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ABSTRACT

Gerrymandering is the process of creating electoral districts for

partisan advantage, allowing a party to win more seats than what

is reasonable for their vote. While research on gerrymandering has

recently grown, many issues are still not fully understood such

as what influences the degree to which a party can gerrymander

and what techniques can be used to counter it. One commonly

suggested (and, in some US states, mandated) requirement is that

districts be “geographically compact”. However, there are many

competing compactness definitions and the impact of compactness

on the gerrymandering abilities of the parties is not well understood.

Also not well understood is how the growing urban-rural divide

between supporters of different parties impacts redistricting.

We develop a modular, scalable, and efficient algorithm that can

design districts for various criteria. We confirm its effectiveness

on several US states by pitting it against maps “hand-drawn” by

political experts. Using real data from US political elections we use

our algorithm to study the interaction between population distri-

bution, partisanship, and geographic compactness. We find that

compactness can lead to more fair plans (compared to implemented

plans) and limit gerrymandering potential, but there is a consistent

asymmetry where the party with rural supporters has an advan-

tage. We also show there are plans which are fair from a partisan

perspective, but they are far from optimally compact.
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1 INTRODUCTION

In many democracies, politicians are elected to represent the people

of particular geographic areas, called districts. There is country
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Figure 1: Voter distribution for the 2016 presidential election

in Pennsylvania. The more blue a region the more it leaned

left (Democrats), more red for the right (Republicans).

wide aggregation of votes. Instead voters within a district pick

a winner from the alternatives vying to represent their district.

Political power is based on the number of districts won.

How voters are partitioned into these districts directly affects the

makeup of the legislative body. The partitioning is often governed

by hard constraints. For example, most jurisdictions require that

the districts be geographically connected (with certain exceptions)

and have roughly equal populations. In addition, there are many

competing goals when designing a districting plan [42]. One could

prioritize not breaking up communities of interest, such as those

with a shared culture and history.
1
It may also be desirable to be

as compatible as possible with established city and county bound-

aries, a consideration studied by Wheeler and Klein [43]. Another

reasonable goal would be to obtain geographically compact regions

(a goal enshrined in some US states’ laws and regulations
2
). A less

defensible goal is gerrymandering: designing districts for partisan
gain, i.e., creating districts which help a particular party gain a

number of seats beyond its popular support.

In the US, following every 10-year census, state legislatures

decide their new federal congressional and state legislative districts,

and partisan concerns are often part of the consideration [41]. For

example, in the 2020 federal election in North Carolina, a state

accused of gerrymandering (partially overturned by courts [8]), the

Democratic party received 49.96% of the vote and won five districts;

1
Regarding ethnic minorities, this is required by the US’ Voting Rights Act of 1965.

2
For example, California’s constitution states, in article XXI, “districts shall be drawn

to encourage geographical compactness”.



the Republican party received 49.41% of the vote and won eight

districts [30]. As noted above, due to the many competing goals,

even with clearly stated goals it is not clear what is fair or optimal

when it comes to non-partisan redistricting (see Wasserman [42]

for further discussion and a comparison of objectives).

Parallel to the political partisan redistricting process there is

a more complex, ongoing population-wide process. In the US [3]

and Europe [31], voters are “reorganizing” themselves for various

economic and social reasons. As Figure 1 shows, in Pennsylvania

voters of left leaning parties tend to cluster in dense urban centres,

while voters of right leaning parties spread out into surrounding

rural regions. People in the large cities of Philadelphia in the east

and Pittsburgh in the west are overwhelmingly Democrat voters,

while the surrounding rural regions lean Republican. In short, in

many democracies around the world the left-right split can be

characterized as an urban-rural divide as well.

Our contribution. Our work explores aspects of both of these pro-

cesses – the immediate partisan one and the process of population

dynamics. In the first part of our work (Section 5), we introduce

our automated redistricting procedure, which is flexible and can

be used to design plans for various objectives, both partisan and

nonpartisan. To prove the utility of our algorithm, we compare its

performance against hand-drawn plans from election experts. We

also explore (Section 5.4) the social contribution of our algorithm.

Once we show the power of our algorithm, we begin using it

to understand the interplay between population distribution, ge-

ographic compactness constraints, and political power. Our algo-

rithm allows us to examine possible requirements that have been

suggested as a means to mitigate or eliminate gerrymandering.

In particular, we study the impact of a compactness requirement.

In Section 6, a few compactness measures are considered and we

see that in the US, the more rural party (Republicans) still consis-

tently outperforms the more urban party (Democrats). Moreover,

we see that this advantage is robust even in a non-gerrymandered,
optimally-compact plan. This advantage is not due to political gam-

ing of the division process, but rather due to the geographic spread

of each party’s supporters. That being said, we show the existence

of “fair” but not ideally compact plans.

In Section 7 we examine how compactness constraints affect

gerrymandering possibilities. We show that demanding stringent

compactness constraints reduces the ability of parties to reach ex-

treme gerrymanders. However, in most cases, the compactness

requirement allows for relatively greater rural-party gerrymander-

ing. Indeed, under the most stringent compactness constraints, the

urban party sometimes cannot even achieve its vote proportion.

Finally, note space limitations force us to omit some details

throughout the paper. All missing details can be found in the full

version.
3

2 RELATEDWORK

Political districting, and in particular gerrymandering, has long

been the examined in the humanities and social sciences. There have

been legal discussions [17, 23, 36], and recently the US Supreme

Court ruled [35] partisan gerrymandering cannot be addressed by

3
https://www.cs.toronto.edu/~nisarg/papers/gerrymandering_compactness.pdf

federal courts. Gerrymandering has long been studied by histori-

ans [5, 13] and political scientists [14, 15, 20, 38].

There is a long history of trying to detect gerrymandering by

proposing and comparing various scores in potential plans [16,

19, 33, 41]. Recently, the AI community has become interested in

redistricting. Pegden et al. [32] proposed treating the redistricting

process as a repeated “cut-and-choose” game, while Bachrach et al.

[1] measure how much districts can distort voter representation.

Most related to our work is automated redistricting, which orig-

inally was proposed as a solution to gerrymandering by Vickrey

[40]. A popular automated redistricting technique uses Markov

Chains to generate a sequence of related districts (see DeFord et al.

[10], Fifield et al. [16] for two types of chains). These chains al-

low us to see where values from a plan, such as various measures

of partisanship or compactness, fall within the distribution of a

random ensemble of them. Outlier values may be a sign of poor

district design, or gerrymandering. One such analysis was used to

help with the 2018 Pennsylvania redistricting [11]. Another line

of automated redistricting work focuses not on generating ensem-

bles of plans, but instead designing one optimized plan. Within the

AI community many published automated methods violate basic

legal requirements such as population balances [6, 26]; or are un-

able to scale to real-life sized problems [4]. Some other methods

that produce legal plans for real data are only able to design plans

for objectives based on linear combination of individual district

scores [21]. These shortcomings are not surprising since finding an

optimal gerrymandering, or certain graph partitions, is known to

be NP-hard in various settings [12, 26, 39]. For a recent survey on

various automated redistricting methodologies we refer the reader

to Becker and Solomon [2].

As discussed, the growing urban-rural divide and its impact on

redistricting is an inspiration for our work. Commentators [24,

29] have argued this divide is amplifying the effects of partisan

gerrymandering. Using simulated data, Borodin et al. [4] argue

the rural party can stretch its vote share more effectively when

gerrymandering than the urban party – although at extreme levels

of divide the opportunity to gerrymander is limited. Rodden [34]

goes further, arguing that the urban-rural divide is a fundamental

disadvantage to the urban party in almost every scenario, though

his argument boils down to the advantage of rural areas having

more urban party supporters than vice versa.

3 MODEL

We examine gerrymandering with a graph-theoretic formulation.

We shall use a US-oriented terminology (states, precincts, etc.), but

the formulation represents most geographic districting settings. A

state is an undirected graph 𝐺 (𝑉 , 𝐸), and each node 𝑣 ∈ 𝑉 repre-

sents a precinct, a small geographic region where votes are tallied.

An edge (𝑢, 𝑣) ∈ 𝐸 represents that precincts𝑢 and 𝑣 share a physical

boundary. For 𝑣 ∈ 𝑉 let 𝑛𝑣 be the number of people who live in

precinct 𝑣 , and 𝑛
𝑝,𝑒
𝑣 be the number of people who live in 𝑣 and

vote for party 𝑝 in election 𝑒 . We will omit 𝑒 when the context is

obvious. Let 𝑁 =
∑
𝑣∈𝑉 𝑛𝑣 be the total number of people in the

state. We limit our focus to two parties: the rural party (in the US,

Republicans (𝑅)), and the urban party (in the US, Democrats (𝐷)).

https://www.cs.toronto.edu/~nisarg/papers/gerrymandering_compactness.pdf


Creating a districting plan requires partitioning𝐺 into 𝐾 vertex-

disjoint subgraphs 𝐺1, · · · ,𝐺𝐾 (the districts). The number of dis-

tricts 𝐾 is extrinsically determined (in the US, by a census every

10 years). There are two widely accepted requirements for legal

districts in the US and elsewhere:

Contiguity For each 𝑘 ∈ [𝐾], 𝐺𝑘 must form a connected sub-

graph of 𝐺 . In the real world, this translates to being able to

walk from any point in the district to any other point in the

district without crossing into another district.

Population balance-𝛿 Given 𝛿 > 0, for each 𝑘 ∈ [𝐾],

1 − 𝛿 ≤
∑

𝑣∈𝑉 (𝐺𝑘 ) 𝑛𝑣

𝑁 /𝐾 ≤ 1 + 𝛿.

The exact value of 𝛿 required in the U.S. changes between states

(and judicial decisions). Informally, districts should be as near equal-

sized in population as possible [25]. We take 𝛿 = 0.005, so that the

maximum population deviation between any two districts is at most

1% of the state’s population. This is the legal requirements in some

states, and a far tighter constraint than what is respected by many

previously proposed automated redistricting methods.

Parties are interested in winning as many districts as they can.

The party with the most voters in a district is typically said to win

that district. For example, if

∑
𝑣∈𝑉 (𝐺𝑘 ) 𝑛

𝐷,2012
𝑣 >

∑
𝑣∈𝑉 (𝐺𝑘 ) 𝑛

𝑅,2012
𝑣 ,

we say the Democrats win district 𝑘 according to the 2012 presi-

dential vote totals in a given state. If the inequality is reversed, we

say the Republicans win the district in that election. Note that this

is only one way to define “winning a district”. In Section 5.1 we

calculate the probability of winning a hypothetical district, based

on historic vote totals and outcomes, and find plans with several

high probability wins.

4 ELECTION SETTINGS

In this paper, we use election data from three US states — Pennsyl-

vania, North Carolina, and Wisconsin — from the 2012 and 2016

presidential elections.
4
These are states and elections for which

granular, precinct-level, data is available.
5
Each of these three states

has a particular election of interest. We also include the number of

nodes (precincts) and edges in the graphs of each state.

Pennsylvania (PA) 2012 Sizeable Democrat advantage. The
Democrat (Obama) won 51.97% of the vote, vs. 46.59% to the

Republican (Romney). PA has 9,255 nodes and 25,721 edges.

North Carolina (NC) 2016 Sizeable Republican advantage. The
Republican (Trump) won 49.83% of the vote, vs. 46.17% to

the Democrat (Clinton). NC has 2,692 nodes and 7,593 edges.

Wisconsin (WI) 2016 Near tie. The Republican (Trump) won

47.22% of the vote, vs. 46.45% to the Democrat (Clinton). WI

has 6,634 nodes and 18,126 edges.

In addition to these elections, they provide a good mix of geo-

graphic features. WI, for example, has its north-east corner carved

up by lake Michigan, forming a jagged bay. PA and NC, on the other

hand, have a much more convex shape. Furthermore, the popula-

tion distribution is varied: PA’s large urban centres are in its east

4
In Sections 5.1 and 5.2 we also use data from Maryland and Massachusetts for a

proof of concept. But, because of missing votes and an overwhelming Democrat lean

respectively, we omit them from subsequent experiments.

5
Data from MGGG (https://github.com/mggg-states).

and west edges, whereas in NC, the urban centres are concentrated

in the middle of the state.

4.1 Voting and the Urban-Rural Divide

State 2012 correlation 2016 correlation

NC 0.79 0.80

PA 0.47 0.58

WI 0.38 0.57

Table 1: Spearman correlation between a precinct’s fraction

of 𝐷 party votes and its density (total population divided by

area) in three states and two elections.

As noted above, a key geographic feature of US political par-

ties is the growing divide between a more rural Republican party

and a more urban Democratic party. We examined different states,

with differing ethnic makeup, education patterns, and history, but

this feature was common across all our data: densely populated

urban centres favour the Democrats, while sparsely populated rural

regions favour the Republicans (see Table 1).

5 THE GREAT ALGORITHM

To study the role of compactness and population distribution in

gerrymandering we need an algorithm that can optimize for vari-

ous compactness and partisan fairness metrics (or handle them as

constraints) on real-world data. To that end, we introduce our Goal-

based Redistricting for Elections Automatically using Technology

(great) algorithm, that can create plans from graph representations.

As we will demonstrate, our algorithm, with minimal engineering

effort, can be used to optimize various measures of partisan fair-

ness (e.g., to minimize the robust partisan bias metric introduced

in Section 6), partisan gain (e.g., the number of districts won by a

given party either by achieving a plurality of votes, or at least a

threshold fraction of votes, or with at least a certain probability),

and compactness (e.g., the Polsby-Popper and Convex Hull scores

defined in Section 5.2). Furthermore, the algorithm can optimize

towards one of these goals while satisfying strict constraints on

other metrics (e.g., optimize compactness while ensuring that a

given party wins at least a fixed number of districts).

To show its capabilities, we will now demonstrate our algorithm

is capable of matching the performance of human experts when

creating partisan plans (Section 5.1), and compact plans (Section 5.2).

In Section 5.3 we show our algorithm is able to compete with human

experts in a prestigious redistricting competition.

First, we give a brief overview of our algorithm (see full ver-

sion for details). Our method is based on simulated annealing, a

local-search like method which can make non-improvement steps,

allowing it to escape local optima. After some fixed number of iter-

ations or elapsed time, the process ends and the best of all iterated

solutions is returned. Starting from an (often random) initial plan, a

step is considered by using a modification of the tree-recombination

procedure proposed by the Metric Geometry and Gerrymandering

Group [28]. Briefly, the method takes a set of𝑚 adjacent districts

from the current solution, and recombines and redivides the nodes

in them to form𝑚 new districts. This is done by drawing random



State Total seats Our D 538 D Our R 538 R

MD 8 7 5 (8) 4 4 (4)

MA 9 9 9 (9) 0 0 (0)

NC 13 7 8 (8) 11 10 (10)

PA 18 8 8 (9) 13 13 (13)

WI 8 5 5 (5) 6 6 (6)

Table 2: First column is the number of seats in the state. Sec-

ond and third columns are the number of districts 𝐷 take

with over 82% probability with our algorithm and the 538

optimally-gerrymandered plans, respectively. Fourth and

fifth columns are the same for the 𝑅 party. The 538 numbers

show the number of districts won according to their district-

ing based on our election data. In parentheses are 538’s re-

sults using absentee data (which we did not have access to).

spanning trees over the precincts of the 𝑚 districts and cutting

random edges in the trees to separate the nodes into the desired

number of districts. For efficiency reasons, we generally use𝑚 = 2.

Using larger𝑚 values did not noticeably improve the results. Any

objective that can be expressed numerically and calculated from

an arbitrary plan may be used. Additionally, any binary constraint

(for which it can be checked whether a given plan satisfies) can be

incorporated by ensuring that the algorithm only considers steps

which satisfy the given constraint.

Like the work before us, we are unable to provide guarantees

(with respect to optimal solutions) on our method’s performance.

Instead, we compare against the best plans human experts create. As

far as we are aware, we are the first to publish work that compares

against, let alone matches, state of the art hand-drawn plans.

5.1 Proof of Concept: 538 Gerrymandering

Nate Silver and the election experts at 538’s gerrymandering project

[37] drew thousands of hand-crafted districts for various objectives.

While there is no guarantee their plans are optimal, they do serve

as an excellent, and publicly available, benchmark.

As noted above, winning a plurality of votes is just one of the

measures of what it means to win a district. At 538, they took a

probabilistic view, designing partisan plans that maximized the

number of districts that were won with a sufficient probability. This

non-trivial measure of victory also serves as an ideal goal to show

the modularity of our algorithm. Unfortunately, they released few

details regarding their method. However, we believe we were able

to reconstruct it using released results (see full version for a detailed

reconstruction). Briefly, 538 uses the Cook Partisan Voting Index

(CPVI) [9], which measures a district’s 𝐷 party bias according to

the 2012 and 2016 elections, and transforms it into the probability

that the 𝐷 party wins that district. The R party wins it with the

remaining probability. When gerrymandering for party 𝑃 , 538’s

objective was to maximize the number of districts for which 𝑃 ’s

probability of winning was at least 82%. To guide our method, we

used a combination of the expected number of districts won by 𝑃

and the total number of districts won with at least 82% probability

(see full version for exact optimization details).

The availability of presidential election data at the precinct level

is inconsistent, so we are unable to compare against 538 in all states.

Figure 2: PA districts (𝑅 wins in red); (𝐷 wins in blue) based

on the 2016 PA election data. Top, our plan, optimizing the

convex hull score; bottom, PA’s actual 2011 districts.

There are five states for which we have publicly available data, and

for each of them we optimized for the 538 objective for each party.

For each state and party we ran our algorithm on 60 cores with 2.10

GHz computing power for 24 hours, though our algorithm often

stopped advancing well before this deadline. Out of all solutions

iterated, we took the one with the most districts above 82% for the

indicated party. Our results are shown in Table 2.

Overall, there was only one case, NC for 𝐷 , where we did not

match 538. Even here, we only missed by one district out of the

13. We did outperform 538 in Maryland for the 𝐷s, but we caution

we were missing 25% of their vote for each party – the absentee

data (mail-in ballots), for which we have no precinct level data (the

other states had over 99.7% ballots accounted for). In NC for the R

party, we also outperformed 538.

5.2 Proof of Concept: Compact Redistricting

Asmentioned, compactness is often a legislated requirement, even if

the mathematical definition and the required levels are not specified.

Despite this ambiguity our algorithm is able to easily optimize for a

variety of compactness scores. To measure compactness in a single

district, we use the following scores:

Polsby-Popper (PP) A district’s PP score is its area divided

by the area of the circle with the same length perimeter.

Convex Hull (CH) A district’s CH score is its area divided by

the area of its minimum convex hull.

For these two metrics, we use our algorithm to find a plan opti-

mized for the mean score across all districts. From a visual stand-

point (see Figure 2), our plans pass an “eye test” for looking compact,

especially compared to the plans enacted in practice.

As was the case for gerrymandering, 538 implemented a compact

plan for each state. These plans were designed to minimize “the

average distance between each constituent and his or her district’s

geographic centre”. In addition, we have plans created by the public



PP CH 538 DRA

Our Polspy-Popper 44 86 0.31 93

Our Convex Hull 37 88 0.29 85

Our 2% Fair 26 76 0.34 49

538’s Compact Plan 34 87 0.27 81

DRA’s Compact Plan 40 82 0.29 70

2011 Plan 16 62 0.41 15

Updated Plan 32 78 0.30 64

Table 3: The compactness scores for various plans in Penn-

sylvania. The best score for each metric is bolded. For PP,

CH, and DRA, higher is better, for 538 lower is better.

using Dave’s Redistricting App (DRA). DRA is the most popular

open source tool for redistricting, and 538 used it too to create all

their plans. Amongst all plans ever published on DRA, the website

features the most compact (according to their internal metric) for

each state. In addition, we have the 2011 plan for all relevant states,

and for NC and PA a court mandated updated plan as well.

Compared to all of the above mentioned plans, in every state our

plans had the best mean compactness scores for their respective

metrics. They are compact even according to metrics they were

not optimized for (in PA and NC our PP plans have the best DRA

score). We are not claiming the compactness measures we chose

are superior to others. As Table 3 shows, in PA, according to any

metric the four compact plans have similar scores. Far more com-

pact than the 2011 and our 2% Fair plan (the later of which will

be introduced in Section 6.2). Even the Updated Plan, partially de-

signed to address the 2011 plan’s compactness issues, is generally

less compact than the compact ones. We only argue, for a variety

of measures, our algorithm is capable of creating plans just as com-

pact as those from human experts. For the WI, NC, MA, and MD

compactness tables information about the 538 and DRA metrics,

see Appendxi refsubsec:compactnes-tables.

5.3 Proof of Concept: Princeton Redistricting

Finally, we used our algorithm for a redistricting competition, The
Great American Mapoff, hosted by Princeton University’s Gerry-

mandering Project. Here, we were finalists from among almost 150

entrants. We competed in two categories. First, designing compact

but gerrymandered plans (“stealth gerrymandering”), is the exact

topic of Section 7. For the second, partisan fairness, we used our

robust partisan bias score (explained in Section 6). Our plans, cre-

ated in a day, were judged by human experts to be among the best,

as good as the handcrafted plans submitted by other participants.

Because the contest goals were open ended, we are unable to make

exact quantitative comparison. For more details of the contest and

our submissions, see the full version.

5.4 The Ethics of Automated Redistricting

Before discussing our main results, we wish to touch upon the

ethics of automated redistricting and its implications. There is an

understandable concern our tool could be used to advance partisan

interests. This point is especially salient for our tool, which, in hours,

can match what human experts take much longer to produce.

However, the actual redistricting process takes years, and is only

done once every ten years in the United States (and in many other

democracies). In these situations, partisan groups would have years

– and near unlimited resources – to have experts craft plans by

hand, limiting the utility of an automated tool for gerrymanderers.

Furthermore, the actual redistricting process involves a certain hu-

man element. When crafting a plan there is bargaining and dealing

between the various interested actors. To protect their position

within their district, a representative of one party may wish to keep

communities of similar ethnicity, income, or shared history together.

Thus they may bargain with and make concessions to members

of the other party. While this behaviour would be interesting to

model, it is not something a one shot algorithm is capable of.

We see our tool as something researchers can use to study re-

districting. Here, we use it to explore the impact and limitations

of compactness requirements. Furthermore, it can be used to help

combat gerrymandering: if a plan is as biased as the highly partisan

plans produced by our tool, then there is strong evidence of gerry-

mandering. Because it is highly modular, it can be used to quickly

propose alternative plans, optimizing a diverse set of desiderata.

The plans our tool suggests may not be the final ones, but can give

a sense of what is and is not achievable.

6 FAIRNESS IN DISTRICTING

Figure 3: Uniform swing for 𝑅(𝐷) in red (blue), in the 2012

presidential election in PA under our Convex Hull compact

plan. Vertical axis shows the fraction of districts won; hori-

zontal axis the vote fraction. The dots on the party curves in-

dicate the actual election outcome (0 swing). The green line

is the range of proportional outcomes on the range [0.4, 0.6].
A green star marks the point (1/2, 1/2).

In this section we examine the bias presented in various plans. In

particular we measure the deviation from what is “fair”. Formally,

we want the fraction of districts won by each party to match – as

closely as possible – its fraction of overall votes. However, measur-

ing how proportional a plan is based on data from just one election

is not very robust. To address this, the uniform swing model [14]



is widely used. In this model, hypothetical elections are generated

starting from a baseline election by shifting the vote shares of the

parties. Specifically, the vote share of a given party is increased

or decreased by an equal amount in every district. The fraction of

districts won by each party is then measured in these hypothetical

elections in order to measure the amount by which proportionality

would likely be violated if vote shares change over time. See Figure 3

for the uniform swing model applied to the 2012 PA presidential

election under the plan produced by our algorithm for optimizing

the Convex Hull score, where the fraction of districts won by a

party is plotted against the fraction of votes received by the party

at different uniform swing levels.

There are several metrics that use the uniform swing model

to measure the partisan bias in a given plan. We are interested

in the partisan bias score [18]. This value measures the vertical

displacement of the swing curve from the point (1/2, 1/2). Intuitively,
the partisan bias measures the divergence from the idea that “half

the votes should translate to half the seats”. More generally, we

can measure the vertical displacement from any point (𝑎, 𝑎) for
𝑎 ∈ [0, 1]. We introduce a robust version of this metric. Fixing a

line segment [𝑙, 𝑟 ] (𝑙, 𝑟 ∈ [0, 1], 𝑙 < 𝑟 ), we measure the average

vertical distance from the swing curve to the line 𝑦 = 𝑥 over this

line segment. We use [0.4, 0.6] as the reasonable range (as is the
case with most presidential elections, the vote shares of both parties

are between 40% and 60%). The 45
◦
line in this range is shown in

green in Figure 3. There are two ways to measure the distance

between a party’s swing curve (𝑠 (𝑥), 𝑥 ∈ [0, 1]) and a line segment

[𝑙, 𝑟 ]. The first is a signed version,∫ 𝑟
𝑙
(𝑠 (𝑥) − 𝑥)𝑑𝑥
𝑟 − 𝑙 (1)

measuring on average howmuch higher or lower the swing curve

is over the proportional line. A positive (negative) value indicated

this party, over the range of reasonable vote shares, can expect

more (fewer) seats than what is proportionally fair. Alternatively

we could take the unsigned version,∫ 𝑟
𝑙

|𝑠 (𝑥) − 𝑥 |𝑑𝑥
𝑟 − 𝑙 (2)

which measures the average deviation from proportionally fair.

That is, how much does the plan deviate from “an 𝛼 fraction of the

vote share should translate into an 𝛼 fraction of the seats”. While

these measures are similar, and often correlated, they can differ. For

example, consider a plan where a vote share of 50% + 𝜖 (50% − 𝜖
) results in winning (loosing) each district. For any symmetric

range about 50% vote share, this plan has the best possible score for

Equation 1 and the worst possible score for Equation 2. Both of these

measures provide important information. For a fixed party 𝑝 and its

swing curve we quantify its partisan advantage (disadvantage), over

[𝑙, 𝑟 ], by how positive (negative) Equation 1 is. On the other hand,

Equation 2 tells us, over [𝑙, 𝑟 ], on average how disproportionate 𝑝’s

outcomes are, its total advantage plus total disadvantage.

For any 𝑡 < 0.5, the fraction of districts won by one party with

0.5 − 𝑡 vote share is exactly one minus the fraction of districts won

by the other party with 0.5 + 𝑡 vote share. Hence, for a symmetric

range around the 0.5 vote share point, their swing lines are mirrors

of each other about the point (0.5, 0.5). Thus for both parties, the

value of Equation 1 is identical in magnitude (but opposite in sign),

and the value of Equation 2 will be identical.

We note that Equation 2 is non-linear, it can not be calculated

by combining scores calculated from individual districts. This is

unlike the 538 partisan measure, which is just the sum of howmuch

each district leans towards a target party. Even the compactness

measures we examine are the simple means (and sums) of individual

district compactness scores. Thus this measure is fairly complex

to optimize for. Even the algorithm presented recently by Gurnee

and Shmoys [21], which was designed with the goal of finding fair

plans, would be unable to optimize our second fairness objective.

6.1 Compactness Can Improve Fairness

Figure 4: Average signed distance from the 𝑅 swing curve to

the 𝑦 = 𝑥 line over the range [0.4, 0.6] (Equation 1). In each

state there are four compact plans, DRA’s, 538’s, our Convex

Hull, and our Polsby-Popper. And in most states two imple-

mented ones (2011 and Updated). Each score in PA uses 2012

presidential data, while each plan in WI and NC uses 2016

presidential data. The WI 2011 plan was not struck down so

there is no WI updated plan. The full version has scores for

other elections and comparison ranges.

As mentioned, compactness is often a primary goal when re-

districting. It has even been suggested it is a path to partisan neu-

trality [22]. A priori, it is not clear if compact plans are more free

of partisan bias than less compact ones. Thus, in this section we

study plans designed to optimize various notions of compactness,

contrasting them with the currently used plans. We find that opti-

mizing for various definitions of compactness can reduce the signed

partisan bias (Equation 1), relative to the plans used in real life. De-

spite this, we find a persistent bias to these compact plans, i.e., they

favour the 𝑅 party despite being optimized for a non-partisan goal.

We find that optimizing for any form of compactness yields plans

that have improved partisan fairness relative to the plans enacted

in 2011, according to our signed partisan bias score (over the range

[0.4, 0.6]). This improvement is consistent across every states and

independent of the compactness measure optimized. Figure 4 shows

our signed partisan bias score (closer to zero is fairer) for various

plans in three states using the presidential elections of interest.



This improvement is sometimes extreme: in NC, the 2011 dis-

tricting (with a 17% robust partisan bias towards the 𝑅 party) is

more than two times as biased as any of the compact plans. It is

worth noting that both NC and PA 2011 plans were struck down by

the courts for being overly biased. The NC 2011 plan was found to

disenfranchise minority voters [8], while in PA the plan was found

to disenfranchise 𝐷s [27]. The updated plan from 2016 (with an

11% robust partisan bias towards the 𝑅 party) was still almost twice

as biased as any compact plan.

Interestingly, the updated plans from 2016 in NC and 2018 in

PA seem dissimilar. While the updated NC plan is still significantly

more 𝑅-biased than any of the compact ones, the opposite holds

for the new PA plan. Its 𝑅 bias is lower than the compact plans,

although it is, of course, less compact according to almost anymetric

(Table 3). It has been suggested the new PA plan was designed with

partisan proportionality in mind [7]. That said, it should be noted

that neither of the compact plans are designed to optimize the

Equation 1. In each state, when we use our algorithm to optimize

for this metric specifically we find plans that have near-zero bias

according to Equation 1. These are not shown in Figure 4 because

the bars would be virtually invisible.

For all plans, in all states, both elections, and both ranges of

comparison there is one consistent pattern: The 𝑅 party always has

a positive score in our metric, and from symmetric considerations

noted above, this means a negative 𝐷 score. That is, the more rural

party can expect to gain more seats than its proportional voter

share. This includes every single plan designed to optimize some

notion of compactness (supposedly the 2018 PA was also designed

to consider proportional fairness). The advantage was significant.

On average in PA this was a 10% (and often higher) advantage.

6.2 An 𝛼% of the Vote can be an 𝛼% of the Seats

As we saw with the updated PA plan and the compact plans, opti-

mizing purely for compactness may not be the be the most effective

way to eliminate partisan bias. For each state we use our algorithm

to show there is a plan that effectively has no rural bias, a “fair” plan.

We use use our algorithm to optimize for the unsigned partisan

bias, Equation 2 over the range [40, 60] (optimizing for Equation 1

can lead to plans with huge jumps in the swing curve). In each

state the resulting plans had an unsigned partisan bias score from

3.5 to 10 times lower than any of the the existing and compact

plans. Furthermore, in these plans there is near zero advantage at

for either party, when measured by the signed partisan bias.

This gain in fairness comes at a cost of compactness. While

we can make these fair plans more compact by optimizing for

the Polsby-Popper score, with the constraint that the score from

Equation 2 should remain near the best found, we are still nowhere

near the best compactness scores. As Table 3 shows, in PA, if we

keep the unsigned bias under 2% (the best score was 1.5%), the only

plan with worse compactness scores is the 2011 plan.

Figure 5 shows this sacrifice in compactness ensures partisan

fairness, over the [40%, 60%] vote range. For either party, an 𝛼%
of the vote means a majority in an 𝛼% of the seats. This is unlike

other plans (such as our CH plan in Figure 3) where both parties

are far from proportional. An exact description of our optimization,

Figure 5: Uniform swing for 𝑅(𝐷) in red (blue), in the 2012

presidential election in PA under our fair but compact plan.

Vertical axis shows the fraction of districts won; horizon-

tal axis the vote fraction. The dots on the party curves in-

dicate the actual election outcome (0 swing). The green line

is the range of proportional outcomes on the range [0.4, 0.6].
A green star marks the point (1/2, 1/2).

Figure 6: NC districts (𝑅 wins in red); (𝐷 wins in blue) based

on the 2016 NC election data. Top, our plan, optimizing the

Polsby-Popper score while maintaining 9 𝐷 wins. Bottom,

NC’s 2016 court mandated plan.

and similar results showing a near identical tradeoff in fairness and

compactness for WI and PA can be found in the full version online.

7 DESIGNING PARTISAN PLANS

In this section we examine what limits compactness thresholds

impose on partisan gerrymandering. For compactness, we use the

average Polsby-Popper score of a plan. To measure gerrymandering

ability, we use gerrymandering power (introduced in Borodin et al.



[4]). For a particular election, the gerrymandering power of party

𝑝 is defined as the difference between the share of seats it can

optimally gerrymander to win and the seat share it would have

received in a purely proportional election. A high gerrymandering

power indicates there is a plan that stretches 𝑝’s vote share into a

disproportionately large number of districts. A low (or negative)

gerrymandering power indicates 𝑝 is unable to stretch its vote into

many extra wins (or even win a proportional number of seats).

To gerrymander for party 𝑝 while staying compact, we run our

algorithm with the objective of generating plans which are as com-

pact as possible while maintaining 𝑘 wins (at least 50% of the vote)

for party 𝑝 . To ensure a diversity of election outcomes we use the

elections specified in Section 4. As we saw, our algorithm is capable

of generating highly compact districts and highly partisan districts.

Unsurprisingly, we find it performs quite well when combining

these goals. As Figure 6 shows, our compact gerrymander easily

passes the eye test, especially when compared to the implemented

plan. In NC our algorithm can stretch the number of districts 𝑅s

win to all 13 using the 2016 election data, all while creating a plan

more compact than the existing one (in the existing plan, 𝑅s won

10 of 13). We can also create a map, more compact than the existing,

and where 𝐷s where they win 8 more seats.

We vary 𝑘 from the most partisan outcome (maximal number of

districts won with no compactness constraint), to the most compact

outcome (number of seats won by 𝑝 in the Polsby-Popper compact

plan from Section 6).

7.1 Effect of Increasing Compactness

Figure 7: Gerrymandering power in PA when faced with a

minimumrequired Polsby-Popper score using data from the

2012 PA presidential election. 𝑅 in red; 𝐷 in blue. The verti-

cal purple (grey) line is the Polsby-Popper score of the 2011

congressional plan (2018 court mandated plan). Average dis-

tance between the two curves is a 10.8% 𝑅 advantage.

Figure 7 shows in PA, increasing the required Polsby-Popper

score lowers the gerrymandering power of both parties. But, to have

an impact, we require a steep increase beyond current compactness

levels. Similar results forWI and NC can be found in the full version.

Additionally, compactness requirements are unable to entirely

remove the urban disadvantage. For almost any Polsby-Popper

score, the 𝑅 gerrymandering power is well above the 𝐷 one. In PA

there is no requirement level where the 𝐷s have an advantage. In

NC and WI there is a brief period of near maximum compactness

requirements where the 𝐷s have a small, temporary, advantage.

In WI, when the compactness requirement is lower than that of

the current plan the democrats can have a minuscule advantage,

but more stringent requirements give a large 𝑅 advantage. The

average distance between the two curves shows a 10% 𝑅 advantage

in gerrymandering power in PA and NC, and 4% in WI.

In every single state, even with the most extreme compactness

requirements, 𝑅s are able to stretch their vote share beyond pro-

portional. Conversely, 𝐷s, have a negative gerrymandering power

when compactness requirements are high – no legal plan reaches

their proportional allocation.

8 DISCUSSION

In this work we introduced a modular and powerful automated

redistricting technique. Our technique can generate plans compara-

ble to ones from human experts for both partisan and non-partisan

goals. Our method is able to generate compact districts, far more

compact (according to various metrics) than the plans used in prac-

tice or the ones produced by electoral experts. While these plans,

which were optimizing compactness, reduce partisan bias, we find

they do not eliminate it and still always favor the rural party. Fur-

thermore, we use our algorithm to explore the effects of an often

proposed solution to gerrymandering, compactness restrictions.

We find that while this can reduce the ability of either party to

gerrymander, the potential for some degree of gerrymandering

remains, and the rural party can still gerrymander more than its

urban counterpart. These results contribute to growing evidence

that the urban-rural divide leads to imbalanced outcomes that dis-

advantage the urban party. Despite this lopsidedness we show there

are plans which are near totally proportionally fair, but to achieve

this we must sacrifice a significant amount of compactness.

We see many applications of our algorithm for future work, in-

cluding further examination of the rural party advantage. We have

preliminary results on extending the gerrymandering power metric

used in Section 7. We find that even if we require districts to have

large margins of victory, compactness constraints still more nega-

tively impact the urban party. We also intend to use our algorithm

to explore the tradeoff between partisan fairness and non-partisan

goals, such as not splitting counties. We began exploring the trade-

off between fairness and compactness in Section 6.2, the next step

would be mapping out its Pareto frontier.

Possibly more important than partisan considerations is ensur-

ing that minority voices are heard in the political process. Beyond

the basic requirements of majority-minority districts that satisfy

the 1965 Voting Rights Act, the function for measuring minority

representation could be quite intricate and difficult for human ex-

perts to analyze and optimize for. We believe that such non-trivial

objective functions, along with restrictions such as compactness,

make this problem an ideal application of our algorithm.
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