Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

How Robust Is the Wisdom of the Crowds?

Noga Alon
Tel Aviv University and
Microsoft Research, Israel
nogaa@tau.ac.il

Michal Feldman
Tel Aviv University and
Microsoft Research, Israel
michal.feldman @cs.tau.ac.il

Omer Lev
Hebrew University and
Microsoft Research, Israel
omerl @cs.huji.ac.il

Moshe Tennenholtz
Technion, Israel
moshet@ie.technion.ac.il

Abstract

We introduce the study of adversarial effects on wis-
dom of the crowd phenomena. In particular, we
examine the ability of an adversary to influence a
social network so that the majority of nodes are con-
vinced by a falsehood, using its power to influence
a certain fraction, 1 < 0.5 of IV experts. Can a bad
restaurant make a majority of the overall network
believe in the quality of that restaurant by mislead-
ing a certain share of food critics into believing its
food is good, and use the influence of those experts
to make a majority of the overall network to believe
in the quality of that restaurant? We are interested in
providing an agent, who does not necessarily know
the graph structure nor who the experts are, to de-
termine the true value of a binary property using
a simple majority. We prove bounds on the social
graph’s maximal degree, which ensure that with a
high probability the adversary will fail (and the ma-
jority vote will coincide with the true value) when
it can choose who the experts are, while each ex-
pert communicates the true value with probability
p > 0.5. When we examine expander graphs as
well as random graphs we prove such bounds even
for stronger adversaries, who are able to pick and
choose not only who the experts are, but also which
ones of them would communicate the wrong values,
as long as their proportion is 1 — p. Furthermore,
we study different propagation models and their ef-
fects on the feasibility of obtaining the true value
for different adversary types.

1 Introduction

Understanding the way opinions are formed and disseminated
throughout a social setting has been explored for the past few
decades, following the key insight by Rogers [Rogers, 2003]
that new and unfamiliar products (and ideas) are spread by a
core group of “early adopters” which, depending on their size,
their positions in the social graph, and their inclinations can
either make a product successful or doom it to oblivion.
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A similar dynamic can be observed when people form an
opinion regarding uncertain properties of some product or
service, such as the quality of a new restaurant. Members of a
social network are usually either experts — those who form
their opinions based on first-hand experience — or non-experts
who are influenced by the opinions of their expert friends. For
example, people forming opinions about a new restaurant will
often rely on a set of experts, such as food critics, or first-hand
observers, to form their own opinion. Once experts report
their opinions, it is reasonable for them to form their own
opinions by conforming with the majority opinion of their
expert friends. This phenomenon is magnified in online social
networks, where new ideas, opinions and technologies spread
easily through the network, and experts can have a huge effect
on the population.

In this work we take an adversarial approach, where an
adversary attempts to intentionally mislead the population and
disseminate a falsehood throughout the network. Considering
again the restaurant example, a mediocre restaurant (that can
improve its quality with some additional effort) might try to
choose the restaurant reviewers (=experts) that come in during
its warm-up period in order to influence them. We consider
different adversarial (and non-adversarial) models that differ
from each other in the power of the adversary to directly
approach specific individuals and affect their opinions.

As opinions propagate throughout the graph, the following
question arises: how can an oblivious observer infer the ground
truth from the network? That is, while agents who know
who are the experts in the system can approach them when
forming an opinion, an oblivious observer might not even
be able to identify these experts. Moreover, an oblivious
observer might not be familiar with the network structure. All
that our observer can see is the number of “voters” for each
opinion. Thus, it is of great interest to make sure the majority
of agents hold the ground truth. In this work, we study network
properties that make the network robust against adversarial
attempts to mislead the population. Specifically, we wish to
identify network topologies and opinion formation models in
which, with high probability, the majority of the population
believe in the ground truth.



Our model We consider a social network, given by an undi-
rected graph G = (V, E), with |V| = n nodes, corresponding
to agents. The agents live in a world with a ground truth,
which is either red (R) or blue (B). It will be convenient to
assume, without loss of generality, that the ground truth is R.
Agents form opinions about the state of the world through a
process we shall describe soon. We denote by c(v) € {R, B}
the opinion of node v.

Aset V' C V of size u|V| (for a fixed p), constitutes the
expert set. Experts can be chosen randomly or adversarially.
For both adversary types considered here, it is assumed the
adversary has complete information of the graph, and we
assume the adversary seeks to fool our observer, and make it
seem as if the underlying truth is different than it really is. We
distinguish between three models of expert formation.

e Strong adversary: an adversary chooses an expert set
V' C V (such that |V'| = u|V]), and assigns opinions
to agents in V' satisfying the following equations: |{v €
V'le(v) = R} = (% + )|V’ and [{v € V'|c(v) =
B}| = (3 — 6)|V’|, for some fixed 6.

e Weak adversary: an adversary chooses an expert set V' C
V (such that |[V’| = u|V]). Experts receive signals about
the state of the world, and are more likely to be correct
than incorrect. Specifically, for every agent v € V'
independently, it holds that ¢(v) = R with probability
1/2+ ¢ and ¢(v) = B with probability 1/2 — §, for some
fixed 6.

e Random process: a set of u|V| nodes are chosen uni-
formly at random forming expert set V’. Opinion forma-
tion of agents in V"’ is as in the weak adversary model.

We next describe the dissemination process. For every
agent v, let N(v) denote the set of agent v’s neighbors; i.e.,
N(w) = {u|(v,u) € E}. Every agent v ¢ V' forms its
opinion by conforming with the majority opinion of its expert
neighbors. That is, if [{u € N(v) N V’|c(u) = R}| > |[{u €
N(v) N V'|c(u) = B}, then ¢(v) = R. If the inequality is
reversed, then ¢(v) = B. Finally, if it holds with equality, then
¢(v) = R with probability 1/2 and c¢(v) = B with probability
1/2. Note that this tie breaking rule implies that nodes with
no neighbors in V' form their opinion uniformly at random.
In Section 4, we examine whether a more “viral” propagation
model is more beneficial than this one.

A network is said to be robust against a particular adversary
model if, with high probability, the majority of agents hold the
true opinion, despite an adversary’s attempt to deceive.

Our results We find that the power of the adversary is
strongly affected by the network structure. Specifically, in
the case of a weak adversary (i.e., one who can choose the
set of experts, but cannot determine the partition of opinions
within the set), we show that any network is robust as long as
the highest degree does not exceed some upper bound!. For
expanders and random graphs, we establish robustness results

"Bounds which also seem to be ensured, for example, by Face-
book’s maximal bound for friend numbers (though the more recent
and unlimited “follower” status upends this property, naturally).
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even with respect to a strong adversary (i.e., one who can
choose the set of experts, and also determine the partition of
opinions within the set). Finally, we study similar questions
under an extended propagation model, where similar dynam-
ics take place iteratively (so that experts’ opinions propagate
beyond their direct friends in the network). We find that an
iterative propagation can either help or harm a weak adversary.
Similarly, under a random process, iterative propagation can
be either helpful or harmful. In the case of a strong adversary,
we conjecture that an iterative propagation can never harm the
adversary, and we give an example where it can be helpful.

Related Work The discussion of how opinions and ideas
spread through society has been an active research field since
the seminal work of Rogers 2003, which introduced the con-
cept of “early adopters” as a vanguard from which an invention
may spread to the rest of society. From that line of research,
various directions were adopted to try and understand — both
theoretically and empirically — how agents might adopt a cer-
tain property depending on how many were adopting it in the
society surrounding them.

On issues on which agents have an innate opinion while
being influenced externally, research expanded to cases where
agents do not have full information, first for very limited
settings [Farrell and Saloner, 1985], and then for richer ones,
which involved finding equilibria in these scenarios [Katz and
Shapiro, 1985], and creating models to incorporate influence
of agents on each other, first on limited, lattice-like, graphs
[Blume, 1993; Ellison, 1993], and then on general graphs
[Morris, 2000; Young, 2000; Tangand et al., 2009; Kameda
et al., 1997; Lopez-Pintado and Watts, 2008]. A particular
strand of this research focused on “informational cascade”
or “herd mentality” when choices are made sequentially in
political settings (where there is a ground truth, which agents
aim to reach) or market cases (where there is no underlying
truthful choice) [Bikhchandani et al., 1992; Banerjee, 1992;
Arthur, 1989], with more recent research trying to find various
equilibria in such cascades [Alon ef al., 2012], and examining
such cascades on graph structure, including, as in our scenario,
on random graphs [Watts, 2002].

In particular, two fairly recent papers dealing with cascades
when there is a ground truth are related to ours: Both Mossel
et al. 2014 and Feldman et al. 2014 include a ground truth
which agents have a higher probability of supporting. Despite
different synchronous modes between these papers, both uti-
lize the same dynamic we explore: nodes adopting the color
of the majority of their already colored neighbors. However,
both papers focus on reaching a consensus in the social net-
work (as we don’t allow agents to change their views, this
goal is irrelevant in our model), and strategies for a truthful
consensus, while we only strive to have the majority of the
agents be truthful, and include an active adversary, trying to
prevent acceptance of the ground truth.

A closely related track of research explores “word of mouth”
models for information diffusion, where agents have no par-
ticular opinion. Exploring word of mouth travel involved
empirical work [Brown and Reingen, 19871, as well as theoret-
ical one, examining propagation models [Granovetter, 1973;



Goldenberg er al., 2001; Young, 2009], attempting to ex-
plain how marketing works using combination of ads (to
“early adopters”) and word of mouth (an overview of much
of the research can be seen in Mahajan et al. 1990 and
Young 2009), and trying to find influential agents in the
network [Kempe et al., 2003]. Some of the research in
this direction has evolved into work on recommendation
systems, where agents have trust relationships according to
which they accept recommendations [Andersen et al., 2008;
Domingos and Richardson, 2001; Richardson and Domingos,
2002]. Similar to these models (in particular, Andersen et
al. 2008), one can look at our experts as the opinionated nodes
in these recommendation systems.

2 Weak Adversaries

In this section we consider the robustness of networks to weak
adversaries. We establish a property that ensures that the
ground truth is held by the majority of the population with
high probability. We begin with a few simple examples.

Example 1. Consider the clique graph. There is a higher
probability a majority of V' would be Red, and then, all
nodes that are not in V' will turn Red. It is easy to verify that
in this example the majority of the population will turn Red
with high probability.

Example 2. Consider a "star” network, with a single central
mode connected to all other nodes. If the central mode belongs
to V', then, with probability % — 0 it will be Blue, thereby
causing all nodes not in V' to turn Blue. Thus, in this example,
the majority will be Blue with probability close to 1/2, so the
network is not robust against a weak adversary.

We shall now show that for any € < p, d, for 0 < p,6 < %
if n is sufficiently large, we have a sufficient criterion for
majority to reflect the truth.

Theorem 1. For(0 < e < p,0 < % if n is sufficiently large,
there is an absolute positive constant cy so that if the highest
degree A satisfies

ed*pn

< P
A Sy

then majority over all vertices gives the truth with probability

at least 1 — €.

This is nearly tight, (though the precise best possible depen-
dence on 0 and € is not), as shown by the following.

Proposition 1. There is an absolute positive constant co such
that for all €,6, u and all large n there is an example of a
graph G = (V, E) with |V | = n, highest degree
82 un

o

*log(1/e)

and a choice of V! C V, |V'| = un for which the majority
fails to give the truth with probability exceeding e.
Proof of Theorem 1: Put V), = {v € V' : ¢(v) = R}, V} =
{v € V' : ¢(v) # R}. By Chernoff’s Inequality (c.f. [Alon
and Spencer, 2008], appendix A), if n is sufficiently large

Prob(|Vy| — |Vi| < dun) < €/4. (D)

A<

Split the vertices of V' — V" into three groups, Vi, Vr, and Vi,
according to the number of their neighbors in V", as follows.
Put M = ¢35 log(1/e€) (with ¢z an absolute constant chosen
appropriately).

Ve={veV-V':|IN,nV'|>M}
Vi={weV-V :1<|N,NV'| < M}
VNZ{’UEV—V,:NUHV,:@}

Put Vyr = {U e Vy : C(’U) = R}7 Vur = Vg — Vg and
define VvLT7 VLF7 VNT, VNF similarly,

By Chernoff, again, the opinions in Vyy are balanced with
high probability and in particular, for sufficiently large n

PTOb(lVNF‘ — |VNT| > (5,un/4) < 6/4 2)

Fix a vertex v € Vp. The probability that the opinions
of at least half of his neighbors are B is the probability that
a binomial random variable with parameters ¢ > M and
p= % + 6 has a value of at most %, which is, by Chernoff, at

most 5
676452]\/1 < 63/16 S %’
where the first inequality follows by choosing c3 (in the defini-
tion of M) appropriately, and the second by the fact that e < p
and € < 4. It follows that the probability that the opinion of
vis ¢(v) = B is at most €ud/16, and hence, by linearity of
expectation, the expected size of Vi p is at most |V |epd /16.
By Markov’s Inequality this implies
SplVal\ _ €

)
Prob(|Var| — |VNr| > %) < Prob(|Vur| > T) < 1

3)
It remains to estimate the contribution of V7, vertices opinions.
This is done using the second moment method described, for
example, in [Alon and Spencer, 2008], Chapter 4:

For each vertex v € Vi, let X,, be the indicator random
variable with value 1 iff ¢(v) = B (and 0 otherwise). Note
that since v has at least one neighbor in V’, the probability that
X, =lisatmost1/2—¢. Put X = ZUEVN X,, then X is the
random variable whose value is exactly |V p|. Put m = |V |
and note that by linearity of expectation the expected value of
X satisfies E[X] < m(1/2 — ¢). We next bound the variance
of X. Forv,v’ € Vg, let v ~ v’ denote that v # v' and v, v’
have at least one common neighbor in V', Note that if v # v’
do not satisfy v ~ v’ then the random variables X,,, X,/ are
independent, and hence their covariance is 0. We thus have

Var[X] = Z Var(X,) + Z

veVN

/
Cov(X,, X,),
v, EVE v~
where the sum ranges over all ordered pairs v,v’ € V,v ~ v'.

As each X, is an indicator random variable, its variance is
at most its expectation. Similarly, for v,v’ € Vp,v ~ v':

Cov(Xy, X1) = E[Xy-Xu]— E[X]E[Xy] < E[Xu-Xy] < %

Note, crucially, that for each v € V,, the number of v’ € V,
so that v ~ v’ is smaller than M (A — 1), as v has less than
M neighbors in V’, and each of them can have at most A — 1
other neighbors in V. We thus conclude that

Var[X] < E[X] + |Vi|(A - 1)M - % <

m/2+m(A—-1)M - % < mAM/2
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Note that the probability that X = |V p| is at least m/2 +
dun/4 is at most the probability that it exceeds its expectation,
which is at most m(1/2 — §), by at least

om +dun/4 ( > §/pmn).

By Chebyshev’s Inequality we conclude that if

ed*un
C1
< og(1/0)
then
Prob(|Vor| — |Vir| > dun/2) =
Var[X]
Prob(|Ver| > m/2+ dun/4) < 52imn < @)
mAM Alog(1/e)
= <e/4
262 pummn @ 0*un ¢/

for an appropriate choice of ¢; in Theorem 1.

Combining (1),(2), (3) and (4) we conclude that with prob-
ability at least 1 — € none of the events in these inequalities
holds. It is easy to see that if this is the case then the majority
opinion is indeed R, as needed.
Proof of Proposition 1: Let G = (V, E) be a graph consist-
ing of vertex disjoint stars, each of size t = cg b‘;%. For the

set V'’ we choose the centers of ¢ = ¢7 35 log(1/€) of the stars,
as well as un — ¢ additional vertices in some [(un — q)/t]
other stars. For the right choice of cg, c7, the probability that
at least ¢/2 + 204 of the centers in V' will have the wrong
opinion B is at least 2e. They will affect all the leaves of the
stars giving an advantage of at least 40 un to the wrong opin-
ion over the truth 7" among the vertices of these g stars. The
probability that the other opinions will change the majority
is smaller than €, implying the desired result. The detailed
computation is omitted.

3 Strong Adversaries

Here we examine the robustness of networks against a strong
adversary. We begin with an example demonstrating the po-
tential vulnerability of networks against a strong adversary.

Example 3. We show here a case where a network is more
robust against a weak adversary than against a strong one:
Let§ = %, w= %0. The graph consists mostly of atoms (i.e.,
nodes not connected to any other node), except for %n nodes,
which are divided into quintets — every 5 nodes form a clique.
As the maximal degree is fixed at 4, according to Theorem 1,
for a large enough n, majority will prevail and reflect the
underlying truth (i.e., Red) with very high probability.
However, a strong adversary shall choose one node in each
of the quintets to be an expert ( 41071 nodes) which it will turn
Blue, and

which will turn Red. The left over atoms (5n nodes) will
be, by Chernoff, roughly equally divided into Red and Blue
(about %n nodes each) with high probability, while all the
quintets will turn Blue. Ultimately, we have, with high proba-
bility, (53 + o(1))n Red nodes and (%5 + o(1))n Blue nodes
— making Blue, the adversary’s choice, the majority winner.

157 other nodes which are atoms, to be experts
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3.1 Expanders

An (n, d, \)-graph is a d-regular graph on n vertices in which
the absolute value of every eigenvalue besides the first is at
most \.

The following theorem will be useful in establishing the
robustness of expanders against strong adversaries.
Theorem 2. Let G = (V, E) be an (n, d, \)-graph, let A and
B be subsets of V and assume that |A| > |B|. Let X be the
set of all vertices v of G satisfying |N(v) N B| > |N(v) N A,
where N (v) is the set of neighbors of v in G. Then

IX] < 2)? |A|(1—\AI/N)+|B\(1—|B|/N)n
T (1] = |B])?

To prove the theorem we need the following known result
that shows that if A is much smaller than d, then for every set
of vertices A, most vertices have roughly the “right” number
of neighbors in A.

Lemma 1 ([Alon and Spencer, 20081, Theorem 9.2.4). Let
G = (V,E) be an (n,d,\)-graph, and let A C V be an
arbitrary set of vertices of G, then

SN @) nal - DAl

veV

_ 1A
< L
7 <Al - 2

We also need the following simple fact.
Lemma 2. Let a > b be two reals and suppose x > y. Then
(=) +(y—a)* > (a—b)?/2.

Proof of Theorem 2: By Lemma 1

dlAI 1]

SN na - 4402 < e - 14
veV
and
S unw B - DBl <yzpia - 12
therefore
S n@na - 2402 4 (v np - 420
veV
<xfain -2y - 2

By Lemma 2 (with a = % and b = %), each vertex
v € X contributes to the left hand side of the last inequality at

d*(|A|=|B]?
n2

least and we thus conclude that

d*(|A| - |B))®
2

completing the proof.

Theorem 2 implies that if the network in our social voting
game is an (n, d, \)-graph with A much smaller than d and d
sufficiently large as a function of x and 4, then majority gives
the truth (deterministically) even against a strong adversary,
that is, an adversary who is allowed to select a set V' of p|V|
experienced vertices, and is also allowed to select any partition
of it into two disjoint sets A and B with |A| = (3 + 6)|V/|
and |B| = (3 — &)[V’|, where all members of A get the truth
Red and all those in B get Blue.

X < xfiaia -y - B,



Theorem 3. Let G =
pose that

(V,E) be an (n,d, \)-graph and sup-

d? - 1
27 8%u(1 — p+26p)
Then for any strong adversary as above the majority gives
the truth. In particular, if G is a Ramanujan graph, that is,
A < 2v/d — 1 this is the case provided
4
d> .
~ 02pu(1 — p+ 26p)
Proof. 1Tt suffices to check that if A and B are dlS_]Oil’lt sets of
vertices satisfying |A| = (3+6&)un and |B| = (1 —0)pn, then
the number of vertices v outside AUB for whlchﬁN (v)NB| >
|N(v) N Al is smaller than (15# + 6z)n. By Theorem 2 this
number is smaller than
222 un 9
—————n
d? 462p2n?
which satisfies the required bound provided the assumption on
d?/\? holds. O

3.2 Binomial Random Graphs

G = G(n,p) is the binomial random graph, in which each
edge has a probability of p of existing in the graph. As with
expander graphs, these graphs have particular properties that
let us elaborate on their robustness in the face of strong ad-
versaries. Specifically, with high probability (that is, with
probability that tends to 1 as n tends to infinity) the statement
of Theorem 3 holds even for average degree that is a bit smaller
than the one above. For this model the following holds:

Theorem 4. There exists an absolute constant ¢ so that if
w<1/2and

log(1/p) i}
02 T ud

then with high probability if G = G(n, p) then for any strong
adversary as above the majority gives the truth.

d=np>c-max{

The proof is by showing that for any fixed two disjoint
sets of vertices A and B of sizes as in the previous section,
the probability that there are too many vertices having more
neighbors in B than in A is sufficiently small to ensure that
even after multiplying it by the number of possible sets A and
B the number obtained still tends to zero as n tends to infinity.
Its details are omitted due to space constraints

4 Iterative Propagation

We now seek to understand how changing the propagation
model from the one we have used so far to a more viral”
one affects the adversary, and how that effect changes as we
accord different powers to the adversaries — random, weak
and strong.

So far, we have dealt with a limited propagation, which only
handles the influence experts have over the agents directly con-
nected to them. An alternative model, iterative propagation
tries to incorporate the influence agents have over others in
the social network. L.e., once the experts’ view propagates

to the agents connected to it, those agents propagate their
view to those connected to them, and so on, until the whole
connectivity component is influenced.

More formally, starting from V', if [{u € N(v)NV’|e(u) =
R} > |{u € N(v) N V'|e(u) = B}|, then ¢(v) = R. If the
inequality is reversed, then c(v) = B, and if it holds with
equality, then ¢(v) = R with probability 3 and ¢(v) = B with
probability % (same as with the limited propagation we used).
Now, defining V! as V' UU,ev N (v), we repeat this process,
but with V! instead of V", creating 172, and then over and over
until V* includes all vertices of the connected components
containing vertices of V.

4.1 Strong Adversaries

Recall that strong adversaries can choose V' and the color
of each of its nodes, subject to having (1/2 + 0)|V’| red
nodes and (1/2 — §)|V’| blue ones. We conjecture that in
this case iterative propagation is always beneficial. We shall
demonstrate its usefulness in a specific case.

Example 4. Iterative Propagation helps the adversary

Consider a graph consisting of a path on m = 0.024n
nodes together with 0.976n isolated nodes. Suppose u =0=
10 Thus, the fraction of blue nodes in V' is 5 -0 = 5

With limited propagation, it is not difficult to check that the
best strategy of the adversary is to place m/3 = 0.008n of
the blue nodes along the path ensuring that all of it becomes
blue, and place the remaining 0.04n — m/3 = 0.032n blue
nodes and 0.06n red nodes outside the path. (For simplicity
we omit all floor and ceiling signs whenever these are not
crucial). By Chernoff, with high probability the total number
of blue nodes will be 0.024n+0.032n+(1/2+0(1))0.884n =
(0.498 + o(1))n. Thus, in this case if n is sufficiently large
then with high probability the majority is red, meaning that
the adversary fails.

On the other hand with iterative propagation the adversary
can place one blue node in the path and place all the other red
and blue nodes outside it. This will ensure, by Chernoff, that
with high probability the total number of blue nodes will be
0.024n40.04n— 14 (1/2+0(1))0.876n = (0.502+o(1))n.
Thus, with high probability with iterative propagation Blue
attains the majority of nodes.

4.2 Weak Adversaries

Here we consider weak adversaries, and in this case, iterative
propagation can both help and hinder the adversary.

Example 5. Iterative Propagation can help the adversary:
Consider a path on n nodes with . = 0 and § = E

With limited propagation, as the maximum degree in the
graph is the constant 2, by Theorem 1 if n is sufficiently large
Red wins with high probability, i.e., the adversary fails.

However, with iterative propagation, the adversary can
choose V' to consist of the first un = n/10 nodes of the path.
The probability that the last among those is Blue is 2/5, and
in this case we will have a majority of Blue in the process
(see Figure I).

Example 6. Iterative propagation can harm the adver-
sary:
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Figure 1: Iterative propagation will cause the line graph to turn
Blue if last node is colored Blue, ensuring the color’s propagation
(striped nodes indicate propagation).

Consider a graph which is the disjoint union of a star on
n/14 nodes together with a 3-regular high girth expander on
the remaining nodes. Let p =6 = 1/12.

With limited propagation the adversary can place the center
of the star in V', and place the remaining nodes of V' in the
expander; so that no node of the expander has more than one
neighbor in V' (this is possible by a simple greedy procedure).
Now there are 3(|V'| — 1) expander nodes that are neighbors
of the ones in V', and including the members of V' in the
expander we have n/3 — O(1) nodes. Thus, with high proba-
bility the difference between the number of Red and Blue nodes
in the expander will be (14 0(1))0.2-n/3 = (1/1540o(1))n.
However, with probability 0.4 the star’s center is Blue, turning
all the star blue, giving majority to Blue.

Consider now iterated propagation. Any node with a neigh-
bor in V' (or more than one) also becomes Red with prob-
ability at least 0.6 during the first iteration. As nodes that
have no common neighbor are independent this means that
after the first iteration, with high probability the number of
Red nodes in the expander exceeds that of the number of Blue
nodes by at least a factor of 3/2 — o(1). A similar argument
shows that with high probability this is also the case after
any constant number of steps, where here it is convenient to
use the assumption that the expander is of high girth. This
ensures the neighborhood of any vertex is locally a tree, and if
its distance from V' is r, it gets a color in iteration number .
Therefore, with high probability at least 0.6 — o(1) fraction of
the expander’s nodes will be Red, and even if the star is Blue,
Red will still have majority. We omit the details.

4.3 Random Process

Finally we consider the random process model, with a passive
adversary, in which both V' and the node color assignment is
done randomly, and in this case iterative propagation can be
both a curse and a blessing for the adversary:

Example 7. Iterative Propagation can help the adversary:

Take n/60 paths, each of length 3. Add a special node
s and join it to the first node of each path. The graph we
consider consists of this structure together with 19n/20 — 1
additional isolated nodes. Take = § = 1/10. With limited
propagation Red is the majority with high probability. Indeed,
by Chernoff Red has an advantage of at least (1 — 0(1))0.2 -
0.1-(59n/60—1) > (0.019—o0(1))n among the nodes besides
s and its neighbors, hence even if s and all its n/60 neighbors
become Blue, Red still has the majority.

With propagation, however, with probability 0.4-0.1 = 0.04
sisin V' and is colored Blue. Also, with high probability, more
than 0.7 fraction of the paths connected to s have no member
of V', and will thus all become Blue during the iterated propa-
gation. This gives, with high probability, an advantage of more
than 0.4 - 3 - n/60 = n/50 to Blue among the non-isolated
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Figure 2: With limited propagation, the chance of a Blue majority
relies on Blue being in a star center, propagating its color to the
whole star, while the Red nodes of V' are not centered, limiting their
propagation capacities (striped nodes indicate propagation).

Figure 3: With iterative propagation, even non-center Red nodes
have a significant impact, as much as star-centered Blue nodes
(striped nodes indicate propagation).

nodes, and by Chernoff in this case Blue has the majority with
high probability.

Example 8. Iterative propagation can harm the adver-
sary:

Consider a graph consisting of 10 stars, each of size n/10,
where =6 = 1/10.

With limited propagation if V' contains exactly one center
of a star and this node gets Blue, then with high probability, by
Chernoff, Blue has the majority. This happens with probability
bigger than 0.4/e > 0.1 (see Figure 2).

With iterated propagation, Red gets, with high probability,
a large majority in each star in which the center is not in V'
and Blue, hence Red has the majority unless at least 5 centers
belong to V' and are all Blue, and this happens with a much
smaller probability (see Figure 3).

5 Discussion

In this paper we approach the issue of robustness — whether
a social network is vulnerable to an adversarial attempt to
propagate information through it. We found bounds that ensure
a majority of network agents will not, with high probability,
be duped by an adversary trying to manipulate agents. For
expander graphs and random graphs, we even found such a
limit for a strong adversary, which can decide which specific
agents to deceive. Furthermore, we show that neither limited
nor iterative propagation methods have deterministic influence
on the capabilities of passive or weak adversaries.

This line of research opens various new questions and di-
rections of work: we use a simple node majority as enabling
an observer to attempt to find what the real truth is, yet one
can imbue this agent with various capabilities, including some
limited knowledge of the topological properties of the graph.
Moreover, one can choose hybrid variants of adversaries (or a
multitude of them), and examine how this affects the bounds
and results we have shown.

Another natural extension deals with examining more par-
ticular sorts of graphs, perhaps relying on data on common
graph structures in various social communities. As we have
shown, assuming expander graphs or random ones allows us



to show a bound for strong adversaries and, naturally, different
types of graphs may be more or less robust to various sorts of
adversaries and manipulations.
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