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All-pay auctions, a 

common mechanism 

for various 

human and agent 

interactions, may 

suffer from the 

possibility of players’ 

failure to participate. 

We model such 

failures and fully 

characterize 

equilibrium for this 

class of games.

eBay) and in auction houses, auctions also 
model various real-life situations in which 
people and machines interact and compete 
for valuable items. For example, companies 
advertising during the US Super Bowl foot-
ball game are, in effect, bidding to be one 
of the few remembered by the viewer and 
are thus putting in tremendous amounts of 
money to create a memorable and unique 
event for the viewer that overshadows other 
advertisers.

A particularly suitable auction for mod-
eling various scenarios in the real world is 
the all-pay auction, in which all partici-
pants announce their bids and all of them 
pay those bids, but only the highest bid wins 
the product. Candidates applying for a job 
are, in a sense, participating in such a bid-
ding process: they put in time and effort 
preparing for the job interview, but only one 
of them will be selected for the job. This is 
a max-profit auction, as the auctioneer (the 

employer, in this case) receives only the top 
bid. In comparison, a workplace with an 
“employee of the month” competition is a 
sum-profit auctioneer, as it enjoys the fruits 
of all employees’ labor, regardless of who 
wins the competition.

The explosion in mass usage of the Web 
has enabled many more all-pay auction-like 
interactions, including some involving an 
extremely large number of participants. For 
example, various crowdsourcing contests, 
such as the Netflix challenge, involve many 
participants putting in effort, with only the 
best performing one winning a prize. Simi-
lar efforts can be seen throughout the Web, 
such as in TopCoder.com, Amazon Me-
chanical Turk, Bitcoin mining, and other 
frameworks.

However, despite the research done on 
all-pay auctions in the past few years,1–3 
some basic questions about all-pay auctions 
remain—in a full information setting, any 

Auctions have been the focus of much research in economics, mathemat-

ics, and computer science, and they have received attention in both the 

AI and multiagent communities as a significant tool for resource and task al-

location. Beyond explicit auctions as performed on the Web (for example, with 
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equilibrium has bidders’ expected 
profit at 0, raising the obvious ques-
tion of why bidders would participate 
in the first place. Several extensions to 
the all-pay auction model have been 

suggested to answer this question. 
Omer Lev and colleagues,3 for ex-
ample, showed that allowing bidders 
to collude enables the cooperating 
bidders to have a positive expected  

profit at the expense of others bid-
ders or the auctioneer. This article 
addresses this question by suggesting 
a model in which the bidders have a 
positive expected profit.

Initial research on all-pay auctions started in the politi-
cal sciences, modeling lobbying activities,1 but since 
then, much analysis (especially that dealing with the 

Revenue Equivalence Theorem) has been done in game-
theoretic auction theory. When bidders have the same 
value distribution for the item, Eric Maskin and John 
Riley2 showed that there’s a symmetric equilibrium in 
auctions in which the winner is the bidder with the high-
est bid. A significant analysis of all-pay auctions in full 
information settings came from Michael Baye and his 
colleagues,3 showing the equilibrium states in various 
cases of all-pay auctions and noting that most valuations 
(apart from the top two) aren’t relevant to the winner’s 
strategies.

More recent work has extended the basic model. Omer 
Lev and his colleagues4 addressed issues of mergers 
and collusions, while several others directly addressed 
crowdsourcing models. Dominic DiPalantino and Milan 
Vojnovic5 detailed the issues stemming from needing 
to choose one auction from several, and Shuchi Chawla 
and colleagues6 dealt with optimal mechanisms for 
crowdsourcing.

The early major work on failures in auctions was by 
Preston McAfee and John McMillan7 followed soon after 
by the work of Steven Matthews,8 which introduced 
bidders who aren’t certain of how many bidders there 
will actually be in the auction. Their analysis showed 
that in first-price auctions (like our all-pay auction), risk-
averse bidders prefer to know the numbers, while it’s in 
the auctioneer’s best interest to hide that information. 
In the case of neutral bidders (such as ours), their model 
claimed that bidders were unaffected by the numerical 
knowledge. Douglas Dyer and his colleagues9 claimed 
that experiments that allowed “contingent” bids (that 
is, someone submits several bids, depending on the 
number of actual participants) supported these results. 
Flavio Menezes and Paulo Monteiro10 presented a model 
in which auction participants know the maximal number 
of bidders but not how many will ultimately participate. 
However, the decision in their case was endogenous to 
the bidder, and therefore a reserve price has a significant 
effect in their model (although ultimately without change 
in expected revenue, in comparison to full-knowledge 
models). In contrast to that, our model, which assumes a 
little more information is available to the bidders (they 
know the maximal number of bidders and the probability 
of failure), finds that in such a scenario, bidders are better 
off not having everyone show up, rather than knowing 
the real number of contestants appearing. Empirical work 
done on actual auctions11 seems to support some of our 

theoretical findings (although not specifically in all-pay 
auction settings).

In our settings, the failure probabilities are public 
information and the failures are independent. Such failures 
have also been studied in other game-theoretic fields. 
Reshef Meir and colleagues12 studied the effects of failures in 
congestion games and showed that, in some cases, the failures 
could be beneficial to social welfare. Earlier work focused on 
agent redundancy and agent failures in cooperative games, 
studying various solution concepts in such games.13,14
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Furthermore, in all-pay auctions, 
the number of participants must 
be known to the bidder, in order to 
bid according to the equilibrium.4 
We suggest a relaxation of this as-
sumption by allowing the possibil-
ity of bidders’ failure, that is, there’s 
a probability that a bidder won’t be 
able to participate in the auction. 
Therefore, we assume that the num-
ber of potential bidders and the fail-
ure probability of every bidder are 
common knowledge, but the exact 
number of participants is not. Most 
large-scale all-pay auction mecha-
nisms have variable participation, 
and we believe this helps capture a 
large family of scenarios, particu-
larly for online Web-based situations 
and the uncertainty they contain. We 
propose a symmetric equilibrium for 
this situation, show when it’s unique, 
and prove its various properties. 
Somewhat surprisingly, allowing for 
failures makes the expected profit 
for bidders positive, justifying their 
participation.

Our Model
We consider an all-pay auction with 
a single auctioned item that’s com-
monly valued by all participants. This 
is a restricted case of the model in Mi-
chael Baye and colleagues’ work,4 in 
which players’ item valuations could 
be different.

Formally, we assume that each 
of the n bidders issues a bid of bi, i 
= 1, …, n, and all bidders value the 
item at 1. The highest bidders win the 
item and divide it among themselves, 
while the rest lose their bid. Thus, 
bidder i’s utility from a combination 
of bids (b1, …, bn) is given by
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b i b
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We’re interested in a symmet-
ric equilibrium, which in this case, 
without possibility of failure, is 
unique.4,5 It’s a mixed equilibrium 
with full support of [0, 1], so each 
bidder’s bid is distributed in [0, 1]  
according to the same cumulative 
distribution function (CDF) F, with 
the probability  density function 
(PDF) f. (Because it’s nonatomic, 
tie-breaking isn’t an issue.) As we 
compare this case to that of no-fail-
ures, this is a case similar to that 
presented in Baye and colleagues’ 
work,4 in which various results on 
the behavior of noncooperative bid-
ders have been provided.

When we allow bidders to fail, we 
assume that each of them has a prob-
ability of participating pi ∈ [0, 1]. As 
a matter of convenience, we order the 
bidders according to their probabili-
ties, so 0 ≤ p1 ≤ p2 ≤ … ≤ pn ≤ 1. If 
a bidder fails to participate, its util-
ity is 0. 

Auctions without Failures
The expected utility of any partici-
pant with a bid b is

π = − ⋅
+ − ⋅

b b Pr winning b

b Pr losing b

( ) (1 ) ( | )

( ) ( | ), � (2)

where Pr(winning | b) and Pr(losing 
| b) are the probabilities of winning 
or losing the item when bidding b, 
respectively. In a symmetric equilib-
rium with n players, each of the bid-
ders chooses its bid from a single  
bid distribution with a probability 
density function fn(x) and a cumu-
lative distribution function Fn(x). 
A player who bids b can only win 
if all the other n – 1 players bid at 
most b, which occurs with probabil-
ity −F b( )n

n 1 . Thus, the expected utility 
of a player bidding b is 

π ( )( ) ( ) ( ) ( )
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= −
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The unique symmetric equi-
librium is defined by the CDF 

= −F x x( )n
n(1 1).4 This equilibrium has  

full support, and all points in the 
support yield the same expected 
utility to a player, π(0) = π(x) for 
all x ∈ [0, 1]. Since π(0) = 0, this 
means that for all bids, π(b) = 0.  
Table 1 gives various properties of 
an auction without failures.3

Every Bidder with Its Own 
Failure Probability
If we assume that each bidder has 
its own probability for participat-
ing in the auction, with 0 ≤ p1 … ≤ 
pn ≤ 1, we can assume without loss 
of generality that each bidder has a 
positive participating probability, 
that is, p1 > 0. If this is not the case, 
we can remove from the auction 
the bidders with zero probability of 
participating.

Table 1. The values, in expectation, 
of some variables when there’s no 
possibility of failure in an auction.
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Equilibrium Properties
Before we present a symmetric Nash 
equilibrium, let’s characterize any Nash 
equilibrium. 

Theorem 1. In a common val-
ues all-pay auction when the 
item value is 1, if pn−1 < 1, then 
we have a unique Nash equi-
librium, in which the expected 
profit of every participating bid-
der is Π −=

− p(1 )j
n

j1
1 . Furthermore, 

there exists a continuous function 
[ ]− Π −



 →=

−z p: 0,1 (1 ) 0,1j
n

j1
1 , such 

that when bidder i has a positive 
density over an interval, it bids ac-
cording to ( )( ) ( )= + −F x z x p p1i i i  
over that interval, and if =p pi j, 
then =F Fi j. 

As Theorem 1 applies to the case 
where pn−1 < 1, we now deal with the 
other case. 

Theorem 2. In a common val-
ues all-pay auction, when the 
item value is 1, if pn−1 = 1, then 
in every Nash equilibrium the 
expected profit of every par-
ticipating bidder is 0. At least 
two bidders with p = 1 random-
ize over [0, 1], with each other 
player i randomizing contin-
uously over (bi, 1], bi > 0 and 
might  have an atomic point 
at 0. There exists a continu-
ous function z(x): [0, 1] → [0, 
1] such that when bidder i has 
a positive density over an in-
terval, it bids according to 
F x z x p p1i i i( )( ) ( )= + −  over that 
interval. For every i, the atomic 
point at 0 is equal to Fi(0). 

When there are at least two bid-
ders with p = 1, the auction ap-
proaches the case without failures. 
The proof of Theorem 2 is a gener-
alization of the case without agent 
failures.4 

Symmetric Equilibrium
We’re now ready to present a sym-
metric Nash equilibrium, so let’s 
assume that 0 ≤ p1 … ≤ pn ≤ 1. If 
pn−1 < 1, from Theorem 1, it fol-
lows that the equilibrium is unique. 
If pn−1 = 1, the equilibrium is not 
unique: except for two bidders 
with p = 1, every bidder can place 
an arbitrary atomic point at 0. In 
the equilibrium that we present, ev-
ery bidder has an atomic point at 
0 of 0, and thus the equilibrium is 
symmetric.

To simplify the calculations, we 
add a “dummy” bidder; with index 
0 and p0 = 0, adding a bidder that 
surely won’t participate in the auc-
tion doesn’t affect other bidders 
and therefore doesn’t influence the 
equilibrium.

We begin by defining a few help-
ful functions. First, we define 
λ = Π −=

− p(1 )j
n

j1
1  and the following ex-

pressions for all 1 ≤ k ≤ n − 1: 
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For the virtual 0 index, we use s0 = 
1 − l. Note that because the pis are 
ordered, so are the sis: 1 ≥ s0 ≥ s1 ≥ … 
≥ sn−1 = 0. An equivalent definition of 
sk is λ( )= − Π − −− −

=s p p1 (1 )k k
n k

j o
k

j
1

,  
so we alternate between those two 
definitions.

We’re now ready to define the 
CDFs for our equilibrium, for every 
bidder 1 ≤ i ≤ n − 1:
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Fn, uniquely, is very similar to Fn−1 in 
its piecewise composition and has an 
atomic point at 0 of − −p p1 ( )n n1 , so 

 

 

( )

( )

( )

( )

=

≥

+ −
∈

+ −
∈

+ −
∈

− =

<


























−

−
− −

−

F x

x s

H x p

p
x s s

H x p

p
x s s

H x p

p
x s s

p
p

x

x

1

1
[ , )

1
[ , )

1
[ , )

1 0

0 0

.

n

n

n

k n

n
k k

n n

n
n n

n

n

0

1
1 0

1

1
1 2

1

� (7)

Note that all CDFs are continuous 
and piecewise differentiable, and when 
pi = pj it follows that Fi = Fj, making 
this a symmetric equilibrium. Note also 
that when Π − ==

− p(1 ) 0j o
k

j
1  and Hk is un-

defined for some k, there’s no range for 
which Hk is used. The intuition behind 
this equilibrium is that bidders with low 
probability of participating, will   par-
ticipate rarely and usually bid high, 
while those that frequently participate 
in auctions with less competition would 
more commonly bid low.

Theorem 3. The strategy profile 
F1, …, Fn defined in Equations 6 
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and 7 is an equilibrium in which 
the expected profit of the bidders, 
if they haven’t failed, is l. 

Proof. In the course of proving this is 
indeed an equilibrium, we calculate 
the expected utility of the bidders 
when they participate. When bidder 
i bids according to this distribution, 
that is, x ∈ [sk, sk − 1) for 1 ≤ k ≤ i, 
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If bidder i bids outside its support, 
that is, x ∈[sk, sk − 1) for i + 1 ≤ k ≤ n − 
1, the same equation becomes 
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Finally, i + 1 ≤ k, pi ≤ pk − 1; hence pi − 
pk − 1 ≤ 0, and therefore, πi(x) < l.

Profits
When  bidders actually partici-
pate, their expected utility is l, and 
therefore the overall expected util-
ity for bidder i is λpi  (which, nat-
urally, decreases with n). Notice 
that, as expected, a bidder’s profit 
rises as fellow bidder reliability 
or participation drops. However, 
the most reliable bidders don’t af-
fect the profits of the rest. If a bid-
der can  set its own participation 
rate, if there’s no bidder with pj 
= 1, that is the best strategy; oth-
erwise, the optimal probability 
should be 1 2, as that maximizes 

( )− Π −= ≠
−p p p1 (1 )i i j j i

n
j1;

1 .

Expected bid. To calculate each bid-
der’s expected bid, we need to calcu-
late the bidders’ equilibrium PDF for 
1 ≤ i ≤ n − 1:
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and ( ) ( )= − −f x p p f x( )n n n n1 1 . In the 
equilibrium, the expected bid of bid-
der i for 1 ≤ i ≤ n − 1 is
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bid xf x xdi i

s

s

k

i

1
k

k 1

.� (13)

Theorem 4. For every 1 ≤ i ≤ n − 1,


∏

∑

∏
λ

( )

( )

( )

( )

( )( )  = +

− −

− − +











−

− −

−
−











−

=

=

−

=

bid
p n

p p

n k n k

p p

n i
p

1 1
1 1

1

1 1

i
i

k
n k

j
j

k

k

i

i
n i

j
j

i

i

1

1

1

 
� (14)

and

   =  
−

−bid
p
p

bidn
n

n
n

1
1 .� (15)

The expected bid decreases with n, 
indicating, as in the no-failure model, 
that as more bidders participate, the 
chance of losing increases, causing 
bidders to lower their exposure.

Auctioneer’s sum-profit model. In the 
equilibrium, the auctioneer’s expected 
profit in the sum-profit model is 
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 AP bidi
i

n

1
∑[ ] =  
=

.� (16)

When summing over all bidders, we 
receive a much simpler expression.

Theorem 5. The sum-profit auc-
tioneer’s equilibrium profits are
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In this case, growth with n is 
monotonically increasing, and hence, 
any addition to n is a net positive for 
the sum-profit auctioneer.

Auctioneer’s max-profit model. To cal-
culate a max-profit auctioneer’s profits, 
we need to first define the max-profit 
auctioneer’s profits equilibrium CDF:
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that is,
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This is differentiable, and hence we 
can find ( )( ) ( )= ∂ ∂g x x G x  and the 

max-profit auctioneer’s expected 
profit.

Theorem 6. In the equilibrium, the 
max-profit auctioneer’s profits are
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From Theorem 6, we can see that 
the max-profit auctioneer would pre-
fer to minimize l, have two reliable 
bidders (pn = pn − 1 = 1), and have the 
other n − 2 bidders be as unreliable as 
possible.

Example 1. Consider how four bid-
ders interact. Our bidders have par-
ticipation probability of =p (1 3)1 ,  

=p (1 2)2 , =p (3 4)3 , and =p 14 . 
Let’s look at each bidder’s equilib-
rium CDFs:
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A graphical illustration of the 
bidders’ CDFs and PDFs can be 
found in Figure 1. The expected 
utility for bidder 1 is 0.027 for the 
expected bid of 0.518; for bidder 
2, 0.041 for the expected bid of 
0.394; for bidder 3, 0.0625 for the 
expected bid of 0.277; and for the 
last bidder, 0.083 for the expected 
bid of 0.207.

A sum-profit auctioneer will see 
an expected profit of 0.0784, while 
a max-profit one is expected to get 
0.490.
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As a comparison, in the case 
where we don’t allow failures, the 
CDF of the bidders is x1 3 with an 
expected bid of 1 4 and expected 
utility of 0. The expected profit of 
the sum-profit auctioneer is 1, while 
the expected profit of the max-profit 
auctioneer is 4 7.

False Identity and Sabotage
Suppose our bidder can influence 
others’ perceptions and create a 
false sense of its participation prob-
ability. What would its best strat-
egy be, and how should the partici-
pation probability be altered? Any 
bid beyond 1 − l is sure to win, but 
as that would give a profit of less 
than l , which is less than the ex-
pected profit for nonmanipulators, 
it isn’t worthwhile. Therefore, our 
bidder will bid in its support, with 
the expected profit being l . How-
ever, our bidder might increase its 
expected profit by trying to portray 
its participation probability as be-
ing as low as possible, thus lulling 
other bidders into a false sense of 
security. Of course, this reduces the 
payment to auctioneers of any type, 
and therefore the auctioneers would 
try to expose such manipulation.

Also interesting is the possibility 

of a player changing another play-
er’s participation probability by us-
ing sabotage; thus, our bidder would 
be the only bidder knowing the real 
participation probability. Our bid-
der i sabotages bidder r with a per-
ceived participation probability of pr, 
changing its real participation proba-
bility to p′r. Bidder i’s expected profit 
with bid x is

x p F x p

p F x p

1

1

i r r r

j j j
j j i r

n

1; ,
∏

π

( )
( )( ) ( )

( )

= ′ + − ′

+ −
= ≠

.� (22)

The values of this function change 
according to the relation among r, i, 
and x. To find the optimal strategy 
for a bidder, we must examine all the 
options.

Theorem 7. Let p1, …, pn be the 
announced participation probabil-
ities, and let p′r < pr be bidder r’s 
real participation probability. For 
every i ≠ r, Algorithm 1 finds the 
optimal bid for bidder i. 

From Theorem 7 it follows that 
bidder i’s best interest is to bid in the 

intersection of its support and bidder 
r’s support.

Uniform Failure Probabilities
If we allow our bidders to have the 
same probability of failure (such as 
when failures stem from weather 
conditions), many of the calcula-
tions become more tractable, and 
we can further understand the 
scenario. 

Bids
As this case is a particular instance 
of the general case presented earlier, 
we can calculate the expected equi-
librium bid of every bidder and its 
variance. 

Theorem 8. The expected equilib-
rium bid of every bidder is

 λ( )( )[ ] ( )= − + −bid
np

p n
1

1 1 1 � (23)

and the variance of the bid is
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Figue 1. The cumulative distribution functions (CDFs) (a) and the probability density function (PDFs) (b) when ==p (1 3)1 , 
==p (1 2)2 , ==p (3 4)3 , and ==p 14 .
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The expected bid and the variance 
are neither monotonic in n nor in p. 

Profits 
We’re now ready to examine the prof-
its of the bidder and the auction-
eer, both in the sum- and max-profit 
models.

Bidder. From the general case, we 
can deduce that the expected equi-
librium profit of every bidder is p(1 
− p)n−1. Note the profit decreases as 
n increases and is maximized when 

=p n(1 ). We can now compute the 
variance of bidder profit. 

Theorem 9. The variance of the 
bidder equilibrium is
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and the variance is monotonically 
increasing in p. 

Auctioneer’s sum-profit model. The  
expected bid of every bidder is 

− − + −−pn p p n(1 )(1 (1 ) (1 ( 1)))n 1 , there-
fore, the expected profit of the 
sum-profit auctioneer, in the equi-
librium, is

 
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p p n1 1 1 1n 1 , 
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which increases with p and n. There-
fore, the auctioneer’s best interest is 
to have as many bidders as possible. 
Note that as n grows, the auctioneer’s 
expected revenue approaches that of 
the no-failure case. From Theorem 9, 
we get the variance of the auctioneer 
equilibrium profit in the sum-profit 
model:
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Auctioneer’s max-profit model. For 
the max-profit auctioneer, the ex-
pected profit in equilibrium is
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which is monotonically increasing 
in p and n (for n ≥ 1); when n is large 
enough, it approaches the expected 
revenue in the no-failure case. 

Theorem 10. The variance of the 
auctioneer equilibrium profit in 
the max-profit model is
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Bidders failing to participate in 
auctions are common: people 

choose to apply to one job but not to 
another, or to participate in the Net-
flix challenge but not in a similar 

Input: i, r, p1, ... , pn and pr′

′

Output: The optimal bid for bidder i

1. let λ = ∏
n–1
j=1 (1–pj)

k–1
j=1 (1–pj)–λ

2. for k = 1, ..., min{i,r} 

3. let j ∈ argmaxkπi,k

4. return xi,j

2.1. if 1
n–k

n–k1
n–k

∈[pk–1, pk] then

2.2. else if 1
n–k

2.1.1  let xi,k = a1– b

n–k–11
n–k

pr–pr
pr

1– b

∏

2.2.1  let xi,k = Sk–1

k–1
j=1 (1–pj)

1
n–k2.1.2  let πi,k = ∏a + λ

′n–k–1
pr–pr
pr

k–1
j=1 (1–pj)2.2.2  let πi,k = pk–1(1–pk–1) ∏ + λ

< pk–1 then

2.3. else if 1
n–k > pk then

2.3.1  let xi,k = Sk–1

′n–k–1
pr–pr
pr

k–1
j=1 (1–pj)2.3.2  let πi,k = pk–1(1–pk–1) ∏ + λ

Algorithm 1. Optimal bid.
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challenge offered by a competitor. Ex-
amining these scenarios helps us un-
derstand certain fundamental issues 
in all-pay auctions. In the complete 
reliability (classic) versions, each bid-
der has an expected revenue of 0. In 
contrast, in a limited reliability sce-
nario, such as the one we dealt with 
here, bidders have positive expected 
revenue and are incentivized to partic-
ipate. Auctioneers, on the other hand, 
mostly lose their strong control of the 
auction and no longer pocket almost 
all the revenues involved. However, 
by influencing participation prob-
abilities, max-profit auctioneers can 
effectively increase their revenue in 
comparison to the no-failure model.

The idea of the equilibrium we 
explored was that frequent partici-
pants could allow themselves to bid 
lower, as there would be plenty of 
contests in which they would be one 
of the few participants and hence 
win with smaller bids. Infrequent 
bidders, on the other hand, would 
wish to maximize the few times they 
participate and therefore bid fairly 
high bids. As exists in the no-failure 

case as well, as more participants 
join, there’s a concentration of bids 
at lower price points, because bid-
ders are more afraid of fierce com-
petition. Hence, it’s fairly easy to 
see in all of our results that as n ap-
proached larger numbers, the vari-
ous variables were closer to their 
no-failure brethren.

There’s still much left to explore in 
these models—not only more tech-
niques of manipulation by bidders 
and potential incentives by auction-
eers but further enrichment of the 
model as well. Currently, participa-
tion rates aren’t influenced by other 
bidders’ probability of participa-
tion, but, obviously, many scenarios 
in real life effectively have a feed-
back loop in this regard. We assumed 
that the item is commonly valued by 
all the bidders and the cost of effort 
is common, which isn’t always the 
case. Future research could examine 
a more realistic model with hetero-
geneous costs or valuations. In our 
model, the failure happened before 
the bidder placed a bid, but in other 
models, the failure could happen af-

ter bidders place their bids and before 
the auctioneer collects them. Find-
ing a suitable model for such interac-
tions, while an ambitious goal, might 
help us gain even further insight into 
these types of interactions. 
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