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1. INTRODUCTION
It is often argued that people vote “strategically”, by trying to promote the election of
preferable candidates. Game-theoretic considerations have been applied to the study
and design of voting systems for centuries, but the question of how people vote, or
should vote, is still open. Suppose that we put aside the complications involved in po-
litical voting,1 and focus on a simple scenario that fits all the “standard” assumptions:
each of n voters has complete transitive preferences ≺i over a fixed set of alternatives
M , and each voter’s only purpose is to bring about the election of her most-favorable
alternative possible. We will further restrict ourselves to discussing the common Plu-
rality rule, where the alternative with the maximal number of votes is the winner.
This scenario translates naturally to a game, in which the actions of each voter are
her possible ballots—voting for one of the alternatives, in case of Plurality. One might
expect game theory to give us a definitive answer as to what would be the outcome of
such a game.

1For example, social utilities [Manski 1993; Brock and Durlauf 2001], strategic candidates [Calvert 1985;
Feddersen et al. 1990], and other considerations (see e.g. [Riker and Ordeshook 1968; Edlin et al. 2007].
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However, an attempt to apply the most fundamental solution concept, Nash equilib-
rium, to the scenario above, reveals a disappointing fact: almost any profile of actions
is a pure Nash equilibrium, and even a highly unpopular alternative may win in some
equilibrium. Yet, people do very often vote strategically.

Example 1.1. As a running example, we consider a profile with 3 candidates M =
{a, b, c}. Suppose that there are 100 voters, and that according to the last poll, votes
are divided as 45 for a, 40 for b, and 15 for c. Among the supporters of c are voters v and
v′. Voter v has preference c � b � a, whereas voter v′ prefers c � a � b.

While if truthful, v would stay with c, it seems that c has no chance of winning, and
thus a wise strategic decision for v would be to change her vote to b.

By applying the reasoning above to all voters, we would expect to eventually reach
an equilibrium where only a and b get votes. The phenomenon that under the Plurality
rule almost all votes divide between two candidates is well known in political science,
and is called Duverger’s Law [Duverger 1954].

This observation triggered a search for more appropriate solution concepts for vot-
ing games. These concepts rely on taking into account various additional factors, such
as the information available to the voters, collusion and group behavior, and intrinsic
preferences towards certain actions. All of these models had to explicitly or implic-
itly make assumptions on what it means to vote strategically. Fisher [2004] offers the
following definition of strategic, or tactical voting:

A tactical voter is someone who votes for a party they believe is more likely to
win than their preferred party, to best influence who wins in the constituency.

The goal of this work is to lay sound foundations for voting models that better ex-
plain and predict the behavior of human voters. In particular, we wish to extend the
above intuition to general voting scenarios, by providing a new interpretation for the
two key components of Fisher’s definition: belief (what voters know) and influence
(what voters consider as an effective action).

Our contribution. After enumerating the desiderata we believe should guide the
search for a proper solution concept, we review some solutions that have been pro-
posed in the literature, and explain where they fall short of meeting these basic re-
quirements. We then lay out our epistemic framework, which is a non-probabilistic
way of capturing uncertainty based on distance of voting profiles. Using this frame-
work and simple behavioral assumptions, we define a notion of best-response and the
corresponding equilibrium concept. In the remainder of the paper, we will argue, using
formal propositions and empirical analysis, that our solution is indeed an appropriate
one for Plurality voting. In particular we show that voters who start from the truthful
vote will quickly converge to a pure equilibrium, and that convergence is likely to occur
even from arbitrary initial states. We show that in various voter distribution models,
using the local-dominance framework enables equilibria with desirable properties —
with “better” winners and a “Duverger-like” stable states. Moreover, in complex scenar-
ios for which there is no clear theoretical result on voter behavior, applying our frame-
work resulted in stable equilibria with “desirable” winners and real-world-resembling
voter distribution.

A large part of the paper is devoted to discussion of our model and results. All of our
technical results with their proofs and the details of our simulations can be found in
the full version online.2

2At: https://arxiv.org/abs/1404.4688.
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2. DESIDERATA FOR VOTING MODELS
We now present some arguably-desirable criteria for a theory of voting. We will not
be too picky about what is considered a voting model, and whether it is described in
terms of individual or collective behavior. The key feature of a model is that given a
profile of preferences, it can be mapped to a set of outcomes (i.e., of possible or likely
voting profiles under the Plurality rule). We classify desirable criteria to the following
classes: Theoretic (mainly game-theoretic), behavioral, and scientific.

2.1. Theoretic Criteria

Rationality Voters are trying to maximize their own utility based on what they know
and/or believe.
Equilibrium Predicted outcomes are in equilibrium. E.g., a refinement of Nash equi-
librium, or of another popular solution concept from the game theory literature.
Discriminative power The predicted outcomes are a small but non-empty set of pos-
sible outcomes (sometimes called predictive power). More specifically, a small set of
possible winners will be predicted, as there may be many voting profiles with the same
winner.
Broad scope The model applies (or can be easily adapted to) various scenarios such
as simultaneous, sequential or iterative voting, and the use of different voting rules.

In addition, we put forward another less formal requirement: We would like our
model to be grounded in familiar concepts from decision theory, game theory, and vot-
ing theory; it will thus be easier to understand, and to compare with other models.

2.2. Behavioral criteria
The assumptions the model makes on voters’ behavior.
Voters’ knowledge Voters’ behavior should not be based on information that they are
unlikely to have, or that is hard to obtain.
Voters’ capabilities The decision of the voter should not rely on complex computa-
tions, non-trivial probabilistic reasoning, etc.

In addition, we would like the behavioral assumptions, whether implicit or explicit,
to be supported by (or at least not to directly contradict) studies in human decision
making.

2.3. Scientific criteria

Robustness The model gives similar predictions even if some voters do not exactly
follow their prescribed behavior, if we slightly modify the available information, if we
change the tie-breaking scheme, etc. Except in a few threshold cases, we would not
expect every small perturbation to change the identity of the winner.
Few parameters The model should have as few as possible parameters, and we would
like each of them to be meaningful (e.g., voters’ memory).
Reproduction Simulating generated or real preferences using the model, we would
like to see reproduction of common phenomena (e.g., Duverger’s law).
Experimental validation The hardest test for a model is to try and predict the be-
havior of human voters based on their real preferences. By comparing the predicted
and real votes (or even just outcomes), we can measure the accuracy of the model.

The behavioral criteria together with the rationality requirement can be thought
of as criteria of bounded rationality. Lastly, Some voting models explain how strategic



behavior is better for society. Although this is not exactly a criterion for a good model (a
real strategic behavior may not increase welfare), we are interested in the conditions
under which the theory predicts an increased welfare, as these may be useful for design
purposes.

3. RELATED WORK
A broad literature review on various equilibrium concept for voting can be found in
the full version of the paper, where we also evaluate some of the models w.r.t. the
desiderata above. We only mention here some models that are closely related to our
work.

For example, the Leader rule of Laslier [2009] is a strategic model that fares well
in all of the above criteria. Unfortunately, it was defined only for Approval voting, and
does not have a natural extension to Plurality.

Nash equilibrium. The basic notion of a pure Nash equilibrium (PNE) in a normal
form voting game with complete information is effectively useless, as almost any out-
come (even one where all voters vote for their worst candidate) is a PNE. Consider
voter v in Example 1.1. She is powerless to change the outcome, and therefore has no
incentive to change her vote.

Several refinements have been suggested in order to mitigate the equilibria explo-
sion problem, some of which rely on plausible behavioral tendencies.

Truth-bias and Lazy-bias. A truth-biased voter gains some negligible additional
utility from reporting his true preferences (i.e., his top candidate) [Meir et al. 2010;
Dutta and Sen 2012]. Nash equilibria under Plurality with truth-biased voters have
been studied empirically by Thompson et al. [2013], and analytically by Obraztsova et
al. [2013].

Similarly, in some context it is plausible to assume that there is some small cost
involved in the voting itself. The conclusion that a “rational” voter would often rather
abstain (as she is rarely pivotal) is typically referred to in the literature as the “no-vote
paradox”, see e.g. [Downs 1957; Owen and Grofman 1984]. When voting is presented
as a normal form game, we can add abstention as an additional allowed action. A
“lazy” voter would thus choose to abstain if she cannot affect the outcome. Pure Nash
equilibria with lazy voters were studied, for example, in [Desmedt and Elkind 2010].
These are typically highly degenerated voting profiles, where all voters except one
abstain.

Voting under uncertainty. Uncertainty partly solves the problem of equilibria explo-
sion, since any voter can become pivotal with some probability, and therefore cares
about whom to vote for. 3

Myerson and Weber’s [1993] theory of voting equilibria relaxes the assumption that
preferences are public information. Instead, they assume that voters’ types are sam-
pled i.i.d. from some known underlying distribution. An equilibrium in this model, is a
distribution over votes, such that every voter is maximizing her expected utility w.r.t.
this distribution. Myerson and Weber prove that an equilibrium always exists for a
broad class of voting rules including Plurality. Focusing on a few examples with three
candidates under Plurality, they show that their model gives reasonable results, and
may replicate Duverger’s law.

While the Myerson and Weber model is highly attractive in many respects, it suffers
from some severe shortcomings. One problem is that it is not clear how voters should
find the equilibrium, as the proof is non-constructive. In fact, the voters must engage in

3Uncertainty have also been proposed as a partial solution to the no-vote paradox [Owen and Grofman
1984].



non-trivial probabilistic reasoning, even if just to verify that they are playing a (mixed)
equilibrium strategy.

The fundamental assumption that voters maximize some expected utility function
in prevalent in the political science literature, see e.g. [Silberman and Durden 1975;
Palfrey and Rosenthal 1983; Alvarez and Nagler 2000]. However, people are notori-
ously bad at estimating probabilities, and are known to employ various heuristics in-
stead [Tversky and Kahneman 1974].

An additional disadvantage of the expected utility maximization approach (not just
of the Myerson and Weber model), is that voters preferences must be cardinal and
cannot be described as a permutation over candidates.

Strict uncertainty (without probabilities) was considered by Ferejohn and Fior-
ina [1974], who took a minmax regret approach. However their model, like probability-
based models, heavily relies on voters having cardinal utilities. Also, they take an ex-
treme approach where voters do not use any available information (similarly to the
dominance-based approach in [Dhillon and Lockwood 2004]), and thus all states are
considered possible. See also critique on the minmax approach by Aldrich [1993].

A different approach to strict uncertainty that is closer to ours was taken by Conitzer
et al. [2011] and followed in [Reijngoud and Endriss 2012; van Ditmarsch et al. 2013].
See Section 7.2 for details.

Iterative and sequential games. In sequential voting games voters report their pref-
erences one at a time, where every voter can see all of the previous votes (as in Doodle
and Facebook polls, and in some internal corporate e-mail surveys). The standard solu-
tion concept for sequential games is subgame perfect Nash equilibrium [Farquharson
1969; McKelvey and Niemi 1978; Dekel and Piccione 2000; Desmedt and Elkind 2010].
However, subgame perfection is a highly sophisticated behavior that requires a voter
to know exactly the preferences of all of her peers. It also requires multiple steps of
backward induction, at which human players typically fail [Johnson et al. 2002].

Iterative voting sounds like a similar setting, but has generated a very different type
of voting models. In an iterative setting, voters start from some given voting profile,
and in each turn one or more voters may change their vote [Meir et al. 2010; Reijngoud
and Endriss 2012]. Meir et al. [2010] proved that if voters play one at a time and adopt
a myopic best-response strategy they are guaranteed to converge to a Nash equilib-
rium of the stage game from any initial state. The main problem with this approach
is that it does not solve equilibria explosion. More recent papers on the iterative set-
ting suggested other myopic strategies [Grandi et al. 2013], which suffer from similar
problems.

When all voters are allowed to change their votes at each step, we essentially have
repeated polls [Chopra et al. 2004; Reijngoud and Endriss 2012]. A particular model
based on uncertainty with iterated polls was suggested by Reyhani et al. [2012]. Ac-
cording to this model, each voter considers some set of possible winners based on the
poll and on some internal parameter called inertia, and votes for her most-preferred
candidate in this set.

4. THE FORMAL MODEL
Basic notations. We denote [x] = {1, 2, . . . , x}. The sets of candidates and voters are

denoted by M and N , respectively, where m = |M |, n = |N |. The Plurality voting rule
f allows voters to submit their preferences over the candidates by selecting an action
from the set M . Then, f chooses the candidate with the highest score, breaking ties
lexicographically.

Let π(M) be the set of all orders over M . We denote a preference profile by Q ∈
(π(M))n. The preferences of voter i are denoted by the total order Qi ∈ π(M), where



Qi(a) ∈ [m] is the rank of candidate a ∈ M , and qi = Q−1i (1) is the most-preferred
candidate. We denote a �i b if Qi(a) < Qi(b). Let Q be the lexicographic order over
candidates. Each voter announces his vote publicly. Thus the action of a voter is ai ∈M .
The profile of all voters’ votes is denoted as a ∈Mn, and the profile of all voters except i
is denoted by a−i. When abstention is allowed, we have ai ∈M ∪{⊥}, where ⊥ denotes
abstaining. If ai = qi we say that i is truthful in a, and voter i is called a core supporter
of ai. Otherwise, we say that i is a strategic supporter of ai.

The scoring profile sa ∈ Nm that corresponds to a assigns a score to every candidate,
taking tie-breaking into account. Formally, we refer to sa(c) as equal to the number
|{i ∈ N : ai = c}|. When comparing two scores, we write sa(c) >Q sa(c) if either
|{i ∈ N : ai = c}| > |{i ∈ N : ai = c′}|, or c, c′ have the same number of votes and
c �Q c′. We usually omit the subscript from >Q as it is clear from the context.

We will use a and sa interchangeably where possible, sometimes omitting the sub-
script a (note that we may only use s in a context where voters’ identities are not im-
portant). Given a state s and an additional vote ai, in the concatenated state s′ = (s, ai)
we have s′(ai) = s(ai) + 1, and s′(a) = s(a) for all a 6= ai.

4.1. An intuitive description of voter response
While the notation we will introduce momentarily is somewhat elaborate and is in-
tended to enable rigorous analysis, the main idea is very simple and intuitive. We lean
on two key concepts that are featured in previous models: dominated strategies, and
better-response. From the perspective of voter i, a candidate a dominates candidate b if
f(s, a) �i f(s, b) for all s. In contrast, a is a better-response for a voter voting for b in a
particular state s∗, if f(s∗, a) �i f(s∗, b).

In our model, we will relax both concepts in a way that takes into account voters’
uncertainty over the actual outcome. We assume that voters have a common estimated,
uncertain, view of the current state s. In any given state, a voter considers a set of
multiple “close” states which might be realized without assigning probabilities to
them. These estimated scores may come from a poll, from previous voting round, from
prior acquaintance with the other voters, etc.4

We say that a locally dominates b in s if f(s′, a) �i f(s′, b) in all s′ that are considered
“possible” in s. Our key behavioral assumption is that a voter will avoid voting for
candidates that are locally dominated (a standard assumption in strict uncertainty
models, see Section 7.2). In an iterative setting, a voter will vote for her most preferred
candidate—among those who locally dominate her current action. Our key epistemic
assumption (which is new) is that the possible states are those that are “close” to s
according to some reasonable metric over vote counts.

Tying our model back to Fisher’s definition of tactical voting, a voter’s belief is cap-
tured by the estimated state s, whereas her influence is reflected by local dominance.

The different sets of states that voters consider are part of their type, and can ac-
count for diverse voter behavior, yet ones that are bounded-rational. Consider Exam-
ple 1.1, where the estimated counts are s = (45, 40, 15). If voter v also considers as
possible states where scores vary by ±10, he will be better off voting for b. Voting for b
might influence the outcome, whereas voting for c is futile (unless v considers an even
higher variability in scores).

4.2. Local dominance
Let S ⊆ Nm be a set of states.

4This is similar to the prospective score vector in the Myerson and Weber model, except that they do use it
to derive probabilities.



Definition 4.1. We say that action ai S-beats a′i (w.r.t. voter i) if there is at least one
state s ∈ S s.t. f(s, ai) �i f(s, a′i). That is where i strictly prefers f(s, ai) over f(s, a′i).

We can think of S as states that i believes to be possible (where these states do not
include the action of i himself). The definition, however, does not depend on this inter-
pretation.

Definition 4.2 (Local dominance). We say that action ai S-dominates a′i (w.r.t. voter
i) if (I) ai S-beats a′i; and (II) a′i does not S-beat ai.

Note that S-dominance is a transitive and antisymmetric relation (but not complete).
See more on epistemic interpretation in Section 7.2, where we also compare our def-
inition of local dominance with previous work. In particular our definition coincides
with the definition of dominance in [Conitzer et al. 2011] and with similar definitions
in [Reijngoud and Endriss 2012; van Ditmarsch et al. 2013].

Distance-based dominance. Suppose we have some distance metric for states, de-
noted by δ(s, s′). For voter i and a ∈ Mn, let Si(a, x) ⊆ Nm be a the set of states that
are at distance at most x from a−i. Formally, Si(a, x) = {s′ : δ(s′, sa−i) ≤ x}.

The simplest metric we apply is the `1 norm. δ`1(s′, s) ≤ x means that we can attain
s′ by adding/removing a total of x voters to a−i. We similarly define other `d norms.

Another distance we can consider is the multiplicative distance, where δM (s′, s) ≤ x
if for all a ∈M , both s′(a) ≤ s(a)(1 + x) and s(a) ≤ s′(a)(1 + x). Intuitively, this means
that the score of each candidate can change (either increase or decrease) by a factor of
at most (1 + x).

A third natural distance is the Earth Mover distance (EMD), which is similar to `1,
except that all states must have the same number of voters.

4.3. Strategic voting and equilibrium
Let gi : Mn → M be a response function, i.e. a mapping from voting profiles to actions
(which implicitly depends on the preferences of voter i). Any set of response function
(gi)i∈N induces a (deterministic) dynamic in the normal form game corresponding to a
particular preference profile under Plurality. In particular, it determines all equilibria
of this game, which are simply the states a where no voter has a response that changes
the state. We refer to the response function of a voter as her type. We emphasize that
the set of voting equilibria depends only on voters’ preferences and response functions,
and not on whether they vote iteratively or simultaneously.

Definition 4.3. Let N be a set of voters with response functions (gi)i∈N . A voting
equilibrium is a state a, where ai = gi(a) for all i ∈ N .

We next define the primary response function that strategic voters in our model
apply, which is based on local dominance.

Definition 4.4. A strategic voter of type r (or, in short, an r voter) acts as follows in
state a. Let D ⊆M be the set of candidates that Si(a, r)-dominate ai. If D is non-empty,
then i votes for his most preferred candidate in D. Formally, gi(a) = argmind∈D Qi(d) if
D 6= ∅, and gi(a) = ai otherwise.

We refer to r (or ri if types differ) as the uncertainty parameter of the voter. We
denote such a strategic step by ai

i→ a′i, where a′i = gi(a). We observe that:

— If a′i Si(a, r)-dominates ai, then a′i Si(a, r
′)-beats ai, for any r′ ≥ r.

— For r = 0, the voter knows the current voting profile exactly, and thus his response
function is simple best-response, as in [Meir et al. 2010].



— For r = m, a voter does not know anything about the current voting profile. Thus an
action a′i locally dominates ai if and only if it weakly globally dominates ai (which
means ai is i’s least preferred candidate).

Different definitions of strategic responses (distance metrics, value of r) may induce
different sets of voting equilibria. However, the assumption that i votes for the most-
preferred candidate in D is irrelevant to the set of induced equilibria. The following is
an immediate observation.

PROPOSITION 4.5. LetN be a set of voters with preferences Q and following Def. 4.4
(voters may be of heterogeneous types). A voting profile a is a voting equilibrium, if and
only if no voter votes for a locally dominated candidate. Formally, if ∀i ∈ N, !∃a′i ∈ M,
such that a′i Si(a, ri)-dominates ai.

We assume of course, that the same parameters are used for defining the dominance
relation and the strategic response of each voter. For example, under Definition 4.4
with r = 0, a strategic move coincides with best-response, and voting equilibria coin-
cide with pure Nash equilibria.

5. CONVERGENCE WITH STRATEGIC VOTERS
For any w ∈ N, let Hw(s) ⊆ M be the set of candidates that need exactly w more votes
to become the winner. Thus H0(s) = {f(s)}, H1(s) = {c : s(f(s)) > s(c) ≥ s(f(s)) − 1}
(either with same score as the winner and lose by tie-breaking, or win in tie-breaking
but has one vote less), etc. Let Hw(s) =

⋃
w′≤wHw′(s) = {c : s(c) ≥ s(f(s))− w}.

5.1. Strategic responses and possible winners
We say that candidate c is a possible winner for i in state a if there is a possible state
where c wins. Formally, Wi(a, r) = {c ∈M : ∃s′ ∈ Si(a, r), f(s′, c) = c}.

In contrast with Hw(s), the definition of Wi(a, r) depends on the identity of the voter,
and not only on her type.

We first show that in every strategic response, a voter always votes for her favorite
possible winner.

LEMMA 5.1. Consider a strategic response ai
i→ a′i s.t. ai /∈ Wi(a, r). Then a′i =

argminc∈Wi(a,r)Qi(c).

The lemma holds for any `d norm, d ≥ 1, the multiplicative distance, and EM distance.

PROOF. Consider the set of candidates D in Def. 4.4. Since a′i ∈ D, it is non-empty.
We will show that (I) D ⊆ Wi(a, r); and (II) b = argminc∈Wi(a,r)Qi(c) is in D. This
implies b = a′i.

For (I), every candidate in D in particular Si(a, r)-beats ai, and therefore must be a
possible winner (transferring i’s vote from one non-possible winner to another does not
change the outcome in any possible state).

For (II), first note that since a′i ∈ D, there is a state s′ ∈ Si(a, r) where i prefers
f(s′, a′i) = a′i over f(s′, ai) = ai, thus a′i �i ai. Also, by (I) a′i ∈ Wi(a, r) and thus
b �i a′i �i ai. Thus ai cannot Si(a, r)-beat b. It remains to prove that b Si(a, r)-beats ai
(and thus locally dominates it).

We consider two cases. Suppose first that for all s′ ∈ Si(a, r), f(s′, ai) = b. Then for
any c ∈ M , and any s′, f(s′, c) ∈ {b, c}. Moreover, by definition of b, if f(s′, c) = c then
c �i b. Thus no candidate Si(a, r)-beats ai, and D = ∅. Thus suppose there is a state
s′ ∈ Si(a, r), f(s′, ai) = c ≺i b, and there is also a state (since b is a possible winner)
s′′ ∈ Si(a, r), f(s′′, b) = b. It can be verified for each of the metrics we consider that
there must be a state s∗ ∈ Si(a, r) where f(s∗, b) = b but f(s∗, ai) = c. For the `1 norm,



we get s∗ from s′ by adding votes to b until c, b are tied (or until there is a difference of
one for c, if b beats c in Q).5 Thus b Si(a, r)-beats ai.

Lemma 5.1 does not mean that our dynamics coincides with “always vote for the
most preferred possible winner”. It only holds when the current vote of i is not a possi-
ble winner, and when there are at least two possible outcomes.

Threshold for possible winners. We continue with the following lemma, which shows
that for some simple metrics, the set of possible winners is exactly all candidates whose
score is above a certain threshold. Denote by f∗i = f(a−i) the candidate that would win
if i would not vote.

LEMMA 5.2. Each of the metrics δ from (`1, `∞, multiplicative) induces a function
β = βδ,r : N→ N, where

— For every a, i ∈ N , if ai 6= f∗i , thenWi(a, r) = {c : sa−i
(c) ≥Q β(s(f∗i ))}. That is, possible

candidates are all those whose score is above the threshold, which is a function of the
score of the winner.6

— β(s) is weakly increasing in s.

In particular, for δ`1 , Wi(a, r) = Hr+1(sa) for any i s.t. ai /∈ Hr+1(sa).

A similar result can be proved for EMD and other `d norms, but the threshold would
depend on the score of all candidates and not just the winner.

PROOF FOR THE `1 METRIC. Consider first the `1 norm. We set β(s) = β`1(s) =
s − r − 1. Clearly, f∗i is a possible winner and s(f∗i ) > β(a). Assume c 6= f∗i , then
s(c) 6=Q β(s(f∗i )). If s(c) > β(s(f∗i )), consider the state s′ ∈ Si(a, r) where c has r

additional votes. We have that s′(c) + 1 = s(c) + r + 1 > β(s(f∗i )) + r + 1 = s(f∗i ), thus
f(s′, c) = c. In contrast, if s(c) < β(s∗i ), then in any s′ ∈ Si(a, r), s′(f∗i ) − s′(c) > 1 and
thus c cannot win. Finally, since ai /∈ Wi(a, r), then sa(c) = sa−i

(c) for all c ∈ Wi(a, r).
Thus Wi(a, r) = {c : s(c) ≥ β`1(s(f∗i ))} = {c : s(c) ≥ s(f∗i )− (r + 1)} = Hr+1(s).

Note that Lemmas 5.2 and 5.1 together entail that the strategic decision of the voter
is greatly simplified from both a behavioral and a computational perspective. There
is no need to consider all possible world states. Only to check which candidates are
sufficiently close to the winner in terms of their prospective score, and select the one
that is most preferred.

5.2. Existence of equilibrium and convergence from the truthful state
In what follows, we will only consider the `1 norm for simplicity. However most results
hold for other metrics as well (see the full version).

A scheduler selects which voter or voters play when there is more that one voter for
which gi(a) 6= ai. A singleton scheduler always selects a single voter, while in a group
scheduler, several voters may change their votes concurrently. 7 We assume that the
order of players is determined by an arbitrary singleton scheduler.

5For other `d norms and multiplicative distance, we can consider any path of states between s′, s′′ that is
contained in Si(a, r), by gradually removing votes from c and from other candidates, and adding votes to
b. The critical state s∗ will be along this path. For EM distance some paths may fail if we transfer votes
directly from c to b, but we can use a path where we transfer votes first from winners to ai, and then from
ai to b.
6We break ties with β(s(f∗i )) as if we break ties with f∗i .
7We emphasize that a group of voters moving at the same time does not coincide with a coalitional manipu-
lation. Each player acts as if he is the only one moving.
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Figure 1: The top left figure shows the initial (truthful) state of the game. The letter inside a
voter is his second preference. The dashed line marks the threshold β`1 of possible winners for
voters of type r = 2. Thus candidates on or above the threshold are the set H3(a). Candidates
that are on the dashed line (in H3(a)) are considered possible winners only by voters that do not
currently vote for them. Note that due to tie breaking it is not the same for all candidates. For
example, since a beats b in tie-breaking, b needs 2 more votes to win in the initial state. In the
next two figures we can see voters leaving their candidates (who are not possible winners for
them) to join one of the leaders. The last figure shows an equilibrium that was reached.

We next show that when starting from the truthful state, singleton scheduler guar-
antees convergence to an equilibrium. In particular, an equilibrium must exist. Propo-
sition 5.3 also follows from more general convergence results that we will show later.
However, we provide a simple and detailed proof that reveals the natural structure of
the equilibrium that is reached.

THEOREM 5.3. Suppose that all voters are of type r. Then a voting equilibrium
exists. Moreover, in an iterative setting where voters start from the truthful state, for
any singleton scheduler, they will converge to an equilibrium in at most n(m− 1) steps.

PROOF. If the truthful state q is stable, then we are done. Thus assume it is not.
Let at (and st) be the voting profile after t steps from the initial truthful vote a0 = q.
Let ai

i→ a′i be a move of voter i at state s = sat to state s′ = sat+1 . We claim that
the following hold throughout the game. Recall that by Lemma 5.2, Hr+1 is the set of
possible winners for all voters who are voting for other candidates.

(1) ai /∈ Hr+1(s′), i.e., once a candidate is deserted, it is no longer a possible winner.
(2) a′i ≺i ai, i.e., voters always “compromise” by voting for a less-preferred candidate.
(3) maxa∈M s′(a) ≥ maxa∈M s(a), i.e., the score of the winner never decreases.
(4) Hr+1(s′) ⊆ Hr+1(s), i.e., the set of possible winners can only shrink.

We prove this by a complete induction.

(1) If this is the first move of i then ai = qi. Otherwise, by Lemma 5.1, ai is the most-
preferred candidate of i in Hr+1(st

′
) where t′ is the time when i last moved. By



induction on (4), Hr+1(s) ⊆ Hr+1(st
′
). So if ai ∈ Hr+1(s), it must be the most-

preferred candidate in the set. Assume, towards a contradiction, that ai ∈ Hr+1(s);
then there is a state ŝ ∈ Si(a, r) where i is pivotal between ai and f(a) ≺i ai. For
any c 6= ai, f(ŝ, c) = f(a), and in particular for c = a′i. Therefore ai Si(a, r)-beats a′i,
which means a′i does not Si(a, r)-dominate ai. A contradiction.

(2) If this is the first move of i then this is immediate. Otherwise, by induction on
Lemma 5.1 and (4), if a′i �i ai, then i would prefer to vote for a′i in his previous
move, rather than for ai.

(3) As in (1), if i votes for ai = f(a) ∈ Hr+1(a), then ai is i’s most-preferred possible
winner. Thus it cannot be locally dominated by any other candidate.

(4) Since by (3) the score of the winner never decreases, the only way to expand Hr+1

is to add a vote to a candidate not in Hr+1. By Lemma 5.1 this never occurs.

Finally, by property (2), each voter moves at most m − 1 times before the game con-
verges.

The proof not only shows that an equilibrium exists, it also describes exactly the
way in which such equilibria are reached from the truthful state. There is always a set
of “leaders” (Hr+1 in the case of the `1 norm). Strategic voters vote for their favorite
candidate in this set, if their current candidate is not a possible winner. At some point
candidates can “drop out” of the race as their gap from the winner increases, and the
set Hr+1 shrinks. This continues; in the reached equilibrium, all strategic voters vote
for their best possible winners (which is in Hr+1).

The next lemma characterizes these equilibria more precisely, in particular showing
that there are always at least two leaders (see Figure 1).

LEMMA 5.4. Under the conditions of Theorem 5.3, either q is stable, or in every
state st we have |Hr+1(st)| > 1. Also, in the last state a either |Hr(sa)| = 1, or all voters
vote for possible winners. In the former case, the current winner is the most preferred
possible winner for all remaining voters (those not voting for a possible winner).

5.3. Convergence under broader conditions
To show robust convergence results, there seem to be two main extensions. First, we
would like the game to converge from any initial state, and not just from the truthful
one. Second, we would like convergence to occur even if more than one voter moves
between states. In other words, we would like so see convergence under any group
scheduler.

Unfortunately, under arbitrary group schedulers, convergence is not guaranteed
even from the truthful state. A simple example for r = 0 appears in [Meir et al. 2010],
where there are two runner-ups that are preferred to the winner by all of their sup-
porters, but the supporters fail to coordinate on a runner-up to promote. We conjecture
that as in the case of best-responses (r = 0), a singleton scheduler would guarantee
convergence from any initial state.

We show that if we make two mild restrictions on the scheduler, then convergence
from any state is guaranteed even for groups. We say that a step a

i→ a′ is of type 1
if a′ ≺i a, and type 2 if a′ �i a. We call type 1 steps compromise steps, and type 2
opportunity steps.

PROPOSITION 5.5. Suppose that all voters are of type r. Consider any group sched-
uler such that (1) any voter has some chance of playing as a singleton (i.e., this will
occur eventually); (2) the scheduler always selects (an arbitrary subset of) voters with
type 2 moves, if such exist. Then convergence is guaranteed from any initial state after
at most O(nm) singleton steps occur.



The proof shows that in particular, for singleton schedulers there is a path of best-
responses from any state to an equilibrium. The assumption that type 2 moves are
played first can be justified to some extent, since type 1 moves are “compromises” and
thus voters may be more reluctant to carry them out.

5.4. Truth-bias and Lazy-bias
The notion of local dominance is very flexible, and allows us to define more subtle be-
haviors. In particular, by adding a negligible utility ε to a favorite action, such as truth-
telling or abstaining, we get that this action locally dominates any other action where
the outcome is the same (that is, the same in all possible world states). We can thus
define truth-biased or lazy voters, who prefer to tell the truth or to abstain whenever
they do not see themselves as pivotal. We highlight that the local neighborhood consid-
ered by the voter when deciding whether to strategize or to apply truth-bias/laziness,
is not necessarily the same neighborhood.

Definition 5.6. A strategic truth-biased voter of type (r, k) (or, in short, a T (t, k)
voter) acts as follows in state a.

(1) (strategic move) Let D ⊆M be the set of candidates that Si(a, r)-dominate ai. If D
is non-empty, then i votes for his most preferred candidate in D.

(2) if ai Si(a, k)-beats qi, then i keeps current vote ai.
(3) (truth bias move) otherwise, i moves to qi.

A strategic lazy voter of type (r, k) (an L(r, k) voter) can be similarly defined, replacing
qi with the action ⊥ (abstain).

We make the following observations.

— A T (r, n) or L(r, n) voter is very similar to an r voter, except never voting for a
globally dominated candidate.

— T (0, 0) voters follow the truth-bias model in [Thompson et al. 2013; Obraztsova et al.
2013].

—L(0, 0) voters follow the (simultaneous) “lazy” model of Desmedt and Elkind [2010].

We argue that it is natural to assume k > r, which entails that a voter requires a
higher certainty level in order to make a new strategic step, than to merely keep his
current strategic vote. From a behavioral perspective, such an assumption accounts
for default-bias: decision makers have a higher tendency to stay with their current
decision, than to adopt a new one [Kahneman et al. 1991].

PROPOSITION 5.7. Suppose that each voter i is of type L(r, ki) or T (r, ki), where
ki > r. Then a voting equilibrium exists. Moreover, in an iterative setting where voters
start from the truthful state, they will always converge to an equilibrium in at most
3nm steps.

We conclude with some properties that must hold for any voting equilibrium,
whether it was obtained by an iterative process or not.

PROPOSITION 5.8. In any voting equilibrium a it holds that:

(1) Every voter is either truthful, or votes for a candidate in Wi(a, ki).
(2) No untruthful voter votes for his least-preferred candidate in Wi(a, ki).
(3) If |Wi(a, ri)| > 1, then ai is not i’s least-preferred candidate in Wi(a, ri).

It is possible, though, that all voters vote for their second-least-preferred candidate
(consider a, b ranked last by all, where roughly half rank a above b).



6. SIMULATIONS OF STRATEGIC VOTING
We explore via extensive simulations how employing local-dominance affects the re-
sult of the voting process. These simulations have two primary goals. First, we want to
understand better the effect of different parameters on the technical level (for exam-
ple, how long does it take to reach an equilibrium if we vary the uncertainty level?).
More importantly, we use simulations to test the properties of our strategic model with
respect to the desiderata listed on Section 2. For example, what is its discriminative
power, is it robust to small changes, and whether it replicates common phenomena.
See Section 7.1 for a summary of our findings in light of the desiderata.

We generate preference profiles from a set of distributions which have been exam-
ined in the research literature, with a focus on distributions that are claimed to resem-
ble preferences of human societies: The Uniform (or impartial culture) distribution; a
uniform Single-peaked distribution; Polya-Eggenberger Urn model (with 2 urns and
with 3 urns); a Riffle distribution; and Placket-Luce distribution. Urn models were
particularly designed to resemble preference structures in human societies, whereas
in Placket-Luce distributions each voter is assumed to have a noisy signal of some
ground truth.

In addition to the generated profiles, we used real datasets on voters’ preferences
including all 225 currently available full preferences from PrefLib (http://preflib.org).
See the full version for details on our methods, including the distributions and profiles
we used.

Methods. We generated profiles from all distribution types for various numbers of
voters and candidates, which resulted in 108 distinct distributions. From each distri-
bution we sampled 200 instances. Then, we simulated strategic voting on each instance
varying the distance metric (`1, multiplicative), the voters’ types (basic, truth-biased,
lazy) and the uncertainty parameters r and k.

We simulated voting in an iterative setting, where voters start from an initial (truth-
ful) state, and then iteratively make strategic moves until convergence. We repeated
each simulation 100 times, and collected multiple statistics on the equilibrium out-
comes. All of the collected data can be downloaded from http://tinyurl.com/lm9axkq.

6.1. Results
We bring here the main findings for simulations starting from the truthful state, for
the `1 metric without truth-bias or lazy-bias. The details of our empirical results (in-
cluding biased agents and random starting states) are available in the full version.

We should note that despite the fact that our convergence proofs do not cover het-
erogeneous populations, arbitrary simultaneous moves or arbitrary starting points,
convergence was just as robust under all of these conditions.
Peak r value The most meaningful parameter in the simulations was the uncertainty
level r. As we vary the value of r from 0 to 15, there is an increase and then a decrease
in the amount of strategic behavior, with a “peak value” for r. We can see the effect of
more strategic behavior by looking at the number of steps to convergence, the (lower)
agreement with the Plurality winner, and almost any measured property. Intuitively,
with low r the voters know the current state exactly, and typically none of them is
pivotal. As uncertainty grows a voter considers himself pivotal more often, but beyond
the peak r uncertainty is sufficiently large for all voters to believe that their truthful
vote is also a possible winner (and then the initial state is stable).

The effect of r, in particular its peak value are determined mainly by the type of the
distribution and the number of voters, where the peak r increases with n. The number
of candidates may affect the strength of the strategic effect, but not the peak r.

http://preflib.org
http://tinyurl.com/lm9axkq


Figure 2: The fraction of simulations in 2-Urn distribution in which all voters ended
up voting for only two candidates, as a function of r.

Figure 3: The increase in voters’ social welfare, compared to the truthful outcome.

Duverger law As r gets closer to the peak value, over 75% of the voters (all voters in
some distributions) end up voting for only two candidates (see Fig. 2).
Winner quality In the Placket-Luce distribution, the quality of a winner can be de-
termined according to its rank in the ground truth used to generate the profile. In the
other distributions there is no notion of ground truth, and hence we measured the so-
cial welfare of voters, and how often the equilibrium winner agreed with the (truthful)
winner of another common voting system or with the Condorcet winner.

According to Borda, Copland, Condorcet consistency, social welfare (see Figure 3)
and the ground truth, a clear pattern was observed almost invariably across all distri-
butions. As strategic activity increases, so does the winner quality.

In particular, these results are interesting for the Single-Peaked profiles. In such
profiles there is always a Condorcet winner, which is the median candidate. As voters
strategize more under Plurality, they in fact get closer to the outcome of the strategy-
proof median mechanism.
Diverse population Finally, we repeated some of our simulations with heterogeneous
voters, where ri are sampled uniformly i.i.d. from {0, 1, . . . , bn/mc}.

The diverse simulations replicated nearly all the patterns of strategic voting across
all distributions. Notably, although we used the same simple distribution of ri values



Figure 4: In the top figure we can see that with diverse population, votes were just as
concentrated as with fixed population with peak r, across all distributions. The bottom
figure shows that with fixed r, this concentration is due to many instances where only
two candidates get votes, while this is not the case with diverse population.

in all simulations, effects of strategic behavior were always approximately as strong as
in the peak r value of every profile distribution and across most measured properties.

Winner quality was also generally comparable to peak r.So was the reproduction of
Duverger’s law, except that there were almost no instances where all voters vote for
the top 2 candidate. Rather, we have a more natural dispersion where votes are highly
concentrated, yet all candidates get some votes. See Figure 4.

7. DISCUSSION
In [Abramson et al. 1992], sophisticated (strategic) voting based on expected utility
maximization is defended on the grounds that it “...is a simplification of reality that
seeks to capture the most salient features of actual situations. Many voters may see
some candidates as having real chances of winning and others as likely losers, and they
may weigh these perceptions against the relative attractiveness of the candidates.”

Our theory is also a simplification of reality, and applies similar logic to explain and
justify strategic voting. However, the local-dominance approach allows voters to take
into account both “chances of winning” and “relative attractiveness”, without regress-
ing to probabilistic calculations and expected utility maximization.

7.1. The model and the desiderata
We summarize by showing how model of local dominance answers to the desiderata
we presented in Section 2.

Looking at theoretical criteria, our model is grounded in traditional game-theoretic
concepts: voters are trying to maximize their utility, and results are in equilibrium.
Further links to decision theory and classical notions of rationality are detailed in
Section 7.2.

When all voters are of the same type, an equilibrium always exists, and convergence
of local-dominance dynamics is guaranteed under rather week conditions. Our simula-
tions show existence and convergence even without these conditions, and demonstrate



high discriminative power. The model is broad enough to encompass different scenar-
ios such as simultaneous, sequential and iterative voting, and to account for behaviors
such as truth-bias and lazy-bias. Our definitions could be easily extended to other po-
sitional scoring rules, although it is an open question whether our results would still
hold.8 Furthermore, as Proposition 5.8 shows, our model rules out many unnatural
equilibria.

As argued above, voters in our model fit the behavioral criteria we posed, as they
avoid complex computations. Moreover, as Lemma 5.2 shows, voters do not even need
to consider the entire space of possible states, but merely to check which candidates
have sufficient score to become possible winners. Our informational assumptions are
rather weak and plausible, as we argue in the end of Section 4.1.

Regarding the scientific criteria, once we set the distance metric, every voter can be
described by a single parameter (two in the case of lazy or truth-biased voters), which
has a clear interpretation as her certainty level. Our extensive simulations demon-
strate robustness to the order in which voters play (including whether they act si-
multaneously or not), and that changing the parameters results in a rather smooth
transition. Simulations also show that the model replicates patterns that are common
in the real world such as the Duverger Law, and resulting equilibria, especially with
diverse population, seem reasonable. Experimental validation was outside the scope of
this work.

Finally, it is shown that strategic behavior yields a better winner for the society
according to various measures of quality (compared to the truthful Plurality winner).

7.2. Epistemic foundations and rationality
We can phrase dominance relations in terms of modal logic. Consider a Kripke struc-
ture over states where Si(a, r) are the states accessible from s = sa. We note that
Si(a, r) defines a Kripke structure that is reflexive and symmetric but non-transitive.

Given a proposition P (say, “candidate b wins”) we say that P is necessary in s if P
holds in all worlds accessible from s. A common interpretation is to say that “[agent i]
knows P in state s”, denoted by s |= KiP (see, for example, [Aumann 1999]). According
to this, we can write “bi S-dominates ai in state s” as the epistemic statement s |=
Ki(f(bi, s) �i f(ai, s)) ∧ ¬Ki(f(bi, s) ≺i f(ai, s)) (“i knows that [voting for] bi is at least
as good as ai, but does not know that ai is at least as good as bi”).

Since in our model Si(a, r) ⊆ Si(a, k), a straight-forward extension of the epistemic
interpretation is to add certainty levels, where a larger (in terms of containment) set
of accessible states indicates lower certainty.

Local dominance and rationality. According to the standard non-Bayesian incom-
plete information model (due to Aumann [1995; 1999]), a player i playing strategy ai
at some world state π is rational, if there is no other strategy a′i that yields a same or
better outcome in all states accessible from π (and in some states strictly better).

In other words, rationality under strict uncertainty according to Aumann simply
means that players avoid locally dominated strategies. Voting equilibria in our model
are therefore rational (Prop. 4.5). Our model is more specific in that it specifies a par-
ticular dynamic of how voters act when their current strategy is dominated.

Local dominance and voting. Dominance within a restricted set of states was con-
sidered by several recent papers. In [Reijngoud and Endriss 2012; van Ditmarsch et al.
2013] the assumption is that voters information sets can be described as a partition
Π—a common assumption about knowledge also made by Aumann. Reijngoud and En-
driss say that a voter has an incentive to Π-manipulate using ballot P ′i (under profile

8Extensions to other voting rules are simple with the EM distance, but may be ill-defined with other metrics.



P), if she weakly gains by voting P ′i in every state that is “equivalent” to P according to
Π.9 In the special case of Plurality, the definition coincides local dominance: Consider
Def. 4.2, where we set S to be all states equivalent to a under Π. Then a′i S-dominates
ai iff i has an incentive to Π-manipulate using ballot a′i. In the terminology of [van Dit-
marsch et al. 2013], voter i knows ‘de re’ that she can weakly successfully manipulate.
Our definition of local dominance also coincides with the definition of dominance in
[Conitzer et al. 2011], which do not make any assumption on the “information set” S.

In our work the accessibility relation is defined by a distance metric and is not a
partition. Still, many of the definitions in [Reijngoud and Endriss 2012; van Ditmarsch
et al. 2013] can be applied just the same in our case. In particular, a combination of
these works can be used to extend the notion of local dominance to other voting rules.

7.3. Conclusion and future work
We see a unifying theory as the one we present as a productive step in the quest to
understand voting. We hope that future researchers will find our theoretical frame-
work useful for formulating new, more specific, voting behaviors. Furthermore, our
particular distance-based model can serve as a strong baseline for competing theories.
Experiments with human voters will be important to settle how close each of these
theories comes in adequately describing human voting behavior.

On the technical level, we conjecture that stronger convergence properties can be
proved; in particular, that there are no cycles in voting games with voters of the same
type, and that a voting equilibrium exists even in games with heterogeneous voters.

Finally, we believe that distance-based local dominance, with the necessary adapta-
tions, can provide a useful non-probabilistic framework for uncertainty in other classes
of games where there are natural distance metrics over states, such as congestion
games.
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