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Abstract

District-based manipulation, or gerrymandering, is usually
taken to refer to agents who are in fixed location, and an
external division is imposed upon them. However, in many
real-world setting, there is an external, fixed division – an or-
ganizational chart of a company, or markets for a particular
product. In these cases, agents may wish to move around (“re-
verse gerrymandering”), as each of them tries to maximize
their influence across the company’s subunits, or resources
are “working” to be allocated to areas where they will be most
needed.
In this paper we explore an iterative dynamic in this set-
ting, finding that allowing this decentralized system results,
in some particular cases, in a stable equilibrium, though in
general, the setting may end up in a cycle. We further exam-
ine how this decentralized process affects the social welfare
of the system.

Introduction
In October 2016, just before the US presidential elections,
the New York Times published an article titled “Go Mid-
west, Young Hipster” (MacGillis 2016). In it, the author em-
phasized how crucial elections could be won if supporters of
a party would move from where they are concentrated to ar-
eas where they are more sparse. While this may be a ridicu-
lous suggestion for national elections and the large number
of people involved (and the author did not claim otherwise),
in other settings such a proposition is not as preposterous.

An obvious, more realistic, setting of a similar idea in or-
ganizations is that of change agents (Rogers 1962). When
trying to change a corporate behavior, change agents move
around the organization, trying to form coalitions to bring
about some form of a change they are advocating for, so that
it encompasses the whole company. Many people in large
bureaucratic organizations are familiar with the sets of com-
mittees in which decision are made. In such organizations,
people seeking to push an idea (or a person) try to gain in-
fluence in multiple committees.

A wider angle reveals this to be, more generally, a model
of decentralized resource allocation. Understanding what
would be the outcome if many of our resources were au-
tonomous and could attempt to allocate themselves to their
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optimal destination, while their ultimate goal is succeeding
in as many destinations as possible. This is a desirable fea-
ture in many industrial Internet of Things (IoT) applications,
but more concretely, one can think of a medical resource (or
robot) deciding which of multiple field operations it should
go to without central direction. It can be a batch of advertis-
ing resources directed to appropriate product/market without
the company headquarters deciding on it; or it can be grass-
roots political campaigners going to volunteer in the place
they think they will be able to challenge rival campaigns,
with no need for their candidate telling them where to go.

All these settings have to do with agents realizing whether
they are needed in their current location, and if not – look-
ing for a better place they can contribute in, possibly only
seeing the places that are reachable by them from their area.
In this work, we are less interested in how they might reach
their destination, but in the fundamental question of what
are the effects of using a decentralized system, instead of a
hierarchal, centralized one.

Since this setting is, fundamentally, equivalent to an at-
tempt by supporters of some candidate – which can be a
person, a policy, or an idea – to spread themselves so they
can encourage other supporters and together form a majority
in many sub-units or districts, we will use the terminology of
elections and voting. Voting and elections have been widely
studied in artificial intelligence as natural tools for aggre-
gating preferences of independent, self-interested agents in
multiagent systems. Agents have a preference for some can-
didate and can see if their involvement in their district is
affecting some change (we use “district” as a shorthand for
a subunit, we do not employ geographical considerations).
If it does not, they may examine other possible districts, and
they can move to and be more helpful in (this is a similar set-
ting to that of (Bervoets and Merlin 2012), though they were
looking for novel voting techniques). Each agent operates
independently of others, raising the question of whether this
process can converge; what are its outcomes when agents
move about; and what structural issues influence this out-
come.

Related Work
As a motivation, resource allocation lies at the core of much
economic/Algorithmic Game Theory (AGT) research, and
in particular, a desire to avoid a central, all-knowing, entity



that divides the resources. Indeed, both auctions and pricing,
the main components of the AGT toolkit, are ways in which
resources can be allocated more efficiently, without requir-
ing a centralized decision-making process (Krishna 2002;
Nisan et al. 2007). However, in cases like ours, where the
“resources” may be autonomous, these approaches are not
practical.

Discussion of gerrymandering and district division and
the effects of population distribution on them have been
growing significantly in the past several years in the
computer-science community (Bachrach et al. 2016; Lewen-
berg, Lev, and Rosenschein 2017; Cohen-Zemach, Lewen-
berg, and Rosenschein 2018; Borodin et al. 2018). But our
particular model is more similar to hedonic games (Aziz and
Savani 2016): agents are choosing groups to participate in
to increase their utility. However, while in hedonic games
agents care for the success of their coalition, in our model
they are concerned with the overall outcomes of every coali-
tion in the game. Probably the closest paper to our setting is
(Bervoets and Merlin 2012), which, like our setting, moves
agents between different gerrymandered districts. However,
it seeks to find mechanism that prevent such movement,
while we accept it as part of the model.

Somewhat related to our model, (van Bevern et al. 2015)
modeled a setting motivated by gerrymandering, in which
agents are moved according to a fixed rule in a graph in order
to “reorganize” them. In a certain manner, the work of (van
Bevern et al. 2015) is a less general case of our model, as it
follows only a particular pattern.

We employ an iterative framework, which bears similar-
ity to an extensive line of research, such as (Meir et al. 2010;
Lev and Rosenschein 2016; Grandi et al. 2013; Meir 2016;
Rabinovich et al. 2015). While the existence of districts
causes some complications beyond regular iterative voting,
we are less interested in the change of voters’ actual vote,
but on their manipulation by changing their district which is
a type of iterative manipulation not previously considered.

Calculating the optimal allocation is complicated by the
“resources” in this case being the agents with the utility.
Finding an optimal allocation using an iterative process
(which we use) has been shown to be in most cases NP-hard
(Aziz et al. 2016).

Model
We have a set C of m candidates {c1, . . . , cm}, and a set V
of n voters {v1, . . . , vn}. Each vi ∈ V is associated with
a preference order of candidates (i.e., if π(C) is the set of
linear orders of the elements of C, each vi is associated with
its preference order, an element in π(C)). For any number
of voters 1 ≤ s ≤ n we have a voting rule f : (π(C))s →
2C \ ∅, and from here we have two options for tie-breaking:
deterministic Using tie-breaking rule t : 2C → C, so that

the outcome of the election is t ◦ f .
fractional Each candidate in the winning set receives an

equal fraction of the win (the meaning of this will become
apparent shortly).
In this paper, we will focus on plurality – the most com-

monly used voting rule – in which each vote gives a point

to its top-ranked candidate, and the candidate with the most
points is the winner. The model can easily be extended to
any other voting rule.

In addition to this basic voting setting, we also have a set
D of k districts {D1, . . . , Dk}. There is an initial division
of voters to the different districts, which can be considered
as g0 : V → D. We will denote the initial voters of dis-
trict Di as V 0

i = {v ∈ V |g0(v) = Di}. From the voters
of (V1, . . . , Vk) one can construct a district scoring vector
p ∈ Rm

+ , giving each candidate a point (or its fraction, in the
fractional case) if they have won a district. An inter-district
voting rule takes this vector p and outputs a set of overall
winners: f̃ : Rm

+ → 2C (with f taking p ∈ Rm
+ as its in-

put). Once again, a tie-breaking rule can be used, to make the
overall election winner t̃◦f̃ (here we do not have a fractional
variant, as we seek to end with an overall winner). In this
paper (as in other gerrymandering papers (Bachrach et al.
2016; Lewenberg, Lev, and Rosenschein 2017; Borodin et
al. 2018)), we shall use the plurality rule as our inter-district
voting rule, making the winner the candidates which won
the most districts.

Each voter vi has a utility function which gets as an input
the district scoring vector ui : (Rm

+ ) → R. We are going to
consider two types of utility functions for our agents:

global These agents are only concerned with the ultimate
outcome. That is, the final outcome of t̃ ◦ f̃ and where
the winner is located in their own preference order. This
type of utility is more appropriate for presidential sys-
tems, where the only thing that matters is the ultimate
outcome of the winner.

lexicographic These agents consider the input district scor-
ing vector. They re-order it according to their own pref-
erence order, constructing (score(ci1), . . . , score(c

i
m)) ∈

Rm
+ such that ci1 is voter vi’s top ranked candidate,

ci2 the 2nd favorite and so on. The utility function
works lexicographically, such that (x1, x2, . . . , xm) �i

(x′1, x
′
2, . . . , x

′
m) if there is 1 ≤ j ≤ m such that for all

j′ < j, xj′ = x′j′ and xj > x′j . This type of utility is
more appropriate for parliamentary system, where agents
seek as many representatives as they can of parties they
favor.

Iterative Process
At time h an agent can decide that they wish to move from
their district to another. An agent v will move from Di

to Dj at time h if ui(ph) > ui(p
h−1) (p0 is the starting

point) for the district score vector ph−1 created from
f(V h−1

1 ) . . . , f(V h−1
i ), . . . , f(V h−1

j ), . . . , f(V h−1
k )

and ph created from f(V h−1
1 ) . . . , f(V h−1

i \
{v}), . . . , f(V h−1

j ∪ {v}), . . . , f(V h−1
k ) (this shows

for j > i, but this is not a condition).
If there are multiple changes available to v, the voter will

choose the one that maximizes ui (i.e., a best-response).
That is, an agent will move if they can improve the over-

all result of the election, regardless of their effect in their
previous district. As in other iterative voting papers (from



(Meir et al. 2010) onwards), we will allow only one agent to
change their district at each time point.

In various settings (e.g., workplaces), there may be limi-
tations on agents leaving an organizational sub-unit under-
staffed, or arriving at an already crowded sub-unit. Hence,
we will explore the implications of limitations on the size of
districts. We will do so by imposing upper and lower thresh-
olds on district sizes, so that for any i, b− ≤ |Di| ≤ b+.1
That is, if some district is at its lower threshold, no agent
will be allowed to leave. If a district is at its upper threshold,
no agent will be allowed to join.

Beyond the manipulation of agents moving between
districts, they could combine such a move with a strategic
changing of their announced vote. This applies less to
resource allocation settings (a resource can not change
its essence), but more to settings that involve agents
pushing for some change (such as in an organizational
setting). We do not allow agents to change their vote while
in the same district (that would basically reduce to the
iterative voting setting in any case), but they can change
their vote when changing district. Thus, an agent v ∈ V
currently in Di voting with a preference order v′ ∈ π(C)
will move to district Dj with a vote v′′ in time h if
ui(p

h) > ui(p
h−1) for the district score vector ph−1 created

from f(V h−1
1 ) . . . , f(V h−1

i ), . . . , f(V h−1
j ), . . . , f(V h−1

k )

and ph created from f(V h−1
1 ) . . . , f(V h−1

i \
{v′}), . . . , f(V h−1

j ∪ {v′′}), . . . , f(V h−1
k ).

Ultimately, what we wish to know, is if this iterative pro-
cess converges – does it end in a state in which no agent
wishes to change their location (such a state, when no agent
wishes to change their strategy, is called a Nash equilib-
rium).

To recap, we have several variables in flux:
tie-breaking Either deterministic (one winner per district)

or fractional. This serves to model different district set-
tings. When, suppose, each district selects a delegate, de-
terministic tie-breaking makes sense. In cases of, for ex-
ample, money allocation, a fractional tie-breaking makes
more sense.

utility Either globalists (caring only for the global result) or
lexicographic. Globalists makes sense, again, for cases of
representation when, ultimately, the district process will
select an overall winner. When the districts are making a
monetary allocation, for example, someone fighting for a
particular cause, first wants their cause to get the most it
can, and only secondary to that, to allocate money to more
minor concerns.

strategic actions Either just moving between districts, or
also vote-strategic. This depends on the information struc-
ture – if all know a particular agent as a supporter of a
particular candidate, they may not be able to switch their
allegiance easily.

1This exists, technically, in many US states’ congressional dis-
tricts, which are forbidden by some states to vary in size beyond
a limited amount, such as 1%. Of course, in such cases people are
not prevented from leaving, but rather the district will have to be
redrawn following the next census.

Table 1: Agent variables and their possible values

Category Option I Option II
Tie-breaking deterministic fractional

Utility globalist lexicographi
Strategy district move only vote-strategic

1
1

3
, 1

1

3
,
1

3
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Figure 1: Example 1 — The lo agent (represented as a yel-
low circle) in the top unit moves to the bottom unit, winning
it over. This makes it possible for the ag agent in the bottom
unit to move to the top. The number indicate each groups
score

Naturally, in addition to that we have as parameters the
environment’s variables: number of voters (n), candidates
(m), districts (k), and bounds on district sizes (b−, b+), the
initial district allocation, etc.

Example 1. Consider a multi-unit technology company.
Each unit is in charge of one product, and each product can
be developed using one of the three available technologies:
machine learning (ML), algorithmic game theory (AGT),
and logic. There are 10 developers in the company and 3
units, and in every unit there must be either 3 or 4 develop-
ers. The developers want that as many products as possible
will be developed using their favorite technology. In case of
a tie in a unit, the product will be developed using hybrid
technology (i.e., fractional districts).

3 developers in the company are machine learning en-
thusiasts (ml), 3 believe in algorithmic game theory (ag)
and the other 4 support logic (lo) (the full preferences or-
der is not needed for this example). The initial company
partition is V 0

1 = {ml,ml, ag, lo} V 0
2 = {ag, ag, lo} and

V 0
3 = {ml, ag, lo}. In the initial state, the first product is de-

veloped using ML techniques, the second product is devel-
oped using AGT and third combines all three approaches.
As can be seen in Figure 1, in the initial state, only a de-
veloper from the first unit can move to other units, due
to the size constraints, and indeed the developer that sup-
ports ”lo” wants to move to the third unit, as this move
will result in the third product be developed using logic ap-
proaches. That is, V 1

1 = {ml,ml, ag} V 1
2 = {ag, ag, lo}

and V 1
3 = {ml, ag, lo, lo}. Now, the developer that supports

”a” wants to move to the first unit and cause the first prod-
uct to partly be developed using algorithmic game theory
approaches and V 2

1 = {ml,ml, ag, ag}, V 2
2 = {ag, ag, lo}

and V 2
3 = {ml, lo, lo}. Assuming that the machine learning

developers from V 2
1 prefer lo � ag, then no developer has

an incentive to switch units and therefore the third state is
stable.



Convergence
The first step in our analysis is to try and see if there are
cases in which the iterative process will converge.

Table 2: Summary of the cases our theorems prove for b+ −
b− = 1. For b+ − b− > 1, see Theorem 4 (1), (2).

globalist lexicographic
utility utility

fractional Theorem 4 (3) Theorem 3
tie-breaking no convergence converges
deterministic Theorem 1 Theorem 2
tie-breaking converges converges

Theorem 1. If b+ − b− = 1 and agents are globalists and
not vote-strategic and districts are not fractional, the itera-
tive process will always converge to a Nash equilibrium, in
which no agent wishes to change.

Proof. First, we will show that under the theorem’s condi-
tions, the score of each district’s winner is weakly mono-
tonically increasing with the iterative process. If a district’s
size is b−, no agent can leave, and if a new agent arrives, it
will do so to change the winner outcome, and hence the new
winner’s score will be the same as the previous one (since
all of its voters are still there), or strictly more. If the district
size is b+, at each point, the last transfer of a voter to the
district (which made its size b+) was needed to make this
candidate win (otherwise the voter would not have moved).
This means no supporters of the current winner can leave the
district, therefore the score of the winner of the district will
never decrease.

Assume for contradiction that the process does not con-
verge and results in a cycle. Since each district’s maximal
score is weakly monotonically increasing, districts’ maxi-
mal scores during the cycle always stay the same. Of all the
voters that move let C ′ be the set of candidates they vote
for, and let c′ ∈ C ′ be the candidate of that set that is high-
est ranked in the tie-breaking rule. Let v be a voter that votes
for c′. Once v moves to a new district and c′ wins there, there
is no way for any other candidate to dislodge c′. So v has no
reason to ever continue moving in the cycle, contradicting
its existence.

Theorem 2. If b+ − b− = 1 with lexicographic, not vote-
strategic voters and districts are not fractional the itera-
tive process will always converge to a Nash equilibrium, in
which no agent wishes to change.

Proof. Assume for contradiction that there are cycles and let
S = S1 → S2 → · · · → Sl → S1 be a cycle, where each
S ∈ S is a state that holds all the relevant information.

First, observe that in every district one voter leaves, one
voter joins and so on, because b+ − b− = 1. Further, voters
would join districts only if they could influence the result in
their new districts. For every state S ∈ S, district D ∈ D
and candidate c ∈ C let s (c,D, S) be the number of votes

in district D at state S for candidate c. Let w(D,S) ∈ C be
the winner in district D at state S.

Let C ′ ⊂ C be the set of candidates that become victo-
rious during the cycle S, and let z ∈ C ′ be the lowest can-
didate in C ′ according to the tie breaking rule. Let D ∈ D
be a district in which z becomes victorious during S and let
(v1, . . . , v`D , v1) be the ordered set of voters that joined dis-
trict D during S and let (r1, . . . , r`D , r1) be the ordered set
voters that left district D during S. Assume without loss of
generality, that first voter v1 joined district D and then voter
r1 left district D. Further, assume without loss of general-
ity that voter v1 supports candidate z. Consider the move
S1 v1→D→ S2 ∈ S when voter v1 joined district D.

Now, there are two possible cases:

Case I: Voter r1 does not support candidate z Since
candidate z is the lowest ranked candidate, accord-
ing to the tie breaking rule, who became victorious
in district D during the cycle S, it must hold that
s
(
z,D, S2

)
≥ s

(
c,D, S2

)
+ 1,2 for every other

candidate c ∈ C, c 6= z. As voter r1 does not support
candidate z, before v2 joined district D, the winner was
candidate z, and therefore after v2 joined district D in
state Sh there were exactly two candidates (including
z) with s

(
·, D, Sh

)
≥ s

(
z,D, S2

)
. Because voters

alternately join and leave district D and voters would
join a district only if they could influence the result,
it holds that in every S ∈ S there is a candidate with
s (·, D, S) ≥ s

(
z,D, S2

)
. However, if in state S1 there

was a candidate with s
(
c,D, S1

)
≥ s

(
z,D, S2

)
then

voter v1 could not make candidate z victorious.
Case II: Voter r1 does support candidate z When r1 left

districtD they joined districtD′. If the next voter to leave
district D′ does not support candidate z then we are back
at Case I. Therefore, there is a cycle of z’s supporters that
join and leave districts. Consider voter v that left district

D and join district D′ in the move S D→v→D′

→ S′. As the
last voter to join district D also supports candidate z it
must hold that w (D,S) = z, w(D′, S) 6= z, w(D,S′) 6=
z and w(D′, S′) = z.3 Let w(D′, S) = c and w(D,S′) =
c′, because v moved from D to D′ it must hold c �v c

′,
i.e., voter v prefers candidate c′ over candidate c. Consider
the directed graph Gv = (C,Ev) where the nodes are the
candidates and there is a directed edge (c, c′) ∈ Ev if

and only if there is a move S D→v→D′

→ S′ ∈ S such
that w(D′, S) = c and w(D,S′) = c′. Because S is a
cycle, after v joins a district they leave the district and
therefore the in-degree of a node c ∈ Gv equals to its out-
degree, and thus there is a cycle inGv . However, for every
directed edge (c, c′) ∈ Ev it holds that c �v c

′, reaching
a contradiction.

2s(x, y, z) denotes score of candidate x in district y for state z.
3w(x, y) denotes the winner in district x in state y.
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Figure 2: A cycle occurs, assuming districts are determin-
istic tie-breaking in each district is in a’s favor, and either
agents are lexicographic, or the global tie-breaking is for b.
On each edge is the score vector induced by this move.

Theorem 3. If b+ − b− = 1 with fractional districts and
lexicographic, not vote-strategic voters, the iterative pro-
cess will always converge to a Nash equilibrium, in which
no agent wishes to change.

Proof. Again, assume for contradiction that there are cycles
and let S = S1 → S2 → · · · → Sl → S1 be a cycle.

As before, note that in every district one voter leaves, one
voter joins and so on; and voters would join districts only if
they could influence the result in their new districts.

Now there are three possible cases:

Case I: This is the case if during the cycle at some state
S ∈ S for some D ∈ D: |argmaxc∈C s (c,D, S)| = 1.
Let c∗ ∈ C, D ∈ D, S1 v→D→ S2 ∈ S such that
argmaxc∈C s

(
c,D, S2

)
= {c∗} and in this case I, the

next voter to leave district D does not support candidate
c∗. Let voter v ∈ V be the voter that joinedD in the move
S1 v→D→ S2, let voter v′ ∈ V be the next voter to joinD in

the move Sh v′→D→ Sh+1 ∈ S, and let voter u be the voter
that left D after v has joined and before v′ has joined. As
voters only join districts if they can influence the results,
and voter u did not support candidate c∗ it holds that there
are two candidates in state Sh+1 with s

(
·, D, Sh+1

)
=

s
(
c∗, D, S2

)
, and therefore for every S ∈ S there ex-

ists a candidate with s (·, D, S) = s
(
c∗, D, S2

)
. It is a

contradiction to the fact that before v joined district D,
maxc∈C s

(
c,D, S1

)
= s

(
c∗, D, S2

)
− 1.

Case II: This is the case if during the cycle at some state
S ∈ S for some D ∈ D: |argmaxc∈C s (c,D, S)| = 1,
however (unlike case I), this is the case if at any point
that argmaxc∈C s (c,D, S) = {c∗} for c∗ ∈ C, D ∈ D,
S ∈ S the next voter to leave district D supports candi-
date c∗. In that case, let c∗ ∈ C, D ∈ D, S1 v→D→ S2 ∈ S
such that argmaxc∈C s

(
c,D, S2

)
= {c∗} and let u ∈ V

be the next voter to leave district D and joined district D′

in the move Sh D→u→D′

→ Sh+1 ∈ S . As voter u sup-
ports candidate c∗, and argmaxc∈C s

(
c,D, Sh

)
= {c∗}

it must hold that argmaxc∈C s
(
c,D′, Sh+1

)
= {c∗} and

the next voter to leave district D′ also supports candidate
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Figure 3: A cycle occurs, assuming districts are fractional
and agents are lexicographic. On each edge is the score vec-
tor for the candidates induced by this move.

c∗. Hence, there is a cycle of c∗’s supporters that leave join
and districts. Similarly to the proof of Theorem 2 (case
II), because voters leave their district only if they strictly
prefer the new outcome, this dynamic cannot cycle.

Case III: This is the case if during the cycle S, for ev-
ery S ∈ S, D ∈ D: |argmaxc∈C s (c,D, S)| >
1. In that case, when a voter v ∈ V that sup-
ports candidate c∗ leaves district D and joins district

D′ in the move S1 D→v→D′

→ S2 ∈ S it must
hold that c∗ ∈ argmaxc∈C s

(
c,D, S1

)
and c∗ ∈

argmaxc∈C s
(
c,D′, S2

)
and in addition, due to the frac-

tional character of districts,∣∣∣∣argmax
c∈C

s
(
c,D′, S2

)∣∣∣∣ < ∣∣∣∣argmax
c∈C

s
(
c,D, S1

)∣∣∣∣ (1)

also note that∣∣∣∣argmax
c∈C

s
(
c,D, S1

)∣∣∣∣ = ∣∣∣∣argmax
c∈C

s
(
c,D, S2

)∣∣∣∣+ 1

(2)
and∣∣∣∣argmax

c∈C
s
(
c,D′, S1

)∣∣∣∣ = ∣∣∣∣argmax
c∈C

s
(
c,D′, S2

)∣∣∣∣− 1.

(3)
Consider the following potential function4

φ (S) =
∑
D∈D

∣∣∣∣argmax
c∈C

s (c,D, S)

∣∣∣∣2 (4)

due to Equations 1, 2, 3 and 4 it holds that φ
(
S1
)
>

φ
(
S2
)
, which cannot happen in a cycle, as games with

potential functions are guaranteed to converge to a Nash
equilibrium (Monderer and Shapley 1996).

These convergence proofs are tight, in the sense that al-
most any deviation from them, results in a setting that does
not converge.

4Definition of which can be found in (Maschler, Solan, and Za-
mir 2013).
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Figure 4: A cycle occurs, assuming districts are fractional
and agents are globalist. On each edge is the score vector for
the candidates induced by this move.

Theorem 4. The following cases are not guaranteed to con-
verge, and contain cases with cycles:

1. If b+ − b− ≥ 2 when districts are deterministic (not frac-
tional) and agents are vote-strategic or not. [bounds of
Theorem 1 and Theorem 2]

2. If b+ − b− ≥ 2 when districts are fractional, and agents
are lexicographic and either vote-strategic or not. [bound
of Theorem 3]

3. If b+ − b− = 1 when districts are fractional and voters
are globalist. [bound of Theorem 1]

Proof. For item 1, when districts are deterministic, Figure 2
shows a cycle when tie-breaking t in each district is a � b,
and overall, t̃ is b � a.

For item 2, when districts are fractional, Figure 3 shows a
cycle, when agents are lexicographic.

For item 3, when districts are fractional and voters glob-
alist, Figure 4 shows a cycle.

Simulations
While the results on convergence are tight, we are interested
to see the effects of the decentralized iterative dynamic on
the overall welfare of the system. Moreover, as we have mul-
tiple parameters of the type of districts and types of agents,
we are interested in exploring how (and if) are these param-
eters affect the efficiency of the process and how this affects
the overall social welfare.

While the examples above demonstrated a relatively small
number of candidates, when trying to simulate more of them,
the question arises of determining the preference order of
the voters. We have chosen to run each simulation both with
randomized preferences as well as with single-peaked pref-
erences. Single-peaked preferences are relevant when there
is an agreed upon ordering of candidates on some axis (e.g.,
political right to left; location of public parks along a street;
etc.). Every voter has a particular location on the axis which
is its most favored location, and the farther away an option is
from that location, the lower it is in the voter’s preference or-
der. Unlike randomized preferences, which can create quite
unrealistic preference orders, there is a case to be made re-
garding these preferences (see (Sprumont 1991)) and resem-
bling realistic preferences (as (Mattei and Walsh 2017) note,

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

3 (S) 3 (U) 5 (S)

5 (U) 10 (S) 10 (U)

Figure 5: The average proportion of agents that prefer the
final position over the opening position for non-strategic
agents with deterministic tie-breaking, lexicographic utility,
according to the gap constraint (the x-axis) and number of
districts for elections with 8 candidates. (S) marks single-
peaked preferences vs. uniformly random ones (U) Gener-
ally, as the gap constraints are loosened, agents can increase
their welfare.

elections are rarely purely single peaked, but they are closer
than purely random models, as (Kedar 2009) indicates).

In order to calculate social welfare, in each simulation,
we measure the percentage of voter that prefer the final state
over the initial state.5

In order to simplify data analysis and comparison, we ran
a few experiments with a large variety of voter numbers, but
here we will present the extensive simulations we have done
of the iterative dynamic with 53 voters (the number was use-
ful due to the district size). We examined the effects of the
number of districts (we ran simulations with 2,3,5 and 10),
and the size of the gap between maximal and minimal group
size – b+ − b− (we ran simulations with 1,2,3,4,5).

A simulation setting included a choice of number of the
district, a choice of the number of candidates, a choice
of the size of gap, whether voter preferences were uni-
formly randomly generated or single-peaked, whether dis-
tricts were fractional or deterministic, whether agents’ util-
ities were global or lexicographic, and whether agents were
vote-strategic or not. For each of these 320 potential settings,
we ran 1,000 scenarios, each beginning in the truthful state
(for vote-strategic agents), and advancing from there.

Results
Despite the theoretical convergence results, the most strik-
ing of the simulation results was that the rate of non-
convergence was so small. It was, overall, slightly less than
0.66%. While no setting had a particularly large amount of
cycles, the number of districts did slightly increase them, as
did using lexicographical utilities and using fractional dis-
tricts. On average, 57% of initial states were already in equi-
librium, but this was highly volatile, and mostly appeared in
settings with a small number of districts.

Convergence happened in almost all cases within 13 steps.
Single-peaked preferences took markedly less time (presum-

5In a case where a cycle occurred, we averaged over all the
states of the cycle.
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Figure 6: The average proportion of agents that prefer the
final position over the opening position for non-strategic
agents with lexicographic utility and 5 candidates, accord-
ing to number of districts (the x axis) and various gaps. (F)
marks fractional tie-breaking vs. deterministic one (D).
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Figure 7: The average proportion of agents that prefer the
final position over the opening position for strategic agents
with deterministic tie-breaking and 8 candidates, according
to number of districts (the x axis) and various gaps. (L)
marks lexicographic preferences vs. globalist ones (G).

ably, thanks to their more structured form), and global utility
converged faster than lexicographic utility.

The flexibility that is given to players to manipulate –
the maximal/minimal bounds over district sizes – affects the
outcome, though it was not necessarily monotonic. As can
be seen in Figure 5 (the x-axis is b+ − b−) the effect of the
gap on all cases is almost identical – even when the “ampli-
tude” of the agents’ social welfare is different (mostly de-
pendent on district size and on distribution), the effect of
changing the constraints is fairly consistent across all set-
tings. This is also true when comparing the social welfare as
a function of the number of district for fractional vs. deter-
ministic tie-breaking. As can be seen in Figure 6, the utility
increase as the number of districts grows (the x-axis), and
generally speaking under fractional settings, the agents tend
to prefer the final state more than under deterministic tie-
breaking settings.

The difference in utility between globalists and lexico-
graphic agents is quite significant (almost 250% more), as
can be seen in Figure 7, an advantage that is consistent
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Figure 8: The average proportion of agents that prefer the
final position over the opening position for non-strategic
agents with deterministic tie-breaking, global utility and 5
candidates, according to number of districts (the x axis) and
various gaps. (S) marks single-peaked preferences vs. uni-
formly random ones (U).

(though with different magnitudes) when changing number
of candidates, tie-breaking system, and whether agents are
strategic or not. This has to do with the greater ability of lex-
icographic agents to be partially satisfied – several agents,
with opposing views can be satisfied. However, the growth
is quite dramatic. Furthermore, notice that smaller gaps pro-
duce less utility for the agents, while larger gaps presumably
allow greater flexibility to the manipulating agents.

Beyond lexicographic agents’ greater utility, global
agents’ distribution can effect their utility significantly. As
can be seen in Figure 8, single-peaked agents were almost
half the utility compared those whose preferences were allo-
cated uniformly at random. Notice that, as before, in general,
higher gap agents were more successful.

We should note that one of the most surprising outcomes
is that strategic agents did not, ultimately, have a meaning-
fully better utility than non-strategic agents. In a sense, all
agents could save themselves the effort, and just not bother
with strategizing.

Discussion
The “reverse gerrymandering” setting, presented in this pa-
per, may sound slightly unnatural at first blush, since people
do not usually get to jump between voting districts (though
(Bervoets and Merlin 2012) worked on such a setting). How-
ever, we believe that when viewed from the perspective of
people participating in workplace committees, with their
overlapping organizational influence, they do indeed strate-
gize on where they could be more influential, and they move
if they find a better position. In a more futuristic outlook,
as autonomous systems become more common, the issue of
these agents will need to be finding on their own where they
are pivotal to help, and when will it be wrong to move. We
presented here both theorems on the properties of this dy-
namic, and also explored it empirically (including for cases
which we showed could not converge, hence an empirical
examination is the main tool for analysis), discovering some
key issues on the effect of changing the agent preference



model, and the effect of district size on the agent. There is
still much to discover – what other preference models work
well with this setting; understanding better the effect of the
gap constraints on social welfare; and combining various
different types of agents in the same simulation, examining
how their differences interact.
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