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a b s t r a c t

We consider the problem of finding the mechanism that maximizes the revenue of a seller of multiple
objects. This problem turns out to be significantlymore complex than the casewhere there is only a single
object (which was solved by Myerson, 1981). The analysis is difficult even in the simplest case studied
here, where there are two exclusive objects and a single buyer, with valuations uniformly distributed on
triangular domains. We show that the optimal mechanisms are piecewise linear with either 2 or 3 pieces,
and obtain explicit formulas for most cases of interest.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction and goals

The problem of building an optimal mechanism to maximize
the revenue of an auction holder has been the focus of much
research since the 1980s. Myerson (1981) established some of the
basic results for an auction of a single item. His paper considered
the case where a seller wishes to sell a single object and several
bidders wish to buy it. The value of the object may be different
to each bidder, but we assume that the values are distributed
according to a density function f , which gives the probability of
each set of bidders’ values. We seek a mechanism that will be, in
a sense, an equilibrium: it should maximize the revenue for the
seller evenwhen the bidders know how it works (and change their
behavior accordingly), and the seller knows the strategies of the
bidders.

The first major principle that simplifies the analysis of this
problem (as shown in Krishna, 2002) is that we may focus on
mechanisms which are based on the revelation principle: each
bidder reveals truthfully the value of the object for him, i.e., he will
not profit from lying about his preference. Furthermore, we wish
our truthful bidder to have no desire to lie about the object’s value
for him, and such amechanism is called incentive compatible (or IC).
Another, more trivial, principle is that bidders should actuallywish
to participate in the auction; accordingly, we seek a mechanism
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that is individually rational (or IR), under which the value of taking
part in the auction for the bidder – whatever his value of the
auctioned object is – will not be negative.

In the case of only a single bidder, the optimal solution is
that there be a ‘‘minimum price’’ (which is dependent on f ,
the distribution of bidder values for the object), below which
the bidder will not get the object; above it, he will. Similarly,
when there are multiple bidders, if all have the same probability
distribution function f , the optimal solution is a ‘‘second-price
auction’’ (which is IC) with a ‘‘minimum price’’. When the
preferences of each bidder have a different distribution (but are
independent of each other), the solution is slightly more complex,
but still relatively straightforward. Thus, the object is either not
sold, or definitely sold (there is no possibility of a value for which
there is a possibility of both obtaining and not obtaining the
object).

Trying to add dimensions to this problem by adding more
objects to be auctioned seems, at first, to be no more difficult than
holding several unconnected auctions. However, as soon as we
assume that the seller can sell ‘‘bundles’’ (several objects together),
or when we allow ‘‘inter-dependence’’ between the auctioned
items’ values, the issue becomes far more complex. As Rochet and
Stole (2003) show in their detailed survey of various methods
to solve multi-dimensional problems, handling such problems is
problematic and there are few helpful results.1

1 There is a slightly different branch of work, adding dimensions to the problem,
but not by adding more objects. For example, Pai and Vohra (2008) add a temporal
dimension to the auction problem, but their solution involves assuming that the
temporal dimension is a discrete space and independent of other variables, and due
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Even in the case of only one seller (‘‘monopolist’’) and two
objects and their bundling, we have only a very general picture
(for example,Manelli andVincent, 2007, provide amethod that can
verify that a candidate optimal solution is an extreme point—when
extreme points are a strict superset of optimal solutions). Although
Aguilera andMorin (2008) present a numerical method for solving
such problems for some distribution of the objects’ value, it is
a fairly complex one (requiring semidefinite programming) and
does little to help understand and generalize the results. For better
results, Manelli and Vincent (2006, 2007) add the assumption
that the preference for each object is independent (and thus, for
example, the probability of a certain value for a bundle is the
product of the probabilities of all objects values). Even in these
cases, specific solutions are rare.

Thus, the simple case of two mutually exclusive objects whose
total valuation is less than 2 – even when we assume valuations
are distributed uniformly – is not straightforward.2 More formally,
we consider the problem where the values for the two mutually
exclusive options are found in the triangle with the vertices
(0, 0), (2, 0), and (0, 2). The solution for this specific problem is
shown in Corollary 32 (with a graphic representation shown in
Appendix A.1).

In approaching this problem,we show that the optimal solution
must be of the type for which the probability that no object is
sold is either 0 or 1 (Theorem 10; we use a method adapted from
Hart and Reny, in preparation). This is an obvious extension of
the single-dimension solution. We prove that this is true for our
‘‘shape’’ (the triangle) if we assume a certain condition on the
probability density function (a condition that holds for the uniform
distribution). Dealingwith these types of optimal solutions enables
us to rewrite the problem as essentially an optimization problem
with only one variable.

In seeking a solution to our problem, we first obtain a more
general result—if the probability of obtaining an object is either 0
or 1, inmany types of shapes and distributions themechanismwill
be, in a sense, ‘‘piecewise linear’’ (see, for example, Lemmas 18 and
20). That is, it will be composed of regions, in each one of which the
probabilities of receiving the objects are constant. Furthermore,
for values uniformly distributed in ‘‘triangles’’, we find the optimal
solution for many of the triangles (Corollary 31), and our method
can be used to find the optimal solution for any such triangle.

2. Preliminaries

2.1. Basics

We begin with several definitions of the two-dimensional
problem (all straightforward extensions of the single-dimension
problem presented in Krishna, 2002), and with several basic
properties.

Definition 1. v = (v1, v2) ∈ R2
+

are the values of the buyer for
each of the two objects (v1 for the first, v2 for the second). v is
distributed according to a distribution F , with density function f .

Consider now a direct mechanism, with one buyer and one
seller, with two mutually exclusive objects to sell. For every bid

to the nature of the temporal change, results resemble the single dimension in a
rather straightforwardmanner. A different attempt, in Blackorby and Szalay (2007)
added an object ‘‘quality’’ variable, but its results and methods rest on severing the
link between one of the variables (the quality) to the utility of the agents.
2 Thanassoulis (2004) shows that in the problem of pricing two substitutable

products, a solution is not trivial, and he shows some results and criteria,
particularly in the symmetrical case. Specifically, he shows that in certain cases,
revenuemay increase byhaving a lottery overwhich object is obtained by the buyer.
Such possibilities are inherent in our auctionmodel, and indeed occur inmany cases
we examine.
the buyer offers, there is a probability that he will receive one of
the objects, and there is a cost – a payment to the seller. We will
seek tomaximize the seller’s revenue—the expected payment from
the buyer.

Definition 2. q : R2
+

→ [0, 1]2 is a function representing the
probabilities that the buyerwill receive the first object (q1) and the
second one (q2). Thus, q(y1, y2) = (q1(y1, y2), q2(y1, y2)) are the
probabilities of receiving the objects if the buyer announces that
his values of the objects are y1 and y2. Since we assume that the
objects are mutually exclusive, q1(y1, y2) + q2(y1, y2) ≤ 1.

Definition 3. c : R2
+

→ R+ is a function representing the pay-
ment to the seller. c(y1, y2) is the cost for the buyer if he declares
values of y1 for the first object and y2 for the second.

Definition 4. We define the function u : R2
+

→ R as u(y1, y2) =

q(y1, y2) · v − c(y1, y2), with v being the value of the objects for
the buyer. Hence, u(y1, y2) is the utility for the buyer—the expected
value he gains, less his cost, if he announces values of y1 and y2 for
the objects.

Sincewe are looking at ICmechanisms,we can viewDefinition 4
as actually u(v1, v2) = q(v1, v2) · (v1, v2) − c(v1, v2). As in the
single-dimension case, we will use u as a variable of the optimiza-
tion problem. It has several properties that enable us to better an-
alyze it.

Lemma 5. If u(v) satisfies the IC constraint, then it is a convex
function with the gradient ∇u(v) existing for almost every v, and

∂
∂v1

u(v1, v2) = q1(v1, v2) and ∂
∂v2

u(v1, v2) = q2(v1, v2) almost
everywhere.
Proof. See Manelli and Vincent (2007). �

Our goal is to maximize the seller’s revenue, which is the
expected payment from the buyer, i.e., c(v1, v2). According to our
definitions, c(v1, v2) = q(v1, v2) · (v1, v2) − u(v1, v2), hence
we seek to maximize the expression


R2

+

(q(v) · v − u(v)) dF =
R2

+

(q(v) · v − u(v))f (v) dv.

2.2. Solution characterization

Our optimization method works when the solution is of the
type where the probability of getting some object, i.e., q1 + q2,
equals either 0 or 1. We shall now show several conditions that
ensure that there is always a solution of this type for a family
of problems—including our specific problem where (v1, v2) is
uniformly distributed on a trianglewith the vertex (0, 0) and (1, 1)
is in the opposite edge. Our constraints and conditions are based on
those shown in Hart and Reny (in preparation).

Assumption 6. We assume that there is a convex, compact set
W ⊂ R2

+
that includes (0, 0) and (1, 1), such that (x, y) ∉ W ⇒

f (x, y) = 0.
W is the ‘‘range’’ of the values.

Assumption 7. We assume that W is a triangle, with one vertex
at (0, 0) (edges not necessarily being the axes). We shall use the
notation ∂W for the edge ofW for the side opposite (0, 0), and we
shall assume (1, 1) ∈ ∂W .

This means for w = (w1, w2) ∈ ∂W , there is a constant s for
which w2 = (1 − s)w1 + s.

Assumption 8. f almost everywhere has the following property:
for t ∈ [0, 1] and v = (v1, v2):

2f (tv) +
d
dt

tf (tv) ≥ 0.

For example, f uniform satisfies Assumption 8.
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Definition 9. Since W is convex and by Assumption 7, any v =

(v1, v2) ∈ W can be expressed as (w − (t, t)) for a unique w ≡

wv ∈ ∂W . Thus, for any u : W → R we can define a new function
ũ : W → R as follows:

ũ(v1, v2) = ũ(wv − (t, t)) = u(wv) − t

By Assumption 7, ũ is guaranteed to bewell defined and convex.
Notice that the definition means that d

dt ũ(v0 + (t, t)) = 1, and
since d

dt ũ(v0 + (t, t)) = q̃1(v0) + q̃2(v0) (where q̃ = ∇ũ), at every
point v ∈ W , q̃1(v) + q̃2(v) = 1.

Theorem 10. By Assumptions 7 and 8, for any optimal u, u =

max(0, ũ) a.e. Thus, the optimal mechanismmust satisfy q1(v1, v2)+
q2(v1, v2) = 0 or 1.

Proof. Suppose u is an optimal solution. We now define the
function û = max(0, ũ). We shall now prove that a.e. u = û,
and that will prove the theorem, since û fulfills its requirements.
Because our domain (W ) is convex and by Assumption 7, we can
change the coordinate system to (t, w) where t ∈ [0, 1] and
w ∈ ∂W , and every v in the domain may be expressed by tw.
Since ∂W lies on the line w2 = (1− s) ·w1 + s, the transformation
is (tw1, t((1 − s)w1 + s)), and the absolute value of the Jacobian
for this transformation is |s|t ≡ rt . Since q(v) · v − u(v) =

q(tw) · tw−u(tw) = t d
dt u(tw)−u(tw), we now seek tomaximize∫

W
(q(v) · v − u(v))f (v) dv

=

∫
∂W

∫ 1

0


t
d
dt

u(tw) − u(tw)


rtf (tw) dt dw.

Since
 1
0 t
 d
dt u(tw)


rtf (tw) dt = rt2f (tw)u(tw) |

1
0 −

 1
0 (2rt(tw)

+ rt2 d
dt f (tw))u(tw) dt , we now have∫

∂W
ru(w)f (w) −

∫ 1

0
r

3tf (tw) + t2

d
dt

f (tw)


u(tw) dt dw

Notice that u(tw) ≥ 0 (by IR) and 3tf (tw)+t2 d
dt f (tw) = t(3f (tw)

+t d
dt f (tw)) = t


2f (tw) +

d
dt tf (tw)


≥ 0 (by Assumption 8), This

means that for any givenuwith values on ∂W , wewish tominimize
the value of u on the interior of W . Since u and ũ coincide on ∂W ,
and since d

dt u(w − (t, t)) = −(q1(w − (t, t)) + q2(w − (t, t))) ≥

−1, it follows that u(w − (t, t)) ≥ u(w) − t = ũ(w − (t, t)).
Every point v ∈ W can be represented as wv − (t, t) for t ≥ 0 and
wv ∈ ∂W , and so u(v1, v2) ≥ ũ(v1, v2). By IR, u ≥ 0, and therefore
u(v1, v2) ≥ û(v1, v2). Furthermore, if there is a measurable set
where 0 < q1 +q2 < 1, this inequality becomes strict (for a subset
ofW ). Thus

ru(w)f (w) −

∫ 1

0
r

3tf (tw) + t2

d
dt

f (tw)


u(tw) dt

≤ rû(w)f (w) −

∫ 1

0
r

3tf (tw) + t2

d
dt

f (tw)


û(tw) dt

and∫
W

(q(v) · v − u(v))f (v) dv ≤

∫
W

(q̂(v) · v − û(v))f (v) dv

Notice that if not a.e. u = û, due to the fact that u is a.e. differen-
tiable, then there is a measurable set where 0 < q1 + q2 < 1, and
therefore the inequalities above become strict. �

Note. In the sequel, we do not rely on our assumptions on W and
f ; we only require that the optimal solution be of the sort described
in Theorem 10, i.e., q1 + q2 ∈ {0, 1}.
2.3. Reframing the problem

We shall now reduce our two-dimensional problem to essen-
tially one dimension, using the characterization in Theorem 10. To
do so, we shall first change the coordinate system and then rewrite
the equation we wish to optimize.

We will change our axis system from the regular (v1, v2)
structure by turning it 45◦ counterclockwise. One axis will be the
line v1 + v2 = 0, and the other will be the line v1 = v2. We shall
use the letter x to denote the former, and t to denote the latter.

Definition 11. g : R2
→ R2 is defined as g(x, t) = (− x

2 +t, x
2 +t).

Thus,

Dg|(x,t) =

−
1
2

1
1
2

1


and Jg|(x,t) = −1.

We shall now ‘‘move’’ the function ũ to these axes as well.

Definition 12. We define ϕ : R → R as ϕ(x) = ũ

−

x
2 ,

x
2


.

Lemma 13. ũ(v1, v2) = ϕ(v2−v1)+
v1+v2

2 . Therefore, D1ũ|(v1,v2) =

−ϕ′(v2 − v1) +
1
2 ,D2ũ|(v1,v2) = ϕ′(v2 − v1) +

1
2 , and |ϕ′(x)| ≤

1
2 .

Proof.

ϕ(v2 − v1) +
v1 + v2

2
= ũ


v1 − v2

2
,
v2 − v1

2


+

v1 + v2

2

= ũ


v1 − v2

2
+

v1 + v2

2
,

v2 − v1

2
+

v1 + v2

2


= ũ(v1, v2).

The derivatives are a result of simple arithmetic. �

Recall that we seek to maximize the seller’s revenue, i.e.,


R2
+

q ·

v − u(v) dF =


R2
+

(q · v − u(v))f (v) dv. Starting with ũwe get∫
R2

Dũ · v − ũ(v) dv

=

∫
∞

−∞

∫
∞

−∞

D1ũ · v1 + D2ũ · v2 − ũ(v1, v2) dv1 dv2.

Next, we change variables to the (x, t) axes. We need to
multiply the integrals by |Jg|(x,t)|. Since, as shown in Definition 11,
Jg|(x,t) = −1, we multiply by 1

D1ũ · v1 + D2ũ · v2 − ũ(v1, v2) =


−ϕ′(x) +

1
2


t −

x
2


+


ϕ′(x) +

1
2


t +

x
2


− (ϕ(x) + t)


= −ϕ′(x)t +

t
2

+
ϕ′(x)x

2
−

x
4

+ ϕ′(x)t +
t
2

+
ϕ′(x)x

2
+

x
4

− ϕ(x) − t

= ϕ′(x)x − ϕ(x).

So our equation for ũ is∫
∞

−∞

∫
∞

−∞

(ϕ′(x)x − ϕ(x))f (g(x, t)) dt dx.

Now we will return to u. Since in areas in which q(v1, v2) ≠

0, u(v1, v2) = ũ(v1, v2) (recall that Theorem 10 showed u =
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max(0, ũ)), it follows that the optimized equation is∫
∞

−∞

∫
∞

t0(x)
(ϕ′(x)x − ϕ(x))f (g(x, t)) dt dx

=

∫
∞

−∞

(ϕ′(x)x − ϕ(x))
∫

∞

t0(x)
f (g(x, t)) dt dx

for t0(x) = inf {t|u(− x
2 + t, x

2 + t) > 0} (i.e., the point where u
stops being 0).

Let us take a closer look at t0(x).

Lemma 14. There is an interval [b1, b2] (for b1 ≤ 0, b2 ≥ 0), for
which t0(x) = −ϕ(x), and outside it t0(x) does not depend on ϕ, but
only on the shape of W.

Proof. t0(x) has two constraints:
Since u ≥ 0, we get

t0(x) + ϕ(x) ≥ 0 ⇒ t0(x) ≥ −ϕ(x).

And since u is defined onW ⊂ R2
+
, we get

−
x
2
,
x
2


+ (t0(x), t0(x)) ∈ W .

Finally, since (0, 0) ∈ W , t0(0) = −ϕ(0). Due to the convexity
of ϕ and W , if t0(x′) = −ϕ(x′), then ∀x ∈ [0, x′

] (or [x′, 0]):
t0(x) = −ϕ(x). �

Definition 15. Put f̃ (x) =


∞

t0(x)
f (g(x, t)) dt

Therefore, the equation we wish to find an optimum for can be
written as∫

∞

−∞

(ϕ′(x)x − ϕ(x))f̃ (x) dx

Assumption 16. We assume that d
dx f̃ (x) exists and is continuous.

Using ϕ′(x)x − ϕ(x) =


ϕ(x)
x

′

x2, we can view the problem as
maximizing the equation:

−

∫
∞

−∞

ϕ(x)(2f̃ (x) + xf̃ ′(x)) dx

Using the definitions of b1 and b2 from Lemma 14, we can
rewrite the equation as∫ b1

−∞

(ϕ′(x)x − ϕ(x))f̃ (x) dx +

∫ b2

b1
(ϕ′(x)x − ϕ(x))f̃ϕ(x) dx

+

∫
∞

b2
(ϕ′(x)x − ϕ(x))f̃ (x) dx

(we use the notation f̃ϕ to indicate that for {x|b1 < x < b2}, f̃ (x)
depends on ϕ).

3. General case

Definition 17. ϕ0 is a function which fits our requirements
(convex, |ϕ′

0(x)| ≤
1
2 ) and optimizes our goal function.

Since ϕ0 is optimal, for every ϕ that fits our criteria (convex,
|ϕ′(x)| ≤

1
2 ) and that has the same ‘‘b’’s as ϕ0, we know that

(1 − ϵ)ϕ0 + ϵϕ (for ϵ > 0) for small ϵ are very close to ϕ0, but
still are not optimal:∫

∞

−∞

(ϕ′

0(x)x − ϕ0(x))f̃ (x) dx ≥

∫
∞

−∞

(((1 − ϵ)ϕ′

0(x) + ϵϕ′(x))x

− ((1 − ϵ)ϕ0(x) + ϵϕ(x)))f̃ (x) dx.
Thus,
∂

∂ϵ

∫
∞

−∞

(((1 − ϵ)ϕ′

0(x) + ϵϕ′(x))x

− ((1 − ϵ)ϕ0(x) + ϵϕ(x)))f̃ (x) dx|ϵ=0 ≤ 0.

We know that f̃ does not depend on ϕ0 for x < b1 and x > b2,
while it does for b1 < x < b2. Also, since W is compact, there is a
z > 0 such that ∀|x| > z : f̃ (x) = 0. Thus we get the following
constraint:∫ b1

−z
(ϕ0(x) − ϕ(x))(2f̃ (x) + xf̃ ′(x)) dx

+

∫ b2

b1
(ϕ0(x) − ϕ(x))(2f̃ϕ0(x) + xf̃ ′

ϕ0
(x)

− (ϕ′

0(x)x − ϕ0(x))f (x, −ϕ0(x))) dx

+

∫ z

b
(ϕ0(x) − ϕ(x))(2f̃ (x) + xf̃ ′(x)) dx ≤ 0.

Lemma 18. On intervals [d1, d2] in which ∀x ∈ [d1, d2], if b1 < x <

b2: 2f̃ (x)+xf̃ ′(x)−(ϕ′

0(x)x−ϕ0(x))f (x, −ϕ0(x)) ≠ 0, and if x ≤ b1
or x ≥ b2 : 2f̃ (x) + xf̃ ′(x) ≠ 0, then ϕ0 is composed, at most, of two
linear3 parts on the interval.

Proof. We shall build a ϕ such that ϕ|x≤d1,x≥d2 = ϕ0. Since for
all x ∈ [d1, d2] the ‘‘multiplier’’ (2f̃ (x) + xf̃ ′(x) − (ϕ′

0(x)x −

ϕ0(x))f (x, −ϕ0(x)) or 2f̃ (x) + xf̃ ′(x)) is not 0, then the sign of the
multiplier throughout [d1, d2] is the same (by Assumption 16).

If the multiplier is less than 0, then if we define ϕ to be the
straight line connecting ϕ0(d1) with ϕ0(d2), then for x ∈ [d1, d2] :

ϕ(x) ≥ ϕ0(x), and if ϕ0|[d1,d2] ≠ ϕ, the inequality is strict for some
interval. Since for x ∉ [d1, d2] : ϕ0(x) = ϕ(x), the equation is
positive—a contradiction.

Similarly, if the multiplier is larger than 0, we define ϕ|[d1,d2]
to be the straight line from ϕ0(d1) with the slope ϕ′

0(d1), until it
changes to be the straight line going through ϕ0(d2)with the slope
ϕ′

0(d2). ϕ is, of course, still convex, and for x ∈ [d1, d2] : ϕ(x) ≤

ϕ0(x), and if ϕ0|[d1,d2] ≠ ϕ the inequality is strict for some interval.
Once again, since for x ∉ [d1, d2] : ϕ0(x) = ϕ(x), the equation is
positive, a contradiction. �

Definition 19. We shall define ℓ(x) = 2f̃ (x) + xf̃ ′(x). We also
define L(x) thus:

L(x) =


∫ x

−z
ℓ(t) dt x < b1∫ z

x
ℓ(t) dt x > b2.

Lemma 20. On the intervals [−z, b1] and [b2, z], ϕ is piecewise
linear, and the slope changes only at points y for which L(y) = 0.

Proof. For intervals where ℓ(x) ≠ 0, we showed piecewise linear-
ity in Lemma 18. If there is an interval [d1, d2] in which ℓ(x) = 0,
the shape of ϕ0 does not matter: it can be anything, even a straight
line. One can see this by using the alternative representation of the
equation we wish to optimize: −

 b1
−z ϕ0ℓ(x) dx or −

 z
b2

ϕ0ℓ(x) dx.
On the interval [d1, d2], where ℓ(x) = 0, the value of ϕ0 is irrele-
vant: only the values in the edges (d1 and d2) might matter.

3 When describing ϕ (or sections of it) as being linear, we actually mean that it
is affine (since ϕ(0) does not necessarily equal 0). In doing so, we chose to follow
common usage.
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We shall now prove that the change points of different line
slopes are y such that L(y) = 0. Let us look first at {x|x ≥ b2}.
Suppose that the line a1x + c changes to a2x + a1d1 + c − a2d1
at point d1 > b2 for which L(d1) > 0; then let us take a ϕ that
equals ϕ0 up to d1, but changes to a slope of a2 at d2 > d1, and
then continues to change slopes just like ϕ0 (at the same points, to
the same slopes). d2 is close enough to d1 so that L(d2) > 0 and
L(d2) − L(d1) < L(d2) (such a d2 exists due to f̃ continuity). Thus

0 ≥

∫ d2

d1
(a2x + a1d1 − a2d1 − a1x)ℓ(x) dx

+

∫ z

d2
(a1d1 − a2d1 − a1d2 + a2d2)ℓ(x) dx

= (a2 − a1)(
∫ d2

d1
(x − d1)ℓ(x) dx + (d2 − d1)

∫ z

d2
ℓ(x) dx).

But according to our definition of d2, and since (a2 − a1) > 0
(due to convexity), our equation is larger than 0, a contradiction. A
similar problem arises when L(d1) < 0 (using d2 < d1).

For {x|x ≤ b1} the problem is solved in the same manner. ϕ is
built to be exactly like ϕ0 from d1 onward, and the changes are in
the area between −z and d1.

Since f̃ is not dependent on ϕ0 for [−z, b1] and [b2, z], neither is
L(y), and thuswe have an independent criterion for ‘‘slope change’’
points. �

Observation 21. Lemmas 18 and 20 show that ϕ0 is piecewise linear
except for intervals [s, t] ⊆ [b1, b2], for which ∀x ∈ [s, t] : 2f̃ϕ0(x)+

xf̃ ′
ϕ0

(x) − (ϕ′

0(x)x − ϕ0(x))f (x, −ϕ0(x)) = 0.

Theorem 22. On the interval [b2, z], ϕ0 is piecewise linear, with at
most two linear pieces. Moreover, the slope of the second piece, if it
exists, equals 1

2 . Similarly, on the interval [−z, b1], ϕ0 is piecewise
linear with at most two linear pieces, and the slope of the first piece (if
it exists) is −

1
2 .

Proof. First, we shall consider [b2, z]. Let y > b2 be the minimal
point for which L(y) = 0 and

 z
y xℓ(x) < 0. ϕ0 on the interval

[b2, z] is made of I linear parts, and for each i ∈ I the part is from
[di−1, di] (obviously, d0 = b2), and its equation is ai + ci (the cis are
arranged so that ϕ0 is continuous). We now define ϕ to be

ϕ(x) =


ϕ0 −z ≤ x < d1
a1 + c1 d1 ≤ x < y
x
2

+ a1y + c1 −
y
2

y ≤ x.

Let I ′ ⊂ I be a set of parts for which for every i ∈ I ′ : di < y.
We define î ∉ I ′ as one for which y ∈ [dî−1, dî]. Finally, let
I ′′ = I \ (I ′ ∪ î). Our requirement is that

0 ≥

−
i∈I ′

∫ di

di−1

(aix + ci − a1x − c1)ℓ(x) dx

+

∫ y

dî−1

(aîx + cî − a1x − c1)ℓ(x) dx

+

∫ dî

y


aîx + cî −

x
2

− a1y − c1 +
y
2


ℓ(x) dx

+

−
i∈I ′′

∫ di

di−1


aix + ci −

x
2

− a1y − c1 +
y
2


ℓ(x) dx.
However, according to Lemma 20, change points are such
that L(di) = 0, and since L(y) = 0 as well, our requirement is
actually

0 ≥

−
i∈I ′

(ai − a1)
∫ di

di−1

xℓ(x) dx + (aî − a1)
∫ y

dî−1

xℓ(x) dx

+


aî −

1
2

∫ dî

y
xℓ(x) dx +

−
i∈I ′′


ai −

1
2

∫ di

di−1

xℓ(x) dx

≥ (+)

∫ y

d2
xℓ(x) dx + (−)

∫ z

y
xℓ(x) dx.

(+) and (−) represent positive and negative multipliers
respectively (due to ϕ0 convexity). (+) = 0 only if ϕ0|[b2,y] = ϕ

and (−) = 0 only if ϕ0|[y,z] = ϕ. Since
 z
y xℓ(x) dx < 0, and y is

the earliest point where this is true (as well as L(y) = 0), it follows
that

 z
d2

xℓ(x) dx ≥ 0, and
 y
d2

xℓ(x) dx ≥ 0. Thus

(+)

∫ y

d2
xℓ(x) dx + (−)

∫ z

y
xℓ(x) dx ≥ 0.

If the inequality is strict, we have a contradiction. If it is not
strict, since

 z
y xℓ(x) dx < 0, it follows that (−) = 0, and ϕ0|[y,z] =

ϕ. If ϕ0 ≠ ϕ, then (+) > 0, and
 z
d1

xℓ(x) dx = 0. In this case we
need to take a look at the alternative representation of our original
equation, which we wish to maximize, namely, −

 z
d1

ϕ0(x)ℓ(x) dx.
ϕ0 is linear (and L(d1) = L(y) = 0), and so

 y
d1

ϕ0(x)ℓ(x) dx = 0,
and the values of ϕ0 on [d1, y] do not matter (after ywe know that
ϕ0 = ϕ). Thus, without loss of generality, ϕ0 = ϕ.

The case of [−z, b1] is identical. �

4. Uniform distribution

As we move closer to our objective of finding the optimal
u for the uniform distribution on the triangle with the vertices
(0, 0), (2, 0), and (0, 2), we decompose our problem along the
v1 = v2 axis. In particular, we analyze the family of triangles
that includes the triangle with the vertices (0, 0), (0, 2), and (1, 1)
(with a simple transformation, this also includes the triangle with
the vertices (0, 0), (2, 0), and (1, 1)), and then we join them
together.

Assumption 23. We shall now work under the assumption that f
is distributed uniformly on the set {(v1, v2)|v2 ≥ v1 ≥ 0, v2 ≤

a · v1 + 1 − a}, where a < 1. These are cases where ∂W lies on
the line v2 = av1 + 1 − a, and W is the triangle with vertices
(0, 0), (1, 1), and(0, A). (We define A = 1 − a).

For x > A or x < 0 : f̃ (x) = 0. Therefore, there is no b1, only b2,
whichhenceforthwe shall refer to as b. Furthermore, the constraint
on t0 for this shape is simple, and for {x|x ≥ b}, t0(x) =

x
2 , and b is

a point in which −ϕ(b) =
b
2 .

In the ‘‘interesting’’ area – where f̃ ≠ 0 – we can see f̃ (x) =
∞

t0(x)
f (x, t) dt =

 −
2−A
A ·

x
2 +1

t0(x)
1 dt = 1 −

2−A
A ·

x
2 − t0(x).

Thus, we seek to maximize the expression∫ b

0
(ϕ′(x)x − ϕ(x))


1 −

2 − A
2A

· x + ϕ(x)


dx

+

∫ A

b
(ϕ′(x)x − ϕ(x))


1 −

2 − A
2A

· x −
x
2


dx.
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Using the identitiesϕ′(x)x−ϕ(x) =


ϕ(x)
x

′

x2 andϕ′(x)ϕ(x)x−

ϕ2(x) =


ϕ2(x)
2x2

′

x3 we get

−
b3

8
−

3
2

∫ b

0


ϕ(x) −

2 − A
2A

x +
2
3

2

dx

+
1
6

∫ b

0


2 −

3(2 − A)

2A
x
2

dx −

∫ A

b
ϕ(x)


2 −

3
A
x


dx.

Using the same parameter variation method we used in
Section 3, we get∫ b

0
(ϕ0(x) − ϕ(x))


2 −

3(2 − A)

2A
x + 3ϕ0(x)


dx

+

∫ A

b
(ϕ0(x) − ϕ(x))


2 −

3
A
x


dx ≤ 0.

Proposition 24. ϕ0 changes to a straight line with a slope of 1
2 at

max(b, A
3 ).

Proof. In Section 3, we showed that for {x|x > b}, ϕ0(x) is made
of two linear parts at most, with the slope changes occurring at y
where

 z
y ℓ(x) dx = 0. In our particular case, this means that

0 =

∫ A

y
2 −

3
A
x dx = 2(A − y) −

3
2A

x2 |
A
y =


A
3

− y


(A − y).

So the point of the last change to ϕ0 is at b or A
3 . Since the last

part of ϕ0 has the slope 1
2 (the maximal one), the proposition is

proved. �

Let us look at the different possibilities of b

Proposition 25. If b ≥
2
3A:

(i) If A < 1 and b ≥
2
3A, then

ϕ0(x) =
x
2

− b

and
• b = A when A < 1

3 .

• b =


A
3 when 1

3 ≤ A < 3
4 .

• b =
2
3A when 3

4 ≤ A < 1.

(ii) If A ≥ 1 and b ≥
2
3A, then

ϕ0(x) =



1
b

−
2 − A
4A

−
3
4


x +

b
2A

− 1 0 ≤ x ≤ b
x
2

− b b < x ≤ A

for b =
2
3A.

Proof. Due to convexity and minimality / maximality concerns,
there is a straight line from (0, ϕ0(0)) to


b, − b

2


. This is because

b ≥
2
3A means that


b, − b

2


is below 2−A

2A x −
2
3 , and due to

convexity, that line cannot be crossed twice on [0, b]; it is crossed,
at most, once, at point d. However, on the interval [0, d], we seek
to minimize ϕ0, while on the interval [d, b] (or [0, b], if there is no
d) we seek tomaximize it. Minimality / maximality concernsmean
that there is one straight line from 0 to b. Therefore, we are seeking
a line of the formmx+d that goes through the point


b, − b

2


. Thus,

our line is mx − b(m +
1
2 ). At the point


b, − b

2


, the line changes
to x
2 − b (a slope of 1

2 ). We wish to find, for a specific b (and A), the
optimalm:∫ b

0
(mx − nx − bm + bn)

×


2 −

3(2 − A)

2A
x + 3mx − 3bm − 1.5b


dx ≤ 0

(For any −
1
2 ≤ m ≤

1
2 ).

Simplifying this equation, we get

(m − n)

b3m +

3
4
b3 +

2 − A
4A

b3 − b2


≤ 0.

Ifm =
−

3
4 b

3
−

2−A
4A b3+b2

b3
=

1
b−

2−A
4A −

3
4 the equation always equals

0, and for b > 2
3A and A ≥ 1,m is in the required parameters (i.e.,

|m| ≤
1
2 ). For A ≤

1
2 the function b3m+

3
4b

3
+

2−A
4A b3 −b2 is always

negative (for 2
3A < b ≤ A), and therefore m must be maximal, i.e.,

m =
1
2 . For

1
2 < A < 1, for some ‘‘b’’s m =

1
b −

2−A
4A −

3
4 ≤

1
2 , and

for the other ‘‘b’’sm =
1
2 (due to the negativity of the equation). So

the equation looks like this:

ϕ0(x) =



x
2

− b 0 < A <
1
2
or

b
2−2b < A < 1

1
b

−
2 − A
4A

−
3
4


x +

b
2A

− 1 A ≥ 1 or A <
b

2 − 2b
and 0 ≤ x ≤ b

x
2

− b A ≥ 1 or A <
b

2 − 2b
and b < x ≤ A.

Now, the optimal b for this family of equations (i.e., b ≥
2
3A) is

found by differentiating the original equation (the one we wished
to optimize). For the case where the equation is always x

2 − b, we
wish to maximize the following:∫ b

0
b

1 −

2 − A
2A

x +
x
2

− b


dx

+

∫ A

b
b

1 −

A
2A

x −
x
2


dx = −

b3

2
+

A
2
b.

The derivative of this equation is −
3
2b

2
+

A
2 , which reaches 0

when b =


A
3 . This expression is within our constraints ( 23A <

b ≤ A) for 1
3 ≤ A ≤

3
4 . For A < 1

3 it is always positive, so the
maximum is reached at the largest b possible, b = A. For A > 3

4
the derivative is always negative; that is, the maximum is reached
at the smallest possible b (which is 2

3A).
For the second type of equation, we wish to maximize the

following equation:∫ b

0


1 −

b
2A


1 −

2 − A
2A

x +
1
b
x −

2 − A
4A

x −
3
4
x +

b
2A

− 1


dx

+

∫ A

b
b

1 −

2 − A
2A

x −
x
2


dx

=
1 + 4A
8A2

b3 −
1 + 2A
2A

b2 +
1 + A

2
b.

Differentiating that equation results in 3+12A
8A2

b2 −
1+2A

A b +
1+A
2 ,

which is always negative for 2
3A ≤ b < A, so that for A ≥ 1, the

maximal value is reached at b =
2
3A. For

1
2 < A < 1 the smallest
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b converges with the case of x
2 − b, and so the optimal value for

1
2 < A < 1 is reached at b = max


2
3A,


A
3


. �

Proposition 26. If A
3 ≤ b < 2

3A:

(i) If A < 1 and A
3 ≤ b < 2

3A, then

ϕ0(x) =
x
2

− b

and b = min


2
3A,


A
3


.

(ii) If A ≥ 1 and b < 2
3 and A

3 ≤ b < 2
3A, then

ϕ0(x) =
x
2

− b.

(iii) If A ≥ 1 and b ≥
2
3 and A

3 ≤ b < 2
3A:

ϕ0(x)

=


2 − A
2A

x −
2
3

0 ≤ x ≤ max

0,

A
A − 1


b −

2
3


x
2

− b max

0,

A
A − 1


b −

2
3


< x ≤ A

and
• b =


A
3 when A < 1 1

3 .

• b =
2A−

√
A2−A

3 when A ≥ 1 1
3 .

Proof. If b ≥
A
3 , the optimal value on the interval [0, b] should be

minimal, and thus should be as close as possible to 2−A
2A x− 2

3 as long
as possible and then change to a line with the slope 1

2 . For A ≥ 1
this is not a problem, as

 2−A
2A

 ≤
1
2 ; but for 0 < A < 1, and other

cases where b < 2
3 , there is no part where ϕ0(x) =

2−A
2A x −

2
3 , so

there is only one part, with the slope 1
2 , namely:

ϕ0(x) =



x
2

− b A < 1 or
A
3

≤ b <
2
3

2 − A
2A

x −
2
3

A ≥ 1 and b ≥
2
3
and

0 ≤ x ≤ max

0, A

A−1


b −

2
3


x
2

− b A ≥ 1 and b ≥
2
3
and

max

0, A

A−1


b −

2
3


< x ≤ A.

In seeking the optimal b for each A, we already solved in
Proposition 25 the case of one single line x

2 − b. For A > 1 and
b ≥

2
3 , we wish to maximize∫ A

A−1


b− 2

3


0

2
3


1 −

2 − A
2A

x +
2 − A
2A

x −
2
3


dx

+

∫ b

A
A−1


b− 2

3

 b

1 −

2 − A
2A

x +
x
2

− b


dx

+

∫ A

b
b

1 −

2 − A
2A

x −
x
2


dx

=
−1

2 − 2A
b3 +

A
1 − A

b2 +
−3A2

− A
6 − 6A

b +
4A

27 − 27A
.

Differentiating this equation results in −3
2−2Ab

2
+

2A
1−Ab+

−3A2−A
6−6A ,

which means the optimal b =
2A−

√
A2−A

3 . However, for 1 ≤ A <

1 1
3 this is smaller than 2

3 , and so the optimum is reached at the
optimal b < 2
3 , which is b =


A
3 . Furthermore, for A > 1 1

3 ,


A
3 >

2
3 , and so the optimal b is 2A−

√
A2−A

3 . �

Proposition 27. If A > 1 1
3 , the optimal b value is ≥

2
3 .

Proof. Letting the slope m be a variable, the original equation (for
b ≤

2
3 ) is∫ b

0
b

m +

1
2


1 −

2 − A
2A


x + mx − b


m +

1
2


dx

+

∫ A
3

b
b

m +

1
2


1 −

2 − A
2A

x −
x
2


dx

+

∫ A

A
3


b

m +

1
2


−

A
3
m +

A
6


1 −

2 − A
2A

x −
x
2


dx.

Differentiating this, the optimal b is one that satisfies
m +

1
2


−b2


3
2
m +

3
4


+

A
2


= 0.

ForA > 1 1
3 and b < 2

3 this is always positive, so that the optimal
b ≥

2
3 . �

Theorem 28. (i) If 0 < A < 1 1
3 , the optimal ϕ0 is

ϕ0(x) =
x
2

− b

with b = min


A
3 , A


.

(ii) If 1 1
3 ≤ A ≤ 3, the optimal ϕ0 is

ϕ0(x) =


2 − A
2A

x −
2
3

0 ≤ x ≤
A

A − 1


b −

2
3


x
2

− b max

0,

A
A − 1


b −

2
3


< x ≤ A

with b =
2A−

√
A2−A

3 .

Proof. Using the proofs from Proposition 26 (and for A < 1, from
Proposition 25), what is left to prove is that the optimal b is larger
than A

3 . As seen in the previous proposition,when looking atϕ0 that
is constructed of two parts—one line with a slope m (crossing the
point


b, − b

2


) up to A

3 where it changes to a slope of 1
2 , for eachm

the optimal b is one that satisfies
m +

1
2


−b2


3
2
m +

3
4


+

A
2


= 0.

Therefore

b =


A

3

m +

1
2

 .
Notice that any possible solution is either of this sort (straight

line of slope m, then changing somewhere to the slope 1
2 ) or

has a part where it equals 2−A
2A x −

2
3 , and then it continues with

slope m until changing to slope 1
2 . This ‘‘cutting off’’ (the line

with slope m is ‘‘cut’’ by the line 2−A
2A x −

2
3 ) can only make the

solution larger, as can easily be inferred from the relevant part of
the alternative representation of the optimized equation (the part
−

3
2

 b
0


ϕ(x) −

2−A
2A x +

2
3

2
dx).

Furthermore, what we gain (with the ‘‘cutoff’’) is larger as b
grows, as there is more to ‘‘cut off’’, and thus the optimal point
may get larger, but not smaller. More formally, if b̂m is the optimal
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b when ϕ0 is made of two parts (without the ‘‘cutoff’’), and b̄m
after the ‘‘cutoff’’, b̂m ≤ b̄m. Also, notice that for all m, b̂ 1

2
≤ b̂m.

Therefore, if b̂ 1
2

≥
A
3 , then the optimal point is reached in the realm

wedealtwith in Proposition 26. A simple calculation shows that for
A ≤ 3, b̂ 1

2
≥

A
3 . �

Corollary 29. The optimal u is

• For 0 < A ≤
1
3 :

uA(v1, v2) = max(0, v2 − A)

• For 1
3 ≤ A ≤ 1 1

3 :

uA(v1, v2) = max


0, v2 −


A
3


.

Notice this means only v2 determines the value of uA.
• For 1 1

3 ≤ A ≤ 3:

uA(v1, v2) = max


0,

1
A
v2 +

A − 1
A

v1

−
2
3
, v2 −

2A −
√
A2 − A

3


.

Therefore, up to ‘‘above’’ a line parallel to v1 = v2, only v2
determines value, and after a certain point, the relationship
between v1 and v2 has a slope of 1 − A, which is parallel to ∂W.

Proof. Write u according to the definition of ϕ0, using Lemma 13.
�

4.1. Joining triangles

Utilizing the results we have achieved, we can easily extend
our solutions to the case of W (the range of object values) that
is made of two joined ‘‘triangles’’—one with vertices (0, 0), (1, 1),
and (0, A1) and the otherwith vertices (0, 0), (1, 1), and (A2, 0) (in
order forW to be convex, (1−A1)(1−A2) ≥ 1). Obviously, optimal
solutions for each triangle separately that form a valid solution
when triangles are ‘‘joined’’ (e.g., the solution is still convex) are
optimal for the complete polygon.

Corollary 30. If W is a convex polygon with the vertices (0, 0),
(0, A1), (1, 1), and (A2, 0), and 1 1

2 ≤ A1, A2 ≤ 3, then

ϕ0(x)

=



x
2

− b1 max

0,

A1

A1 − 1


b1 −

2
3


< x ≤ A1

2 − A1

2A1
x −

2
3

0 ≤ x ≤
A1

A1 − 1


b1 −

2
3


A2 − 2
2A2

x −
2
3

0 > x ≥ −
A2

A2 − 1


b2 −

2
3


−

x
2

− b2 min

0, −

A2

A2 − 1


b −

2
3


> x ≥ −A2

and b1 =
2A1−

√
A21−A1

3 and b2 =
2A2−

√
A22−A2

3 .

Proof. The optimal solution for the triangle with the vertices
(0, 0), (1, 1), and (0, A1) for 1 1

2 ≤ A1 ≤ 3 was proven above. The
optimal solution for the trianglewith the vertices (0, 0), (1, 1), and
(A2, 0) is equivalent (by replacing v1 with v2 and vice versa) to the
solution of the triangle with the vertices (0, 0), (1, 1), and (0, A2),
which was shown above.
The solution is reached by using the optimal solution for each
triangle. There is a small technical issue to notice: since the second
triangle is denoted by negative ‘‘x’’ values, we must flip the sign
of the coefficient in order to retain the values of ϕ0. Due to the
range of A1 and A2 we selected, the resultingϕ0 is continuous (since
ϕ0(0) =

2
3 and does not depend on A), and due to the convexity of

W (i.e., (1 − A1)(1 − A2) ≥ 1), the resulting ϕ0 is convex. �

Corollary 31. If W is a convex polygon with the vertices (0, 0),
(0, A1), (1, 1), and (A2, 0), and 1 1

2 ≤ A1, A2 ≤ 3, then

u = max


0, v2 −

2A1 −


A2
1 − A1

3
,
1
A1

v2 +
A1 − 1
A1

v1 −
2
3
,

1
A2

v1 +
A2 − 1
A2

v2 −
2
3
, v1 −

2A2 −


A2
2 − A2

3


.

Proof. Write u according to the definition of ϕ0, using
Lemma 13. �

Finally, we reach the solution for our original problem:

Corollary 32. For W the triangle with the vertices (0, 0), (2, 0), and
(0, 2) the optimal u is

u = max


0, v2 −

4 −
√
2

3
, v1 −

4 −
√
2

3
,
v2 + v1

2
−

2
3


.

5. Conclusion and discussion

In solving the specific problem that we addressed (where
the values are uniformly distributed on the triangle with the
vertices (0, 0), (2, 0), and (0, 2)), we obtained several interesting
results, without simplifying the two-dimensional problem by
requiring independence of between the two variables. We dealt
with problems for which the optimal solution turns out to be of
the form where the probability of getting an object is either 0 or
1, which is a fairly large family of problems that includes many
common convex shapes with the uniform distribution.

For problems with these types of solutions, we showed
(Theorem 22) that, whatever the distribution, from a certain point
(referred to as b1/2) the optimal mechanism will have, at most,
two sections (at the ‘‘edges’’ of the shape, i.e., the areas closer
to the borders, but farther from (0, 0)) for which there is a fixed
probability for obtaining the objects. Furthermore, in many cases
there will be a section for which there is, in effect, a ‘‘minimum
price’’, just as in the optimal solution for the single-dimensional
case (this is what a slope of ±

1
2 in the second part of Theorem 22

means). This result makes sense, as the areas near the axes (and
hence, near the borders of W ) are those for which there is a
significant value for one object and a small one for the other,
indicating that it will be better for the owner to agree to sell only
the object for which there is a high value. We were also able
to characterize the points where the objects’ distribution will no
longer depend solely on the price for only one object (the point
changes according to distribution and the ‘‘shape’’ ofW ).

Our results also show (e.g., in Lemma 18) that for many shapes
(ofW ) and distributions, themechanismwill be ‘‘piecewise linear’’,
in the sense that itwill bemade by regions, in each one ofwhich the
probabilities of receiving the objects are constant (While Manelli
and Vincent, 2007, show ‘‘piecewise linear’’ solutions are dense in
a strict superset of all optimal solutions, they do not prove results
regarding their ‘‘popularity’’ in optimal solutions). In the uniform
distribution, and in our triangle-shaped W , we were able to show
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Fig. A.2. Uniform distribution on the square with the vertices (0, 0), (0, 1), (1, 1),
(1, 0). Numbers indicate values of (q1, q2). A = (0, 1

√
3
) ∼ (0, 0.577), B =

( 1
√
3
, 0) ∼ (0.577, 0). Utility function is u = max(0, v2 −

1
√
3
, v1 −

1
√
3
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(Corollary 29, and expanding that, in Corollary 31) the solution for a
family of problems (where 1 1

2 ≤ A ≤ 3), and our method provides
a fairly straightforward method to solve the optimal problem for
the rest of the family of triangles.

Further work could concentrate on characterizing the types of
problems for which the optimal mechanism is one in which either
no object is given, or one is surely sold, which we believe encom-
passes more than the problems shown in Section 2.2. Another di-
rectionwould be to further characterize the distributions forwhich
1
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Fig. A.3. Uniform distribution on the triangle with the vertices (0, 0), (0, 1.5), (3, 0).
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the optimal solution is piecewise linear, whichmight help simplify
the solution of this class of problems.

Extending our method to n-dimensions is not straightforward,
butwe believe itmay yield at least partial results (e.g., a ‘‘minimum
price’’ for objects near the axes). While one seeks an elegant
solution for all two-dimensional (and n-dimensional) auction
problems, we believe that due to the complexity inherent in
the problem (as described in Rochet and Stole, 2003), seeking
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assumptions – beside variable independence – to simplify the
problem is the way forward.

Appendix. Graphic representation of selected problems

A.1. The original problem—A1 = A2 = 2

See Fig. A.1.

A.2. When A1 = A2 = 1

See Fig. A.2.

A.3. When A1 = 1.5, A2 = 3

See Fig. A.3.

A.4. When A1 = 1.75, A2 = 1.5

See Fig. A.4.
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