowl-

edge from the voters, assume quite detailed knowledge from them. For ex-

ample, Myerson and Weber [170], assumes voters use knowledge of the prob-

ability of there being a tie between any 2 candidates, and their calculation of

it. Messier and Polborn [165] considered a “trembling hand” model, in which

there is a probability some votes are miscounted, which, again, necessitates

a significant probabilistic analysis from the voter. Furthermore, these mod-

els require the voter have a utility function with cardinal values, nullifying

one of the properties that make social choice theory more applicable to the

real-world, as learning the utility functions values (rather than preference

orders) is quite complex, if possible (a similar requirement appears also in

[215, 182, 9]). A slightly different approach to voters has been to assume

voters do not wish to maximize their utility, but rather to minimize their

regret. This approach has been presented in Ferejohn and Florina [99], and

further discussed in Ledyard [142] and Merrill [164], and it too requires ex-

plicit utility functions. Furthermore, empirical work [61] has cast a shadow

on the ability of regret minimization to explain voter behavior.

Using dominance to decide on voting manipulation has been suggested as

early as Farquharson [96], though its analysis by Dhillon and Lockwood [81]

showed iterative dominance to be quite limited in the settings it works in.

More recently, Conitzer et al. [74] suggested a manipulation problem based

on limited manipulator knowledge and dominant manipulations.

As a partial response to the empirical observation that people do not em-

ploy probabilities when deciding their strategies [226], the concept of bounded
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rationality arose, as explaining that people act rationally only up to a cer-

tain limit (e.g., several steps ahead), and do not do so beyond that [203].

Our approach, while not, strictly speaking, a limited rationality approach,

uses a similar concept in which voters are assumed to be able to foresee

only a limited number of possibilities, and they choose their strategies ac-

cordingly. Recently, van Ditmarsch et al. [228] suggested a general logic of

knowledge framework for discussing manipulations under limited knowledge

circumstance. While still not studying equilibria, a close model to what we

examine is Saari [204], which suggests – in the context of comparing 3 candi-

date scoring rules – considering a state feasible if it involves moving at most

m voters from the truthful state, and compares scoring rules solely on those

states. An approach somewhat similar to our own, of a poll defining a set of

possible states, has been discussed in Reyhani et al. [197], but their dynamics

assumptions are more complicated than ours, and they focus on results with

3 candidates.

5.2 The Local Dominance Model

The local dominance model contains, first and foremost, a model of locality

and a strategy of dominance, both of which determine what a voter would

do faced with a given state of an election. Once we have defined those, our

model begins with a state (we shall assume, generally, that we start with the

truthful state), and advance iteratively, using the local dominance strategy,

with the hope of reaching a Nash equilibrium. We define it here only for

plurality, but the extension to other scoring rules is straightforward.

5.2.1 Locality

Given voting profiles, we can define a metric on them that will allow us to

measure a distance of one profile from one another. This is easily done as

the profiles tell us how the score of each candidate, and we use that for our

metrics. Moreover, we can consider the difference in the number of votes
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for each candidate as an absolute (e.g., candidate a lost 3 votes, candidate b

gained 7, etc.), or its ratio of growth (e.g, candidate c has doubled its vote,

candidate d lost a third of its vote, etc.). Hence, the definition for `i are

straightforward:

Definition 5.1. Given two voting profiles with n voters and m candidates, x

and y, for any 1 ≤ i <∞ the distance of these profiles under the `i additive

metric are:

d`i(x,y) = (
∑
c∈C

|scorex(c)− scorey(c)|i)
1
i

For `∞, the distance is:

d`∞(x,y) = max
c∈C
|scorex(c)− scorey(c)|

Definition 5.2. Given two voting profiles with n voters and m candidates,

x and y, the distance of these profiles under the multiplicative metric is:

dmult(x,y) = max
c∈C

(max(
scorex(c)

scorey(c)
,
scorey(c)

scorex(c)
))− 1

Using one of these metrics, we can define voters which believe that given

a data point (like a poll), the true situation is a “neighborhood” around that

poll:

Definition 5.3. For a voter with radius r using a metric d, when given a

profile b of n−1 voters, we define S(b, r), the set {p ∈ (π(C))n−1 | d(b,p) ≤
r}, which is the set the voter bases its strategic manipulation.

Notice that when the radius is n, the voter bases its manipulation of all

possible profiles. When the radius is 0, the voter believes the current situation

is the only possible situation, and therefore, manipulates only according to

it (similar to the iterative voting dynamic in Chapter 4).
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5.2.2 Dominance

While we can choose various strategies for our voters, we chose to use domi-

nance, as not only is it “obvious”, in the sense that its manipulations seem

worthwhile, as it will never leave the voter worse off than it was, and while

in an election it is commonly too broad to be useful (as few votes are dom-

inated), when using voters with a limited locality, the dominance strategy

becomes more viable.

Definition 5.4. Given a voting rule f , a voter i ∈ V with truthful preference

order ai, currently voting bi, and a set of profiles S of n − 1 voters (voters

N \ {i}), a vote ci S-dominates bi on S if:

• For every profile b ∈ S f(ci,b) �ai f(bi,b)

• There is one profile p ∈ S for which f(ci,b) �ai f(bi,b)

Hence, using plurality, a voter with a truthful preference of ai, a metric

d and a radius r, which is currently voting bi, we define its local dominance

strategy as:

1. Let S be the set {p ∈ π(C) | d(b,p) ≤ r}.

2. Let D ⊂ C be the set of votes that S-dominate bi.

3. If |D| > 1, let e be the highest ranked candidate according to ai (if

|D| = 1, let e be its only item).

4. If |D| > 0, vote for e. Otherwise, no change.

5.2.3 Truth and Lazy Bias

We combine truth-biased and lazy-biased voters into this model by letting

them, as in their original definitions, fall back on their true preference (or

abstaining from the vote), if they consider their situation helpless. In order to

do that, we give them an additional radius k, to indicate the radius in which

if they cannot influence anything, the revert to their truth/lazy habits. This
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is intended to approximate real-world behavior, in which the lack of active

manipulation does not necessarily go hand-in-hand with giving up. Hence:

Definition 5.5. A truth-biased voter with radii (r, k) (r < k) under a metric

d and a voting rule f , with a truthful preference of ai and which is currently

voting bi, when given a profile b, follows the following strategy:

1. Let S be the set {p ∈ π(C) | d(b,p) ≤ r}.

2. Let D ⊂ C be the set of votes that S-dominate bi.

3. If |D| > 1, let e be the highest ranked candidate according to ai (if

|D| = 1, let e be its only item).

4. If |D| > 0, vote for e.

5. If |D| = 0, if there is no p such that d(b,p) ≤ k and f(bi,p) � f(ai,p),

the voter changes to vote ai. Otherwise, no change.

Note the difference from a non truth-biased voter is that if there are no

strategic moves for the voters, it checks if there is any reason for it to remain

voting what it is in a larger radius (i.e., there is at least one state in which

reverting to a truthful will harm the voter), and if there is not, it returns to

its truthful preference.

The lazy-biased voter is quite similar, except that it checks if abstaining

is better than staying at its current vote:

Definition 5.6. A lazy-biased voter with radii (r, k) (r < k) under a metric

d and a voting rule f , with a truthful preference of ai and which is currently

voting bi, when given a profile b, follows the following strategy:

1. Let S be the set {p ∈ π(C) | d(b,p) ≤ r}.

2. Let D ⊂ C be the set of votes that S-dominate bi.

3. If |D| > 1, let e be the highest ranked candidate according to ai (if

|D| = 1, let e be its only item).
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4. If |D| > 0, vote for e.

5. If |D| = 0, if there is no p such that d(b,p) ≤ k and f(bi,p) � f(p),

the voter abstains. Otherwise, no change.

As we discuss local dominance voters, our truth-biased and lazy-biased

voters will pursue it when there is a local dominant manipulation for the set

{p ∈ π(C) | d(b,p) ≤ r}.

5.2.4 Generality

Our local dominance model is not limited to discussing elections and voters.

For any normal form game, once some metric is defined on the different

states, a local-dominance model can be used.

Furthermore, note that the locality and the dominance parts can be sep-

arated. While we used a dominance model in this work, one may choose

different strategies to pursue using the local set. For example, an optimistic

strategy such as pursuing the best case for the voter, a minimal regret strat-

egy, etc.

5.3 Iterative Convergence

Armed with the local dominance model, we seek to find the equilibrium points

when voters pursue such a strategy (note that when the voters’ radius is 0,

this is exactly the Nash equilibrium). However, as with the Nash equilibrium,

we wish to discard the various useless equilibria, and focus on equilibria that

may actually occur as a result of an election in real-life scenarios. Thus, we

consider the iterative model detailed in Chapter 4, and as with it, we consider

reachable results when beginning from the truthful voting state. However,

while we know that when all voters’ radius is 0 the iterative process converges,

we do not know this for any r when using local dominance. As when r = 0

this is equivalent to the iterative model, we know that allowing for any tie-
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breaking rule will result in non-convergence, and therefore we limit ourselves

to linear-ordered tie-breaking rules.1

To analyze the iterative process, we introduce several notations that will

be useful. For each stage of the iterative process i ∈ N, and a profile b, let

Hi(b) ⊆ C be the set of candidates that need exactly i more votes to become

the winner. Thus, for a scoring rule f , H0(b) = {f(b)}, and for plurality,

H1 are the candidates which either have the same score as the winner and

lose by tie-breaking, or win in the tie-breaking but have one vote less than

the winner (which we mark as winner(b)). Let Hi(s) =
⋃
i′≤iHi′(s), i.e., all

candidates that can become a winner with up to an additional i votes.

Theorem 5.1. When using plurality with linear-ordered tie-breaking, and

when all voters use local dominance strategy and have the same radius r, if

the initial state was one when all voters were truthful, the iterative process

converges to a stable state.

(Proof is in Appendix A)

The proof not only shows that an equilibrium exists, it also describes

exactly the way in which such equilibria are reached from the truthful state.

There is always a set of “leaders” (Hr+1 in the case of the `1 norm). Strategic

voters vote for their favorite candidate in this set, if their current candidate is

not a possible winner. At some point candidates may “drop out” of the race

as their gap from the winner increases, and the set Hr+1 shrinks. Finally,

in the reached equilibrium all strategic voters vote for their best possible

winners in Hr+1. Furthermore, if the truthful state is not an equilibrium,

voters will not vote for one of the Hr+1 only if the gap between the winner

and the runner-up is exactly r+1, and these voters prefer the current winner.

Furthermore, note that the gap between the winner and the runner up can

never grow larger than r + 1:

1In Meir et al. [159] we show some conditions and constraints under which parallel

updates may be permissible. But we focus her on the more general results of the one-by-

one iterative mechanism.
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Observation 5.1. When using plurality with linear-ordered tie-breaking, and

when all voters use local dominance strategy and have the same radius r, if

the initial state was one when all voters were truthful, either this situation is

stable or in every state bt we have |Hr+1(bt)| > 1. Also, in the stable state

either |Hr| = 1 or all voters vote for possible winners. Any voter voting for

c /∈ Hr+1 prefers the winner in the stable state over any other candidate in

Hr+1.

(Proof is in Appendix A)

5.4 Truth-Bias and Lazy-Bias

For truth-biased and lazy-biased voters, we show, as with the regular case,

that convergence is still guaranteed:

Theorem 5.2. When using plurality with linear-ordered tie-breaking, and

when all voters use local dominance strategy and are truth-biased with the

same radii (r, k), if the initial state was one when all voters were truthful,

the iterative process converges to a stable state.

(Proof is in Appendix A)

Theorem 5.3. When using plurality with linear-ordered tie-breaking, and

when all voters use local dominance strategy and are lazy-biased with the

same radii (r, k), if the initial state was one when all voters were truthful,

the iterative process converges to a stable state.

(Proof is in Appendix A)

5.5 Simulation Results

The diversity of the various voter distributions examined, the multiple strate-

gies considered, the multiple variables collected and the sheer modularity

of the framework, make these simulations particularly worthwhile, and set
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them apart from previous attempts at better understanding elections via

simulations. However, due to lack of space, the explanation of these is in

Appendix D. We present the main results below.

The most striking result of our simulations, in a sense, was finding how

the structure of almost all results resembled one another. When looking at

the effects of changing the radius has on various properties (e.g., number of

steps to convergence, share of stable states where the winner is the Condorcet

winner, etc.), most properties have a similar form: the property increases as

the radius grows, until it reaches “peak r”, from which it slowly descends.

This “peak r” value is generally similar between elections with the same

distribution and the same number of voters, while the amplitude (e.g., the

actual number of steps to converge in peak r) has to do with the number

of candidates, as can be seen in Figure 5.5. The reason for this shape is

due to the small number of manipulations that occur with a very large ra-

dius, as each candidate has a chance of winning, and therefore voters rarely

deviate from their truthful preference. Similarly, with a very small radius

opportunities for manipulations are few, and therefore only few steps occur.

This type of structure also helps us to find related variables in some

distributions. For example, in the 2-urn model, the share of the two top

candidates (Figure 5.5) displays similar peak r to that of the number of

steps it takes to reach a stable state (Figure 5.1).

We cannot, of course, include all of our results in this space, but we point

out certain observations, and some of the simulation data backing it up.

Winner Quality

While Placket-Luce distributions have a ground truth, so results can be com-

pared to it, other distributions do not. Therefore, we try various different

measures to see how changing the radius affects various different measures

approximating a “good” winner. We examine the ratio of Condorcet winners,

and try to approximate social welfare using the Borda score (Figure 5.3), and

seeing how common it is for the winner with the highest social welfare (i.e.,
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Figure 5.1: A 2-Urn distribution, showing the average number of steps it

takes to reach a stable state depending on the value of r. Note the similar

peak r values to those in Figure 5.5.

Borda winner) to be the outcome of a local dominance dynamic (Figure 5.4).

The pattern of a growing radius (up to peak r) resulting in better winners ap-

pears over and over, in various distributions and properties. That is, allowing

greater manipulation by voters results in better, high quality, winners.

Note in particular the single-peaked results (Figure 5.2), as in the single

peaked distribution there is always a Condorcet winner (the median candi-

date), which is more commonly the outcome of a local dominance dynamic

as r grows (up to peak r).

Duverger Law

“Duverger law”, nicknamed after Maurice Duverger [88], is a political-science

observation on how plurality elections tend to strengthen the two top can-

didates over all others. Indeed, in our simulations, the strengthening of the

two top candidates as r grows is observable in many distributions (not only

in the urn models, which are naturally more susceptible to this property): in

all distribution the share of the two top candidates in peak r is above 75%
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Figure 5.2: The average of the share of stable situations in which the winner

was the Condorcet winners in the single-peaked distribution (where there are

always Condorcet winners).
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distribution. Note that this uses a reverse Borda score, akin to social welfare,
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Figure 5.4: The average of the share of stable situations in which the winner

was the truthful Borda winner in the uniform distribution.

(Figure 5.5).

5.6 Summary

We have presented and discussed the model of local dominance in this chap-

ter. This including setting the concept of locality, using a metric definition

on the different possible states of a game (for us, using changed votes), and

choosing a strategy for the voter to follow in the set of limited, local states it

is considering – dominance. We then introduced into this model the dynamic

of iterative voting (shown in Chapter 4), with the intention of examining the

stable states reachable from a truthful starting position.

We were able to show that if voters are homogenous (e.g., with the same

radius), convergence to a stable state is guaranteed, and this includes the

case where all voters are truth-biased or lazy-biased. Therefore, we know we

can always look at the set of reachable stable states from a truthful starting

point.

Using this information, we examined multiple simulations of voting sce-
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candidates, depending on the value of r, showing that near peak r we get

results exhibiting Duverger’s law. Note that the peaks are reached in similar

values for the same voters number.

narios, using various voter preference distribution models,2 and saw real-

world phenomena, such as Duverger’s law, in the simulation data. We were

further able to characterize the way manipulation varied with different radii:

in most cases, as the radius increases, manipulation grew and grew, and the

quality of the winners grew as well (higher social welfare, more Condorcet

winners, etc.), until reaching a peak at some value of the radius (“peak r”),

which depended on the number of voters, not candidates, and from that

point all these variables point downward to the truthful state (when the

radius equals the number of voters).

2The simulation code was released to the research community.
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But much the commoner type of success in

every walk of life and in every species of

effort is that which comes to the man who

differs from his fellows not by the kind of

quality which he possesses but by the degree

of development which he has given that

quality. . .

It is the only kind of success that is open to

most of us. Yet some of the greatest

successes in history have been those of

this. . . class

Theodore Roosevelt, An AutobiographyChapter 6

All-Pay Auction Overview &

Preliminaries

Auctions, as a mechanism of allocating indivisible goods, have been used

in the ancient world in various roles, such as allocating spoils of war [133].

However, they gained a much more prominent role since the 17th century,

starting in Europe, as numerous items began to be sold in auctions, perhaps

as a result of the growth in global trade, bringing various items of limited

quantity which were not widely enough available for regular pricing to be

used. The most common auction is the first-price auction, in which the

winner is the bidder with the highest bid, which the winner pays to the

auctioneer.

All-pay auctions, on the other hand, are not commonly used as a practical

auction mechanism. As in first-price auctions, the winner is the bidder with

the highest bid, but unlike other auctions, in all-pay auctions, all bidders

pay their bid – regardless if they win or not. These type of auctions are still

a way to allocate goods, but they model a real-world process, rather than

suggest a mechanism to divide, for example, presents between siblings. All-

pay auctions model the process in which multiple contestants are putting in

effort to reach a goal, but only the first to reach it will gain it – a “winner

takes all” situation. For example, employees putting in effort to receive a

71
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bonus that is given only to the best-performing employee (“employee of the

month”), or pharmaceutical companies trying to develop a drug put in effort

(their “bid”, for example, in weekly hours allocated to the project), but,

ultimately, only the first one to patent the medication will reap the benefit

of its effort, while for the rest, the effort turns out to be futile.

Furthermore, the online market for services that has matured in the past

decade, turns out to have even more use for all-pay auctions. As crowdsourc-

ing flourishes, many of these markets are applying de-facto all-pay auctions.

The Netflix challenge [57], for example, in which a million dollars was offered

to the best movie recommendation algorithm, is, in effect, an all-pay auction,

in which various research groups put in effort (which they did not get back

if they lost), in the hope of developing the best algorithm. More systemat-

ically, sites like Topcoder (http://www.topcoder.com)[138] and CodeChef

(http://www.codechef.com) are employing this type of mechanism in order

to assign projects to appropriate workers.

The problem with all-pay auctions is that, prima facie, they should not

exist. A game-analytic analysis of them [55, 56], as was done with other

auctions, indicates the Nash equilibria of the auctions results in an expected

utility of zero for the bidders. In other words, participants are increasing

their variance for no expected gain at all. As people are notoriously risk

averse [124] they would prefer not to participate in such an endeavor.1

In order to approach this problem, we enriched the model of the bidders

in our analysis. First, we allowed them to interact with each other and coop-

1Note that all-pay auctions are not like lotteries. First, winning in lotteries is not

determined by effort (or bid). While investing more in buying lottery tickets may increase

one’s probability of winning, buying more than other people will still not guarantee victory.

Moreover, buying one lottery ticket for low sum, one has a chance to win even when there

are many other people buying large amount of tickets – their purchases do not even decrease

one’s chances of winning at all. Second, in all-pay auctions, companies and rational actors

are participating for a long time, without going break – pharmaceuticals are mostly active

only in all-pay auctions, and still do not go broke, which seems to indicate a positive

expected profit.

http://www.topcoder.com
http://www.codechef.com
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erate. We examine both mergers (publicly joining together) and collusions

(covertly joining together), and examine the Nash equilibria in this situation,

showing that while mergers are pretty useless, collusions are quite profitable

for the colluders. Somewhat surprisingly, we show that in some cases (when

the number of colluders is large), the collusion leaves the other bidders – who

were purposely left in the dark about it – better off! The auctioneers, on the

other hand, lose in such cases, though when the number of bidders is small,

they are better off than without them.

Following that, we look at the common online scenario in which the par-

ticipation of bidders is not guaranteed. Assuming bidders have some proba-

bility of participating in a particular bid, we see that the expected value for

the participating bidders becomes positive, encouraging their participation.

6.1 Preliminaries and Definitions

Our model is a fundamentally a simple one. We handle all-pay auctions with

a single auctioned item that is valued by all participants with the same value.

Thanks to Baye et al. [56] and Hillman and Riley [115], we know that we

do not need to consider participants with different values, as if there is more

than one bidder with the maximal valuation for the items, all those with a

different valuation bid 0, and that otherwise, the bidder with the maximal

valuation behaves as if its maximal valuation is the 2nd highest (and all those

with a lower item valuation, once again, bid 0).

In most cases, we will look into the symmetric equilibrium, as it is not

only unique, but as all bidders have a similar valuation, there is no need to

assume otherwise.

Formally, each of the n bidders issues a bid of bi, 1 ≤ i ≤ n, and all

bidders value the item at 1. The highest bidders win the item and divide it

among themselves, while the rest lose their bid. Thus, bidder i’s utility from

a combination of bids {b1, . . . , bn} is given by:
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πi(b1, . . . , bn) =


1

| arg max
j
bj | − bi bi ∈ arg max

j
bj

−bi bi /∈ arg max
j
bj

The symmetric equilibrium is a mixed equilibrium with full support on

[0, 1], so that each bidder’s bid is distributed in [0, 1] according to the same

cumulative distribution function F , with the density function f (shown to

uniquely exist in [56, 151]). As the bids are distributed in a continuous

range, with a non-atomic distribution, we do not need to address cases of

ties between them.

When there are no colluders, the setting is similar to one considered in

[56, 104, 83], where various results on behavior of non-cooperating bidders

have been provided. To enable us to evaluate the effect of mergers and

collusion on the auction, we build on this previous analysis, which we briefly

overview below.

6.1.1 Bids

With no colluders at all, the expected utility of any participant with a bid b

is:

π(b) = (1− b) · Pr(winning | b) + (−b) · Pr(losing | b)

where Pr(winning | b) and Pr(losing | b) are the probabilities of winning

or losing the item when bidding b, respectively. In a symmetric equilibrium

with n players, each of the bidders chooses their bid from a single bid distribu-

tion with a probability density function fn(x) and a cumulative distribution

function Fn(x). A player bidding b will only win if all other n−1 players bid

at most b, which occurs with probability F n−1
n (b). Thus, the expected utility

of a player bidding b is given by:

π(b) = (1− b)F n−1
n (b)− b(1− F n−1

n (b)) = F n−1
n (b)− b
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In a mixed Nash equilibrium, all points in the support yield the same

expected utility to a player, so we have π(x) = π(y) for all x, y in the support.

For an equilibrium with full support, this yields π(0) = π(x) for all x ∈ [0, 1].

Since π(0) = 0, this means that for all bids, F n−1
n (b) = b. Hence, we have

F n−1
n (b) = (

b∫
0

fn(x)dx)n−1 = b, implying that Fn(x) = x
1

n−1 and fn(x) =

x
2−n
n−1

n−1
. Therefore, the expected bid is:

E(bid) =

1∫
0

x · x
2−n
n−1

n− 1
dx =

1

n− 1

1∫
0

x
1

n−1 dx =
1

n− 1
· n− 1

n
x

n
n−1

∣∣∣∣1
0

=
1

n

The bid’s variance is hence:

V ar(bid) =

1∫
0

x2 · x
2−n
n−1

n− 1
dx− 1

n2
=

1

n− 1

1∫
0

x
n

n−1 dx− 1

n2
=

=
1

n− 1
· n− 1

2n− 1
x

2n−1
n−1

∣∣∣∣1
0

− 1

n2
=

1

2n− 1
− 1

n2

That is, both the expected bid and the bid’s variance monotonically de-

crease with n.

6.1.2 Bidders

Given the expected bids, we now more closely examine the profits of the

bidders. A bidder’s profit (BP) is characterized by the probabilistic density

function (p.d.f.) gBP below:

gBP (z) =

fn(1− z)F n−1
n (1− z) z > 0

fn(−z)(1− F n−1
n (−z)) z ≤ 0

This gives the expected bidder’s profit of:
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E(BP ) =

1∫
−1

zg(z) dz =

0∫
−1

z
1

n− 1
(−z)

2−n
n−1 (1 + z) dz+

+

1∫
0

z
1

n− 1
(1− z)

2−n
n−1 (1− z) dz =

= − 1

n
+

1

2n− 1
− 1− n
n(2n− 1)

= 0

The bidders’ profit also has the following variance:

V ar(BP ) = E(z2)− E2(z) = E(z2)− 0 =

1∫
−1

z2g(z) dz =

=

0∫
−1

z2 1

n− 1
(−z)

2−n
n−1 (1 + z) dz+

+

1∫
0

z2 1

n− 1
z

2−n
n−1 (1− z) dz =

=
3n2 − 5n+ 2

n(2n− 1)(3n− 2)

Differentiating the above gives −2n2+4n−1
(1−2n)2n2 , which is negative for all n ≥ 2,

so the variance in the bidders’ profit decreases as the number of bidders

increases.

6.1.3 Auctioneers

We consider two types of auctioneers:

Sum-profit The auctioneer receives all the money paid into the system, i.e.,

all of the bids. Such an auctioneer can be seen in the Netflix challenge,

where the company could incorporate ideas from projects that did not

win, but perhaps included a novel approach.
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Max-profit The auctioneer receives only the money paid by the winner –

the winning bid. Our pharmaceutical example above is such a case

– there is no increase to the public benefit by the parallel efforts to

develop the same drug.

As the expected profit of all bidders is zero, the auctioneer’s profit (AP)

is equal to the total social welfare of the auction.

In the sum-profit model the auctioneer retains all the bids so its expected

profit is simply the sum of expected bids:

E(AP ) =
n∑
i=1

E(bid) =
n∑
i=1

1

n
= 1

In this case, the variance in the auctioneer’s utility equals V ar(AP ) =
n

2n−1
− 1

n
, monotonically increasing in n.

In contrast, in the max-profit model the auctioneer’s utility is only the

maximal bid, which has the following cumulative distribution function (c.d.f.)GAP :

GAP (z) =

F n
n (z) = z

n
n−1 z > 0

0 z ≤ 0

The expected profit is then given by:

E(AP ) =

1∫
0

(1− z
n

n−1 ) dz =
n

2n− 1

This expression is monotonically decreasing in n. Notice that this value

always exceeds 1
2
, so the auctioneer expects to receive more utility from the

auction than the utility obtained by all the winners together (as the total

value of the item is 1). To find the variance we note that E(AP 2) = n
3n−2

.

Thus, the variance for the max-profit auctioneer is:

V ar(AP ) =
n

3n− 2
− (

n

2n− 1
)2 =

n(n− 1)2

(3n− 2)(2n− 1)2

This expression increases with n, as was the case with the sum-profit

auctioneer.
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Variable Naive approach

Expected bid 1
n

[Variance] [ 1
2n−1

− 1
n2 ]

Bidder utility 0

[Variance] [ n−1
n(2n−1)

]

Sum-profit auctioneer utility 1

[Variance] [ n
2n−1

− 1
n
]

Max-profit auctioneer utility n
2n−1

[Variance] [ n(n−1)2

(3n−2)(2n−1)2
]

Table 6.1: The values, in expectation, of some of the variables when there is

no possibility of failure or collusion.



Chapter 7

Come Together: Mergers and

Collusions in All-Pay Auctions

7.1 Introduction

All-pay auctions, despite modeling obvious real-world scenarios, have been

somewhat marginalized in the vast research on auctions which flourished in

the past 20 years. This stems, at least partially, from what seems to be its

fundamental property: the expected profit for a bidder is zero, hence there

is no good reason to participate in such a mechanism.

However, the real-world manifestations of the all-pay auction indicate

this naive analysis might be flawed, and that such an analysis ignores at

least some of the properties that make all-pay auctions a worthwhile activity

to their bidders. Instead, we strive to find a richer model for the participants

behavior, that is capable of explaining it.

One such path is including in the model one of the most fundamental

human properties: cooperation. That is, allowing bidders to pool their re-

sources and join together in a joint bid.1 Such cooperation could be public

1We do not discuss the division of utility between them, and that is more applicable to

transferable utility games, in cooperative game theory, which is more widely discussed in

Chapter 10.
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and well known to other participants (a merger), or it could be concealed

and hidden, known only to the collaborators (a collusion).

Once we allow bidders to collude, the structure of the auction outcome

becomes radically different. We analyze what happens with a single group

of merged/colluding bidders, and show its effects on the colluders, the other

bidders, and the auctioneers (both types of them). We emphasize how the

number of colluders has a significant effect on the fortunes of the other bidders

and the auctioneers.

We then continue to explore settings which include multiple colluding

groups, and show the expected outcomes, as well as analyzing what structure

of collusion should auctioneers strive to achieve (naturally, the actual ability

of the auctioneer to “engineer” such a structure depends on the particular

real-world setting the auction is a part of). In both parts we reach results

that indicate settings that encourage participation by bidders, as long as

they are aware of the possibility of collusion (even if they are not colluders

themselves).

7.1.1 Related Work

Research into all-pay auctions originated in political science, dealing with

lobbying [115, 55], but much of the analysis (especially dealing with the Rev-

enue Equivalence Theorem) is found in auction theory studies [133, 131]. In

auctions where the winner is the bidder with highest bid, Maskin and Ri-

ley [151] showed that when bidders have the same value distribution for an

item, there is a symmetric equilibrium. A prominent study of all-pay auctions

in full information settings is Baye et al, [56], showing how most valuations –

apart from the top two – are irrelevant to the analysis of the winner, and (us-

ing [115]), showing that in most cases, the possible equilibria are those with

full support on the range from 0 to the highest (or second highest) valuation;

when all players have the same valuation, a full support is the only sym-

metric equilibria possible. That work does not deal with cooperation among

players, but helps validate our choice of focusing on full-support equilibria.
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There has also been some work assuming bidders’ valuation is not fixed and

public knowledge, but rather is sampled from a distribution. While the case

of 2 bidders has been examined in this method [10], the general family of

Nash equilibria has yet to be fully characterized in this setting. However,

there are advances in this direction: Showing the existence of equilibria in

particular settings and conditions [134, 15], and showing behavior in setting

with enforced caps on bids [108].

More recent work has extended the basic model, focusing on its applica-

bility to crowdsourcing. DiPalantino and Vojnović [83] detailed the issues

stemming from needing to choose one auction from several, and Chawla et

al. [70] dealt with optimal mechanisms for crowdsourcing. Using both theo-

retical and empirical tools, Gao et al. [104] examined whether several stages

were better for crowdsourcing, while Archak and Sundararajan [13] addressed

issues on designing the award of the crowdsourcing contest.

Collusions in auctions (nicknamed “bidding rings”) were examined in the

auction theory literature, differentiating between second-price and first-price

auctions, due to their different ability to “self-police” each bid [133, 131,

150, 32, 22, 60, 50]. Focusing more on mergers, a model of mergers with full

information was proposed in Huck et al. [119] for many auctions, including

auctions where each bidder makes an investment and the gains are divided

among the bidders. It explores various auction models in which there are no

single winners, but rather profits are distributed among the players according

to their investment relative to the others. It shows that mergers, in many

domains (e.g., when there is a marked benefit to be the top bidder), are

profitable for their participants, while when there is no significant benefit to

being the maximal bidder, mergers may still be beneficial, but players do

not coalesce around a single bid, but rather divide their resources among

them. In this setting the only first-price auction is an all-pay one, and due

to its full information assumptions, that work dismisses all-pay auctions as

uninteresting, since the bidders’ profit is always zero.

A recent paper models auction collusion using voting techniques [132].
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There, bidders prefer some of the adversaries winning over other adversaries,

and so collude with them. Work on partial information in auction collusions

is somewhat limited and focuses on the auctioneer’s ignorance rather than

on bidders hiding information from one another (e.g. [98, 1]). It neither deals

with all-pay auctions, nor with rival groups of colluders.

7.2 Mergers

Consider the case where k out of n bidders work together, and do not hide

their cooperation from the remaining participants. These bidders coordinate

their behavior, and can thus be thought of as a single player, whose strategy

space is the cartesian product of the strategy space of the coordinating agents.

We refer to this player as the “merged player” representing the coordinating

players, and refer to the remaining non-merged players as the “singleton

players”. In the Nash equilibrium, the joint player best responds to the

strategies of the non-merged players, and the strategy of singleton players is

the best response to the other singleton players and the merged player.

As noted earlier, only the largest submission wins the auction, so the

merged player would be wasting its effort if the agents composing it were

to make more than one bid. Therefore, since the merging players would

only make a single submission (using one of the identities of the merging

players), we may consider the joint player as a single bidder, and examine

the equilibrium in the resulting game.

The utility of the “merged” player follows that of a single bidder. There-

fore, we are essentially seeking a Nash equilibrium for n − k + 1 bidders,

as the merging group would bid using a mixed strategy with full support.

The resulting equilibrium is thus equivalent to the equilibrium of the auc-

tion with no mergers, but with fewer players. It follows immediately from

the analysis of the setting with no mergers that the expected profit for each

bidder in this equilibrium would remain zero, that the variance would grow

(as it is monotonically decreasing in the number of bidders), and that the
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expected bid would grow to 1
n−k+1

. In broad terms, this means that for non-

merging players, if they win the auction, they would have a lower utility than

previously, and if they lose, they would lose more (as the bids get higher).

However, the chances of winning do increase, due to the lower number of

actual participants.

The auctioneer’s profit in the sum-profit model would not change, as the

total sum of bids is still 1. However, in the max-profit model, the auctioneer’s

expected profit (and the social welfare) will increase, while its variance will

drop.

7.3 Collusions

We now analyze the setting with colluding bidders, where the other players

are not aware of their collaboration. We first focus on the case with a fixed

number of colluders, and then show how the utility of each member depends

on the size of a coalition. Finally, we examine the effect of collusion on the

profit of the auctioneer and the social welfare.

In a sense, the analysis of collusions is a short term analysis rather than an

analysis of player behavior in equilibrium. In a merger of players in an auction

(be it an all-pay auction or any other auction), the collaboration is known

to the other players. In contrast, the unfair advantage of colluding players

stems from other players being unaware of this cooperation; in other words,

the non-colluders are not best-responding to the colluders’ bids. Hence, in

a set of repeating auctions, other bidders might be able to figure out the

existence of the collusion.

In this short term, the non-colluders believe that all bidders are oper-

ating independently, so they expect all bidders to behave according to the

symmetric equilibrium. The colluders can capitalize on this behavior of the

non-colluders and improve their utility. As the interaction repeats in further

auctions, more and more non-colluders may become aware of the agreement

between the colluders. Later, we consider possible reactions of the non-
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colluders as they become aware of collusion. Once all the non-colluders gain

knowledge of the agreement between the collaborating agents, the collusion

becomes equivalent to mergers, analyzed above.

7.3.1 A Single Group of Colluders

Suppose we have k colluders out of n bidders, and that the remaining players

are not aware of the collusion. Hence, we expect the other bidders to play

according to the symmetric equilibrium. When the colluders submit a single

bid b, they win if all the other n − k bids are at most b and lose otherwise,

so their total utility is:

π(b) = (1− b)F n−k
n (b)− b(1− F n−k

n (b)) = b
n−k
n−1 − b

The variance for a fixed bid b is:

V ar(b) = (1− b− (b
n−k
n−1 − b))2F n−k

n (b)+

+ (−b− (b
n−k
n−1 − b))2(1− F n−k

n (b)) =

= b
n−k
n−1 − b

2(n−k)
n−1

To find the optimal utility we examine the bid where the derivative is 0:

π′(b) =
n− k
n− 1

b
1−k
n−1 − 1 = 0

This implies b
1−k
n−1 = n−1

n−k , yielding the optimal bid:

b∗ = (
n− k
n− 1

)
n−1
k−1

To see how this may affect the profits of participants in the auction,

consider the following example.

Example 7.1. In the non-collusion setting, in an auction with two bidders

the equilibrium bids are drawn from a distribution with the p.d.f. f2(x) = 1,

and the expected bid is 1
2
. If there are 3 participants, the bids are distributed
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according to the c.d.f. F3(x) =
√
x, with the expected bid of 1

3
. The auc-

tioneer’s expected profit in the sum-profit model is 1, while in the max-profit

model with 3 bidders it is 3
5
.

However, if 2 of these 3 bidders collude, our results show they should bid
1
4
, which gives the colluders the expected profit of 1

4
, while the outsider has the

expected loss of 1
6
. The auctioneer’s expected profit decreases in both models:

in the sum-profit model it drops from 1 to 7
12

and in the max-profit model

from 3
5

to 1
4
F3(1

4
) +

1∫
1
4

bf3(b) db = 10
24
< 3

5
.

It is quite intuitive that the fewer the bidders that are left outside the

coalition, the easier it is for colluders to out-bid them. We formally show

this.

Lemma 7.1. The colluders’ bid monotonically decreases with k, and mono-

tonically increases with n, up to 1
e
.

(Proof is in Appendix B)

However, even if the collaborators optimize their bid accordingly, the

number of outsiders still has a negative effect on their expected utility.

Lemma 7.2. The colluders’ expected profit decreases with n and increases

with k.

(Proof is in Appendix B)

7.3.2 Optimal Number of Colluders

We now show that not only does the overall utility of colluders increase with

the size of their group, the individual share of each member also grows. This

convexity implies that colluders have strong incentives to invite more players

to take part in collusion.

Theorem 7.1. The expected profit per colluder increases with k.
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(Proof is in Appendix B)

Hence, the colluders would seek to increase their numbers as much as

possible. Next, we explore the effect of collusion on the auctioneer’s profit

and the social welfare. We show that this effect can be either positive or

negative, depending on the number of colluders and the total number of

bidders.

7.3.3 Auctioneer’s Profits

We now show that if the total number of auction participants is large enough,

collusion may be beneficial to the auctioneer in both the sum-profit model

and the max-profit model.

Theorem 7.2. In the setting with k colluders, the expected auctioneer utility

is n−k
n

+ (n−k
n−1

)
n−1
k−1 in the sum-profit model and n−k

2n−k−1
(1 + n−k

n−1
)
2(n−k)
k−1 in the

max-profit model. The profit in both models decreases in the number of col-

luders and increases in the total number of participants. For sufficiently large

n, they exceed the corresponding auctioneer’s utilities in the setting without

collusion.

(Proof is in Appendix B)

7.3.4 Social Welfare

We now analyze social welfare in the setting with colluders. To this end, we

need to calculate the expected profits of the non-colluders. Surprisingly, as

the following theorem shows, in some cases they may even benefit from other

players colluding. Overall, however, the presence of colluders does not affect

the social welfare in the sum-profit model, and may have either a positive or

a negative effect in the max-profit model, depending on the parameters of

the setting.

Theorem 7.3. The social welfare in the sum-profit model does not change

due to collusion. In the max-profit model, the presence of colluders may have
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different effects on the social welfare, depending on the relation between the

number of colluders and the total number of participants. In particular, the

social welfare drops for settings with many participants.

(Proof is in Appendix B)

7.3.5 Other Equilibria

Our previous analysis examines the symmetric equilibrium to the all-pay

auction described in the previous chapter. However, this setting also admits

asymmetric equilibria [56], where at least two players have a non-atomic dis-

tribution on [0, 1], while the rest of the players have a non-atomic distribution

– each player i has a 0 ≤ bi ≤ 1, and has a distribution on [bi, 1] which is the

same distribution on this interval as all other players (i.e., the same p.d.f.),

with the rest of the probability mass concentrated at 0.2 In the asymmetric

case the expected player profit remains 0, and sum of bids remains 1.

We believe the symmetric equilibrium is by far the most likely to occur

and thus more sensible to investigate, due to the symmetry between players

in most practical settings. However, we would like to note that it is also

possible to study the asymmetric case along the same lines of our analysis

regarding the symmetric case.

In more detail, the analysis for mergers changes very little, as mergers

will just result in a different equilibrium of fewer players, depending on the

preferences of the merged players and the equilibrium structure (e.g., if the

players with the non-atomic distribution on [0, 1] merge, another player needs

to “switch” to that distribution). The analysis of collusion becomes more

elaborate. As the distribution remains the same (over the intervals) for all

players, our analysis indicates that the profit from collusion is greater than

or equal to the symmetric case for every bid, with the difference from the

symmetric case being more significant for lower bids. Thus, the optimal bid of

2There are no equilibria other than the symmetric one and asymmetric equilibria taking

this form.
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the colluders in the asymmetric case is generally lower than in the symmetric

case. This effect is more pronounced when there are many “cautious” bidders

(i.e., those with a high bi). Furthermore, the effects of increasing k and n on

the bid remain the same as in the symmetric scenario (though the effects on

colluders’ profits are smaller).

Considering players that have valuations below 1, which bid 0 in a set-

ting without collusions, this situation does not change if they try to collude

together. Of course, they can join an existing collusion ring, and, depending

on the allocation mechanism between colluders, the value of winning may

be below 1, which would slightly change, for example, the expression of the

optimal bid. However, the effect depends on the participation of the players

with valuation of 1, and therefore the effects of collusion remain exactly the

same as without lower valuation participants.

7.4 Response To Collusion

The previous section examined the collusion’s direct impact, where non-

colluders continue behaving as the symmetric equilibrium prescribes (which

is sub-optimal in the presence of colluders). This approach is justified by

the fact that this symmetric equilibrium is a mixed one, so collusion may

be difficult to detect. However, after many interactions, non-colluders may

notice their winning rate is different from what they would expect under the

symmetric equilibrium, and suspect foul play. How would they respond to

the colluding coalition? Would it make sense to collaborate with other par-

ticipants and play jointly against the colluders? In this section we consider

two scenarios: where there exists a single player who is aware of collusion,

and where several colluding coalitions are possible.

7.4.1 A Player Aware Of Collusion

If one of the players becomes aware of k other bidders colluding, they would

never submit a non-zero bid below the colluders’ bid b∗(k), as they would
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lose and get a negative utility. They would rather respond by either bidding

0 (thus obtaining zero utility), or placing a bid b which is higher than b∗(k).

In the latter case, the expected profit is:

π(b) =(1− b)F n−k−1
n (b)− b(1− F n−k−1

n (b)) = b
n−k−1
n−1 − b

This is always positive (since b ≤ 1 and n−k−1
n−1

< 1), so it is always

beneficial to bid above b∗(k) rather than 0. As the optimal bid for k + 1

colluders is b∗(k+1), which according to Lemma 7.1 is smaller than b∗(k), the

best bid for the responder is the smallest possible value above b∗(k). Having

a larger bid is less profitable, as the bidder’s expected profit is monotonically

decreasing in k in the interval k > b∗(k).

Now, since this bid is larger than 1
n
, this means that in the sum-profit

model, it is beneficial for the auctioneer to expose the existence of a collusion

ring to some players. Similarly, in the max-profit model, the expected profit

grows (especially when k is significantly smaller than n), making the leak

profitable to this auctioneer type as well.

7.4.2 Several Groups Of Colluders

If there are several groups of colluders that are not aware of one another,

each would bid its optimal value as prescribed by the previous analysis.

By Lemma 7.1, this bid decreases with the size of a coalition, and so the

smallest coalition would outbid the others and get positive (though sub-

optimal) expected utility. Indeed, suppose there are m colluder groups, each

with ki colluders, and let kmin = min{k1, k2, . . . , km}. The expected profit of

the smallest (winning) coalition is

(
n− kmin
n− 1

)
n−1

kmin−1
·n−

∑m
i=1 ki+m−1

n−1 − (
n− kmin
n− 1

)
n−1

kmin−1

= (
n− kmin
n− 1

)
n−

∑m
i=1 ki+m−1

kmin−1 − (
n− kmin
n− 1

)
n−1

kmin−1
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As the bids are larger with a smaller number of colluders, the auctioneer

prefers several small groups of colluders over a single big one. If kmin is

large enough, it becomes worthwhile for a sum-profit auctioneer to uncover

collusion rings and publicize them. Similarly, for a max-profit auctioneer,

it may be worthwhile to expose the collusions (even more so than for the

sum-profit one). For example, for n > 6, the sum-profit auctioneer would

rather divide the bidders into pairs. However, for the max-profit auctioneer,

it is never profitable to have all bidders be colluders. As the maximal bid of

colluders is 1
e

(by Lemma 7.1), and its expected profit without them is above
1
2
, the max-profit auctioneer “needs” non-colluders to increase its expected

profit.

7.5 Summary

In this chapter we gave an potential answer to the basic question of why

people and groups bother participating in all-pay auctions, as, ostensibly,

their expected profit is zero. In this work we suggested that while publicly

cooperating (mergers) does not help them, cooperating covertly (collusion)

does not only make it worthwhile for the colluders to participate, but in

cases where there is a large colluder ring, it induces a positive outcome for

the non-colluder as well (hence, they would be worst-off should they learn of

the collusion). Quite naturally, the effect on the auctioneers is a mirror image

of the effect on the non-colluders: when the non-colluders are benefiting from

the collusion, the auctioneers are worst off, and the auctioneers are benefiting

from the collusion when the non-colluders are losing. The numerical results

of this part are summarized in Table 7.1.

However, beyond the case of a one-off auction collusion, we are inter-

ested to see what happens when participants may suspect collusion (for ex-

ample, due to their past experience). We find what the strategies of the

non-colluding bidders should be. We also show that in a setting of mul-

tiple colluders, the large collusion groups are in danger from smaller ones,
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Variable No cooperation Mergers Collusion

Expected bid 1
n

1
n−k+1

↑ colluders: (n−k
n−1

)
n−1
k−1 ↓ [0]

[ Variance] [ 1
2n−1

− 1
n2 ] [ 1

2(n−k+1)−1
− 1

(n−k+1)2
] ↑ non-colluders: 1

n
[ 1
2n−1

− 1
n2 ]

Bidder utility 0 0 colluders: (n−k
n−1

)
n−1
k−1 ( k−1

n−1
) ↑

[ Variance] [ 3n2−5n+2
n(2n−1)(3n−2)

] [ 3(n−k+1)2−5(n−k+1)+2
(n−k+1)(2(n−k+1)−1)(3(n−k+1)−2)

] ↑ [(n−k
n−1

)
n−k
k−1 − (n−k

n−1
)
2(n−k)
k−1 ]

non-colluders:
k−n(n−k

n−1
)
n−k
k−1

n(n−k)

Sum-profit principal utility 1 1 n−k
n

+ (n−k
n−1

)
n−1
k−1

[ Variance] [ n
2n−1

− 1
n
] [ n−k+1

2n−2k+1
− 1

n−k+1
] ↓

Max-profit principal utility n
2n−1

n−k+1
2n−2k+1

↑ n−k
2n−k−1

(1 + (n−k
n−1

)
2(n−k)
k−1 )

[ Variance] [ n(n−1)2

(3n−2)(2n−1)2
] [ (n−k+1)(n−k)2

(3n−3k+1)(2n−2k+1)2
] ↓

Table 7.1: The values, in expectation, of some of the variables in a non-

cooperative setting, when k members merged, and when k members are col-

luding. Arrows indicate monotonicity of expression, as k grows.

as these will bid higher than them. For auctioneers, we find they should

strive to have small collusion groups, which would improve their situation

significantly (particularly for sum-profit auctioneer).
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Chapter 8

“Showing Up is 80% of Life”:

Participation in All-Pay

Auctions

8.1 Introduction

Despite the usefulness of all-pay auctions as a model for real-life scenarios, in

which much effort is expended to prepare a bid but only one option is selected

(e.g., defense projects’ competitions, pharmaceuticals chasing patents, etc.)

they have not been a relatively widely explored mechanism. This stems, as

mentioned in the previous chapters, from their basic analysis, that seems to

indicate that the expected profit in such auctions is zero.

The continued existence of all-pay auctions indicates their participants

do consider them to be a useful mechanism, so we need to examine our

analysis. In Chapter 7 we tried to consider collusions as a method by which

participants are able to have a positive utility from all-pay auctions. Here,

we suggest a different approach to this same quandary.

Common all-pay auctions today exist online, in sites such as TopCoder [138]

and TopChef. One of the distinctive properties of such online auctions is that

participants do not know exactly whether all potential participants will ac-

93
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tually take part in the auction. Some may drop out early, others may be to

busy, etc. In any case, when the bidders make their bid, they do not know

who else will participate with them.

More formally, we suggest that each participant has a certain fixed prob-

ability of the auctions it will participate in, which is known to all other

participants – pi. Bidders take this knowledge into account when they for-

mulate their bidding strategy, resulting in different equilibria then those of

the naive models. We also show how this effects the auctioneer, and imply,

therefore, what all parties can do to increase their expected profits.

8.1.1 Related Work

The general research on all-pay auctions has been mentioned in Chapter 7,

so here we will focus on participation.

The early major work on participation in auctions was McAfee and McMil-

lan [154], followed by Matthews [153], which introduced bidders who are not

certain of how many bidders there will actually participate at the auction.

Their analysis showed that in first-price auctions, risk averse bidders pre-

fer to know the numbers, while it is the auctioneer’s interest to hide that

number. In the case of neutral bidders, their model claimed that bidders

were unaffected by the numerical knowledge. Dyer et al. [89] claimed that

experiments that allowed “contingent” bids (i.e., one submits several bids,

depending on the number of actual participants) supported these results.

Menezes and Monteiro [163] presented a model where auction partici-

pants know the maximal number of bidders, but not how many will ul-

timately participate. However, the decision in their case was endogenous

to the bidder, and therefore a reserve price has a significant effect in their

model (though ultimately without change in expected revenue, in comparison

to full-knowledge models). In contrast to that, our model,1 which assumes

a little more information is available to the bidders (they know the maxi-

1We use a framework similar to the one in Meir et al. [162], albeit there it was used in

congestion games.
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mal number of bidders and the probability of failure), finds that in such a

scenario, bidders are better off not having everyone show up, rather than

knowing the real number of contestants appearing. Empirical work done

on actual auctions [148] seems to support some of our theoretical findings

(though not specifically in all-pay auction settings).

8.2 Equilibrium

We assume each bidder has its own probability for participating in the auc-

tion, with 0 ≤ p1 ≤ . . . ≤ pn ≤ 1. We shall now present a symmetric

equilibrium for this case (i.e., assigning the same behavior to agents with the

same participation values), with a positive expected profit for the bidders.

We begin by defining a few helpful functions. First, we define

λ =
n−1∏
j=1

(1− pj)

We also define the following expressions for k ∈ {1, . . . , n− 1}:

Hk(x) =


λ+x∏k−1

j=1 (1−pj)

1
n−k k > 1

(λ+ x)
1

n−1 k = 1

αk =

(1− pk)n−k
∏k−1

j=1(1− pj)− λ k > 1

(1− p1)n−1 − λ k = 1

For the virtual “0” index, we use α0 = 1− λ. Note that because the pis

are ordered, so are the αis: 1 ≥ α0 ≥ α1 ≥ . . . ≥ αn−1 = 0.

We can now define the cumulative distribution functions (c.d.f.s) for our

equilibrium. For every player i ∈ {1, . . . , n− 1}:
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Fi(x) =



1 x ≥ α0

H1(x)+pi−1
pi

x ∈ [α1, α0)
...

...

Hk(x)+pi−1
pi

x ∈ [αk, αk−1)
...

...

Hi(x)+pi−1
pi

x ∈ [αi, αi−1)

0 x < αi

Fn, while very similar to Fn−1 in its piecewise composition, has, uniquely,

an atomic point in the distribution at 0 of 1− pn−1

pn
, so:

Fn(x) =



1 x ≥ α0

H1(x)+pn−1
pn

x ∈ [α1, α0)
...

...

Hk(x)+pn−1
pn

x ∈ [αk, αk−1)
...

...

Hn−1(x)+pn−1
pn

x ∈ (αn−1, αn−2)

1− pn−1

pn
x = 0

0 x < 0

All c.d.f.s are continuous and piecewise differentiable,2 and when pi = pj,

Fi = Fj, making this is a symmetric equilibrium. In the course of proving

this is, indeed, a equilibrium, we shall calculate the expected utility of the

bidders when they participate.

Behind this equilibrium lies the understanding that bidders that rarely

participate will usually bid high, while those that frequently participate in

auctions with less competition would more commonly bid low.

2Note that when
∏k−1

j=1 (1 − pj) = 0 and therefore Hk is undefined for that k, there is

no range for which that Hk is used.
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Theorem 8.1. The Fi presented above are a Nash equilibrium, and each

bidder’s profit is λ.

(Proof is in Appendix B)3

8.3 Profits

In the previous section we saw that when a bidder actually participates its

expected profit is λ, and therefore the overall expected utility for bidder i

is piλ (which, naturally, decreases with n). As is to be expected, a bidder’s

profit rises the less reliable their fellow bidders are, or the fewer participants

the auction has. However, the most reliable of the bidders does not affect the

profits of the rest. If a bidder can set their own participation rate, if there

is no bidder with pj = 1, that is the best strategy; otherwise, its optimal

probability should be 1
2
, as that maximizes pi(1− pi)

∏n−1
j=1;j 6=i(1− pj).

In order to calculate the auctioneer’s profit in a sum-profit model, we

need to calculate the expected bid by each bidder, and for that we need to

calculate the bidders’ probabilistic density function (p.d.f.) For 1 ≤ i ≤ n−1:

fi(x) =



0 x ≥ α0

(λ+x)
2−n
n−1

pi(n−1)
x ∈ [α1, α0)

...
...

(λ+x)
k+1−n
n−k

pi(n−k)(
∏k−1

j=1 (1−pj))
1

n−k
x ∈ [αk, αk−1)

...
...

(λ+x)
i+1−n
n−i

pi(n−i)(
∏i−1

j=1(1−pj))
1

n−i
x ∈ [αi, αi−1)

0 x < αi

and fn(x) = pn−1

pn
fn−1(x).

Using this, we can calculate the expected bid by each bidder, for 1 ≤ i ≤
n− 1:

3Proof also shows that players with valuation lower than 1 will not participate.



98 CHAPTER 8. PARTICIPATION IN ALL-PAY AUCTIONS

E[bidi] =
i∑

k=1

αk−1∫
αk

xfi(x) dx =

=
1

pi
(
1

n
+

i∑
k=1

(1− pk)n−k
∏k

j=1(1− pj)
(n− k)(n− k + 1)

−

−
(1− pi)n−i

∏i
j=1(1− pj)

n− i
− piλ)

and E[bidn] = pn−1

pn
E[bidn−1].

This expression decreases with n, indicating, as in the regular model, that

as more bidders participate, the chance of losing increases, causing bidders

to lower their bids. Surprisingly, when summing over all bidders, we receive

a much simpler expression, and the sum-profit auctioneer’s profits are:

n∑
i=1

piE[bidi] = 1− λ(1 +
n−1∑
i=1

pi)

In this case, growth with n is monotonic, and hence, any addition to n is

a net positive for the sum-profit auctioneer.

To calculate a max-profit auctioneer’s profits, we need to first define the

auctioneer’s c.d.f.:

G(x) =
n∏
i=1

(piFi(x) + 1− pi)

That is,

G(x) =



1 x ≥ α0

(λ+ x)
n

n−1 x ∈ [α1, α0)
...

...

(λ+x)
n−k+1
n−k

(
∏k−1

j=1 (1−pj))
1

n−k
x ∈ [αk, αk−1)

...
...

(λ+x)2∏n−2
j=1 (1−pj)

x ∈ [αn−1, αn−2)

0 x < 0
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This is differentiable, and hence we can find g(x) = d
dx
G(x); looking for

the expected profit, we have:

α0∫
αn−1

xg(x) dx =
n

2n− 1
− λ+

+
n−1∑
k=1

(
(1− pk)2n−2k−1

∏k
j=1(1− pj)2

4(n− k)2 − 1
)

This means that the max-profit auctioneer would prefer to have two re-

liable players (pn = pn−1 = 1), and the other n − 2 bidders as unreliable as

possible.

Example 8.1. Consider how four bidders interact. Our bidders have partic-

ipation probability of p1 = 1
3
, p2 = 1

2
, p3 = 3

4
and p4 = 1. Let us look at each

bidder’s c.d.f.s:

F1(x) =


1 x ≥ 11

12

3( 1
12

+ x)
1
3 − 2 x ∈ [ 23

108
, 11

12
)

0 x < 23
108

F2(x) =



1 x ≥ 11
12

2( 1
12

+ x)
1
3 − 1 x ∈ [ 23

108
, 11

12
)

2(
3( 1

12
+x)

2
)
1
2 − 1 x ∈ [ 1

12
, 23

108
)

0 x < 1
12

F3(x) =



1 x ≥ 11
12

4
3
( 1

12
+ x)

1
3 − 1

3
x ∈ [ 23

108
, 11

12
)

4
3
(

3( 1
12

+x)

2
)
1
2 − 1

3
x ∈ [ 1

12
, 23

108
)

4( 1
12

+ x)− 1
3

x ∈ [0, 1
12

)

0 x < 0
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F4(x) =



1 x ≥ 11
12

( 1
12

+ x)
1
3 x ∈ [ 23

108
, 11

12
)

(
3( 1

12
+x)

2
)
1
2 x ∈ [ 1

12
, 23

108
)

3( 1
12

+ x) x ∈ (0, 1
12

)

1
4

x = 0

0 x < 0

The expected utility for bidder 1 is 1
36

, for expected bid of 14
27

; for bidder

2, 1
24

for expected bid of 0.394; for bidder 3, 1
16

for expected bid of 0.277; and

for the last bidder, 1
12

for expected bid of 0.207.

A sum-profit auctioneer will see an expected profit of 113
144

, while a max-

profit one will get, in expectation, 0.49.

As a comparison, in the case where we do not allow failures, the c.d.f.

of the bidders is x
1
3 with expected bid of 1

4
and expected utility of 0. The

expected profit of the sum-profit auctioneer is 1, while the expected profit of

the max-profit auctioneer is 4
7
.

If we allow our bidders to have the same probability of failure (e.g., when

failures stem from weather conditions), many of the calculations become more

tractable, and we are able to further understand the scenario.

8.4 Special Case: A Single Participation Prob-

ability

Having all bidders with the same probability of participation – p – is a par-

ticular instance of the general case presented above. This can be considered,

for example, if reasons of non-participation are uniform (e.g., weather). The

simplification of the identical probabilities allows us to better understand the

scenario by, for example, examining the variance as well.

For each bidder, the expected utility is p(1 − p)n−1, monotonically de-

creasing in n. Using the c.d.f. calculated in the general case, we can also
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calculate the expected utility squared, and we use it to calculate the utility

variation:

n− 1

n(2n− 1)
− (1− p)n

n
+ (p+

1

2n− 1
)(1− p)2n−1

The variance increases with p.

The expected bid is 1
np

(1−(1−p)n−1(1+p(n−1))), which is neither mono-

tonic in n nor in p. Hence, the expected profit of the sum-profit auctioneer is

1− (1− p)n−1(1 + p(n− 1)) which is monotonically increasing in p and in n.

The profit variance is np(1−(1−p)2n−1)
2n−1

− (1−(1−p)n)2

n
. Note that as n grows, the

auctioneer’s expected revenue approaches that of the full participation case.

In the case of the max-profit auctioneer, the expected profit is n
2n−1

+
n−1
2n−1

(1 − p)2n−1 − (1 − p)n−1, which is monotonically increasing in p; while

not monotonic in n, for large enough n it approaches the expected revenue of

the full participation case. The variance is (1− p)2n−2 − 2n(1−p)n−1

2n−1
+ n

3n−2
−

2(n−1)2(1−p)3n−2

(3n−2)(2n−1)
− ( n

2n−1
+ n−1

2n−1
(1− p)2n−1 − (1− p)n−1)2.

8.5 Summary

In this chapter we have explored all-pay auctions in settings where partici-

pants to not always take part in every bid. Such a scenario is quite common

in online crowdsourcing communities (e.g. TopCoder [138]), where there is

a set of participants which pick and choose which particular auction they

wish to submit a bid to. The reasons for not participating may be varied

and specific to each potential bidder – from family to weather to other work

projects.

We have shown that assuming non-full participation indeed makes partic-

ipation of all bidders profitable, thus showing a potential reason for bidders’

participation in such auctions, as without this assumption, the utility of

participating is, in expectation, zero. Moreover, while in real-world setting

participants may not know the actual probability of participation by their

peers, the knowledge that it is profitable to join when others may not nec-
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Variable Full Uniform participation Individual participation probability

Expected bid 1
n

1
np

(1− (1− p)n−1(1 + p(n− 1)))

1
pi

( 1
n

+
i∑

k=1

(1−pk)n−k
∏k

j=1(1−pj)

(n−k)(n−k+1)
−

− (1−pi)n−i
∏i

j=1(1−pj)

n−i − piλ),

E[bidn] = pn−1

pn
E[bidn−1]

Bidder utility 0 p(1− p)n−1 pi
∏n−1

j=1 (1− pj)

Sum-profit principal utility 1 1− (1− p)n−1(1 + p(n− 1)) 1− λ(1 +
n−1∑
i=1

pi)

Max-profit principal utility n
2n−1

n
2n−1

+ n−1
2n−1

(1− p)2n−1 − (1− p)n−1 n
2n−1

− λ+
n−1∑
k=1

(
(1−pk)2n−2k−1

∏k
j=1(1−pj)2

4(n−k)2−1
)

Table 8.1: The values, in expectation, of some of the variables in a full par-

ticipation setting; when all bidders have the same participation probability;

and when each member has their own participation probability.

essarily do so may serve as enough of an incentive for them (naturally, this

would change equilibrium strategies, though lack of knowledge may not allow

an optimal strategy at all).

For auctioneers, this analysis presents a clear preference for diligent par-

ticipants, but in the case such do not exist, their particular preferences be-

come much more intricate, as their specific profit functions indicate (see

Table 8.1).
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No man is an island, entire of itself; every

man is a piece of the continent, a part of the

main. If a clod be washed away by the sea,

Europe is the less, as well as if a

promontory were, as well as if a manor of

thy friend’s or of thine own were: any man’s

death diminishes me, because I am involved

in mankind, and therefore never send to

know for whom the bells tolls;

it tolls for thee.

John Donne, Devotions upon Emergent

OccasionsChapter 9

Networks Overview

In many historical overviews of graphs and graph theory it is noted that

they have been used to represent objects in the real-world only since the

18th century, when Euler used them to represent the physical structure (and

bridges) of the city of Königsberg. Since then, of course, their use has grown

and extended to various purposes, from maps and roads to computer net-

works and abstract mathematical structures. However, in one sense, they

have been used for much longer than 300 years: the use of graphical means

to represent familial and social relationships via family trees of royal families

or of religiously important figures has existed for centuries. In times in which

a link to great kings and figures of the past was an important political tool,

such trees were needed to strengthen a person’s claim to a position of power,

like the throne.

Using graphs to denote social connections in society enables us to take

into consideration issues which have not been the focus of the previous parts

– the way people cooperate and how they form groups.1 This is a wide

and varied field, and we have chosen to showcase here two very different

approaches to utilizing this information.

One approach is using cooperative game theory (also commonly referred

1Chapter 7 dealt with the possibility of cooperation in the form of player mergers and

collusions, but did not analyze its formation.
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to as transferable utility games), which delve into the structure of group for-

mations, and focuses on their stability and the ability to maintain them. We

chose a to implement them on a particular graph structure, which enables us

both to explore using the network representation of various settings, includ-

ing non-social ones. We pay particular attention to fleshing out the precise

calculation of the amount of value that needs to be added to a particular set-

ting to make it stable. That is, helping designers understand the limitation

of their scenario, and aiding the analysis of how to make it stable, and the

amount needed to be invested to make it so.

This desire, to let system designers, faced with the complexity of human

interaction, understand their limitations – and their options – also permeates

the second approach we present here. Making use of the axiomatic approach,

we start off by enumerating various desirable properties. We then explore

which of these properties cannot co-exist together, and what algorithms may

implement some different combination of these properties. The setting we

deal with is the world of group recommendations: it is well established that

people prefer the advice of their family and friends, and therefore relying on

the social network, and understanding the preference of those connected to

those whom we we wish to make a recommendation to, is key.

In both approaches, despite their significant differences, we maintain the

importance of the network structure to the construction of solutions, as the

data represented by the graph is fundamental to understanding any inter-

action in these settings. Furthermore, we wish to give a system designer

practical tools when approaching such problems – encouraging realistic, sta-

ble results.



Chapter 10

“You are the Weakest Link,

Goodbye!”: Weakest Link

Games

10.1 Introduction

Consider a travel agency preparing to offer a fixed-price travel deal. The deal

must include a flight to a travel destination and a hotel stay. People deciding

whether to take the deal or not would examine the hotel that is being offered,

and are only likely to take the package if the hotel’s quality is sufficient for

their taste. Similarly, if the airline’s quality is not high enough, people are

likely to reject the deal. A potential buyer would reject the package when

either the hotel or the airline do not have the required quality. Thus the total

number of buyers, and the agency’s revenue, is determined by the weakest

part of the package.

Alternatively, consider a truck driver who wants to deliver as much cargo

as possible from New York to Los Angeles. Even if the truck can carry all

available cargo, any path from the source to the target involves using toll

roads with bridges and tunnels, each limiting the weight or height of vehicles

going through them. Any road that is used places a restriction on the load
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the truck can carry when passing through it. Any possible path between the

source and target consists of several such roads, and is limited by its weakest

link (i.e., the road with the most stringent restrictions along the path). The

optimal path is the one with the best weakest link, as it allows the most

amount of cargo to be transferred.

Less geographically oriented, one could consider a manufacturing process

that takes various materials, and applies multiple transformations to produce

a desired product. A complex manufacturing process may have several stages,

and there may be several alternative methods that lead to the same final

product. Each manufacturing stage has a certain environmental impact (for

example, pollution with a negative impact on the environment or resulting in

a perimeter of a certain distance from the factory that needs to be cleared of

people), and we seek to find a manufacturing process that has the minimal

negative impact, and to incentivize firms to use it over alternative, more

harmful, methods.

In the above examples, the package’s value depends on its weakest com-

ponent. However, individual components can be composed into various pack-

ages, in ways captured by certain graph structures. If these components are

controlled by self-motivated agents, how are the agents likely to share the

package’s total value? For example, which travel packages are likely to form?

How would the toll road owners, or the hotel and airline providers, share the

obtained revenues?

Many domains where self-motivated agents interact have been studied in

the algorithmic game theory literature. But this setting calls for a strong

collaboration between agents and negotiations between them, which are the

particular strengths of cooperative game theory. In such domains, having

enforceable contracts between the agents has an important impact on the

equilibrium outcome that emerges.

The need for computationally tractable game-theoretic concepts is high-

lighted by the applicability of a “weakest-link” model in common tasks such

as crowdsourcing and large projects, which are typically comprised of several
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parts, while the overall quality may depend primarily on the lowest-quality

part. Hence, we propose a new class of cooperative games, called cooperative

Weakest Link Games (WLGs), which capture domains (such as the examples

above) where the value a coalition can achieve is determined by its weakest

member.

Our weakest link model makes use of an edge-weighted graph with des-

ignated source and target vertices, where the agents are the edges of the

graph. The quality of a path from the source to the target is the minimal

edge weight along the path; the value of an agent coalition is the maximal

quality of all the paths contained in the coalition (i.e., all the paths that are

comprised of edges that are all in the coalition).

In some cases, the need for all to cooperate may be necessary: for ex-

ample, in the environmental example above, we may desire that the more

harmful methods not be used. Hence, we seek a global stability. We provide

a polynomial algorithm for computing the value of a coalition in a weakest

link game, and show various properties and algorithms for solutions based on

team stability, including calculating and quantifying the Cost of Stability [26]

which measures the minimal external subsidy required to allow stable payoff

allocations to exist.

In other cases, the partition of the game may result in a better outcome

than a global cooperation. We explore the problem of finding the best par-

titioning of the agents to teams (optimal coalition structure). Though we

show the problem is NP-complete, we provide a polynomial O(log n) approx-

imation for it.

10.1.1 Related Work

Cooperative game theory (see [179, 67] for a survey of cooperative games)

has been used to analyze an increasingly diverse set of problems, from nego-

tiations [172, 225, 33], voting power [210, 233, 37, 244, 208, 117] and manip-

ulations [25, 18, 245, 140], and proof system analysis [52] to crypto-currency

protocols [3, 146], shipping optimization [218], and information aggregation
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[28]. More connected to our model is work having to do with resource man-

agement – be it water [82, 183], or cloud computing [173, 62] – and with cost

and revenue sharing in projects [242, 135, 5, 51, 41, 34, 48, 237, 169].

The Weakest Link Game (WLG) is a class of cooperative game, and sim-

ilarly to other classes such as [212, 125, 79] or cooperative game languages

such as [47, 20, 92, 23, 46, 42, 19, 64, 69, 68], it is based on a graph rep-

resentation, where agents control parts of the graph. However, the value

function of weakest link games differs from all of these other forms. In flow

games [125, 192] a coalition’s value is the maximal flow it allows between

source and target, so a coalition always gains by adding another path. In

contrast, in WLGs a coalition’s value is determined by a single path, so it

gains nothing from adding a path unless it is better than even the best path

already in it. In graph games [79] the agents are vertices, and the coali-

tion’s value is the sum of the edges occurring between coalition members, as

opposed to WLGs where we examine paths between two specific vertices.

Weakest link games are somewhat reminiscent of Connectivity Games [44],

where agents are vertices and a coalition wins if it contains a path from the

source to the target. WLGs are also based on paths from a source to a

target, but the agents in them are the edges. Further, in WLGs the graph

is weighted, and the value of a coalition depends on these weights through

a max-min structure. Other forms also have different network goals from

WLGs: finding an optimal project or matching [212, 16], spanning a set of

vertices [20], or interdicting paths [42].

In particular, weakest link games are an instance of sub-additive games,

which have been widely explored in the literature [67]. These include weighted

voting games [91, 40, 90], skill games [45, 39], and MC-nets [67]. All have

been explored both with respect to their cores and Cost of Stability, as well

as with respect to finding optimal coalition structures for them.

The solutions we focus on are the core [111], ε-core and least-core [211].

The core was proposed as a characterization of payoff allocations where no

agent subset is incentivized to deviate from the grand coalition and work on
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its own [111]. One limitation of the core is that it can be too restrictive,

as in some games no imputation fulfills its requirements. Such games can

be solved by the more relaxed solutions of the ε-core and least-core. Cost

of Stability (CoS), the minimal subsidy that allows stable agreements, was

proposed in [26, 158] to model domains where an external party wishes to

increase cooperation by offering a subsidy.1

One key area in algorithmic game theory is team formation, and the prob-

lem of optimal coalition structure generation was widely studied [213, 205,

190, 209, 35] along with its applications, ranging from vehicle-routing tasks

to sensor networks, as well as its relation to other solutions [113]. Though

even restricted versions of the problem are hard [241, 205], exponential algo-

rithms and tractable approximations have been proposed [213] and studied

empirically [139].

Arguably, the state of the art method for general games [190] has a rea-

sonable runtime on average cases, but has a worst case runtime of O(nn).

Many such algorithms use an oracle for computing the value of a coalition,

in contrast to our approximation which relies on the restricted WLG rep-

resentation. Another method [39] relies on a different representation called

coalitional skill games [45], which is based on set-cover domains.

10.2 Preliminary: Cooperative Game The-

ory

A coalitional game is comprised of a set of n agents, N = {1, 2, . . . , n}, and

a characteristic function mapping agent subsets (coalitions) to a real value

1Various perturbations to the solutions of cooperative games have been studied, in-

cluding modifying agent goals [85, 93], which is not relevant for our setting; introducing

stochastic agent failures [102, 38, 49, 31] (somewhat akin to the model for agents’ failure

to join an all-pay auction described in Chapter 8); allowing agent manipulations and false-

name attacks [238] or taxing or bribing agents [195, 243]. We have chosen to focus on the

more central and widely recognized ones.
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v : 2N → R, indicating the total utility these agents achieve together.

There are several very common assumptions in cooperative game, which

also apply in our case:

Emptiness v(∅) = 0.

Positivity For all C ⊆ N , v(C) ≥ 0.

Monotonicity For C ⊆ D ⊆ N , v(C) ≤ v(D).

A solution for cooperative game is one that both divides the parties into

coalitions, as well as the value of each coalition between its participants. It

consists of:

Coalition structure CS = {C1, . . . , Cm} for all 1 ≤ i ≤ m, Ci ⊆ N ; for all

1 ≤ i 6= j ≤ m, Ci
⋂
Cj = ∅; and

⋃m
i=1 Ci = N .

Payoff vector p ∈ R|N | such that for all 1 ≤ i ≤ m,
∑

j∈Ci
pj ≤ v(Ci).

We shall require at least a basic criterion from the value division: that it

be individual rational, i.e., for all i ∈ N , p(i) ≥ v({i}) – no agent is better

off on its own. Such divisions are called imputations.

Furthermore, we are particularly concerned with the grand coalition –

the functioning of all agents together in a single coalition (i.e., solutions in

which CS = {N}). To simplify notation, when discussing an imputation

(p1, . . . , pn), we denote the payoff of a coalition C as p(C) =
∑
i∈C

pi.

10.2.1 Stability Concepts

The concern for the stability of the grand coalition is a common concern in

cooperative game theory, incorporating several solution concepts:

Core and Least-Core

A coalition B ⊂ N blocks the payoff vector (p1, . . . , pn) if p(B) < v(B), since

B’s members can split from the original coalition, derive the gains of v(B)
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in the game, and give each member i ∈ B its previous gains pi and still

each member can get additional utility. Under a blocked payoff vector, the

coalition is unstable. A solution based on this is the core [111].

Definition 10.1. The core of a game is the set of all imputations (p1, . . . , pn)

that are not blocked by any coalition, so that for any coalition C ⊆ N , we

have: p(C) ≥ v(C).

In some games, every imputation is blocked by some coalition, so the core

can be empty. As the core is too restrictive, one possible alternative is to use

relaxed stability requirements. One such model is based on the assumption

that coalitions that have only a small incentive to drop-out from the grand

coalition will not do so – the ε-core [211].

Definition 10.2. The ε-core, for ε > 0, is the set of all imputations (p1, . . . , pn)

such that for any coalition C ⊆ N , p(C) ≥ v(C)− ε.

Unlike the core, the ε-core always exists for a large-enough ε. For the

value ε = max
C⊆N

p(C)− v(C) the ε-core is always non-empty. The set {ε|ε-core

is non-empty} is compact, and thus has a minimal element. The minimal

value ε∗ for which the ε-core is non-empty is called the least-core value of the

game, and the ε∗-core is called the least-core.

Cost of Stability

When the core is empty, an external party interested in having the agents

cooperate may offer a subsidy if the grand coalition is formed. This increases

the total payoff, but does not change the core constraints, so when a large-

enough subsidy is given, the perturbed game has a non-empty core. The

minimal subsidy required to achieve a non-empty core can measure the degree

of instability or the agents’ resistance to cooperation, and is called the Cost

of Stability [26].

Definition 10.3. A game’s Cost of Stability (CoS) is the minimal external

subsidy that allows the game to have a non-empty core. Formally, given a
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game with characteristic function v : 2N → R, the modified game v∆ is the

game with the characteristic function v′ : 2N → R where v′(N) = v(N) + ∆

and for every C ⊂ N we have v′(C) = v(C) (v′ is a super-imputation, which

is an imputation in which v′(N) ≥ v(N)). The CoS is the minimal ∆ such

that v∆ has a non-empty core.

10.2.2 Coalition Structures

In certain domains several disjoint agent coalitions may emerge, each working

independently, creating a structure of coalitions [67]. When the same char-

acteristic function v : 2N → R determines the utility obtained by each such

coalition, we may seek the optimal partition of the agents maximizing the

total value obtained. This problem is called the optimal coalition structure

generation problem [205, 139].

Definition 10.4. A coalition structure is a partition CS of the agents (N)

into several disjoint sets (C1, . . . , Cm). The total value of a partition is the

sum of the values of the parts, so v(CS) =
m∑
i=1

v(Ci). The optimal coalition

structure is the partition with the maximal value: arg maxCS v(CS).

10.3 Weakest Link Game Definition

Weakest Link Games (WLGs) model domains such as the examples given

above, using an underlying graph structure. A Weakest Link Domain consists

of a graphG = (V,E) with designated source and target vertices s, t ∈ V , and

an edge weight function w : E → R+ mapping any edge to the “restriction”

applied on it (the set W includes all different weights in the graph).

We denote the set of all paths between s and t as R(s,t). The value of

a path r = (e1, . . . , em) ∈ R(s,t), where (e1, . . . , em) are the edges along the

path, is the minimal edge weight along this path: q(r) = minej∈r w(ej). In

other words, a chain of edges forming a path is only as strong as its weakest

link. Given an edge subset C ⊆ E, we denote the set of s-t paths that consist
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only of edges in C as RC
(s,t) = {r = (e1, . . . , em) ∈ R(s,t)|ej ∈ C for 1 ≤ j ≤

m}.
Our game is defined over (G = (V,E), s, t, w), where the agents N are

the edges in the graph, so N = E, and we denote |N | = |E| = n. The

characteristic function v : 2N → R maps a coalition C ⊆ N to the value of

the best (strongest) path that consists solely of coalition edges.

Definition 10.5. A Weakest Link Game (WLG) is defined over a domain

(G = (V,E), s, t, w) where agents are edges N = E, and using the following

characteristic function:

v(C) = max
r∈RC

(s,t)

q(r) = max
r∈RC

(s,t)

min
ej∈r

w(ej)

By convention, if for a coalition C ⊆ E no such path exists (i.e., RC
(s,t) = ∅)

we set v(C) = 0.

Intuitively, the value of coalition C is the highest threshold τ such that

there exists a path between s and t using only edges in C with weight at

least τ .

Example 10.1. In Figure 10.1 the value of the grand coalition is 3, as that

is the value of the weakest link in the path s-A-C-F-H-t (the edge (F,H) is

the weakest link). The imputation that gives 1 to the edge (A,C), 2 to the

edge (C,F), and 0 to all the other edges is in the core.

Example 10.2. In Figure 10.2 the value of the grand coalition is 2 – the

path s-B-D-G-H-t (due to the edge (B,D)). However, the core is empty, as

any imputation needs to have the value 2 on the path s-B-D-G-H-t and the

value 1 on the path s-A-C-E-F-t, which shares no edges with the previous

path, and therefore needs added value in the (super-)imputation. The CoS

is 1, as the super-imputation giving 2 to the edge (G,H) and 1 to the edge

(C,E) is stable.
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Figure 10.1: A WLG with a nonempty core

10.4 Core and Least-Core

We now study how agents in a weakest link game are likely to share the gains,

focusing on payoff allocations that guarantee stability of the formed team,

providing polynomial algorithms for computing core, ε-core and least-core

solutions.2

By definition, a coalition’s value is the weight of the lightest edge in a

certain path (weakest link of maximal weight), so v(C) is the weight of one

of the edges in the graph, and can take at most |W | ≤ |E| different values.

Observation 10.1. The value v(C) of any coalition C in a WLG over the

graph G(V,E) is either 0 or the weight of one of the edges in the graph, so

v(C) ∈ W = {w(e)|e ∈ E}
⋃
{0}.

We use this observation to simplify many of our following calculations:

Theorem 10.1. Computing the value v(C) of a coalition C in a weakest link

game can be done in polynomial time.

2While for some WLG scenarios there is no need for stability, settings such as our

environmental damage one (described in the introduction) are cases of WLGs where we

specifically wish to discourage use of the other paths; hence, we require a stable imputation.
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Figure 10.2: A WLG with an empty core

(Proof is in Appendix C)

Theorem 10.2. Testing whether an imputation p = (p1, . . . , pn) is in the

core of a weakest link game can be done in polynomial time.

(Proof is in Appendix C)

The algorithm above tests whether an imputation is in the core of a

WLG. We now show that relaxed solution concepts can also be computed in

polynomial time, using this algorithm as a building block.

We note that it is possible to construct a linear program (LP) with n

variables [101], whose set of solutions are all the ε-core imputations. This LP,

shown in LP 10.1, has a variable pi for each of the agents, which represent

its payoff in an imputation. The LP has 2n constraints, one per possible

coalition.

The ε-core is the solution to the LP, and the core is recovered when setting

ε = 0.

Similarly, the Cost of Stability is characterized by the LP given in LP 10.2,

using the additional variable ∆ designating the external subsidy which per-

turbs the value of the grand coalition.

Although it is possible to solve these LPs using the Ellipsoid method in
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min ε s.t.:

∀C ⊂ N :
∑
i∈C

pi ≥ v(C)− ε;∑
i∈I
pi = v(I)

LP 10.1: Linear program for the core and ε-core

min ∆ s.t.:

∀C ⊂ I :
∑
i∈C

pi ≥ v(C);∑
i∈N

pi = v(I) + ∆

LP 10.2: Linear program for the CoS

time polynomial in the size of the LP [101], we note that the size of the above

LP formulations are exponential in the number of players.

Our solution to this problem uses a separation oracle, a method that takes

a possible LP solution as an input and either finds a violating constraint or

verifies that no such violating constraint exists. Since the Ellipsoid algorithm

can run using only a separation oracle, without explicitly writing the entire

LP, finding a polynomial separation oracle for an LP enables solving it in

polynomial time.

Theorem 10.3. Testing core emptiness, finding an ε-core imputation and

finding the least core value take polynomial time for WLGs.

(Proof is in Appendix C)

Corollary 10.1. Calculating the Cost of Stability of a weakest link game can

be done in polynomial time.3

(Proof is in Appendix C)

3In Section 10.5 we propose a linear time algorithm for computing the CoS of WLGs

for the restricted case where the underlying graph is a series-parallel graph.
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Figure 10.3: Parallel composition of a graph

10.5 Cost of Stability and Series and Parallel

Compositions

Having examined the general case, we provide results on how a graph’s com-

position affects the stability of the game in our model, which rely on series-

parallel graphs [84, 222].

A two terminal graph (TTG) is a graph with a distinguished source vertex

and a distinguished target vertex. A base graph is a TTG that consists of

a source vertex and target vertex connected directly by a single edge (i.e.,

the graph K2). The parallel composition P (G1, G2) of TTGs G1 and G2 is

the TTG generated from the disjoint union of G1, G2 by merging the sources

of G1, G2 and merging their targets (Figure 10.3). The series composition

S(G1, G2) of TTGs G1 and G2 is the TTG generated from the disjoint union

of G1, G2 by merging the target of G1 with the source of G2 (Figure 10.4).

Definition 10.6. A Series Parallel Graph (SPG) is a TTG formed by ap-

plying a sequence of parallel and series compositions starting from set of base

graphs (i.e., a graph built recursively by the two composition operations over

base graphs).

In WLGs, two disjoint s-t paths (i.e., parallel s-t paths) are substitutes,

as either path may be used to reach the target from the source. In contrast,

two disjoint edge subsets of a single simple s-t path, such as two sub-paths

that are joined serially to form a full s-t path, are complements, as both
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Figure 10.4: Serial composition of a graph

parts are required.

Intuitively, we expect complement agents to find it easier to cooperate, as

they need each other to achieve a high value, whereas substitute agents resist

cooperation as each group can achieve value on its own. We formalize and

quantify this intuition using SPGs, where complementarity and substitution

are easily captured by the graph’s structure.

Though WLGs are defined for any graph, the restricted case of SPGs

captures very natural structures: a series composition in a WLG indicates

that a project has two parts and its overall success depends on the weaker

component; a parallel composition indicates that either part can be used to

complete the project. The travel packages example in the introduction is a

direct example of an SPG domain.

We show how the resistance to cooperation, measured by the CoS, is

affected by series and parallel composition. In a WLG setting, when joining

graphs {Gi}, the characteristic function of the newly-formed SPG (v) can be

expressed in terms of the characteristic functions of the joined graphs {vi}:
for every C ⊆ G, v(C ∩Gi) = vi(C ∩Gi).

Theorem 10.4. If graph G is a parallel composition of graphs Gi, the CoS

of G is (
∑
Gi

CoS(Gi) + vi(Gi))−max
Gi

(vi(Gi)).

(Proof is in Appendix C)

Theorem 10.5. If G is a series composition of the graphs Gi, the CoS of G

is min
i
CoS(G

minj 6=i(v(Gj))
i ), where G

minj 6=i(v(Gj))
i is Gi in which all edges with

weight above min
j 6=i

(v(Gj)) are lowered to that value.
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(Proof is in Appendix C)

The above theorems yield a polynomial method to compute the CoS in

SPGs by recursively applying formulas on the graph’s structure (CoS of a

base graph is 0).4

10.6 Optimal Coalition Structures

The optimal coalition structure is a partition of the agents into disjoint sets

that maximizes the sum of the values of the parts. Each such part has

a non-zero value only if it contains some s-t path. If a single part of the

partition contains more than one s-t path, it could be broken down into two

sub-parts, each containing a path, which results in a higher value. Thus

it seems that finding the optimal coalition structure is somewhat related

to a decomposition of the agent set into sets of disjoint paths. Indeed, we

first show that finding the optimal coalition structure is NP-hard using a

reduction from the Disjoint Paths Problem (DPP).

Theorem 10.6. It is NP-complete to determine whether the value of the

optimal coalition structure in a weakest link game exceeds an input k.

(Proof is in Appendix C)

We propose a polynomial approximation for this problem.

Theorem 10.7. A polynomial time O(log n)-approximation exists for the

optimal coalition structure problem in weakest link games.

(Proof is in Appendix C)

10.7 Summary

This chapter has approached the problem of weakest link games, which can

be used to model various real-world scenarios using cooperative game theory.

4The value of a coalition in a WLG can be computed in polynomial time, and CoS of

any base graph is zero.



122 CHAPTER 10. WEAKEST LINK GAMES

To analyze such a setting we use cooperative game theory, which, like our

previous game theoretical analysis, often strives to reach stability. However,

it focuses on cooperation between agents in order to reach a particular goal.

In our case, cooperation is the key element, making this the most applicable

approach for weakest link games: as reaching from the source to the target is

our goal, cooperation between our agents (the edges) is crucial to the setting.

Focusing on setting such as our environmental one, in which we wish to

minimize the environmental effect of a process, we want to find a way to

divide resources so that even unused agents are incentivized to stay unused

(and therefore, non-polluting). Such a division requires a non-empty core,

and we delve into the possibility of finding one, and moreover, when the core

is empty, we wish to find the minimal amount the planner needs to contribute

to the system in order to make it stable.

Looking at other scenarios, in which we just wish to increase the flow in

the graph, we find that finding an optimal structure is NP-complete, yet are

able to present an approximation algorithm for it, enabling, in many cases,

a “good enough” cooperative solution.



Chapter 11

Where Do We Want to Go

Today?: Group

Recommendations

11.1 Introduction

The online world encourages the development of systems that allow people to

effectively use it. Reputation systems, ranking systems, trust systems, rec-

ommendation systems, affiliate marketing in social networks, and more, are

flowering in its midst. This recent wave of online social systems is typically

associated with a large amount of data that is collected online which leads to

the “big data” approach to the utilization of such information. However, the

abundance of available data does not help system designers to come up with

the right design for online systems in the first place. Indeed, available data

is typically generated by the use of a particular system, and mining the data

generated by users while interacting with one system does not provide a tool

for exploring the overwhelmingly large design space. Interestingly, the main

practical approach of software and hardware design, the formal specification

of clear system requirements and the implementation of a system satisfying

these exact requirements, has not been used often.

123
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This classical approach, when adapted to the context of multi-agent sys-

tems, coincides with extensions of a famous tool of social choice theory and

cooperative game theory, namely the axiomatic approach, of which one of

the best known examples is the theory of social choice, in which we aim to

find good aggregation of individual preference into a global ranking. A bit

removed from direct extensions of social choice, one can find systems origi-

nating from personalized versions of ranking and reputation systems. Here

we no longer consider the aggregation of preferences into a shared ranking,

but instead seek to provide personalized rankings or recommendations to

each agent.

A fundamental challenge in this context is the search for effective trust-

based recommendation systems, in which – based on trust-relationships among

the agents and the expressed opinions of a subset of them about a service

or a product – a recommendation about a service or a product is provided

to agents which did not evaluate it personally. The puzzling challenge of

generating useful trust-based recommendation systems is amenable to an ax-

iomatic treatment, beginning with an attempt to characterize the systems

satisfying different sets of desired properties.

Here we significantly expand the body of work on the axiomatic approach

for internet settings by initiating work on the axiomatic treatment of Group

Recommendation Systems. We assume a trust-graph in which agents express

who they trust, and information is provided about the opinions of some of

the agents about a product/service, but we care about providing recom-

mendations to a group of agents, rather than a single one (e.g., a party of

friends, looking for a restaurant). Notice in this case the group may include

some agents who have experienced the service/product directly and some

who may have not. This can be viewed as a bridge between social choice (ag-

gregating individual preferences) and trust-based recommendation systems.

In addition to its theoretical importance, the topic of group recommendation

systems is of great practical interest.

While group trust-based recommendation systems are vastly different
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from (individual) trust-based recommendation systems, for reasons of expo-

sition we will do our best to connect to the literature on the latter, adopting

properties taken as axioms for individual trust-based recommendation sys-

tems in earlier work, and adding to them properties reflecting the fact we deal

with group recommendations. Interestingly, putting these together leads to

a powerful and illuminating impossibility result; the axioms/properties are

all essential for this impossibility, as removing each one of them leads to

possibility. Given this impossibility, we replace our three group related ax-

ioms by three other properties; in a second result we show an extension of

a random walk system that satisfies all desired properties, and moreover, is

the only system satisfying these properties. Together, this provides rigorous

foundations to a theory of group recommendations.

11.1.1 Related Work

Most approaches to individual recommendation systems [193] (i.e., systems

not attempting to recommend to groups) have proposed a model based on

their observations of recommendation dynamics in real life, without setting

out to achieve any particular mechanism behavior. Much work is devoted

to collaborative filtering, in which an agent receives recommendations based

on the views of agents with similar properties – similar to the design of the

Netflix challenge [57, 114] and other projects [72]. Other work focuses on

simulations and field experiments in various fields [207, 194, 17] (including

movies [168], music [239, 231] and tourist recommendations[198, 24]) or im-

proving the running time of large-scale recommender systems [240, 149, 43,

30, 29, 27]. Some models add a social graph to the recommendation sys-

tem, supporting a different trust level for each agent. However, these works

[230, 181, 232] use the social graph as a mechanism which propagates true,

objective information to the agents, and do not consider agents’ recommen-

dations as opinions which may depend on taste (and hence, have no fixed

value of “trustworthiness”).

In the past few years, more research has been devoted to group recommen-



126 CHAPTER 11. GROUP RECOMMENDATIONS

dations, as the scenarios where group recommendation are useful are more

and more evident. Early work has simply aggregated all members’ prefer-

ences [178, 105], but the common approach tries to implement a model which

adds a layer of complexity beyond agents’ approval of a choice, adding also

the measure of the rejection of a choice by each participant [11, 130, 107].

Unlike others, Gartrell et al. [107] try to utilize the social graph for their

model, but ultimately their approach is limited as it utilizes the social graph

only to propagate information through it, and it is not used in the actual

recommendation system.

A different approach to recommendation systems is the axiomatic one,

which seeks to first describe the goals of a system, and then to find the sys-

tems that implement such goals. Such an approach has been taken in ranking

systems [6, 8], including detailed analysis of specific mechanisms [7] includ-

ing collaborative filtering [184]. More importantly, it has been applied to the

individual recommendation system problem, first in Andersen et al. [12], and

following that, in additional papers complementing it [202, 63]. One of the

key strengths of this research path is in its basic model, which incorporates

the influence of the social graph on agents’ behavior. Alas, these papers do

not deal with group recommendations, and hence with the particular needs

and desired properties of this problem.

11.2 The Group Recommendation Model

The basic model (adapted from [12, 202, 63]), deals with a graph that has

opinionated nodes (or voters) over some option – some are + nodes (agents

which like the option), and some are - nodes (the agents which did not like the

option). The rest of the nodes are nonvoters, i.e., they have no predetermined

opinion. A directed edge (a, b) indicates that the agent b influences agent a’s

opinion to some degree. We wish to find a mechanism that takes any group

of agents (both voters and nonvoters) and gives the members of the group

a single recommendation – +, - , or 0 (in case of inability to recommend).
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Formally:

Definition 11.1. A voting network is a directed graph G(N, V+, V−, E),

where N are the nodes, V+ ⊆ N are the nodes which vote +, V− ⊆ N

are nodes which vote -, and E are directed edges, in which parallel edges are

allowed,1 but not self loops. We say node b ∈ N influences node a ∈ N when

there exists an edge (a, b).

From this definition we can derive the group of voters – V+ ∪ V− and

nonvoters – N \ (V+ ∪ V−).

Definition 11.2. A group recommendation system is a function RG : 2N →
{+,−, 0}, assigning a recommendation to each subset of graph nodes in the

graph G.

Before proceeding to the axioms’ definitions, we define our group random-

walk recommendation system variant. For this we need to first define an

individual random walk recommendation system, which, basically, assigns to

each node the sign of the weighted average of all voters which are reachable

from it.

Definition 11.3. An individual random walk recommendation system takes

a voting network G(N, V+, V−, E) and assigns each node a ∈ N a value ra:

if a ∈ V+ (respectively, a ∈ V−), then ra = 1 (respectively, −1). If a is a

nonvoter which does not have a path to any voter, ra = 0. If it does have

paths to other voters, we look at the group succa = {b|(a, b) ∈ E}, and define

ra =
∑

b∈succa rb
|succa| . Once calculated ra (based on other ris), the recommendation

system recommends sgn(ra) (i.e., sign of the number).

This recommendation system is, in effect, taking random walks from the

recommended node, stopping at a voter. The sign of expected value of the

random walks is the recommendation.

1Equivalent to using weights, but easier to analyze in our case. This means E is, in

effect, a multiset.
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Group random-walk, in a sense, calculates a value for each group member

based on their individual recommendations, and sums over all of the group

members.

Definition 11.4. A group random walk recommendation system takes a

group C ⊆ N and for each c ∈ C assigns rc to be the value (not just the sign)

of the same node under the individual recommendation system (so −1 ≤ rc ≤
1). It then returns sgn(

∑
c∈C sgn(rc)).

11.3 The Axioms

The axioms and their formulation are key to this approach, and therefore

we expand on their motivation and intuitive understanding, and include the

formal definitions after describing a group of several axioms.

11.3.1 The Basic Axioms

These axioms were adapted from the individual recommendation case, and

are quite basic, so that we believe most general-use systems which rely on

the social graph for their recommendations would seek to implement them:

1. Anonymity – No node is special. Isomorphic graphs (including rec-

ommendation isomorphism – symmetry between + and - votes) have

isomorphic recommendations.

Axiom 1. Anonymity: Let G(N, V+, V−, E) be a voting network, and

R a recommendation system. For any permutation π : N → N and

G′, the isomorphic voting network under it, for any C ⊆ N RG(C) =

RG′(π(C)). Furthermore, For G′′(N, V−, V+, E) and C ⊆ N , RG(C) =

−RG′′(C).

It’s natural that if a group gets a certain recommendation (w.l.o.g, +),

and a + voter joins the group or gets additional influence over it, the recom-

mendation should not change.
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2. Positive Response – Adding support for a recommendation cannot re-

verse it. A group which is recommended + and a + voter is added

to it (or begins to influence one of its members) does not change its

recommendation. If a group is recommended 0, adding a + voter to

the group changes the vote to +. Furthermore, adding a + voter and a

- voter (both not in the group), both influencing the same node in the

group does not change the recommendation.

Axiom 2. Positive Response: Let G(N, V+, V−, E) be a voting network,

R a recommendation system, C ⊂ N , and a ∈ V+ ∩ {N \ C} such that

there is no edge (c, a) ∈ E for any c ∈ C . Then if RG(C) = + or

RG(C) = 0, then both RG(C ∪{a}) = +, and if we define G′ as G with

an added edge (c, a) for some c ∈ C, RG′(C) = +.

Furthermore, let b ∈ V−∩{N \C} such that there is no edge (v, b) ∈ E
for any v ∈ N nor edges (v, a) ∈ E for any v ∈ N (i.e., a and b are

isolated). For any c ∈ C define G′′(N, V+, V−, E ∪ {(c, a), (c, b)}) then

RG(C) = RG′′(C).

As we are investigating members of a social graph, it makes sense to

ignore nodes that are not in the same connectivity group as members of the

group, hence:

3. Independence of Irrelevant Stuff (IIS) – Unrelated nodes do not affect

recommendation. A group’s recommendation is only dependent on the

nodes that it influences. Voters are not, of course, influenced by any

edges, as their opinion is already set, so removing their outgoing edges

has no effect.

Axiom 3. IIS: Let G(N, V+, V−, E) be a voting network, R a rec-

ommendation system, and e ∈ E an edge (a, b) for a voter a (i.e.,

a is influenced by b). For G′(N, V+, V−, E \ e), for every C ⊂ N ,

RG(C) = RG′(C). Furthermore, if d ∈ N is not reachable from C,

then let Ed ⊆ E be the set of edges outgoing or incoming from d, and

define G′′(N \ d, V+ \ d, V− \ d,E \ Ed), then RG(C) = RG′′(C).
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Figure 11.1: A star group example

11.3.2 Group Power Axioms

We now turn to axioms which try to portray the unique properties of a group

recommendation system. In such systems, we want the group members to

have a larger influence on the decision than external agents, though we do

wish to allow external influence is some cases. In order to portray these two,

somewhat conflicting, desires, we define very limited axioms, only on a par-

ticular structure of social graph – star groups, which (as shown in figure 11.1),

are made of a certain type of voters in the group (w.l.o.g, +), which influence

all of the group’s nonvoters, with - voters influencing these nonvoters from

outside the group.

Definition 11.5. A group C with n voters {v1, . . . , vn} and m nonvoters

{u1, . . . , um} is a star group (e.g., Figure 11.1) if:

• All voters vj ∈ C have the same label (w.l.o.g., +)

• For every nonvoter ui ∈ C and voter vj ∈ C there exist an edge (ui, vj)

(so each nonvoter is connected to all voters)

• Every nonvoter ui ∈ C has an associated group, Di = {t| there is an

edge (ui, t) for voter t /∈ C}. For every i, all Di members are labeled -,

and for every i, h: Di ∩Dh = ∅

• Nonvoters ui ∈ C have no other edges.
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4. α-centripetal – Members of a group have more influence over the rec-

ommendation than voters outside it. If the star-group has k + voters,

the recommendation will be + as long as each nonvoter is connected to

less than αk - voters.

Axiom 4. α-centripetal: A recommendation system has some α ∈ R+,

α ≥ 1, such that for every star group (whose members vote, w.l.o.g., +)

for which for every i, |Di| ≤ α · n, the recommendation for the group

is +.

However, we do not want the group to be all powerful. When there are

few + voters in the star-group, and many nonvoters and - voters, we would

like to see some influence of the outside agents. Thus:

5. (β, r)-centrifugal – Agents outside the group may still influence it. If

a star-group (whose members vote, w.l.o.g., +) has k + voters, but

even more nonvoters – more than r nonvoters for each + voter; and

each nonvoter is connected to many - voters – at least βk – the group

recommendation would be -.

Axiom 5. (β, r)-centrifugal: A recommendation system has some β ∈
R+, β ≥ 1 such that for every star group for which m

n
≥ r (r ∈ R+)

and for which for every i, |Di| ≥ β · n, the group’s recommendation is

-.

6. Internal consistency – If all of a group’s partitions have the same rec-

ommendation, that will be recommendation of the whole. If all sub-

groups in a disjoint partition of a group of agents, are given the same

(non-neutral) recommendation (and there are no contradicting unani-

mous, disjoint, non-neutral partitions), the whole group will have this

recommendation as well.

Axiom 6. Internal consistency: In a recommendation system R, for

every C ⊆ N , for some disjoint partition C = C1 ∪· C2 ∪· . . . ∪· Cn for
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which RG(C1) = RG(C2) = . . . = RG(Cn) 6= 0, and if all other similar

partitions C = C ′1 ∪· C ′2 ∪· . . .∪· C ′n, for which RG(C ′1) = RG(C ′2) = . . . =

RG(C ′n) 6= 0 have RG(C1) = RG(C ′1), then RG(C) = RG(C1).

Ultimately, we will show the above six basic axioms are incompatible, and

there exist no group recommendation system that can accommodate them.

We will now consider three alternate axioms for group recommendations.

11.3.3 Influence Structure Axioms

The final three axioms, are, to a certain extent, a group-recommendation

extension of axioms suggested for the non-group recommendation case [12].

They try to consider influence and the way it“moves” through the social

connections, such that influence can extend beyond an immediate node (so I

may influence one person, and that person may, in turn, influence another).

7. Trust Propagation – Influence moves along the graph. If nonvoter b

has k edges to nodes influencing it, and node a is influenced by b with

k edges, then the edges to b can be replaced by edges to the nodes

influencing b.

Axiom 7. Trust Propagation: Consider recommendation system R,

voting network G(N, V+, V−, E), group C ⊆ N , and nonvoters u, v ∈ N
for which the edges leaving v (beside (u, v)) are (v, w1) . . . (v, wk) for

some k ≥ 1. Suppose E contains k copies of (u, v), and we construct

E ′ = (E∪{(u,w1), . . . (u,wk)}\{(u, v) ·k}) and G′(N, V+, V−, E
′), then

RG(C) = RG′(C).

8. Scale Invariance – Influence does not care about units. Duplicating a

node’s outgoing edges (i.e., edges to the nodes influencing it) does not

change recommendation.

Axiom 8. Scale Invariance: For a voting network G(N, V+, V−, E), and

a nonvoter u, the recommendations are identical for G′(N, V+, V−, E ∪
E ′) where E ′ contains k copies of each of u’s outgoing edges.
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9. Proportional Inclusiveness – An external influence can be described as

a group-member influence. A voter outside a group, connected directly

to a nonvoter inside it, has an influence over the group recommenda-

tion in proportion to its weight of influence on the nonvoter, and the

nonvoter’s influence in the group. Therefore, the recommendation for

a group would be the same as for a group that includes also the voters

influencing a nonvoter in the original group (with a few adjustments to

maintain relative power of group members, see figure 11.2).

Axiom 9. Proportional Inclusiveness: For a voting network G(N, V+, V−, E),

a group C ⊆ N , a nonvoter u ∈ C and voters v1, . . . , vm ∈ V \ C
and vm+1, . . . , vt ∈ C which are influencing it (i.e., (u, vi) ∈ E) then

the following transformation retains recommendations: Let there be ki

copies of (u, vi) in E, and s edges (u, ∗) in E (i.e., s =
∑t

i=1 ki).

For 1 ≤ j ≤ s we define N j = N \ {u} and define N ′ = ∪sj=1N
j ∪

{vm+1}km+1 ∪ . . . ∪ {vt}kt. For each 1 ≤ i ≤ m we choose ki nodes of

type vi (there are s copies of these in N ′), and mark them v1
i , . . . , v

ki
i .

For each N j we define Cj = C \ {u} and Ej = E \ {(∗, u), (u, ∗)} (no

edges ingoing or outgoing from u), and tweak it a little: for each c ∈ C
such that there is an edge (c, u) ∈ E, we multiply s times each edge

(c, ∗) ∈ Ej, and add ki edges (c, vi) for 1 ≤ i ≤ t (excluding self, of

course). We define E ′ = ∪sj=1E
j, and C ′ = ∪sj=1C

i ∪mh=1 ∪
kh
r=1v

r
h.

Now, for G′(N ′, V ′+, V
′
−, E

′), RG(C) = RG′(C).

(See axiom example in Figure 11.2, in which the nonvoter has also been

eliminated using trust propagation axiom)

These axioms will prove to singularly define a group variant of the random

walk recommendation algorithm.

11.3.4 Independence of Axioms from Each Other

Theorem 11.1. Axioms 1−6 and axioms 1−3, 7−9 (the sets we deal with)

are all independent of one another.



134 CHAPTER 11. GROUP RECOMMENDATIONS

!"

+"!"

+"
+"
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Figure 11.2: Example of applying proportional inclusiveness on u: The - node

is now inside the group, but since its weight on u’s recommendation was half

the total of influences on u, the other nodes in the group are duplicated

accordingly.

(Proof is in Appendix C)

11.4 An Impossibility Result

When looking at the axioms detailed above, it is clear that axioms 1− 3 are

imperative for any basic social graph based recommendation system, whether

it is an individual or a group one. However, when expanding to group recom-

mendation systems, one appreciates the goal that the nodes inside a group

will have some different – stronger – effect than those outside it, but that

this effect will not be unbounded, so outside information will not completely

ignored. Our axioms 4 and 5 distill this goal in a most clear-cut way (on

star groups), being intentionally narrow and non-sweeping. To that we add

axiom 6, which is an intuitive and desirable consistency requirement.

However, these requirements are not compatible:

Theorem 11.2. No recommendation system satisfies axioms 1 − 6, i.e.,

is anonymous, positive responsive, IIS, is internally consistent and is α −
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Figure 11.3: The original group (surrounded by light line) and its partition

centripetal and (β, r)− centrifugal for 1 < α, β <∞.

(Proof is in Appendix C)

Example 11.1. Showcasing the proof’s main parts: A group of friends are

constructed as in in Figure 11.3, as John, Paul, George, Ringo and Yoko

want to go to a restaurant together. John and Yoko have been there and were

extremely satisfied with it. However, all the rest of Paul, George and Ringo’s

acquaintances have a very negative view about the place.

Suppose α = 2, β = 2.5 and r = 1. According to α-centripetality, the

recommendation should be to go the restaurant. However, we can subdivide it

into 3 groups (shown in Figure 11.3), which – using positive response (axiom

2) and (β, r)-centrifugality (axiom 5) – should each be advised not to go to

the restaurant.

11.5 A Recommendation System that Works

Due to the impossibility result above, we must, of course, give up some of

those axioms. We cannot eliminate axioms 1−3, as they are fundamental to
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Figure 11.4: Initial state

any social graph based recommendation system. However, we replace axioms

4 − 6 with axioms 7 − 9, which, while they do not allow us the full power

of the previous axioms, allow us to show that there is only a single group

recommendation system which satisfies them, giving us a potential candidate

for a useful, practical system that can be implemented in real-world systems.

Theorem 11.3. The group random-walk recommendation system is the only

one which satisfies axioms 1 − 3 and 7 − 9, i.e., is anonymous, positive

responsive, IIS, has trust propagation, scale invariance and proportional in-

clusiveness.

(Proof is in Appendix C)

Example 11.2. Showcasing the proof’s main parts: We alter our example,

now discussing Peter, Paul and Mary, which are influenced as in Figure 11.4.

Using scale invariance and trust propagation, Gerald is no longer con-

nected to Mary. Instead, her attachment to his other influences doubled, and

two new connections have been struck (Figure 11.5).

Using the algorithm for our example means Peter contributes 1, Mary

contributes 0, and Paul contributes −2
5
, meaning the total outcome is still

positive, and the restaurant will be recommended.
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Figure 11.5: Applying scale invariance and trust propagation

11.6 Summary

This chapter has tackled the group recommendation problem: being able to

recommend to a group of people based on the opinions of their peers. There is

a wide and varied literature indicating that recommendations from family and

friends are much better – and more accepted – than other recommendations.

This work tries to solve the recommendation problem while utilizing this

vital source of opinion, by taking into account the social graph and the

relationships it embodies.

Attempting to characterize appropriate properties for our group recom-

mendation systems, we had the basic idea that the group’s members should

have more influence than the agents outside it. Quite surprisingly, in our

view, this turned to cause an impossibility theorem. Instead, we tried to

axiomatize the influence structure between agents, leading us to a unique

algorithm implementing these features.

These results help shine a light on two main issues: first, the significance

of the social graph, without the social graph, the recommendation system col-

lapses to voting. What makes this a real recommendation system is precisely

the use of the social network.
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Second, while one may debate our choice of axioms, the need for prop-

erties that will stand at the center of the work of a system designer are

imperative: without them, in the words of Yogi Berra, “If you don’t know

where you’re going, you might not get there” [59].



If you’re gonna play the game, boy, you

gotta learn to play it right:

You’ve got to know when to hold ’em,

know when to fold ’em;

Know when to walk away,

know when to run.

You never count your money when you’re

sittin’ at the table;

There’ll be time enough for countin’ when

the dealin’s done. . .

Kenny Rogers (lyrics by Don

Schlitz), The GamblerChapter 12

When All is Said and Done. . .

This work contains, ostensibly, a variety of results that have to do with a

game theoretic approach to solving problems, helping the player know what

to do in various settings. But looking closer, there are stronger connections

between these various results.

Limiting abstractions While the abstraction of the human condition into

easily defined problems is the basic building block of any model, due

to the sheer complexity of any real-world situation, we are always at

the risk of abstracting away key elements. An overly abstract model is

what indicates no agent should participate in all-pay auctions; or that

all voters voting for their least favorite candidate might be a reason-

able stable state. We must always remain anchored in what type of

phenomena we are observing in the real world (and trying to model),

and beware that our models do not produce meaningless results.

Fundamental cooperation Game theory deals with behavior of agents

when in an environment containing other agents. But apart from the

truth-bias model (Chapter 3), all the models presented in this work fo-

cused on the cooperation and interaction between the different agents,

be it through the dynamics of the interaction, the cooperation between

them, or their social network, for which cooperation and interaction

are intrinsic features.

139
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Stability as a guiding principle Apart from the chapter that used the

axiomatic approach (Chapter 11), all chapters contained approaches

that strove to reach stability. While a desire for stability is common

in many game theoretic analysis, we wish to move from stability on its

own, a property describing some states, to stability as realistically de-

scribing states which are reasonably reachable by people as they would

play the game. In other words, we want to strengthen the link between

stable states (usually discovered by analytical work) to end states, as

they are reached in real life.

Dynamic analysis One of the main tools which we can wield to make set-

tings resemble real-world situations better, is to analyze the dynamic

by which people (or agents) reach their stable state (we do this in vot-

ing in Chapters 4,5; in all-pay auctions in Chapter 7; and in designing

the group recommendations axioms in Chapter 11). Finding which dy-

namics are helpful and which are not is part of the research process,

and we have attempted here to present some of the more insightful

dynamics in the fields we have explored.

Using this toolkit we approach areas for which the current game theoreti-

cal results are lackluster – in this work we have shown this on Nash equilibria

in voting scenarios and in all-pay auctions, as well as its importance when we

add another dimension to the social problems – the one involving networks

and the precise relationship between people.

The use of this better modeling is three-fold: first, it enables a better

understanding of humans, aiming to capture in each setting the most salient

features that enable us to model them better. Second, it enables us to design

agents that react and interact with people, understanding, albeit to a limited

degree, how people behave in certain settings, and allowing them to anticipate

and analyze such behavior to make them more useful and easier to engage

with.

Third, better modeling allows us better mechanism design. As has been

most explicitly shown in the last chapter (Chapter 11), a better understand-
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ing of human behavior – and human expectations – allow us to design better

systems which are able to provide desirable properties by having a deeper

understanding of the expected behavior of their users.

One of the big, overarching questions that remain in such analysis is how

to recognize if our models are, indeed, appropriate. In this work we have

demonstrated an attempt to deal with this problem in the realm of elections,

by building a large, robust simulation framework, and checking our results

on it with various voter distributions (taken from the relevant literature).

We have further released this framework to the public, encouraging other

researchers to use it to test their (and our) results, and extend it to the

various models as they see fit.

Using such simulators, and using our knowledge of nature, we need to find

“good enough” abstractions, that allow us, on the one hand, to maintain a

clear and coherent model of reality, and on the other, to achieve a good

approximation of human behavior. Finding these abstractions, and finding

realizable systems that enable us to compare models with real-life, is at

the forefront of getting better results from the game theoretic approach and

analysis.

תושׁלבע
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[2] Stéphane Airiau and Ulle Endriss. Iterated majority voting. In Pro-

ceedings of the 1st International Conference on Algorithmic Decision

Theory (ADT), pages 38–49, Venice, Italy, October 2009.

[3] Robleh Ali, John Barrdear, Roger Clews, and James Southgate. Inno-

vations in payment technologies and the emergence of digital currencies.

Bank of England Quarterly Bulletin 2014 Q3, September 2014.

[4] Noga Alon, Michal Feldman, Omer Lev, and Moshe Tennenholtz. How

robust is the wisdom of the crowds? In Proceedings of 24th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 2055–

2061, Buenos Aires, Argentina, July 2015.

[5] John A. Aloysius. Research joint ventures: A cooperative game for

competitors. European Journal of Operational Research, 136(3):591–

602, February 2002.

[6] Alon Altman and Moshe Tennenholtz. On the axiomatic foundations

of ranking systems. In Proceedings of the 19th International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 917–922, Edinburgh,

Great Britain, August 2005.

143



144 BIBLIOGRAPHY

[7] Alon Altman and Moshe Tennenholtz. Ranking systems: The pager-

ank axioms. In Proceedings of the 6th ACM conference on Electronic

Commerce (EC), pages 1–8, Vancouver, Canada, June 2005.

[8] Alon Altman and Moshe Tennenholtz. An axiomatic approach to per-

sonalized ranking systems. Journal of the ACM, 57(4):1–35, 2010.

[9] Ramon Michael Alvarez and Jonathan Nagler. A new approach for

modelling strategic voting in multiparty elections. British Journal of

Political Science, 30(1):55–75, January 2000.

[10] Erwin Amann and Wolfgang Leininger. Asymmetric all-pay auctions

with incomplete information: The two-player case. Games and Eco-

nomic Behavior, 14(1):1–18, May 1996.

[11] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das,

and Cong Yu. Group recommendation: semantics and efficiency. In

Proceedings of the VLDB Endowment, volume 2, pages 754–765, 2009.

[12] Reid Andersen, Christian Borgs, Jennifer Chayes, Uriel Feige, Abra-

ham Flaxman, Adam Kalai, Vahab Mirrokni, and Moshe Tennenholtz.

Trust-based recommendation systems: an axiomatic approach. In

Proceedings of the 17th international conference on World Wide Web

(WWW), pages 199–208, Beijing, China, April 2008.

[13] Nikolay Archak and Arun Sundararajan. Optimal design of crowd-

sourcing contests. In Proceedings of the 13th International Conference

on Information Systems, ICIS, Phoenix, Arizona, 2009.

[14] Kenneth Joseph Arrow. Social Choice and Individual Values. Yale

University Press, 1951.

[15] Susan Athey. Single crossing properties and the existence of pure

strategy equilibria in games of incomplete information. Econometrica,

69(4):861–889, July 2001.



BIBLIOGRAPHY 145

[16] John Augustine, Ning Chen, Edith Elkind, Angelo Fanelli, Nick Gravin,

and Dmitry Shiryaev. Dynamics of profit-sharing games. In Proceedings

of the 22nd International Joint Conference on Artificial Intelligence

(IJCAI, pages 37–42, Barcelona, Spain, July 2011.

[17] Paolo Avesani, Paolo Massa, and Roberto Tiella. A trust-enhanced

recommender system application: Moleskiing. In Proceedings of the

20th ACM symposium on Applied computing (SAC), pages 1589–1593,

Santa Fe, New Mexico, March 2005.

[18] Haris Aziz, Yoram Bachrach, Edith Elkind, and Mike Paterson. False-

name manipulations in weighted voting games. Journal of Artificial

Intelligence Research, 40:57–93, January 2011.

[19] Haris Aziz, Felix Brandt, and Paul Harrenstein. Monotone cooperative

games and their threshold versions. In Proceedings of the 9th Inter-

national Conference on Autonomous Agents and Multiagent Systems

(AAMAS), volume 1, pages 1107–1114, Toronto, Canada, May 2010.

[20] Haris Aziz, Oded Lachish, Mike Paterson, and Rahul Savani. Power

indices in spanning connectivity games. In Proceedings of the 5th Inter-

national Conference on Algorithmic Aspects in Information and Man-

agement (AAIM), pages 55–67, San Francisco, California, June 2009.

[21] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids,

secretary problems, and online mechanisms. In Proceedings of the 18th

annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

434–443, New Orleans, Louisiana, January 2007.

[22] Yoram Bachrach. Honor among thieves: collusion in multi-unit auc-

tions. In Proceedings of the 9th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), volume 1, pages

617–624, Toronto, Canada, May 2010.



146 BIBLIOGRAPHY

[23] Yoram Bachrach. The least-core of threshold network flow games. In

Proceedings of the 36th international conference on Mathematical foun-

dations of computer science (MFCS), pages 36–47, Warsaw, Poland,

August 2011.

[24] Yoram Bachrach, Sofia Ceppi, Ian A. Kash, Peter Key, Filip Radlinski,

Ely Porat, Michael Armstrong, and Vijay Sharma. Building a person-

alized tourist attraction recommender system using crowdsourcing. In

Proceedings of the 13th international conference on Autonomous Agents

and Multiagent Systems (AAMAS), pages 1631–1632, Paris, France,

May 2014.

[25] Yoram Bachrach, Edith Elkind, and Piotr Faliszewski. Coalitional vot-

ing manipulation: A game-theoretic perspective. In Proceedings of the

22nd International Joint Conference on Artificial Intelligence (IJCAI),

pages 49–54, Barcelona, Spain, July 2011.

[26] Yoram Bachrach, Edith Elkind, Reshef Meir, Dmitrii Pasechnik,

Michael Zuckerman, Jörg Rothe, and Jeffrey S. Rosenschein. The cost

of stability in coalitional games. In Proceedings of the 2nd International

Symposium on Algorithmic Game Theory (SAGT), pages 122–134, Pa-

phos, Cyprus, October 2009.

[27] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran

Katzir, Noam Koenigstein, Nir Nice, and Ulrich Paquet. Speeding

up the xbox recommender system using a euclidean transformation for

inner-product spaces. In Proceedings of the 8th ACM Conference on

Recommender systems (RecSys), pages 257–264, Foster City, Califor-

nia, October 2014.

[28] Yoram Bachrach, Thore Graepel, Gjergji Kasneci, Michal Kosinski,

and Jurgen Van Gael. Crowd iq: aggregating opinions to boost per-

formance. In Proceedings of the 11th International Conference on Au-



BIBLIOGRAPHY 147

tonomous Agents and Multiagent Systems (AAMAS), volume 1, pages

535–542, Valencia, Spain, May 2012.

[29] Yoram Bachrach and Ralf Herbrich. Fingerprinting ratings for collab-

orative filtering—theoretical and empirical analysis. In Proceedings of

the 17th International Symposium on String Processing and Informtion

Retrieval (SPIRE), pages 25–36, Los Cabos, Mexico, October 2010.

[30] Yoram Bachrach, Ralf Herbrich, and Ely Porat. Sketching algorithms

for approximating rank correlations in collaborative filtering systems.

In Proceedings of the 16th International Symposium on String Pro-

cessing and Informtion Retrieval (SPIRE), pages 344–352, Saariselkä,
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Appendix A

Proofs of Part I

A.1 Chapter 3

Observation 3.2. Given an election with truth-biased voters using veto, in

any Nash equilibrium the score of the winner does not change from the score

it received in the truthful vote. All non-truthful voters veto runner-ups.

Proof. Suppose in a Nash equilibrium profile b the winner is candidate w. If

a voter truthfully vetoes w, it has no reason to deviate – no other vote can

change this outcome, and it gains an ε of utility by being truthful. If a voter

is not truthful, if it is vetoing w, yet w still wins, w will still win if the voter

reverts to being truthful, but the voter will gain an ε of utility. Hence, only

voters which vetoed w in the truthful profile veto it in b.

If a voter is not truthful in a Nash equilibrium, that means vetoing its

truthful choice would change the outcome. As it is not vetoing w in its

truthful vote, the change in the election’s result stems from the point that

would be gained by the currently vetoed candidate. If it becomes the winner,

that can only be if the candidate was a runner-up.

Observation 3.3. Given an election with truth-biased voters using veto,

in any Nash equilibrium which is not the truthful profile, all voters except

those vetoing the winners or runner-ups prefer the winner to the threshold

candidate.
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Proof. Suppose in a Nash equilibrium profile b the winner is candidate w. As

this is a non-truthful profile, there is at least one voter that can change the

outcome if it returns to being truthful. Hence, there are runner-up candidates

and thus, a threshold candidate.

If a voter is not vetoing w or runner-ups, it can change the result by

vetoing w and making the threshold voter the winner (as it does not veto

a runner-up, the candidate that stands to gain a point will not become the

winner).

Theorem 3.2. Given an election with truth-biased voters using the veto

voting rule and a specific candidate, deciding if there is a voting profile which

is a Nash equilibrium in which the candidate is victorious is NP-complete.

Proof. As the proof is quite While membership in NP is trivial, completeness

requires several steps. We will construct a reduction from exact-cover by 3-

sets (X3C).

Definition A.1. Exact cover by 3 sets (X3C) is a problem with the input of

3m elements U = {u1, . . . , u3m} and a set of sets S = {S1, . . . , Sn} such that

for 1 ≤ i ≤ n: Si ⊂ U , Si = {ui1 , ui2 , ui3}. We wish to know if there is a set

T ⊆ S such that |T | = m and ∪S∈TS = U .1

Taking a X3C instance, we construct an instance of our problem. In order

to aid us we denote by S the members of S ordered as usual – S1 � S2 �
. . . � Sn; similarly we use U for the ordering of U . S̄ marks the opposite

direction – Sn � Sn−1 � . . . � S1, and similarly for Ū .

The set of candidates C will be the members of S and U , to which we

add two new candidates w and t. Our tie-breaking rule is w � t � S � U
The set of voters V consists of two blocks of voters described in Table A.1,

along with 3 additional blocks described below:

Block 3 For every ui ∈ U , we have:

• m votes of the form: U \ {ui} � S � w � t � ui;

1NP-completeness was shown in Garey and Johnson [106].
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Block 1

S \ {S1}, Ū ... S \ {Sk−1}, Ū ...

U , S̄ \ {S2} ... U , S̄ \ {Sk} ...

w, w ... w, w ...

S1, S2 ... Sk−1, Sk ...

t, t ... t, t ...

Block 2

... U \ {ui1} U \ {ui2} U \ {ui3} ...

... S \ {Si} S \ {Si} S \ {Si} ...

... w w w ...

... t t t ...

... ui1 ui2 ui3 ...

... Si Si Si ...

Table A.1: Two of the blocks of voters for the NP-completeness proof

• n− 2m− 1 votes of the form: S̄ � Ū \ {ui} � w � t � ui.

Block 4 For every Si ∈ S, we have:

• m votes of the form: S \ {Si} � U � w � t � Si;

• n− 2m− 1 votes of the form: Ū � S̄ \ {Si} � w � t � Si.

Block 5 n−m votes of the form: t � S � U � w.

In the truthful profile, w is not the winner, but rather u1. We wish to

prove there is an equilibrium in which w is the winner if and only if there is

a solution to the X3C problem.

Given the constructed truthful profile, if a Nash equilibrium profile b

exists with w as a winner, t is the threshold candidate in b. Since w will

retain the same score as in the truthful profile and beats all other candidates

in the tie-breaking rule, and since t must be the threshold candidate, we

know t must have n−m points.
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If there is a T = {S ′1, . . . , S ′m} ⊆ S which is a solution to the X3C problem,

we have an equilibrium in which w is the winner: the voters from Block 1

whose penultimate candidate is S ′i ∈ T will veto S ′i. The voters in Block 2

who veto S ′i ∈ T instead veto their penultimate candidates ui1/2/3 . In such

a situation all candidates are vetoed by n − m voters (apart from those in

S \ T , which are vetoed by n−m+ 2 voters), and therefore w is the winner.

All non-truthful voters are vetoing runner-ups which they prefer less than w

or t. Hence, changing their vote will make the candidate they currently veto

the winner, and as they would rather have w win, they do not change their

vote. Furthermore, all voters from Blocks 1 through 4 that do not veto a

runner-up candidate can only deviate so that t becomes a winner. Since they

prefer w to t, none of them will have an incentive to do so. Finally, none

of the voters in Block 5 can change the election outcome and will therefore

remain truthful.

Now assume that there is no solution to the X3C problem. Since t needs to

gain some points to be a threshold candidate, at least m voters from Block

1 will veto the Si’s (the only candidates less-preferred than w). However,

in order for them not to revert to their truthful vote, those Si’s need to be

runner-up candidates, so all votes in Block 2 who would truthfully veto those

Si’s, need to veto their respective ui’s instead. In addition, those ui’s need

to be runner-ups as well (or those Block 2 votes will revert to the truthful

vote), and as they are ranked below S in the tie-breaking rule, they need to

have m − n vetoes in order to be runner-ups. This means that each ui is

vetoed only once in Block 2. So we have m (or more) Si’s containing exactly

one copy of each ui; i.e., we found an exact cover of U , contradicting the

assumption that X3C has no solution.

Theorem 3.3. Given an election with truth-biased voters using the veto vot-

ing rule and a specific candidate, assuming Condition 1 is true and Condition

2 is not, deciding if there is a voting profile which is a Nash equilibrium in

which the candidate is victorious is NP-complete.

Proof. As with Theorem 3.2, we will construct a reduction from X3C. We
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will use the same notation, where S is the set of sets and U is the set of

elements in an instance of X3C, and convert the members of these sets into

distinct candidates. In this case, in addition to the candidates from S and

U , we will introduce four special candidates w, t, p1 and p2. The tie-breaking

preference order shall be w � t � p1 � p2 � S � U , where candidates from

S and U appear in their lexicographic order.

We now construct the set of voters, grouped into blocks according to

their truthful preferences. In each block we only explicitly describe the order

of a few least-preferred candidates. All candidates that are not explicitly

mentioned in a profile, appear in an arbitrary order, and are marked by . . . .

Block 1 A set of n voters, one for each candidate in S, with a preference

order of the form · · · � t � w � Si � p1.

Block 2 A set of n−m voters with a preference order of the form · · · � t �
w � p2 and one additional voter with profile of the form · · · � w � t �
p2.

Block 3 For each {ui1 , ui2 , ui3} = Si ∈ S a set of n −m + 2 voters. Three

with profiles of the form · · · � w � t � uij � Si, where j ∈ {1, 2, 3},
and all others of the form · · · � w � t � Si.

Block 4 For each ui ∈ U a set of n−m− 1 voters with profiles of the form

· · · � w � t � ui.

Block 5 A set of n−m− 1 voters with profiles of the form · · · � w � t.

Block 6 A set of n−m voters with profiles of the form · · · � t � w.

If there is a profile b that is a Nash equilibrium in which w wins, w’s score

does not change from its truthful score, yet by our construction t’s score is

above w’s by 1 (fulfilling Condition 1). Hence, for w to become a winner

in b, t has to receive only one additional veto and will also be a threshold

candidate.



182 APPENDIX A. PROOFS OF PART I

Consider the voters of Block 2. n−m of them prefer t to w, and would

not veto the former when w is the winner. Yet, if they are non-truthful in b,

they have to veto a runner up. As a result, none of them can deviate from

their truthful profile in equilibrium. On the other hand, the last voter of the

block can deviate and veto t.

Similarly, thanks to the low score of p1 in the truthful profile, up to

m voters from Block 1 can deviate in the equilibrium and stop vetoing p1.

Moreover, if less than m do so, that indicates, p1 is not a runner-up, hence

one of the voters vetoing p1, can devote to veto w making t the winner,

hence exactly m are deviating. These newly vetoed candidates have to be

less preferred than w by the deviating voters, i.e., from the set S. As a result,

there are m candidates Si ∈ S that are being vetoed by the voters from Block

1 in the equilibrium profile b.

These chosen Si’s, however, need to be runner-up candidates. To achieve

that, exactly 3 candidates that veto Si’s in Block 3 must deviate in the

equilibrium profile b. These can only be the voters with preference profiles

of the form · · · � w � t � uij � Si, where j ∈ {1, 2, 3}.
Since no voter in Block 4 can deviate, those voters from Block 3 that

deviate to veto uijs must be vetoing runner-ups, hence the total number of

times that uij is being vetoed is equal to n − m. This can happen only if

each uij ∈ U is vetoed exactly once by voters from Block 3.

As a result, the sub-set Si’s that are vetoed by voters in Block 1 consti-

tutes a solution to the given X3C instance. The opposite direction, that is,

constructing a Nash equlibrium profile given a solution to the X3C instance,

is trivial.

Theorem 3.4. Consider a candidate w ∈ C and a truthful profile for which

both Condition 1 and Condition 2 apply. Then finding if there is a voting

profile for truth-biased voters under the veto voting rule which is a Nash

equilibrium where w is the winner can be done in polynomial time.

Proof. The proof is based on a polynomial reduction to the max-flow problem

in a graph. We will construct a graph (and later correct the flow) in a way
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Figure A.1: Palm sub-structure for potential deviators

that the set of flow-saturated edges will indicate the feasibility of obtaining

a Nash equilibrium. Furthermore, positive flow at certain nodes in the graph

will indicate a switch in the voters’ equilibrium ballots from their truthful

profile.

Given the truthful voting profile, we will construct the graph as fol-

lows. Vertices will be associated with each candidate and each voter; we

also add a source and a sink node. The set of graph vertices will therefore

be {source, sink} ∪ C ∪ V .

The set of edges, E, in the graph will consist of three subsets.

Potential deviators Edges that link voters and potentially vetoed candi-

dates: for voter vi whose least preferable candidate is some r ∈ C \ w,

i.e., the preference order is in the form . . . � w � c1 � . . . � cl � r,

the graph shall contain directed edges with unit flow capacity (r, vi)

(indicating flow from r to vi) and the directed edges (vi, c1), . . . , (vi, cl).

The resulting palm-leaf sub-structure is depicted in Figure A.1. It

essentially captures the ability of the voter to change its veto in a

manner that will benefit w without hurting the voter’s utility (of course,

there are plenty of such sub-graphs in the graph, and vertices may be

part of several such structures).

Sustainable deviations Edges from the source node: these edges and ca-

pacities reflect the number of additional points a candidate may absorb

until it becomes a runner-up candidate competing with w. As we know
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what w’s score in the Nash equilibrium will be, we know how many

points a candidate may gain without having more points than w. For

candidates c ∈ C which can gain points without overshadowing w, the

graph includes the edge (source, c) with the capacity of that number of

points (i.e., if c � w in the tie-breaking rule, the capacity of the edge

is w’s score in the truthful score -c’s score in the truthful profile - 1; if

w � c in the tie-breaking rule, the capacity of the edge is w’s score in

the truthful score - c’s score in the truthful profile).

Necessary deviations Edges to the sink node: these edges and capacities

reflect the number of additional veto votes a candidate needs to receive

in order to reduce its score enough so that it does not score higher

than w. For candidates c ∈ C which must lose points so they do not

overshadow w, the graph includes the edge (c, sink) with the capacity

of that number of points (i.e., if c � w in the tie-breaking rule, the

capacity of the edge is c’s score in the truthful profile - w’s score in the

truthful score - 1; if w � c in the tie-breaking rule, the capacity of the

edge is c’s score in the truthful profile - w’s score in the truthful score)

If there is a Nash equilibrium in which w wins, all candidates connected

to the sink must lose a number of points equal at least to that capacity.

Hence, a flow in which the capacity of all candidates gaining points (by no

longer longer being vetoed) flows to the voters which give them that points,

and passing through those voters to the candidates these voters deviated to

vetoing produces a flow of at least the capacity of the incoming edges to

the sink. Therefore, if the max-flow of the graph is less than that flow we

know there is no such Nash equilibrium. Now, we need to show that if all

edges to the sink are saturated in a maximum flow, we will show that a Nash

equilibrium profile b, whose winner is w, can be recovered from the flow.

Let x : E → N be a maximal acyclic, integer flow through the constructed

graph. Such a flow can be obtained in polynomial time (polynomial in num-

ber of voters and candidates). Furthermore, all edges from a candidate node
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to a voter node that have positive flow on them will be saturated (as their

capacity is 1).

We will now modify the flow, while maintaining its total capacity, to

maximize the flow through the source outgoing edges, and minimize the flow

through voter nodes. Since we will later associate a flow through a voter

node with the voter deviating from the truthful vote, minimizing the flow

through voter nodes will reflect and ensure that the voting profile recovered

from it will be truth biased (i.e., no unnecessary manipulations, as in such

cases some voters will be better off reverting to their truthful preference).

Let D = {c ∈ C | ∃e = (source, c) ∈ E} be the set of all nodes to which

the source is directly connected. Notice that D is a subset of candidate

nodes. Let q ∈ D be a node for which there is a voter v such that (v, q) ∈ E
is with a non-zero flow (i.e., x((v, q)) > 0), and the edge (source, q) is not

saturated. In other words, we have a path (source = n0, n1, . . . , nl = q) such

that ek = (nk−1, nk) ∈ E for all 1 ≤ k ≤ l and x(ek) > 0. Notice that since

x is an integer flow and all edges between candidate nodes and voter nodes

have unit capacity, all the edges of the path have a unit flow apart from the

initial edge from the source to n1.

We will construct an augmented flow x̂ by canceling the flow through

this path, replacing it with an additional unit flow from the source to q

until no such q exist. More formally, as long as such q exist, we set initially

x̂ = x and then modify it, by setting x̂(ek) = 0 for all 1 ≤ k ≤ l and

x̂((source, n1)) = x((source, n1))− 1 and x̂((source, q)) = x((source, q)) + 1.

We then repeat the modification procedure, if necessary, for x̂.

Notice that following such a flow modification procedure the total flow

from the source to the sink does not change. Following it, we are assured

that for node q ∈ D either the edge (source, q) is saturated, or q has no

positive incoming flow from the voter nodes.

We now construct the Nash Equilibrium voting profile from the flow.

For every voter vi ∈ V , if there is an edge (vi, cj) for some cj ∈ C such

that x(vi, cj) > 0, we let vi change its vote to veto cj. Otherwise, vi votes
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truthfully. This is an equilibrium, as a voter has a flow to a candidate if the

edge to that candidate from the source is saturated (meaning that candidate

is a runner-up), or the candidate has an edge directed at the sink, i.e., it

must be vetoed to lower the score of this candidate.

Complexity of max-flow is O(2n2m) (as for a graph G(V,E) with a weight

function f , it is O(Emax |f |), and in our case, there are 2nm edges, and the

max flow is n). The process of finding the actual equilibrium is done by going

for up to n edges connected to the source, and for every one of them going,

at most, over all edges, which is exactly the same complexity.

A.2 Chapter 4

Theorem 4.1. An iterative scoring rule election with a deterministic tie-

breaking rule, even for voters using best-response strategies and starting from

the truthful state, will not converge for some preferences.

Proof. Our examples will be somewhat complex, as we deal with a large

family of voting rules. In some cases the best response strategy is obvious,

as there is only one choice that results in making a specific candidate the

winner. In other cases there may be multiple options to reach the same

outcome, hence we used a “natural” definition for scoring rules, in which

players taking off points from the current winner will give it zero points

and award the new winner the maximal score possible. Also, all things

are equal, we assume voters will prefer to be as close as possible to their

truthful preferences. However, even if one does not use such a definition for

best response, cycles are still created – only longer, as they may go through

several more steps than detailed here.

First, we deal with scoring rules in which at least three candidates do not

receive maximal scores (i.e., αm−2 < α1). We have at least four candidates,

a, b, c and d. Our tie-breaking rule is structured as follows:

• c tied with others except b wins.
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• b tied with others except d wins.

• d tied with others except a or c, wins.

We have two voters:

Voter 1: a � b � c � d

Voter 2: c � d � b � a

We can add several dummy candidates so that the score given by voter

1 to b is less than is given to a, and the score voter 2 gives to d is less than

given to c (and dummy voters, making these dummy candidates irrelevant as

potential winners). The winner in this truthful state is c (either he is the sole

winner, or through a tie with a). The only option for improving the result

for voter 1 is to make b victorious, changing its preference to b � a � d � c.

Voter 2 can improve the result by changing its preference to d � c � a � b,

making d the winner (possibly through winning the tie between b and d).

The best option available to voter 1 is to return to its original preference

order, making a, its favorite, the winner. However, now voter 2 will return

to its original preference as well, as it ensures the victory of c, its own most

preferred candidate.

If there are only two candidates that receive less than the maximal score,

then we use a different setting, one with six candidates. Our tie-breaking

rule follows:

• b wins when a, b, c, d are tied.

• a wins when a, c, d are tied.

• c wins when a and c are tied and when a, c, d, e are tied

• d wins in other ties that include it.

• f wins in other ties that do no include d.

• e win in other ties that do not include d or f .
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a b c d e

a b c d e d

b c d a a a

c d a b a a

d e a a a a

e d a a a a

Table A.2: Non-linear tie-breaking rule for veto

Let us look at two voters:

Voter 1: a � b � c � d � e � f

Voter 2: b � c � a � d � e � f

The winner here is candidate b (since a, b, c, d are tied). However, when

voter 1 changes its stated preference to a � c � d � e � f � b, then a, its

favorite, becomes the winner (since a, c, d are tied). Voter 2 can only improve

this situation by changing its stated preference to a � c � d � e � b � f ,

making c victorious. Voter 1 can now improve the situation by returning to

its original preference, making a the winner. In this case, voter 2 will also

return to its original preference, as that will make its favorite candidate, b,

win.

If there is only one candidate that receives the less-than-maximal score,

this is the Veto voting rule, for which there is a similar, but simpler, example.

We shall use two voters, and we can describe the voting rule and tie-breaking

rule using Table A.2, marking the victor according to whom the voters chose

to veto.

In our case, the voters’ real preferences are:

Voter 1: c � b � d � e � a

Voter 2: b � d � c � e � a

The truthful starting point would result in b being the winner. As voter

1 would rather that c win, it will move to veto b. Following that, voter 2
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would move to veto b as well, as that would result in d winning. Voter 1,

which would rather that c win, will return to vetoing a, and as voter 2 would

rather that b be victorious, it would return to vetoing a as well, returning to

our original starting point.

Theorem 4.2. Iterative Veto elections with deterministic linear-order tie-

breaking and voters which use a best-response strategy, converge even when

not starting from a truthful state.

Proof. Suppose there is an iterative election G that includes a cycle. We

shall mark an arbitrary state in the cycle as G0, and enumerate the rest of

the cycle accordingly. Note that G0 is not necessarily the opening state of

the election.

Definition A.2. scorei(x) is defined as the score of candidate x in game

state Gi. max(Gi) is defined as the score of the winning candidate in Gi.

Lemma A.1. If there is a cycle, then for j < i, max(Gi) ≤ max(Gj) + 1,

and if max(Gi) = max(Gj) + 1, there is only one candidate with that score.

Proof. Proving by induction, the base case is trivial. Assuming it is true after

h− 1 steps, proving it for step h: examining Gh−1, if there was a j < h− 1

for which max(Gh−1) = max(Gj)+1, there is a single winner in Gh−1, which

looses a point, and therefore the winner in Gh will have, at most, max(Gh−1)

points. Thus, max(Gh) ≤ max(Gh−1), and the claim stems from its truth

for Gh−1.

If for every j < h − 1 max(Gh−1) ≤ max(Gj), the maximal score in Gh

will rise by at most one point, i.e., max(Gh) ≤ max(Gj) + 1 for all j < h.

Furthermore, if it indeed grows, there is only a single candidate with that

number of points (as only the candidate that got an extra point has this

score). If the maximal score in Gh did not grow, max(Gh) ≤ max(Gh−1),

and claim is true from its correctness for Gh−1.

Notice that since we can choose G0 arbitrarily from the cycle, due to the

last lemma, max(G0) + 1 ≥ max(Gi) ≥ max(G0) − 1, otherwise, there will
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be no possibility for the cycle to return to its starting point.

Lemma A.2. There can be at most n · (m − 2) consecutive steps in which

the voter changed their veto from candidate a to candidate b, and candidate

a became the winner.

Proof. Every time a voter changes its veto, it indicates that the vetoed can-

didate is preferable to the current winner; that is, the winner is a candidate

less and less liked as the game progresses. Since there are n voters and,

at most, m − 1 candidates that are worse than the current one, and as the

voter will not chose to make the very worst candidate the winner, there are

n · (m− 2) steps.

We shall deal, first of all, with the easiest case, solved by the lemma

above, when there is always only one candidate with the winning score (the

tie-breaking rule is never used). In this case, at every step, the old winner

loses a point, and the new winner gains a point. This is the case dealt with

in Lemma A.2, and as the number of steps is limited, there can be no cycle.

Having dealt with that case, let us take a closer look at G0, which we can

define as one of the states in which there is more than one candidate with a

maximal score. Note that there must be more than one of these states, since

if there was a single winner in Gi and more than that in Gi+1, a candidate

received a point and did not become a unique winner, i.e., its score in Gi

was, at most, max(Gi) − 2. Since this is a cycle, there must be a step in

which it returns to that score (if it is Gi+1, then for a cycle to happen, the

same candidate will need to rise again so the voter that increased its score

in Gi will veto it again).

Lemma A.3. For every state Gi in which there is more than one candidate

scoring max(Gi), max(Gi) = max(G0), |{x | scorei(x) = max(Gi)}| =

|{x | score0(x) = max(G0)}| and |{x | scorei(x) = max(Gi) − 1}| = |{x |
score0(x) = max(G0) − 1}|. This means the number of candidates with the

maximal score remains fixed, as does the number of candidates with maximal

score −1. Furthermore, these are the same candidates, switching between the



A.2. CHAPTER 4 191

Figure A.2: When only one candidate has maximal score

Figure A.3: When multiple candidates have the maximal score

Diagrams showing why there is a limit on the increase and decrease of maxi-

mal score. When there is a state with only one candidate with maximal score,

the maximal score will either remain the same with a single winner (move

type B) or decrease (move type A). If it is a state where there are several

candidates with the maximal score, the maximal score will either increase

(move type D) while creating a situation with a single winner or the maximal

score will remain the same (move type C). This also illustrates why the score

cannot go down much if there is a cycle – it can only increase by one in the

whole cycle; at no point can we reach a maximal score 2 points higher than

another.
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two scores: {x | scorei(x) ∈ {max(Gi),max(Gi) − 1}} = {x | score0(x) ∈
{max(G0),max(G0)− 1}}.

Proof. According to Lemma A.1, if max(Gi) = max(G0)+1, there is a single

candidate with the winning score, and this lemma does not handle this case.

Suppose max(Gi) = max(G0)− 1; according to the same lemma, this means

there is only one candidate with the winning score in G0, which we defined

as a state having at least two.

At any step in the game, one candidate loses a point and another gains

it. Hence, if the number of those with the maximal score and maximal −1

score is not the same as in G0, some candidate lost (or gained) a point, which

has a score lower than maximal −1 in G0. However, as the maximal score

will never be max(G0)− 1 (otherwise, according to Lemma A.1, there would

only be one candidate with winning score in G0), there is no way in the cycle

for the candidate to be vetoed when it has a score of max(G0)− 1, and get

a lower score. As no candidate that has a score of max(G0) or max(G0)− 1

can get a smaller score, the group of candidates with these scores stays fixed

throughout the cycle.

Let B be the group of candidates who changed places in states in which

max(Gi) = max(G0) (i.e., B = {x | ∃i such that scorei(x) = max(G0) and

∃j such that scorej(x) = max(G0) − 1}). Let z ∈ B be the lowest ranked

candidate according to the linear tie-breaking rule, in B. Since z changes

its score, there is a state Gi where z has the score max(G0) and is vetoed,

i.e., z is the winner if Gi. This means there is no other candidate from B

with the score max(G0). As the number of candidates with max(G0) does

not change (according to Lemma A.3), this means that at every state Gj in

which max(Gj) = max(G0), there is only a single candidate from B with

max(G0) points, and it always wins (due to the tie-breaking rule). This

means the candidate getting the point at every stage is the one that becomes

the winner – which, as noted in Lemma A.2, is a finite process, contradicting

the endless cycle.
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Theorem 4.3. Under the iterative procedure, using a best response strategy

and when voters are myopic, no scoring rule apart from plurality and veto

converges.

Proof. Different rules require different proofs, and we consequently divide

our proof:

Part 1: Scoring Rules with 2 Values (k-approval)

Scoring rules with only 2 values which are not plurality or veto are equiv-

alent to k-approval for k > 1 and k < m− 1. We shall show it for k = 2 and

m = 4. Using dummy candidates, this can be extended to any size of k.

Consider the tie-breaking rule a � b � c � d and the voters:

Voter 1: a � b � c � d

Voter 2: d � b � c � a

The winner in this case is b, with a score of 2. But voter 1 can change its

vote to a � c � d � b, making a the winner (thanks to the tie-breaking). But

now voter 2 can change to c � d � b � a, making c the winner. Now, voter

1, by reverting to its truthful preference makes a the winner again (thanks

to tie-breaking rules), and, finally, by reverting to its true preference, voter 2

returns us to the original state, making b the winner and creating the cycle.

Part 2: Scoring Rules with 3 Values

Oddly, this is the most complicated case. Our scoring rule has the values

α1, α2 and 0. Let us first examine the case when the scoring rule for 4

candidates is (α1, α2, 0, 0) and α1 < 2α2. Our tie-breaking rule is a � b �
c � d, and the voters are:

Voter 1: b � d � c � a

Voter 2: a � d � c � b

Hence the winner is d, with a score of 2α2. Voter 2 can now change its

vote to a � c � b � d, making a the winner with α1 points (as d changes to
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α2). Now voter 1 can change to c � b � d � a, making c the winner, with

α1 +α2 points. By reverting to its truthful vote, voter 2 can make its favorite

candidate, a, the winner again, to which voter 1 retaliates by returning to

its truthful vote as well, creating a cycle, with d as the winner.

We now create a cycle for the case α1 ≥ 2α2. Our tie-breaking rule is

a � b � c � d, and the voters are:

Voter 1: a � c � d � b

Voter 2: d � c � b � a

This means a is the winner with α1 points, thanks to the tie-breaking

rule. Voter 2 now changes to c � d � b � a, making c the winner with

α1 + α2 points. Voter 1 retaliates by changing to a � d � b � c, making a

the winner again. By returning to its truthful preference, voter 2 makes the

winner d, its favorite candidate, with α1 +α2 points. However, by completing

the cycle and returning to its truthful preference, voter 1 makes its favorite,

a, the winner again.

We now look at the case where the scoring rule for 4 candidates is

(α1, α2, α2, 0). The tie-breaking rule is a � b � c � d, and the voters

are:

Voter 1: c � d � b � a

Voter 2: a � b � d � c

The winner is either a or b (depending on if α1 < 2α2 or not). Voter 1

reacts by voting d � c � b � a, making d the winner with α1 + α2 points,

to which voter 2 reacts by voting a � b � c � d, making a or b the winner.

However, by reverting to its truthful preference, voter 1 makes c the winner

with a score of α1 + α2. Voter 2 completes the cycle by reverting to its

truthful preference.

The last case is when the scoring rule for 4 candidates is (α1, α1, α2, 0).

First, suppose α1 ≥ 2α2. The tie-breaking rule is a � b � c � d, and the

voters are:
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Voter 1: a � c � b � d

Voter 2: c � d � b � a

Voter 3: a � b � d � c

The winner is a with 2α1 points, which is changed to b (with 2α1 + α2

points) when voter 2 changes to b � c � d � a. Now voter 3 makes a the

winner with a score of 2α1 when it votes a � d � c � b. Voter 2 now returns

to being truthful, making c the winner, with 2α1 + α2 points, causing voter

3 now reverts to being truthful, making a the winner again.

Now, suppose α1 < 2α2. The tie-breaking rule is a � b � c � d, and the

voters are:

Voter 1: d � b � a � c

Voter 2: d � c � a � b

Voter 3: b � a � c � d

Voter 4: d � b � c � a

The winner is b with a score of 3α1, enticing voter 4 to vote d � c � b � a,

making d the winner with the same score. Voter 3 now changes its vote to

c � b � a � d, making c the winner with 3α1 points. By reverting to being

truthful, voter 4 makes d the winner again, which voter 3 changes back to b

when it returns to being truthful as well.

Part 3: Scoring Rules with More Values

We shall show this on voting rules with 4 values and 4 candidates. This is

easily extendable to more candidates and values by adding dummy candidates

(and voters who do not get to manipulate) as necessary.

The scoring rule is (α1, α2, α3, 0) and is strictly monotonic. The voters

are:

Voter 1: a � b � c � d

Voter 2: c � d � b � a
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c is the winner here with α1 + α3 points (a has only α1 points; b has

α2 +α3; and d has α2). Voter 1 can change the outcome by changing its vote

to b � a � d � c reducing c to only α1 points, and raising b to α1 +α3. Voter

2 retaliates by changing to d � c � a � b, making d the winner with α1 +α3

points, and reducing b to α1. Voter 1 improves its situation by reverting to its

truthful preferences, which make a the winner (with α1 + α3 points). Voter

2 completes the cycle by also reverting to its truthful preferences, making its

favorite candidate, c, the winner.

Theorem 4.4. Given a truthful profile a and a profile b distinct from a, it

is NP-complete to decide if b is reachable by iterative plurality using best-

response updates, starting from a.

Block 1 Block 2 Block 3 Block 4 Block 5

g1... g1 ... gn gn d1... d1... dm... dm g1... g1 ... gn... gn d1... dm

u1... uk ... u1... uk g11 ... g1l1
... gm1 ... gmlm

u1... uk ... uk... u1 t... t
...

. . .
...

...
. . .

... w1... w1... wm... wm
...

. . .
...

...
. . .

... arbitrary

uk... u1 ... uk... u1 G \ g11 ... G \ g1l1
... G \ gm1 ... G \ gmlm

uk... u1 ... u1... uk order stand-ins

G \ g1 ... G \ gn t... t... t... t G \ g1 ... G \ gn over

t... t ... t... t w1... w1 ... w1... w1 all

D ∪W ... D ∪W arbitrary order over all others arbitrary order over all others others

Table A.3: NP-Completeness proof profiles: truthful profile. Recall, |wi| = li.

Block 1 Block 2 Block 3 Block 4 Block 5

t... t ... t... t w1... w1... wm... wm w1... w1 ... w1... w1 t... t d|w1|... dm

g1... g1 ... gn gn d1... d1... dm... dm g1... g1 ... gn... gn d1... d|w1|−1 t... t

u1... uk ... u1... uk g11 ... g1l1
... gm1 ... gmlm

u1... uk ... uk... u1

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
... as was

uk... u1 ... uk... u2 as was uk... u1 ... u1... uk as was

G \ g1 ... G \ gn G \ g1 ... G \ gn
D ∪W ... D ∪W as was

Table A.4: NP-Completeness proof profiles: target profile. Recall, |wi| = li.

Proof. To show that the problem is in NP, it is enough to provide as a

certificate the sequence of best-response updates that leads from profile a to



A.2. CHAPTER 4 197

profile b. One could then check that this is a valid sequence. We know the

sequence is of polynomial length from Meir et al. [160], Theorem 3.

To prove NP-hardness, we provide a reduction from the Hitting Set (HS)

problem, a well known NP-complete problem,2 which is the following: we

are given a set of ground elements G = {g1, . . . , gn}, a family of subsets

of G, W = {w1, . . . , wm}, wi ⊆ G, |wi| = li and a number k ≤ n. We

need to determine if there is a hitting set U ⊂ G, so that |U | ≤ k, and

∀i ∈ [m], U ∩ wi 6= ∅. This is a well-known NP-complete problem.

We assume that we are given an instance that satisfies: for 1 ≤ i ≤ m

|w1| ≥ |wi|; |w1| ≥ 3; m ≥ n (we can always pad an instance by replicating a

set to satisfy this). These three assumptions do not impact the complexity

of the HS problem.

Given such an instance of the HS problem, we proceed by constructing

an instance of our problem, i.e., a truthful profile a, and a matching (non-

truthful) profile b, so that a sequence of iterative best-response updates going

from a to b exists if and only if the HS instance has a solution.

Given an HS instance as above, we associate one candidate with each

element of G and one candidate with each element of W . In addition, we

introduce k candidates u1, . . . , uk, corresponding to the (up to) k elements of

U . Finally, we also add a set D of m dummy candidates, D = {d1, . . . , dm},
and a special target candidate t. Overall, there are n+2m+k+1 candidates

in our election with the following tie-breaking order: d1 ≺ · · · ≺ dm ≺
u1 · · · ≺ uk ≺ w1 ≺ · · · ≺ wm ≺ g1 ≺ · · · ≺ gn ≺ t. We slightly abuse the

notation so that each wj refers both to the set from the HS instance and

the corresponding candidate in our instance – and similarly for the element

candidates gi.

We will now introduce five blocks of voters with preferences as depicted

in Table A.3. Notice that Block 1 and Block 3 contain nk voters each,

Block 2 has
∑
|wi| ≤ mn voters, and Block 4 has exactly m voters. These

cardinalities will be used in the later stages of the proof. Block 5 (the stand-

2NP-completeness shown in Karp [126].
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ins in Table A.3) is incidental and its voters are only necessary to create an

initial balance among the candidates in the truthful profile. These voters all

have the order of preference U � G � t � W � D, broken for each voter

only by shifting one particular candidate to be the top choice. We have as

many votes in Block 5 as required to ensure that after counting all truthful

votes in all the Blocks, each candidate receives exactly 2k+n in the truthful

profile a. This also means that given the tie-breaking rule, t is the winner in

a.

We will show that ascertaining reachability of the reported profile de-

picted in Table A.4 is equivalent to solving the original HS problem.

To see this, assume first that there is a solution U , with |U | ≤ k, to

the HS instance. Then, we can associate (possibly with replications in case

that |U | < k) to each candidate ui an element in G, say g(ui), so that for

Û =
⋃
i∈[k] {g(ui)}, it holds that ∀j ∈ [m], Û ∩ wj 6= ∅.

Let each voter in Block 1 that has ui 1 ≤ i ≤ k, as their second choice and

g(ui) as their first choice (there is exactly one such voter for each i), change

their vote in sequence starting in the order from 1 to k. As a result of the

best-response updates, each candidate ui will in turn receive an additional

vote, while g(ui) will lose at least one vote. In this new profile, the winner

will be uk, due to tie-breaking, with all candidates from U having 2k+n+ 1

votes, while those in the set Û ⊆ G will have at most 2k+n−1 votes. Denote

this new profile by c.

Now, in the profile c, consider those voters in Block 2 that have g(ui)

as their second choice, for each element g(ui) ∈ Û . Note that because U is

a solution to the HS instance, this implies that for each sub-block of Block

2, having wj as a third choice, with 1 ≤ j ≤ m, there is a value of i and a

voter from this sub-block where g(ui) is a second choice for this voter. For

all these voters, it is not a best response to vote for their second choice g(ui),

since in the previous round of updates all elements from Û lost a vote and

due to tie-breaking they cannot become a winner with a single step. Instead,

the best response for these voters is to vote for wj, thus “unlocking” the



A.2. CHAPTER 4 199

candidates of W . Let us choose one such voter for each wj and let them

change their vote in sequence. This changes profile c to a profile d, where all

candidates in D can no longer become a winner with a single deviation, all

candidates in U and in W have 2k + n + 1 votes, and candidates in G have

at most 2k + n votes each (some of them have 2k + n− 1).

In the next round of updates, we will prevent all candidates in U and

G from ever again becoming a possible winner by essentially “running” a

competition between the candidates in W and the target candidate t. That

is, we choose a voter sequence that will grant W ∪ {t}, an ever increasing

number of votes, eliminating any other candidate from becoming a best-

response. The effect of this voting sequence will eventually be the emergence

of the profile b.

Let us first allow one voter from Block 4 to change their vote. The voter

will naturally shift t to be the top choice. This will give the target candidate

t 2k+ n+ 1 votes as well, completely preventing all candidates from G from

ever becoming a winner, since all of them have less than 2k + n + 1 votes

and lose in tie-breaking to t. We can now cycle, repeatedly through all

candidates from W selecting for each wj a voter from Block 2 with wj as

the third (truthful) choice, which now is the best-response for that voter. At

the end of each cycle iteration we will grant one more voter from Block 4

the possibility to change their vote. There will be at most |w1| such cycles.

Notice that some cycles will be shorter in the sense that there will be some

sub-blocks where all voters will have already voted for their corresponding

candidate from W (since w1 may have a strictly higher cardinality from the

rest of the sets). Finishing this process we will have the voters from Block

2 and Block 4 vote as they are intended in the target profile b. The voters

from Block 1 and Block 3 will still be voting either for a candidate from

U or a candidate from G, and the voters from Block 5 remain as they are.

In this intermediate voting profile, e, candidates from W will have at most

2k + n+
∑
|wj| votes, and so will the target candidate t.

We can now reach profile b from e, if we alternate between allowing a
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voter from Block 1 and a voter from Block 3 (that still do not vote for w1

or t) to change their votes. Notice that the best-response top-choice for

these voters is indeed either w1 or t. This will result in Block 1 and Block

3 transforming their votes into those prescribed by b, completing the vote

modification sequence from a. Notice, additionally, that in b the winning

candidate is the target candidate t, with 2k + n+ nk +
∑
|wj| votes and no

voter can change the outcome, i.e., b is an equilibrium.

Finally, for the other direction, assume that there is no solution to the

underlying HS instance. It is then easy to check that there is no possible

sequence of votes that can “unlock” at least one voter in Block 2 for each

wj. Hence, this makes the targeted profile b unreachable.

Lemma 4.1. In a non-truthful Nash equilibrium with truth biased voters

under iterative plurality starting the process with their truthful preferences,

the winner will always be a runner-up candidate in the original state, with

only a single voter being untruthful.

Proof. In the iterative process, voters only vote for candidates which will win

with an extra point. As the score of the winner does not drop in iterative

plurality ([160], proof of Theorem 3), this means the winner needs to be a

candidate to be voted for, hence it should be a winner or runner-up at every

stage of the iterative process.

As all untruthful voters vote for the winner, and it only need a single point

over its true score to become the winner, any additional untruthful voters

have an incentive to return to their truthful vote, as they cannot change the

result.

Theorem 4.5. Algorithm 1 finds all Nash equilibria reachable from the truth-

ful starting point (a) in an iterative plurality model with truth-biased voters.

Proof. We shall first show why the algorithm only outputs equilibrium pro-

files, and then that there are no equilibria that it misses.

Exploiting Lemma 4.1, every equilibrium the algorithm finds is made of

a voter that can change its vote to c, making it the winner, and, if all other
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voters remain the same, has no incentive to deviate to a different candidate.

Furthermore, no other voters will deviate in retaliation – if there are, it means

they can deviate to a candidate c′ which can win over c and which they prefer

over c, and these deviations are found by line 11.

Now, suppose there is an equilibrium resulting in candidate c winning.

According to the previously proven lemmas, c is a runner-up in a, and there

is only one voter that will deviate. Therefore, that voter must be found with

the algorithm’s line 6. Since that equilibrium will only be eliminated if a

voter is found in line 11, and such a voter will indeed destroy an equilibrium

(as it will have an incentive to deviate), the algorithm will find all equilibria.

Since there are two nested loops, each counting through a subset of can-

didates and voters, complexity is O(mn).

Lemma 4.2. A stable state with lazy-biased voters under iterative plurality

starting the process with their truthful preferences will only have a single

participating voter.

Proof. Suppose a stable state has been reached. Any voter not voting for

the winner will benefit from abstaining, and left with voters which are all

voting for the same candidate, all will benefit from abstaining except the last

one.

Theorem 4.6. Algorithm 2 finds all Nash equilibria reachable from the truth-

ful starting point (a) in an iterative plurality model with lazy-biased voters.

Proof. As the algorithm covers all possible cases, we simply explain every

”yes” and ”no” response: for ”yes” we detail the sequence of best-response

moves that achieves them, for ”no” we explain why. We denote the winner

in some profile b as winner(b).

We begin with the case where the starting state (a) is a Nash equilibrium

in the basic model, i.e., without abstentions. Note that in this case, as in

all Nash equilibria of the basic case, all voters’ best-response (potentially,

excepting a voter for the winner) is to abstain.
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Line 4 indicates the sequence where all voters that do not support the

winner abstain (as this is a Nash equilibrium, they do not deviate to a dif-

ferent candidate) and then all voters supporting the winner except v abstain

as well, until v is the only one left.

Line 6 indicates the sequence where all voters not voting for winner(a)

except v and the noted c̃ voter abstain, and then all but 2 voters for winner(a)

abstain as well. Then the c̃ supporter deviates to support z, and all other

voters except v will now abstain.

Line 9 indicates the sequence where all voters not supporting winner(a) or

c except v and the voter supporting c over winner(a) abstain, then winner(a)

supporters abstain until they are only as many as their score in a (or their

score +1, depending on tie-breaking rule). Then the z voter preferring c

deviates to make c the winner, and then all voters abstain except v and 2

c-supporting voters (which include a z supporting one which deviated). This

voter now reverts to z, making it the winner, and the voters except v abstain.

Line 11 indicates the sequence where all voters not supporting winner(a)

or c except v and the noted c̃ voter abstain, then winner(a) supporters

abstain until until they are only as many as their score in a (or their score

+1, depending on tie-breaking rule). Then the c̃ voter deviates to c, making it

the winner, and then our voter deviates to return winner(a) to its victorious

position (at this point, we know our voter prefers winner(a) to others). Then

all voters except ours abstain, and then our voter deviates back to z.

If the algorithm returns no, this means all voters find that anyone they

support over winner(a) (that is not their first preference) has only one point

and loses to winner(a) according to tie-breaking. This means no voter has

any move except abstention, and hence, z can never become the winner.

We now turn to the case where the starting position is not a Nash equi-

librium in the basic sense.

Line 14 indicates the sequence where we can simply have regular run of

iterative plurality (without abstentions), when not allowing v to participate.

We call the resulting state c. z cannot become a winner (as it was not even
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a runner-up). If v prefers winner(c) over any runner-ups, then we look at

the run of iterative plurality, and replace the last deviation of a voter to

winner(c) with a deviation of v. Now, all voters except v can abstain. If v

prefers a runner-up b, we let all voters for candidates that are not b, winner(c)

or voter v to abstain, and then let v deviate. Since v has deviated to the

winner, all except v can abstain.

Line 17 indicates the sequence where if there is such a voter which voted

for z, it deviates to b, and we can now follow the same sequence as for line 14

in the paragraph above, as z is no longer a runner-up. If there is not (all

of them prefer winner(a)), the noted voter deviates, making b the winner,

and now one of the z voters deviates to winner(a), making z no longer a

runner-up, and again, we can now follow the same sequence as for line 14 in

the paragraph above.

In line 19 we revert to the Nash equilibrium part, as the only voter wishing

to deviate is v – without v this is a Nash equilibrium. However, in the case

of 3 voters we can answer directly (line 20) – since v is the runner-up, the 2

other voters have voted for the winner and will not deviate.

Line 24 indicates the sequence where after reaching b, all voters except

v abstain.

Line 26 indicates the sequence where we pursue, after reaching b a similar

strategy to line 14. If v prefers winner(b) over any runner-ups, then we look

at the run of iterative plurality, and replace the last deviation of a voter to

winner(b) with a deviation of v. Now, all voters except v can abstain. If v

prefers a runner-up b, we let all voters for candidates that are not b, winner(b)

or voter v to abstain, and then let v deviate. Since v has deviated to the

winner, all except v can abstain.

Finally, in line 27 we are at a situation where, at most, only v wants to

deviate, as in Line 19.

Complexity stems from line 11, which loops twice over candidates and

then checks all the voters, reaching O(m2n).
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A.3 Chapter 5

Theorem 5.1. When using plurality and when all voters use local dominance

strategy and have the same radius r, if the initial state was one when all voters

were truthful, the iterative process converges to a stable state.

Proof. Our proof is for `1, but can be easily modified for `i for 1 < i and `∞.

As a useful guide for the proof, note that, in essence, for the voters, the set

of potential winners they consider in profile b is in Hr+1(b), as the winners

in S(b−v, r) are in Hr(b) (up to r votes are changing), and when taking into

account the voter’s own actions, a candidate that was up to r+1 points from

the winner can become the winner by a voter’s move.

If the truthful state a is stable, then we are done. Thus assume it is not.

Let bt be the voting profile after t steps from the initial truthful vote

b0 = a. Let bi → b′i be a move of voter i at state s = bt to state s′ = bt+1.

We claim that the following hold throughout the game:

1. bi /∈ Hr+1(s′), i.e., once a candidate is deserted, it is no longer a possible

winner.

2. b′i ≺i bi, i.e., voters always “compromise” by voting for a less-preferred

candidate.

3. maxc∈C scores′(c) ≥ maxc∈C scores(a), i.e., the score of the winner

never decreases.

4. Hr+1(s′) ⊆ Hr+1(s), i.e., the set of possible winners can only shrink.

We prove this by a complete induction.

1. If this is the first move of i then bi = ai: as the voter moved to b′i, this

means it S(s−i, r)-dominates bi. Hence, there is a profile p ∈ S(s−i, r)

for which winner(b′i,p) �i winner(bi,p) and there was no profile p′ ∈
S(s−i, r) where winner(bi,p) �i winner(b′i,p). Hence, ai /∈ Hr+1(s′)

(as then there would have been such p′).
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If this is not the first move of voter i, if bi ∈ Hr+1(s′) this means that

bi, b
′
i ∈ Hr(s), hence there is at least one scenario is S(s, r) in which

candidate ĉ ∈ C, the winner is s, is tied with bi, and by moving to b′i

ensures ĉ will win. Similarly, there is a scenario where voter i’s move

makes b′i win instead of ĉ, so b′i �i bi. However, let bt′ for t′ < t

be the last time voter i moved. According to induction assumption

4, Hr+1(s) ⊆ Hr+1(bt′), hence bi and b′i were in Hr+1(bt′). As bi

dominated voter i’s previous vote, so did b′i, but according to the local

dominance strategy, the most preferred candidate is taken, so bi �i b′i,
reaching a contradiction.

2. If this is the first move of i then this is immediate. Otherwise, let

bt′ for t′ < t be the last time voter i moved. According to induction

assumption 4, Hr+1(s) ⊆ Hr+1(bt′), hence bi and b′i were in Hr+1(bt′).

If b′i �i bi, then if bi dominated voter i’s previous vote, so did b′i, but

according to the local dominance strategy, the most preferred candidate

is taken, so bi �i b′i, reaching a contradiction.

3. As we proved in 1, bi /∈ Hr+1(s′), hence bi was not the winner in s, so

voter i’s move did not change winner(s)’s score, and the score of the

winner in s′ must be the same or more.

4. Since by 3 the score of the winner never decreases, the only way to

expand Hr+1 is to add a vote to a candidate not in Hr+1. Suppose

such a move dj → d′j occurred is bt′ . According to 1, dj is not in

Hr(b
t′), so no candidate not in Hr+1(bt′) can dominate it (both make

no difference to the result of the elections in S(bt′ , r)).

Finally, by property 2, each voter moves at most m− 1 times before the

game converges

Observation 5.1. When using plurality and when all voters use local dom-

inance strategy and have the same radius r, if the initial state was one when

all voters were truthful, either this situation is stable or in every state bt we
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have |Hr+1(bt)| > 1. Also, in the stable state either |Hr| = 1 or all voters

vote for possible winners. Any voter voting for c /∈ Hr+1 prefers the winner

in the stable state over any other candidate in Hr+1.

Proof. If |Hr+1(bt)| = 1, there are no longer any strategic moves (as no vote

can change the outcome), so we only look at the final vote, which we shall

call state s, at which the vote bi → b′i happened. Since in the following

state |Hr+1| = 1, we know |Hr(s)| = 1, but in this case, a vote to b′i will

dominate bi only if b′i ∈ Hr(s) (otherwise, it is increasing the score of a weak

candidate, which does not “empty” Hr+1), but that is only the winner of s,

which does not dominate bi (as voting for bi will never harm this candidate),

contradicting the existence of the move.

If in a stable state b |Hr(b|) > 1, there is at least one case in S(b, r)

where two candidates are tied. Hence a voter not voting for a possible winner

has a dominating strategy to vote for the candidate it prefers in the tie. A

voter not voting for a candidate in Hr+1(b) is satisfied with the winner,

otherwise it would have a dominating strategy to vote for the candidate it

prefers there.

Theorem 5.2. When using plurality and when all voters use local dominance

strategy and are truth-biased with the same radii (r, k), if the initial state was

one when all voters were truthful, the iterative process converges to a stable

state.

Proof. Our proof is for `1, but can be easily modified for `i for 1 < i and

`∞. We shall follow the proof for Theorem 5.1 quite closely, and use its 1-4

properties which, together, implied convergence.

If the truthful state a is stable, then we are done. Thus assume it is not.

Therefore, we know that in the opening state, |Hr+1| > 1. We wish to show

that properties 3 and 4 of the proof of Theorem 5.1 (winner’s score never

decreases, and set of potential winner can only narrow) remain true, and as

they ensure convergence, that is enough.

Suppose a truth biased voter i is is making a change to their truthful

vote ai for the first time in the iterative process when the profile is s when
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the profile is s and it is voting for bi 6= ai. Hence, from Observation 5.1,

|Hr+1(s)| > 1. If bi ∈ Hr+1(s) we know it is the favorite candidate of voter

i in that group, and hence it is tied with at least one other candidate in a

radius of r + 1 ≤ k, and hence, it would not move to its truthful voter. So

bi /∈ Hr+1(s), hence moving from bi to a truthful voter will not decrease the

score of the winner. Moreover, it cannot bring ai into Hr+1, since any voter

which ranked ai first and left it (including voter i) did this when ai’s score

was r + 1 or more points behind the winner. Since voters leave candidates

only when they’re r+1 points from the winner score, and when voter i moved

to vote for bi it was at most r points from the winner, and is no longer so,

the score of the winner has increased. Hence, even if all voters which rank

ai first will return to vote for ai, it will not be within a radius r + 1 of the

winner, so Hr+1 will not be affected.

Notice this means that even after the truthful move |Hr+1(s)| > 1, and

hence we can repeat these claim not only for the first truthful move, but for

all of them.

Theorem 5.3. When using plurality and when all voters use local dominance

strategy and are lazy-biased with the same radii (r, k), if the initial state was

one when all voters were truthful, the iterative process converges to a stable

state.

Proof. Our proof is for `1, but can be easily modified for `i for 1 < i and

`∞. We shall follow the proof for Theorem 5.1 quite closely, and use its 1-4

properties which, together, implied convergence.

Suppose in the truthful state a, |Hr+1| = 1. Voters for the winner will

choose to abstain only if the difference in score between the winner and the

runner up is more than k. However, once the difference is k + 1, no other

supporter of the winner will abstain, yet no voter will be able to make a

strategic move, since this means that still |Hr+1| = 1. Hence that would be

a stable state.

Now assume in the truthful opening state, |Hr+1| > 1. We wish to show

that properties 3 and 4 of the proof of Theorem 5.1 (winner’s score never
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decreases, and set of potential winner can only narrow) remain true, and as

they ensure convergence, that is enough.

Suppose a lazy biased voter i is abstaining for the first time in the it-

erative process when the profile is s and it is voting for bi. Hence, from

Observation 5.1, |Hr+1(s)| > 1. If bi ∈ Hr+1(s) we know it is the favorite

candidate of voter i in that group, and hence it is tied with at least one other

candidate in a radius of r+1 ≤ k, and hence, the voter would not abstain. So

bi /∈ Hr+1(s), hence moving from bi will not decrease the score of the winner

and it cannot bring any candidate into Hr+1.

Notice this means that even after the truthful move |Hr+1(s)| > 1, and

hence we can repeat these claim not only for the first truthful move, but for

all of them.



Appendix B

Proofs of Part II

B.1 Chapter 7

Lemma 7.1. The colluders’ bid monotonically decreases with k, and mono-

tonically increases with n, up to 1
e
.

Proof. We have to show that the derivatives of b∗(·) with respect to k and n

are negative and positive, respectively. We have:

(b∗(k))′ = −
(n−k
n−1

)
n−1
k−1

(k − 1)2
((n− k) ln(

n− k
n− 1

) + k − 1)

For any 1 ≤ k < n, the first multiplicative term is positive, we only

need to examine the sign of the second term, and so it suffices to show

that (n − k) ln(n−k
n−1

) + k − 1 > 0. Using the standard logarithm inequality

ln(1 + z) ≥ z
1+z

, we obtain the required result:

(n− k) ln(
n− k
n− 1

) + k − 1 ≥ (n− k)
1− k
n− k

+ k − 1 = 0

Now, differentiating w.r.t. n, we get

(b∗(n))′ =
(n−k
n−1

)
n−1
k−1 (n− k) ln(n−k

n−1
) + k − 1

(n− k)(k − 1)

209
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By the same inequality as above,

(b∗(n))′ ≥
(n−k
n−1

)
n−1
k−1 (k − 1) + k − 1

(n− k)(k − 1)
=

1− (n−k
n−1

)
n−1
k−1

n− k
> 0

for any 1 ≤ k < n, as required.

Finally, we rewrite b∗ as ((1− k−1
n−1

)n−1)
1

k−1 and note that for a fixed k and

n→∞, we have that b∗ → (e−(k−1))
1

k−1 = e−1, completing the proof.

Lemma 7.2. The colluders’ expected profit decreases with n and increases

with k.

Proof. The overall expected profit for colluders when bidding optimally is:

π(b∗) = (b∗)
n−k
n−1 − b∗ = (

n− k
n− 1

)
n−k
k−1 · k − 1

n− 1

Differentiating this w.r.t. n gives

(n−k
n−1

)
n−k
k−1 ln(n−k

n−1
)

n− 1

which is negative as the first multiplicative term in the numerator is

positive, and the logarithm of n−k
n−1

< 1 is negative. Thus, the profit is

monotonically decreasing in n. Now, taking the derivative w.r.t. k results in

(n−k
n−1

)
n−k
k−1 (− ln(n−k

n−1
))

k − 1

This expression is positive using the same argument as before, and so the

total expected profit of colluders increases with their number, k.

Theorem 7.1. The expected profit per colluder increases with k.

Proof. The individual expected profit for each member of the coalition is:

h(k) =
π(b∗)

k
= (

n− k
n− 1

)
n−k
k−1 · k − 1

k(n− 1)
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The derivative w.r.t. k is given by:

h′(k) = −
(n− 1)n−k

n−1

n−k
k−1 (k(n− 1) ln(n−k

n−1
) + (k − 1)2)

(k − 1)k2

It suffices to show that the last multiplicative term in the numerator is

negative, or, equivalently, that:

ln(
n− k
n− 1

) < − (k − 1)2

k(n− 1)

To this end, we use the standard logarithm inequality ln(1 + x) ≤ x. As

required we have:

ln(
n− k
n− 1

) = ln(1 +
1− k
n− 1

) ≤ 1− k
n− 1

< − (k − 1)2

k(n− 1)

Theorem 7.2. In the setting with k colluders, the expected auctioneer utility

is n−k
n

+ (n−k
n−1

)
n−1
k−1 in the sum-profit model and n−k

2n−k−1
(1 + n−k

n−1
)
2(n−k)
k−1 in the

max-profit model. The profit in both models decreases in the number of col-

luders and increases in the total number of participants. For sufficiently large

n, they exceed the corresponding auctioneer’s utilities in the setting without

collusion.

Proof. The expected profit of a sum-profit auctioneer is given by replacing

the bids of 1
n

for each of the k colluders with a joint single bid of (n−k
n−1

)
n−1
k−1 .

This results in a total bid sum of n−k
n

+ (n−k
n−1

)
n−1
k−1 . Thus, collusion is obvi-

ously profitable for the auctioneer whenever the colluders’ bid is larger than
k
n
. This, broadly speaking, is common for smaller k and larger n (as, by

Lemma 7.1, the bid increases with n and decreases with k).

For the max-profit model, we examine the maximal bid’s distribution,

defined by the c.d.f. GAP as follows:
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GAP (z) =


0 z < n−k

n−1

n−1
k−1

(n−k
n−1

)
n−k
k−1 z = n−k

n−1

n−1
k−1

z
n−k
n−1 z > n−k

n−1

n−1
k−1

Where GAP (z) is not constant, its derivative is n−k
n−1

z
1−k
n−1 , so the expected

auctioneer’s profit is:

E(AP ) = (
n− k
n− 1

)
2n−k−1

k−1 +

1∫
(n−k
n−1

)
n−1
k−1

n− k
n− 1

z
n−k
n−1 dz =

=
n− k

2n− k − 1
(1 + (

n− k
n− 1

)
2(n−k)
k−1 )

We compare this with the expected auctioneer’s profit in the case of no

collusion. To do so, we rewrite it as follows:

n− k
2n− k − 1

+
(n− 1)2

(2n− k − 1)(n− k)
((1− k − 1

n− 1
)n−1)

2
k−1

The value of the above expression wobbles for low n and k, but for a fixed

k and increasing n (i.e., n → ∞) it approaches n−k
2n−k−1

+ (n−1)2

(2n−k−1)(n−k)
e−2.

That is, while the expected profit without collusion is edging close to 1
2
, with

colluders, the profit is closing in on (1
2

+ 1
2e2

), and there exists a number

of participants n for which the profit with collusion is strictly greater than

without collusion. For a fixed n, the profit is monotonically decreasing in k,

which fits with earlier results indicating a lower bid from colluders, as their

cohort grows.

Theorem 7.3. The social welfare in the sum-profit model does not change

due to collusion. In the max-profit model, the presence of colluders may have

different effects on the social welfare, depending on the relation between the

number of colluders and the total number of participants. In particular, the

social welfare drops for settings with many participants.
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Proof. We calculate the expected profit for a non-colluding player, which is

defined by a p.d.f. g below, depending on the colluders’ bid b∗:

g(z) =


f(−z)(1− F n−k

n (−z)) −1 ≥ z < −b∗(k)

f(−z) −b∗(k) ≤ z ≤ 0

f(1− z)F n−k
n (1− z) 0 < z < 1− b∗(k)

The non-colluder’s expected profit is:

E(z) =

−b∗∫
−1

z

n− 1
(−z)

2−n
n−1 (1− (−z)

n−k−1
n−1 ) dz+

+

0∫
−b∗

z

n− 1
(−z)

2−n
n−1 dz+

+

1−b∗∫
0

z

n− 1
(1− z)

2−n
n−1 (1− z)

n−k−1
n−1 dz =

k − n(b∗)
n−k
n−1

n(n− k)

This expression may be positive or negative, depending on k and n. As

the colluders’ bid does not exceed 1
e
, for small k the expression takes a neg-

ative value. However, when k is rather large with regard to n (e.g., when

k is roughly n
2
), it is positive. That is, the non-colluders may benefit from

collusion, not despite not being aware of it, but due to their lack of awareness.

Summing up the expected profits of all the parties in the sum-profit model

results in the same social welfare as in the case of mergers or of no bidder

cooperation:

k

n
− n− k
n− 1

n−k
k−1

+
n− k
n− 1

n−k
k−1

− n− k
n− 1

n−1
k−1

+
n− k
n

+
n− k
n− 1

n−1
k−1

= 1

However, in the max-profit model the results are more ambiguous. For

very large n, looking coarsely at the non-colluders’ expected profit, we see

that when we have n − k such players, the sum of their expected losses
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approaches −1
e
. We already know that in this scenario the expected profit

of colluders is zero, so we need to examine this in relation to the changes in

the profits of the auctioneer. In this case, the auctioneer’s profit approaches
1
2

+ 1
2e2

, so the social welfare drops below 1
2
, which is lower than what would

happen without colluders.

B.2 Chapter 8

Theorem 8.1. The Fi presented above are a Nash equilibrium, and each

bidder’s profit is λ.

Proof. When bidder i bids according to this distribution, i.e., b ∈ [αk, αk−1)

for 1 ≤ k ≤ i:

πi(b) =(1− b)
n−1∏

j=1;j 6=i

(pjFj(b) + 1− pj)−

− b(1−
n−1∏

j=1;j 6=i

(pjFj(b) + 1− pj)) =

=
n−1∏

j=1;j 6=i

(pjFj(b) + 1− pj)− b =

=
k−1∏
j=1

(1− pj)
n∏

j=k;j 6=i

Hk(x)− b =

=Hn−k
k (b)

k−1∏
j=1

(1− pj)− b =

=
λ+ b∏k−1

j=1(1− pj)

k−1∏
j=1

(1− pj)− b =

=λ

If bidder i bids outside their support, i.e., b ∈ [αk, αk−1) for i + 1 ≤ k ≤
n− 1, the same equation becomes
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πi(b) =
k−1∏

j=1;j 6=i

(1− pj)
n∏
j=k

Hk(x)− b =

=
k−1∏

j=1;j 6=i

(1− pj)(
λ+ b∏k−1

j=1(1− pj)
)
n−k+1
n−k − b =

=
λ+ b

1− pi
(

λ+ b∏k−1
j=1(1− pj)

)
1

n−k − b

Since b ∈ [αk, αk−1), then b < αk−1 = (1− pk−1)n−k+1
∏k−2

j=1(1− pj)− λ =

(1−pk−1)n−k
∏k−1

j=1(1−pj)−λ, and hence λ+ b < (1−pk−1)n−k
∏k−1

j=1(1−pj).
Therefore:

πi(b) <
λ+ b

1− pi
(
(1− pk−1)n−k

∏k−1
j=1(1− pj)∏k−1

j=1(1− pj)
)

1
n−k − b =

=
λ+ b

1− pi
(1− pk−1)− b = (λ+ b)

pi − pk−1

1− pi
+ λ

Finally, as i+ 1 ≤ k, pi ≤ pk−1, hence pi − pk−1 ≤ 0, and πi(b) < λ.

Note that if the valuation of the bidder is ` < 1, the first equation becomes

`(λ + b) − b, which is maximized for b = 0, and the second equation is still

smaller than `(λ+ b)− b, so still maximized for b = 0.
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Appendix C

Proofs of Part III

C.1 Chapter 10

Theorem 10.1. Computing the value v(C) of a coalition C in a weakest link

game can be done in polynomial time.

Proof. Due to Observation 10.1, v(C) takes one of the values in W or 0. For

each of the possible edge weights τ ∈ W , we can test whether there exists an

s-t path that is comprised solely of the edges in C whose weight is at least

τ , as follows: Let Cτ be the set of edges in C with weight at least τ . Denote

by G′(V,Cτ ) the subgraph with vertex set V and edge set Cτ . The graph

G′(V,Cτ ) can easily be computed in polynomial time, by iterating through

the edges and eliminating those that have a weight lower than τ .

Given G′(V,Cτ ) we can check whether there exists any path connecting s

and t in it using a depth-first search (DFS), which again requires polynomial

time. If such a path exists we say the test was positive for τ , which indicates

that v(C) ≥ τ , and if such a path does not exist we say the test was negative,

indicating that v(C) < τ .

After iterating over all possible values τ ∈ W we return the maximal τ for

which the test was positive. Since |W | ≤ |E| the entire procedure requires

polynomial time.

217
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Theorem 10.2. Testing whether an imputation p = (p1, . . . , pn) is in the

core of a weakest link game can be done in polynomial time.

Proof. We provide a polynomial time algorithm that takes a WLG over a

graph G(V,E) and an imputation p = (p1, p2, . . . , pn) and either finds a coali-

tion B that blocks the imputation or verifies that no such blocking coalition

exists, so p is in the core.

To check if there exists a coalition B with v(B) > p(B), we iterate over

all possible values that v(B) can take. By Observation 10.1 it suffices to use

a procedure that searches for blocking coalitions with value exactly τ , and

run it for all possible values τ ∈ W . If no blocking coalition is found whose

value is exactly τ for any τ in the set W , no blocking coalition exists.

If a coalition B has value τ , it must contain a path P connecting s and

t consisting solely of edges with weight at least τ . The value of path P as

a coalition is also v(P ) = τ . Thus if B is a blocking coalition, P is also a

blocking coalition. Therefore, to find a blocking coalition B where v(B) = τ

it suffices to examine all the paths P where v(P ) = τ . If there are several

such paths P where v(P ) = τ , it suffices to examine the path Q with minimal

payoff p(Q) =
∑

i∈Q pi: if p(Q) < v(Q) = τ then we have a blocking coalition

Q, and if p(Q) ≥ v(Q) = τ then for any path Q′ where v(Q′) = τ we have

p(Q′) ≥ p(Q) ≥ v(Q) = τ so Q′ cannot be a blocking coalition.

Therefore, to seek a blocking coalition B where v(B) = τ it suffices to

examine only the minimal payoff path P where v(P ) = τ (i.e., an s-t path Q

where v(Q) = τ that minimizes p(Q) =
∑

i∈Q pi of all such paths with value

τ). If this path does not constitute a blocking coalition then there are no

blocking coalitions with value τ .

To search for such a path, we construct a weighted graph Gτ with the

same vertices as G, while dropping all edges where w(e) < τ , retaining only

edges with weight of τ or more. However, we change the weights of the

retained edges – we replace the weight of an edge e ∈ E with its payoff under

the imputation, so w′(e) = pe (by w′(e) we denote the new weight). In the

generated graph Gτ we can find the “shortest” s-t path Sτ , under the new
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weights, using Dijkstra’s algorithm.

The payoff of Sτ under the imputation p is its total length in Gτ , under

the new weights. If p(Sτ ) < τ then Sτ is a blocking coalition with value

at least τ , and if p(Sτ ) > τ then no blocking coalition with value τ exists.1

Since the above procedure takes polynomial time, and is repeated |W | < |E|
times (for each possible value of τ), the entire algorithm has a polynomial

running time.

Theorem 10.3. Testing core emptiness, finding an ε-core imputation and

finding the least core value take polynomial time for WLGs.

Proof. The algorithm of Theorem 10.2 can serve as a separation oracle for

the core LP 10.1. It takes a proposed imputation p = (p1, . . . , pn) and either

returns a blocking coalition yielding a violating constraint, or verifies that

no such coalition exists, in which case all LP constraints are satisfied. Thus

it is possible to solve the core LP 10.1 in polynomial time, and either find a

core imputation or verify that the core is empty.

We note that it is easy to adapt the algorithm in Theorem 10.2 to serve

as a separation oracle for the ε-core LP 10.1. Rather than checking whether

a path forms a blocking coalition for a given value of τ , we can perform

a relaxed test: checking whether it is blocking by a margin of at least ε

by constructing Gτ as in Theorem 10.2, finding the shortest path Sτ , and

checking if τ = v(Sτ ) < p(Sτ )− ε. Since we have a separation oracle for the

ε-core LP 10.1, it can be solved in polynomial time, allowing us to either find

an ε-core imputation or verify that the ε-core is empty.

To find the least core value we can perform a binary search on the minimal

value of ε, at each step solving the ε-core LP 10.1 for the current value of ε.

We repeat this as many times as needed to compute the least-core value up

1Note that decreasing weights of some edges potentially reduces the values of some

coalitions; thus the procedure might “miss” a blocking coalition, when the true value of

the coalition under the new weights is lower than under the true weights. However, this

is not a coalition whose value is τ , but rather one whose value is τ ′ > τ . This would be

found later, when examining the value τ ′.
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to any required degree of numerical accuracy.

Corollary 10.1. Calculating the Cost of Stability of a weakest link game can

be done in polynomial time.

Proof. Solving LP 10.2 allows finding the CoS. Again, we use the algorithm

of Theorem 10.2 as a separation oracle, but make the appropriate changes so

as to solve LP 10.2 rather than LP 10.1.

When testing whether an imputation is stable we use the constraint∑n
i=1 pi = v(N). To switch from LP 10.1 to LP 10.2, we replace this con-

straint with the constraint
∑n

i=1 pi = v(N) + ∆, which tests whether there

exists a stable ∆ super-imputation (i.e., a payoff vector allocating a total of

v(N) + ∆). Changing the target function to be min ∆ (rather than just the

feasibility goal of LP 10.1) results in the CoS formulation LP 10.2, which we

solve in polynomial time using the same separation oracle.

Theorem 10.4. If graph G is a parallel composition of graphs Gi, the CoS

of G is (
∑
Gi

CoS(Gi) + vi(Gi))−max
Gi

(vi(Gi)).

Proof. First, we show the CoS is not larger than the theorem’s value. Since

this is a WLG, the value of the grand coalition of the composition cannot be

greater than the one of the maximal Gi, and as this is a parallel composition,

it must be equal to the maximal Gi. Examine the super-imputation with

the minimal sum of each Gi when it is considered on its own. For each

graph, the sum of this super-imputation is CoS(Gi) + vi(Gi), which, when

summed over and subtracting the value of the grand coalition, the CoS is

(
∑
Gi

CoS(Gi) + vi(Gi))−max
Gi

(vi(Gi)), as we wanted.

Now, suppose there is a blocking coalition C, for which v(C) >
∑
j∈C

pj.

As there are no edges connecting the separate Gis, every route between s

and t passes through only a single Gi, so there is an i for which v(C ∩
Gi) >

∑
j∈C∩Gi

pj. However, since p∩Gi is a super-imputation over Gi, that is

impossible.
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A CoS smaller than our lower bound state above is not possible either.

Suppose there is a super-imputation with a smaller sum, so there is a Gi for

which
∑
j∈Gi

pj < vi(Gi) +CoS(Gi). This contradicts the very definition of the

CoS.

Theorem 10.5. If G is a series composition of the graphs Gi, the CoS of G

is min
i
CoS(G

minj 6=i(v(Gj))
i ), where G

minj 6=i(v(Gj))
i is Gi in which all edges with

weight above min
j 6=i

(v(Gj)) are lowered to that value.

Proof. We first show the CoS cannot be larger. Note that every path from s

to t has a maximal value of min
j

(v(Gj)), so no path from si to ti can have a

larger value.

A valid super-imputation is a super-imputation of G
minj 6=i(v(Gj))
i , giving

0 to everyone else. As all routes from s to t pass through Gi (with the

capacity limit), the super-imputation does not induce any coalitions which

do not receive their value – if there is such a coalition, it is particularly also

a coalition from si to ti with the same value, and that is what the super-

imputation of G
minj 6=i(v(Gj))
i deals with.

Now, we prove a smaller CoS is not possible by induction. Given graphs

G1 and G2, suppose the CoS is smaller than CoS(G
v(G2)
1 ) and CoS(G

v(G1)
2 ).

Then construct a path made of a single path from s1 to t1 with value of v(G1)

and from t1, all of G2. This is actually G
v(G1)
2 (due to the constraints of the

first path), and we know that the smaller imputation does not satisfy it, i.e.,

there is a coalition of edges from s2 to t2 which have an incentive to leave

the grand coalition (with the single path from s1 to t1, of course).

For any n graphs, we look at the first n− 1 graphs as a single graph G′,

hence CoS(G) = min(CoS(G′v(Gn)), CoS(G
v(G′)
n )). Since v(G′) = min

i 6=n
vi(Gi)

and from the induction definition

CoS(G′v(Gn)) = min
i 6=n

(G
min(v(Gn),minj 6=i,j 6=n(v(Gj))
i )) = min

i 6=n
(Gminj 6=i(v(Gj)))

as required.

Theorem 10.6. It is NP-complete to determine whether the value of the

optimal coalition structure in a weakest link game exceeds an input k.
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Proof. We use a reduction from the NP-complete problem Disjoint Paths

Problem (DPP).2 In the DPP problem we are given an undirected graph

G(V,E) and k pairs of source-target vertex pairs {(si, ti)}ki=1, and are asked

whether there are k edge-disjoint paths in G such that the i’th path connects

si and ti.

We reduce a DPP to finding the optimal coalition structure in a WLG.

We take the original graph G(V,E) and add two special vertices: a meta-

source s and a meta-target t. We add k edges from s to the k sources {si}ki=1

with weight 1 − εi for an arbitrary set of k distinct values {εi}ki=1 in range

(0, 1) (by distinct we mean that εi 6= εj for any i 6= j). Similarly we add

an edge from each ti to t with weight 1 − εi for any 1 ≤ i ≤ k. We set the

weights of all edges in G to be 1.

In the optimal coalition structure problem we search for disjoint paths

between s and t maximizing the sum of the values of the paths. At best,

for each 1 ≤ i ≤ k, there is a path from si to ti, and one can use the edges

(s, si) and (ti, t), each with weight 1− εi, to complete it to an s-t path. Thus∑k
i=1(1− εi) is an upper bound for the optimal coalition structure’s value in

the reduced instance.

This upper bound is achieved only if the weights of the two end-edges of

our s, t paths match: if one of our paths starts with weight 1−εi and ends with

weight 1− εj for some i 6= j, there is no way to complete this solution with

total value
∑k

i=1 1 − εi. In this case, we only get min{w((s, si)), w((tj, t))}
for this part of the partition, failing to achieve a total value of

∑k
i=1(1− εi).

Therefore, the generated instance of the WLG optimal coalition struc-

ture input allows a solution of total value of
∑k

i=1(1 − εi) if and only if the

DPP instance is a positive instance (i.e., if there are k edge-disjoint paths

connecting the pairs {si, ti}ki=1).

NP membership as given an optimal coalition, calculating its value is

done in polynomial time, and can than be compared to k.

Theorem 10.7. A polynomial time O(log n)-approximation exists for the

2NP-completeness for DPP shown in Karp [126].
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optimal coalition structure problem in weakest link games.

Proof. We first consider the following problem: given a weighted graph

G(V,E) with designated source vertex s ∈ V , target t ∈ V , and thresh-

old τ , find the maximal number of edge-disjoint s-t paths that only use edges

whose weight is at least τ . We present a polynomial time algorithm to solve

this problem.

First, remove all edges that weigh below the threshold τ , and set the

weights of the remaining edges to be 1 (unit weight), to obtain the graph Gτ .

Note that every path in G that only uses edges whose weight is at least τ is

equivalent to a path is Gτ .

Thus, it suffices to find the maximal number of edge-disjoint s-t paths in

Gτ , which can be done by finding the maximal flow between s-t (for example

by using the Edmonds-Karp maximal-flow algorithm).

The value of this flow is the maximal number of edge-disjoint s-t paths in

Gτ , since due to unit capacity no edge is used twice (a partition into paths

can be obtained by keeping track of augmenting paths found during the run).

Let w′ be the value of the coalition of all agents, i.e., v(N). Define ni

to be the maximum number of disjoint s-t paths in G that only use the

edges with weight at least w′

2i
. The value of the optimal coalition structure

is upper-bounded by
∑∞

i=1 ni
w′

2i−1 . Because the number of coalitions in the

optimal solution with value in the range [w
′

2i
, w′

2i−1 ] does not exceed ni, and for

each of them we get value at most w′

2i−1 .

To find an O(log(n)) approximation of the optimal coalition structure,

we perform the following procedure. For all possible thresholds τ in the set

W , we find the maximum number of disjoint paths in Gτ . We then find the

value τ = τ ∗ that maximizes the product of τ and the number of disjoint

paths in Gτ . We claim that these disjoint paths in Gτ∗ form an O(log(n))

approximation solution.

The analysis is similar to the log(n)-competitive algorithms for the ma-

troid secretary problem [21]. We prove that in the sum
∑∞

i=1 ni
w′

2i−1 , the sum

of terms for i > 2 log(n) is not more than 2w
′

n
which is at most 2

n
fraction of
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the whole sum.

We know that ni is at most n, the number of agents, for every i. Thus the

sum of those terms is not more than nw′
∑∞

i=2 log(n)+1
1

2i−1 = n w′

22 log(n)−1 = 2w
′

n
.

We conclude that more than 1− 2
n

fraction of the sum is concentrated in the

first 2 log(n) terms, and consequently there exists an i for which ni
w′

2i−1 is at

least
1− 2

n

2 log(n)
fraction of the sum.

By the definition of τ ∗, we know the solution we get has value of at least

ni
w′

2i
, which proves that our solution has at least Ω(log(n)) fraction of the

above sum, and therefore it is an O(log(n)) approximation.

C.2 Chapter 11

Theorem 11.1. Axioms 1−6 and axioms 1−3, 7−9 (the sets we deal with)

are all independent of one another.

Proof. We list some odd mechanisms that are consistent with each 5 of our

axioms, demonstrating the necessity of each (we present here the main points

of the odd mechanism – the complete version can be constructed by using

the other axioms). First, we begin with axioms 1–6.

• Anonymity: A mechanism that recommends + for every singleton.

• Positive response: A system for which if the group contains a nonvoter

which is influenced by both + and - nodes (of whatever number) from

outside the group, it is recommended 0.

• IIS: Except for star groups, all nodes outside a group are considered

to be influencing all nodes inside it.

• α-centripetal: All star groups are always recommended - (including

those consisting of arbitrarily large M of + voters, and one nonvoter

connected to a sole - voter).
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






Figure C.1: Internal consistency problem

• (β, r)-centrifugal: All star groups are always recommended + (includ-

ing those consisting of one + voter, arbitrarily large M1 of nonvoters,

each connected to arbitrarily large M2 - voters.

• Internal consistency: Taking 3 nonvoters, 3 + voters, and a single -

voter. Connecting each nonvoter to a single + voter, and two of the

nonvoters are also connected to the - voter (see Figure C.1). Our groups

are made of the pairs of + voters with the nonvoters connected to them.

When we take a single pair, one that is also connected to the - voter,

the recommendation is +. Adding another pair that is not connected

to the - voter, the recommendation is now -.

We now continue with axioms 1–3 and 7–9:

All examples given in appendix 1 of [12] for axioms 1–3 work. Hence, we

just need to show for 7–9:

• Trust propagation: A group is recommended by summing for each ver-

tex over number of + and - nodes it is directly connected to.

• Scale invariance: A group is recommended by a random walk from

each vertex in the group, but to the relative influence of each edge is

added the number of outgoing edges from the influencing vertex.
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• Proportional inclusiveness: A group ignores all outside influences –

performs simple majority on + and - nodes inside it.

Theorem 11.2. No recommendation system satisfies axioms 1 − 6, i.e.,

is anonymous, positive responsive, IIS, is internally consistent and is α −
centripetal and (β, r)− centrifugal for 1 < α, β <∞.

Proof. First, we note that if the (β, r) − centrifugal axiom uses an r /∈ N,

then we shall use as r := dre.
Our proof is constructed using 3 steps in which we build a graph, find a

specific group in it, and show that the axioms require it to both be recom-

mended + and -, creating a contradiction.

Step 1: Build a graph

Since α > 1, there is some ` ∈ N for which `α− (`+2) ≥ 0. We define k as

dβ−1
α−1
e + ` and s as bkαc. We now build the following graph, consisting of a

star group containing k + voters (v1, . . . , vk) and k ·r non voters (u1, . . . , ukr),

and outside the star group are s·k ·r - voters (t1, . . . , tskr), with each nonvoter

connected to s · r - voters (i.e., every nonvoter ui has the edges (ui, th) for

h ∈ N, i ≤ h ≤ (i− 1) + s).

Step 2: Build an indivisible positive set

We now wish to construct a set C which has no partition for which each

part is recommended +. We call our star group C̃, (with k + voters and kr

nonvoters). According to the α− centripetal assumption, since s ≤ k · α for

each nonvoter, C̃’s recommendation is +. We now seek to find the minimal +

part of C̃ – suppose C̃ has a partition for which every part is recommended

+. In at least one of these parts the number of nonvoters exceeds (or is

equal to) r times its number of voters, and we call it C̃ ′, and continue the

process. This process ends with a set C with a nonvoters and b + voters

(b ≤ rb ≤ a ≤ rk), for which the recommendation system recommends +.
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We shall now show that according to the (β, r)−centrifugal assumption and

internal consistency, it needs to be recommended -, causing a contradiction.

Step 3: Build a contradictory partition

We need to show a partition which results in every part being recommended

-, and show that there is no partition for which each part get recommended

+. The latter is trivial according to our minimization process – if there

is such a partition, then the process has not ended yet. However, we can

partition C into a sets of one + voter and r nonvoters (possibly, some non-

voters end without any voter to group them with – they are grouped apart).

We shall now show that these sets need to be recommended -, causing the

contradiction.

Since + voters in the set are more heavily weighted that outside it, we

can focus our proof just for sets with r nonvoters and one voter, and that will

suffice for the case of a lone nonvoter. Note that in these sets our nonvoter is

connected to one + voter in its set, k−1 + and s - voters outside it. According

to the positive response axiom (number 2), we can remove one + and one

- voters (when both do not belong to the set) from each nonvoter without

changing the recommendation. We are left with one + voter connected to

the nonvoter in the set, and s− (k − 1) - voters connected to the nonvoter.

we now wish to prove that s− k + 1 ≥ β.

Due to k’s definition, we know

β − 1 + `α− `
α− 1

≤ k ≤β − 1 + (`+ 1)α− (`+ 1)

α− 1
=

=
β + (`+ 1)α− (`+ 2)

α− 1

Similarly, we know

s ≥ α
β − 1 + `α− `

α− 1
− 1 =

βα + `α2 − (`+ 2)α + 1

α− 1

Hence:
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s− k + 1 ≥
βα + `α2 − (`+ 2)α + 1− β − (`+ 1)α + (`+ 2) + α− 1

α− 1
=

=
βα + `α2 − (2`+ 2)α− β + `+ 2

α− 1
=

=
(α− 1)(β + `α− (`+ 2))

α− 1
= β + `α− (`+ 2)

Thanks to our definition of `, this means s− k + 1 ≥ β, hence the set is

recommended -, reaching a contradiction.

Theorem 11.3. The group random-walk recommendation system is the only

one which satisfies axioms 1 − 3 and 7 − 9, i.e., is anonymous, positive

responsive, IIS, has trust propagation, scale invariance and proportional in-

clusiveness.

Proof. We shall prove the theorem by looking at a voting systemG(N, V+, V−, E),

and looking at a specific group C ⊆ N . We will show what the axioms would

force its recommendation to be – and that the same recommendation would

be made by the group random-walk recommendation system.

Part 1: Using the axioms

Suppose there is an undecided voter u ∈ N \ C which is influenced by

v1, . . . , vm ∈ N (possibly for some i 6= j vi = vj) and influences w1, . . . , wt

(again, possibly for some i 6= j wi = wj). According to scale invariance,

recommendations do not change if wi multiplies its connections by m. Now,

using trust propagation, wi connects directly to v1, . . . , vm, and is no longer

connected at all to u. As we do this for all w1, . . . , wt, when we finish, node

u no longer influences any other vertex.

Performing these steps for every undecided voter u ∈ N \ C which is

influencing and being influenced, we end up with the nodes in the group C

either directly connected by an edge – and being influenced – to voters or

nonvoter sinks (i.e., nonvoters which are not influenced by others). Thanks to
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the IIS axiom, we can ignore all vertices which are not in the same connected

component as C. Note that this axiom also means we can ignore all voters

or nonvoter sinks which do not directly influence (with a single edge) any

node in the group.

Now, using proportional inclusiveness, we eliminate from C all nonvoters

which are influenced by voters, leaving in the group, at most, nonvoter sinks

(all other members are voters), i.e., there are now y− voters for -, y+ voters

for + and y◦ nonvoter sinks. Suppose y◦ = 0 – from anonymity axiom we

know if y− = y+, recommendation is 0, and hence from the positive response

axiom, the recommendation is type(max(y−, y+)) (from the same axiom, that

is also the recommendation if y◦ > 0).

Part 2: Using the recommendation system

Now we need to show that the procedure described above reaches the

same recommendation as a group random walk would recommend. This

recommendation system, in effect, gives all members of C the same weight

(say, 1), and while voters put all their weight on their vote, nonvoters divide

their weight according to the random walk. Therefore, we shall show that

the contribution of each voter and nonvoter to the final tally is maintained by

the changes we do to C in the procedure described above using the axioms.

Furthermore, we note that scale invariance and trust propagation do not

affect the result of a random walk, hence we can examine the graph as it

looks following our multiple applications of these two axioms (just before we

begin to apply proportional inclusiveness). Therefore, we need to show that

applying proportional inclusiveness does not change the weight in the group.

If we manage to show proportional inclusiveness does not change the recom-

mendation of the group random-walk, since the axiom’s application leaves

us with a group consisting of voters only (and un-influencable nonvoters) we

can conduct a simple plurality between the votes, as both group random-walk

and the procedure above indicate should happen.

Let the nonvoter we apply proportional inclusiveness to be u, which is
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connected to the voters v1, . . . , vm /∈ C and to the nodes vm+1, . . . , vt ∈ C to

each with ki connections (we define s =
∑t

i=1 ki). There are also the nodes

vt+1, . . . , vr ∈ C which are not connected to u. Notice that u’s “vote” in the

group random-walk system gives ki
s

weight to vi, for 1 ≤ i ≤ t.

Following an application of proportional inclusiveness, we now have s

copies of vt+1, . . . , vr in the new C, and s + ki copies of vi, m < i ≤ t. We

also have s copies of vi, 1 ≤ i ≤ m, of which ki copies are in C ′, and we have

s copies of any nodes which are not vi (1 ≤ i ≤ r), i.e., any node which was

not connected to u and not in C.

Let us focus on nonvoters in C \ {u}. Each copy of the nonvoter is

connected to the same nodes as it was before, except for those which were

connected to u. Each nonvoter random-walk recommendation before propor-

tional inclusiveness was giving equal weight to each of its connection, so that

if a nonvoter had w outgoing edges., hence 1
w

weight was given to each node

connected to it, including u. Therefore, ki
s

1
w

weight for each vi 1 ≤ i ≤ t

(the nodes connected to u). Following proportional inclusiveness, the non-

voter has w · s outgoing edges, the weight of each node it is connected to is
s
ws

= 1
w

, except the nodes vi (1 ≤ i ≤ t), the weight of which is ki
ws

. Hence

the random-walk recommendation for each nonvoter remains the same.

The recommendation for the group C remains the same – prior to the

proportional inclusiveness each node received a weight of 1
|C| . Following the

application of the axiom, |C ′| = s(|C| − 1) + s = s|C|, and each node c ∈ C
such that c 6= vi (m + 1 ≤ i ≤ t) now has the s copies, and as each copy

has the same recommendation of each single one, it contributes the weight

of s
s|C| = 1

|C| . Each node connected to nonvoter u contributed ki
s

1
|C| , and now

each vi /∈ C contributes ki
s|C| , as there are ki copies of vi in C ′ for 1 ≤ i ≤ m.

vi ∈ C now contribute s+ki
s|C| , which is the same of vi’s contribution as a node

of C and as a component of u’s recommendation.

Therefore, each node which in the group random-walk would have an

influence over the recommendation maintains that level of influence after ap-

plying proportional inclusiveness. Multiple applications of this axiom leave
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us with a group consisting of purely voters and nonvoter sinks, which accord-

ing to the axioms leads to a plurality votes among voters, which is exactly

the procedure followed by the group random-walk in this case as well.
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Appendix D

Information on Local

Dominance Simulations

We simulated voting in an iterative setting, where voters start from a partic-

ular state, and then iteratively make strategic moves until convergence. We

constructed a simulator that enables us to control the following features of

the simulation. First, determine the parameters of the preference profile:

• Number of voters. We used n ∈ {10, 20, 50, 100}.

• Number of candidates. We used m ∈ {3, . . . , 8}.

• Distribution of preferences. We used all the 6 distributions described

below.

The simulator allows us to choose different distance metric; different r

values; different k values (for truth/lazy-biased voters); and different types

of voters in the simulations. We could also set the initial starting point to

be truthful or randomly assigned, and a scheduler that allows concurrent

updates (both properties results not examined here).

As using different metrics did not result in qualitatively different results,

and when starting from a truthful position biases are not significant (though

lazy-bias takes longer to converge), we focus here on showing results using `1

additive metric. We generated profiles from all distribution types for various

233
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numbers of voters and candidates. From each distribution we sampled 200

instances.1 Then, we simulated strategic voting on each instance varying

the distance metric (`1, multiplicative `1), the voters’ types (basic, truth-

biased, lazy) and the uncertainty parameters r and k. We repeated each

simulation 100 times (as the scheduler may pick a different path each time),

and collected multiple statistics on the equilibria outcomes.

D.1 Distributions

We included in our simulations several different distributions.2

Uniform Also known as the impartial culture distribution, this is the sim-

plest distribution to study. While people’s votes are rarely distributed

at random, the uniform distribution allows more confidence that our

results are not particular and specific to the distributions analyzed, and

is thus often used in simulations of voting [174].

Single-peaked This distribution assigns each candidate a point on the in-

terval [0, 1], and each voter is randomly assigned a point on the interval,

which defines its preferences — it prefers candidates closer to its point.

This distribution has been long used in sociological and political re-

search (as resembling the common right-left political axis) [129], but

has also been widely examined in game theoretic scenarios. A par-

ticular interesting property is that for single-peaked preferences can

be aggregated using strategy-proof mechanisms. The most prominent

such mechanism is the median vote [220].3

1We also used three datasets from German pre-election polls, with 100 voters, 3 candi-

dates, and no sampling, as well as all 225 currently available full preferences from PrefLib

(http://preflib.org) [152], but results did not display anything at variance with the

simulations.
2Note that these are extensible within the code and researchers can simply add addi-

tional distributions easily to the existing framework.
3We also tried simulations with single-dipped preferences, where the voter’s most pre-

http://preflib.org
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Polya-Eggenberger urn This model was developed and used to model the

grouping of much of society to major homogenous groups [58, 229,

201]. In a k-urn model, k preference orders are chosen, and an urn

is built to let voters choose preference orders from it. Each of the k

chosen preferences gets 1
k+1

of the preference orders in the urn, with

the remaining 1
k+1

of the urn filled by all preference orders in uniform.

Preferences chosen from this urn have significant likelihood to be of the

k main groups. In this work, we used the 2-urn and 3-urn model.

Riffle In a riffle model we get preferences of each voter by interleaving two

separate preference orders on subsets of candidates in an independent

manner. Huang and Guestrin [118] showed real-world elections which

resembled this distribution.

Placket-Luce In the Placket-Luce model each candidate has an intrinsic

cardinal value in the interval [0, 1] (the “ground truth”). Each vote is

then sampled from a particular distribution which adds noise to the

true ranking [219].

D.2 Collected Variables

For every generated profile, we measured the following variables (all averaged

over 100 simulations with a random singleton scheduler). We then averaged

again over all 200 generated profiles of a given distribution.

Number of steps The number of steps from the initial (truthful) profile to

convergence.

Number of stable states The number of distinct equilibrium outcomes

(for the same preference profile), in terms of voting profiles.

ferred candidates are at the extreme. However, in such profiles the truthful vote has only

two candidates with positive support (the extremes), and no voter ever has an incentive

to move.
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Number of distinct winners The number of distinct equilibrium outcomes

(for the same preference profile), in terms of winner’s identity.

Maximal ratio of equilibria with same winner The maximal fraction

of simulations (for the same preference profile) that ended with the

same winner.

Plurality agreement The fraction of simulations where the winner was the

original Plurality winner.

Borda agreement The fraction of simulations where the winner was the

Borda winner.

Copland agreement The fraction of simulations where the winner was the

Copland winner.

Maximin agreement The fraction of simulations where the winner was the

Maximin winner.

Condorcet agreement The fraction of simulations where the winner was

the Condorcet winner, when one exists (not counted otherwise).

Social Welfare The relative rank of the winner, according to its Borda

score (lower is better). Equivalently: the complement of the average

social welfare of voters, assuming Borda utilities.

Gap 1-2 The ratio between the score of the winner and the score of the

runner-up.

Gap 2-3 The ratio between the score of the second and the third candidates.

Total Duverger Fraction of simulations where at most two candidates re-

ceived votes.

Relative Duverger The fraction of votes for the two leading candidates.
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Furthermore, for the Placket-Luce distribution, we also measured Winner

Ground Rank, which is the rank of the winner according to the ground truth

used to generate the profile (between 0 and m− 1).
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