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The equilibrium and fluctuation methods for determining the surface tension,s, and bending
modulus,k, of a bilayer membrane with a fixed projected area are discussed. In the fluctuation
method the elastic coefficientss andk are measured from the amplitude of thermal fluctuations of
the planar membrane, while in the equilibrium method the free energy required to deform the
membrane is considered. The latter approach is used to derive new expressions fors andk ~as well
as for the saddle-splay modulus!, which relate them to the pair-interactions between the amphiphiles
forming the membrane. We use linear response theory to argue that the two routes lead to similar
values fors andk. This argument is confirmed by Monte Carlo simulations of a model membrane
whose elastic coefficients are calculated using both methods. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1639000#

I. INTRODUCTION

The bilayer membrane, a double sheet of surfactants
separating two aqueous phases, is one of the structures
formed by the self-assembly of amphiphilic molecules in
water.1 The driving force in this process is the hydrophobic
effect which favors exposing the hydrophilic part of the mol-
ecules to the water while shielding the ‘‘oily’’ part from
aqueous contact.2,3 The ongoing interest in such membranes
is due to many reasons, among which are their predominant
role in the organization of the biological cells,4 and their
various applications in many industrial sectors.5 Bilayer am-
phiphilic sheets have very special mechanical properties:
While being strongly resistant to lateral mechanical stretch-
ing or compression, they are highly flexible and can exhibit
large thermally excited undulations.6,7 This unique elastic be-
havior, namely the stability against external perturbations on
the one hand, but the ease in going from one shape to another
on the other hand, is important for the activity of living
cells.8 Consequently, there has been a great effort to under-
stand the elasticity of bilayer systems.6,7,9,10

Bilayer membranes are quasi-two-dimensional~2D! ob-
jects: their thickness is typically of the size of a few nanom-
eters ~roughly, twice the length of the constituent am-
phiphilic molecules!, while their lateral extension can reach
up to several micrometers. Since the membrane appears as a
thin film on the mesoscopic scale, its physical properties are
often studied using coarse-grained phenomenological models
treating the membrane as a smooth continuous 2D
sheet.6,7,9,11Membrane elasticity has been traditionally stud-
ied using the Helfrich effective surface Hamiltonian which
relates the elastic energy to the local principle curvatures of
the membranec1 and c2 , and which has the following
form:12
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where J[c11c2 and K[c1c2 are the total and Gaussian
curvatures, respectively. The integration in Eq.~1! is carried
over the whole surface of the membrane. The Helfrich
Hamiltonian is derived by assuming that local curvatures are
small, and the free energy can be expanded to second order
in J and to first order inK. It, therefore, involves four phe-
nomenological parameters: the spontaneous curvaturec0 ,
and three elastic coefficients—the surface tensions0 , the
bending modulusk0 , and the saddle-splay modulusk̄0 ,
whose values depend on the area density of the amphiphiles.
If the number of these is fixed, then one should also consider
the corrections to Hamiltonian~1! due to the changes in the
area of the fluctuating membrane. For weakly fluctuating
membranes these corrections can be assumed to be small.
The surface tension, which is usually associated with the free
energy cost for adding molecules to the membrane~at a fixed
density!, is related in the case of membranes with fixed num-
ber of amphiphiles to the area-density dependent~Schulman!
elastic energy.13–15

The Helfrich Hamiltonian has been very successful in
describing the shape and the phase diagram of vesicles.16–18

It also yields a correct description of the thermal fluctuations
around the equilibrium surface state,19–21and of the entropic
forces between membranes.22 Because it is phenomenologi-
cal, the Helfrich Hamiltonian provides no information about
the values of the elastic coefficients. Many theories have
been developed that attempt to relate the elastic coefficients
introduced by the Helfrich Hamiltonian to microscopic enti-
ties and the interactions between them.23–27 In fact, these
theories are usually concerned with the free energy of the
surface, rather than the Hamiltonian. The free energy is as-
sumed to have the same form as the Helfrich Hamiltonian
and, hence, usually called theHelfrich free energy~see a
more detailed discussion in Sec. II!. The coefficients appear-
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ing in the expression for the free energy, which we denote by
s, k, and k̄, are also referred to as the surface tension, the
bending modulus, and the saddle-splay modulus, respec-
tively. Despite the similarity in names, there is a significant
difference between the Hamiltonian coefficients~with the
subscript 0! and the free energy coefficients. The former are
‘‘material properties’’ which depend on the internal~poten-
tial! energy of the surface. The latter, on the other hand, are
thermodynamic quantities and, as such, are also influenced
by the entropy associated with the thermal fluctuations of the
system. Their values, therefore, may also depend on the tem-
perature and the size of the system.

In addition to the above-mentioned theories, there has
been also an effort to analyze the elastic behavior in the
context of the thermodynamics and statistical mechanics of
curved interfaces.28–34The last approach has the potential of
providing exact ‘‘virial’’ expressions fors, k, andk̄ in terms
of the microscopic forces between the amphiphiles and the
pair distribution function. One of the systems whose statisti-
cal mechanics has been studied extensively is that of a
simple liquid–vapor interface. Although this seems to be a
rather simple system, the determination of its elastic moduli
is quite complicated and involves a set of technical and con-
ceptual problems. Below we discuss some of them.

One problem is related to the finite thickness of the in-
terface, namely to the fact that the local concentration is not
a step function but changes gradually while going from one
phase to the other. Consequently, there is some ambiguity
about the location of the dividing plane that separates the
two phases and to which the Helfrich Hamiltonian is applied.
It turns out that the values of the rigidity constantsk and k̄
~the coefficients of the second order terms in the curvatures
c1 and c2) depend on the choice of the dividing surface.35

The dependence of the rigidity constants on the reference
surface had led people to question the validity of continuing
the Helfrich free energy expansion beyond the linear term in
curvature. This problem has been recently tackled by van
Giessen and Blokhuis36 who used computer simulation to
determine the rigidity constants of a curved liquid–vapor
interface in a system of particles interacting via a truncated
Lennard-Jones~LJ! potential. They have demonstrated that
although one needs to state which convention for locating the
dividing surface is used when providing the values ofk and
k̄, this fact does not render the Helfrich free energy useless,
nor does it diminish the importance of these quantities in
describing the elastic properties of the interface.

A second problem that makes the determination of the
rigidity constants difficult is a technical one: In their paper36

van Giessen and Blokhuis used the virial expressions given
in Ref. 37 to evaluate the values ofk and k̄. These expres-
sions relate the rigidity constants to the derivative of the pair
density distribution function with respect to the radius of
curvatureRc . This means that the values of the rigidity con-
stants of aplanar interface cannot be determined from the
simulation of that system only, but it is necessary to perform
a set of simulations of curved interfaces with very large val-
ues ofRc . For the interfaces investigated in Ref. 36, it turns
out that in the largeRc regime the dependence of the pair
density function onRc is very weak. Consequently, it was

impossible to determinek andk̄ accurately, and only a rough
estimate of these quantities could be obtained.

A third problem, a more fundamental one, is related to
the method of calculating the rigidity constantsk and k̄ and
to our interpretation of their physical meaning. The theoret-
ical and experimental methods for determining the elastic
coefficients of interfaces can be classified intoequilibrium
~or mechanical! methods andfluctuation methods.38,39 The
difference between these two approaches is in the context in
which the Helfrich Hamiltonian and the associated free en-
ergy are used: In the equilibrium approach one extracts the
elastic coefficients by comparing the free energies of two
equilibrium surfaces with different curvatures. In the fluctua-
tion approach, on the other hand, the Helfrich Hamiltonian is
used to calculate the free energy cost due to a thermal fluc-
tuation that changes the local curvature from its equilibrium
value. The elastic coefficients are derived from the mean-
square amplitudes of the fluctuations. The situation in which
there exist two methods for calculating elastic moduli is
reminiscent of other cases, for instance, the two different
methods of evaluating the elastic constants of thermody-
namic systems in linear elasticity theory,40–43 and the two
approaches for determining the surface tension of a planar
interface.44,45 In the latter examples the different approaches
lead to the same values for the mechanical moduli, in accord
with the linear response theory.46,47This is not the case with
the rigidity constants of a liquid–vapor interface.38 The dis-
crepancy between the two methods is due to the fact that in
order to change the equilibrium radius of curvature of, say, a
spherical liquid drop, it is necessary to change its volume as
well. This means a change in the volume fractions of the two
phases~i.e., the condensation of vapor or the evaporation of
liquid!, and it thus requires the variation of the thermody-
namic variables like the temperature or the chemical poten-
tial. In the fluctuation case the radius of curvature is varied
by thermal fluctuations, while the thermodynamic variables
are not altered.

In this paper we discuss the statistical mechanics of fluid
bilayer membranes. We derive expressions for the elastic co-
efficientss, k, andk̄ of the membranes, relating them to the
interactions and the correlation functions between the am-
phiphiles forming the bilayer. We use these expressions for a
Monte Carlo~MC! determination of the elastic coefficients
of a bilayer membrane computer model. Unlike the expres-
sions derived for the rigidity constants of a liquid-vapor in-
terface, our expressions are such that they can be evaluated
using asingle MC run performed on the~quasi!flat mem-
brane reference system only. This feature greatly simplifies
the computational procedure, and makes it more efficient and
well controlled. Another important distinction between the
membranes discussed in this paper and the system of liquid–
vapor interface studied in Ref. 36 is the fact that the me-
chanical and the fluctuation methods for determining their
rigidity constants lead to similar results. Our expressions are
derived using the mechanical approach, namely by calculat-
ing the free energy variations resulting from the change in
the area and curvature of the membrane. The numerical val-
ues of the elastic coefficients which we obtain from these
expressions are compared with the values extracted from a
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spectral analysis of the thermal fluctuations around the flat
reference state. We find a very good agreement between the
two methods. This agreement, which is expected by virtue of
linear response theory~see discussion in Sec. II!, reflects the
fact that the curvature of the membrane can be varied by
changing the shape of the container~namely, by the applica-
tion of external forces! without affecting the thermodynamic
properties of the bulk aqueous phases surrounding it. It
should be noted that the experimental values ofk measured
~for the same lipid bilayers! using mechanical and fluctuation
methods can differ by as much as a factor of 3.39 The origin
of these discrepancies is not well understood.

The bilayer computer model which we use in this paper
has been recently introduced by one of us.48 ~Here we use a
slightly modified version of that model which we describe in
Sec. IV.! This model has two features which simplify the
derivation of thermodynamic expressions for the elastic co-
efficients and the simulations performed for the calculation
of these expressions. First, the simulations are conducted
with no solvent present in the simulations cell, i.e., as if the
membrane is in vacuum. This feature greatly reduces the
number of atoms in the simulation cell, thus enabling us to
simulate a relatively large membrane over a very long MC
run. The ability to perform long MC runs is very important
since the quantities whose thermal averages we try to evalu-
ate are very ‘‘noisy,’’ and accurate results can be obtained
only if they are measured for a large number of configura-
tions. The other feature is the nature of the interactions be-
tween the molecules forming the membrane. In our computer
model the amphiphilic molecules are modeled as trimers and
the interactions between their constituent atoms are pairwise
additive. For such systems the derivation of expression for
the elastic coefficients~see Sec. III! is simpler than for sys-
tems including many-body potentials. Our discussion in this
paper is, therefore, restricted to central force systems only.

The paper is organized in the following way: The theo-
retical aspects of our study are presented in Secs. II and III.
In Sec. II we describe the relation between the equilibrium
and the fluctuation routes for determining the surface tension
s and the bending modulusk of bilayer membranes, and
explain why these methods~if used appropriately! lead to
similar results. Then, in Sec. III, we derive expressions for
these quantities based on the equilibrium approach. Our ex-
pressions relates andk to the interactions and the correla-
tion functions between the ‘‘interaction sites’’ of the am-
phiphilic molecules. The numerical results are presented in
Sec. IV where we calculate the elastic coefficients of our
model system using the two methods and find a very good
agreement between them. Some technical aspects of the
simulations are discussed in the Appendix. Finally we con-
clude in Sec. V.

II. THE EQUILIBRIUM AND FLUCTUATION ROUTES
TO MEMBRANE ELASTICITY

Linear response is a fundamental theorem which relates
the fluctuations of a system around its equilibrium state and
the response of the system to weak perturbations.46,47 In the
context of elasticity theory it provides a link between the
shape fluctuations of thermodynamic systems and their elas-

tic moduli. For example, when a 2Dflat interface is slightly
stretched or compressed from its equilibrium areaA0 , the
variation of the~small! surface pressureP is given by49,50

KA52A0

]P

]A
, ~2!

whereA is the area of the interface andKA is the stretching/
compression modulus. The above relation provides one way
to measureKA . An alternative approach for measuringKA is
to consider the thermal fluctuations of the areaA around the
equilibrium areaA0 .41,51The equipartition theorem suggests
that in the low temperature limit when fluctuations around
A0 are small

^~A2A0!2&5
kBTA

KA
, ~3!

wherekB is the Boltzmann constant andT is the temperature,
while ^¯& denotes a thermal average. Linear response
theory can be also applied to describe the normal, curvature-
forming, fluctuations of the 2D interface. The discussion in
this case~of normal fluctuations! is, however, somewhat
more complicated. A proof of the equivalence between the
equilibrium and the fluctuation routes to thesurface tension
s of a fluctuating interface had been presented with great
clarity by Cai et al.52 Below we extend that proof and ad-
dress the two routes to thebending modulusk as well. One
important difference between the present discussion and the
one presented in Ref. 52 is related to the nature of the fluc-
tuating surfaces in question. Here, we consider an elastic
surface consisting of a fixed number of molecules whose
area density is varied when it fluctuates. By contrast, the
surface studied in Ref. 52 is incompressible and its area den-
sity is fixed to its equilibrium value. The variation of the total
area of the latter is achieved via the exchange of molecules
between the surface and the embedding solvent. A more de-
tailed discussion on the differences between the elastic prop-
erties of compressible and incompressible surfaces appears
in Ref. 15.

Let us consider a 2D surface that spans a planar frame of
a total areaAp which doesnot necessarily coincide with the
equilibrium ~Schulman! areaA0 . The surface is free to un-
dulate in the direction normal to frame. The ensemble of
conformations which the surface attains is governed by a
HamiltonianH(h(rW)) relating the elastic energy to the con-
formation of the surface. The conformation of the surface is
described by some ‘‘gauge’’ functionh(rW), whererW5(x,y)
label the points on the reference surface. The exact form of
the HamiltonianH is unimportant and, in particular, it is not
limited to the Helfrich form ~1!. As we are interested in
moderately fluctuating surfaces~with no overhangs!, we
shall use the the so-called Monge gaugez5h(rW), whereh is
the height of the surface above the frame reference plane. In
what follows we will restrict our discussion to symmetric
surfaces~such as bilayers! with no spontaneous curvature,
i.e., with no preference to bend toward either the ‘‘upper’’ or
‘‘lower’’ side of the surface. In other words, we assume that
the average conformation of the surface is flat and for eachrW,

^h~rW !&50. ~4!
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We also assume that the surface under consideration is me-
chanically stable, and that the validity of Eq.~4! is not due to
the partition of the configurations phase space into several
subspaces for whicĥh(rW)&Þ0.

If the frame~projected! areaAp is not equal to the equi-
librium areaA0 then it is necessary to apply a tangential
surface pressure in order to fix the area of the frame. If, in
addition, normal forces are applied then relation~4! breaks
down. The function

h̄~rW !5^h~rW !& ~5!

can be regarded as the strain field describing the deformed
state of the surface. The free energy of a system subjected to
a small deformation can be expanded in a power series in the
strain variables. In full analogy to Hamiltonian~1!, we can
write the Helfrich free energy of the surface in the following
form:

F~ h̄!5F~ h̄50!1s~A~ h̄!2Ap!1 1
2 k J̄2~ h̄!1k̄K̄~ h̄!1h.o.t,

~6!

whereA(h̄) is total area of the surface defined by the func-
tion h̄(rW), while J̄(h̄) and K̄(h̄) denote, respectively, the
integratedtotal and Gaussian curvatures defined by

J̄2[E
Ap

drW J2~ h̄~rW !! ~7!

and

K̄[E
Ap

drW K~ h̄~rW !!. ~8!

In Eq. ~6! we set the spontaneous curvaturec050 @see Eqs.
~4! and~5!#, and use theeffective~normalized! values of the
elastic coefficients which are different from the ‘‘bare’’ val-
ues appearing in the Hamiltonian~1! ~see discussion earlier
in Sec. I!. The higher order terms~h.o.t! in Eq. ~6! include
both products of the small variables (A2Ap)/Ap , J̄2, andK̄,
as well as terms involving thegradientsof the local curva-
tures. The latter are assumed to be small since we consider
only nearly flat surfaces described by functionsh̄ which vary
slowly in space. Sinces, k, andk̄ appear as the coefficients
of the free energy expansion in strain variables@Eq. ~6!#,
they can be also related to the following partial derivatives:

s5
]F

]A U
h̄(rW)50

, ~9!

k5
]2F

] J̄2 U
h̄(rW)50

, ~10!

and

k̄5
]F

]K̄
U

h̄(rW)50

, ~11!

evaluated at the reference stateh̄(rW)50.
Equations~9!–~11! express the equilibrium~mechanical!

route to s, k, and k̄. The complementary fluctuations ap-
proach is more easily formulated in Fourier rather than in

real space. Let us take a square frame~the reference surface!
of linear sizeLp5AAp, and discretized it intoN2 square
cells ~‘‘patches’’! of linear sizel 5Lp /N, where l is some
microscopic length of the order of the size of the constituent
molecules. Since the description of the membrane as a 2D
continuous sheet breaks down on length scales belowl , the
surface has to be defined only over a discrete set of points
$rWg5(xg ,yg)% each of which located in the center of a grid
cell. Outside the frame region, the function can be defined by
periodic extension of periodLp , i.e., h̄(xg1n1Lp ,yg

1n2Lp)5h̄(xg ,yg) where n1 and n2 are integer numbers.
The Fourier transform of the~real! function h̄(rWg) is defined
by

h̄qW5
l

Lp
(
rWg

h̄~rWg!e2 iqW •rWg, ~12!

where the two-dimensional wave vectorqW has N2 discrete
values satisfying

$qx ,qy52pm/Lp , m52N/2,...,N/221%. ~13!

The inverse transform is given by

h̄~rWg!5
l

Lp
(

qW
h̄qW eiqW •rWg. ~14!

If the topology of the surface is fixed and it does not form
‘‘handles’’ then the periodicity of the surface leads to the
vanishing of the Gaussian curvature~8! ~Gauss–Bonnet
theorem!. Writing the expressions for the areaA(h̄) and the
integrated total curvatureJ̄ in terms of Fourier coordinates,

A~ h̄!5Ap1
l 2

2 (
qW

q2h̄qW h̄2qW1O~ uh̄qW u4! ~15!

and

J̄2~ h̄!5 l 2(
qW

q4h̄qW h̄2qW1O~ uh̄qW u4!, ~16!

and substituting them in Eq.~6!, we obtain the following
expression for the free energy:

F~ h̄!5F~ h̄50!1
l 2

2 (
qW

@sq21kq41O~q6!#h̄qW h̄2qW

1O~ uh̄qW u4!. ~17!

The free energy~17! can be related to the surface Hamil-
tonianH($h(rWg)%) via the partition function. We may use the
Fourier transform

hqW5
l

Lp
(
rWg

h~rWg!e2 iqW •rWg ~18!

of the functionh($rWg%), and express the Hamiltonian as a
function of the Fourier modes:H($hqW%). Introducing the set
of Lagrange multipliers$ j qW% each of which enforcing the
value of h̄qW5^hqW&, we write the partition function of the
surface as
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ZG@Ap ,$ j qW%#5E D@$hqW%#expH 2bFH~$ j qW%!2(
qW

hqW j qW G J ,

~19!

whereb5(kBT)21. The associated Gibbs free energy is

G@Ap ,$ j qW%#52kBT ln ZG . ~20!

From Eqs.~19! and ~20! it is easy to derive the following
relation:

h̄qW5^hqW&52
dG

d jqW
~21!

and

^hqWh2qW&2^hqW&^h2qW&52kBT
d2G

d jqWd j2qW
. ~22!

The Helmholtz free energyF is related toG via

F@Ap ,$h̄qW%#5G@Ap ,$ j qW%#1(
qW

h̄qW j qW , ~23!

where

dF

dh̄qW

5 j qW . ~24!

If we use expression~17! for the Helmholtz free energy, we
find from Eq.~24! that

j qW5 l 2@sq21kq41O~q6!#h̄2qW1¯ ~25!

@note thath̄qW( j qW50)50]. Combining Eqs.~17!, ~23!, and
~25! we obtain to the following expression for Gibbs free
energy:

G5F~$h̄qW%5$0%!2(
qW

j qW j 2qW

2l 2@sq21kq41O~q6!#

1O~ u j qW u4!. ~26!

When this expression forG is substituted in Eq.~22! and
evaluated for$ j qW%5$0% ~which corresponds to the reference
state$h̄qW%5$0%), we find that the mean square amplitude of
the fluctuations with a wave vectorqW ~the ‘‘spectral inten-
sity’’ ! is given by

^hqWh2qW&u$h̄qW %5$0%5^uhqW u2&u$h̄qW %5$0%

5
kBT

l 2@sq21kq41O~q6!#
. ~27!

This result, which quantifies the magnitude of the fluctua-
tions around the flat equilibrium state, provides a second
~‘‘fluctuation’’ ! route for calculatings andk ~but not for the
saddle-splay modulusk̄). It is frequently quoted in an incor-
rect form with s0 and k0 , the coefficients in the Helfrich
Hamiltonian~1!, instead ofs andk. The equivalence of the
two routes to membrane elasticity is expressed by the fact
that the elastic coefficients appearing in expression~27! are
the same as those obtained from Eqs.~9!–~11!, and which
are associated with the ‘‘equilibrium’’ route. In the next sec-
tion we use Eqs.~9!–~11! to derive statistical-mechanical
expressions for the elastic coefficients. Then, in Sec. IV, we

demonstrate, using computer simulations of a bilayer mem-
brane model, the agreement between the two different meth-
ods of calculation.

III. THERMODYNAMIC EXPRESSIONS
FOR THE ELASTIC COEFFICIENTS

A. The surface tension

Let us return to the equilibrium route to membrane elas-
ticity and to expressions~9!–~11! which describe the relation
between the free energy and the elastic coefficients. The sur-
face tension can be computed by comparing the free energy
of the membrane at the reference state~which is assumed to
be flat! and the free energy of a flat membrane with a slightly
larger area. These two membranes are shown schematically,
without the underlying microscopic details, in Figs. 1~a! and
1~b!. We reemphasize that the total number of amphiphilic
molecules which form the membrane is fixed, and that the
surface tension should be related to the free energy depen-
dence on the area density of the amphiphiles~rather than the
free energy cost to add molecules to the membrane!. The
characteristic surfaceof the membrane to which the free
energy is applied, is chosen as the midsurface between the
two layers. The total volume of the membrane is assumed to
be fixed; otherwise, an additional term involving the volume
compression modulus must be introduced in Eq.~6!.

It is important to remember that in Figs. 1~a! and 1~b!,
only the mean configurations of the surface~in the reference
and deformed states! are depicted, and that the surface undu-
lates around these~ensemble! average conformations. In
other words, ‘‘the state of the surface’’ refers to its average

FIG. 1. A schematic picture of a bilayer membrane~gray! in the reference
state~a!, and in two deformed states~b! and~c!. The solid line represents the
characteristic surface of the membrane, to which the Helfrich free energy is
applied. The areas of the characteristic surfaces and the volumes of the
membranes~represented by the gray-shaded area in the figure! in ~b! and~c!
are identical. The membrane depicted in~b! is shown in~d! together with the
containing cell and the embedding solvent. The end points marked by the
open circles belong to the perimeterP of the characteristic surface. Another
deformation of the container, which does not change the total area of the
characteristic surface, is shown in~e!.
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conformation. As has been discussed earlier in Sec. II, nor-
mal forces must be applied in order to deform the surface
from its reference state.53 If the membrane is embedded in a
solution and placed in a container, than these forces can be
generated by deforming the entire container, as demonstrated
in Fig. 1~d!. Such a system can be conceptually divided into
bulk aqueous phases and the interface between them which
includes the membrane and the adjacent hydration layers.
The volumes of the bulk phases above and below the mem-
brane are fixed by the presence of solute particles that cannot
permeate the membrane. The deformation of the boundaries
of the container ‘‘percolates’’ to the interface and the latter
acquires the shape of the surface of the container. However,
since the bulk solution is fluid and has a vanishing shear
modulus, its deformation without changing its volume does
not add any contribution to the free energy.

Even though real bilayer systems are always embedded
in a solvent~which influences their elastic properties!, the
calculation of the surface tension can be also performed for
model systems that exclude the latter and leave only the
interfacial region. This is possible due to the fact that the
surface tension can be calculated by considering a deformed
flat membrane. Such a membrane can be uniquely defined by
the perimeterP(h̄(rW)) of the characteristic surface@repre-
sented by open circles in Fig. 1~d!#. The free energy of the
membrane can be derived from the partition functionZ via
the relation

F52kBT ln Z. ~28!

The expression for the partition function must take into ac-
count the microscopic nature of the membrane, and the po-
tential energyE due to the interactions between the am-
phiphilic molecules. In what follows we assume thatE can
be written as the sum of pair interactions between the atoms
~‘‘interaction sites’’! forming the molecules

E5 (
^ab&

f~r ab!, ~29!

wherer ab is the distance between atomsa andb, and sum-
mation over all pairs of atomŝab& is performed. The vari-
ous interactions are not identical but rather pair dependent,
as each amphiphilic molecule is typically composed of many
different atoms. They also depend on whether the atoms be-
long to different molecules or part of the same amphiphile.
In the latter case some atoms are covalently bonded to each
other, what brings in an additional contribution toE. For
brevity we will omit the subscripts of the potential and the
indices of the argumentr ab will serve as an indicator of the
specific potential. With the potential energy described by Eq.
~29!, the partition function is given by

Z5 (P2Conf.
expS 2 (

^ab&
f~r ab!/kBTD , ~30!

where the sum runs over all the conformations is which the
perimeter of the characteristic surface is depicted by the
closed curveP. Our assumption that the membrane has no
spontaneous curvature guarantees that its average conforma-
tion is indeed flat. Alternatively, one may consider the sys-

tem together with the bulk phases, and replace the sum in Eq.
~30! with integration of the coordinates of all atoms$rWg%
over the entire volume of container~or the simulation cell!
Vcell ,

Z5E
V cell

)
g51

N

drWg expS 2 (
^ab&

f~r ab!/kBTD . ~31!

In addition to the above integral, it is necessary to specify the
boundary conditions for the positions of the amphiphiles
near the walls of the container, so that the perimeter of the
characteristic surface would be described byP.

Let us assume that our cell~container! has a square cross
section of linear sizeLp with 2Lp/2<x,y,1Lp/2. The de-
formation of the cell depicted in Fig. 1~d! can be described
by the following linear transformation:

S r x

r y

r z

D 5S 1 0 0

0 1 0

e 0 1
D S Rx

Ry

Rz

D , ~32!

which maps every pointRW on the boundaries of the unde-
formed cell to its strained spatial positionrW. The character-
istic surface has the same shape as the upper and lower faces
of the cell, and its area is given by

A5ApA11e25ApS 11
e2

2
1O~e4! D , ~33!

whereAp5Lp
2 is the area of the reference surface. Since the

deformed surface which we consider is flat, its free energy is
given by @see Eqs.~6! and ~33!#

F5F~e50!1sAp

e2

2
¯ , ~34!

from which we conclude that

s5
1

Ap

d2F

de2 U
e50

. ~35!

Using the relation between the free energy and the partition
function ~28!, we may also write the above result in the
following form:

s52
kBT

Ap
F1

Z

d2Z

de2 2
1

Z2 S dZ

de D 2GU
e50

. ~36!

If we now turn to our expression~31! for the partition
function, we notice that it depends one only through the
integration volumeVcell . The differentiation ofZ with re-
spect toe, however, could be carried out more easily if the
dependence one is removed fromVcell and brought into the
integrand. In other words, we wish to change the integration
variables in~31! from rWg to RW g, where the latter are confined
inside the undeformed cell. This is achieved using transfor-
mation ~32!, which originally described the deformation of
the boundary points, and is now being applied inside the
volume of integration. With the new set of variables, the
distance between two atoms is given by
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r ab5@~Rab!212eRx
abRz

ab1e2~Rx
ab!2#1/2. ~37!

In the undeformed reference stater ab(e50)5Rab. The partition function reads

Z5E
V0

)
g51

N

dRW g expS 2 (
^ab&

f@A~Rab!212eRx
abRz

ab1e2~Rx
ab!2#/kBTD , ~38!

whereV0[Vcell(e50) is the volume of the undeformed cell. The Jacobian of the transformation has been eliminated from the
integrand in the above expression since it is unity. Note that no approximation has been made in deriving Eq.~38!, which gives
the same value for the partition function as expression~31!. We do not argue that the~mean! coordinates of atoms deform
affinely, but rather use transformation~32! as a mapping between the configuration phase spaces of the reference and the
deformed systems.

With expression~38! the differentiation ofZ with respect toe is straightforward but lengthy. We skip the details of the
calculation, and write below the final expressions for the first and second derivatives, evaluated fore50 @only the value at
e50 is required in Eq.~36!#,

dZ

de U
e50

5E
V0

)
g51

N

dRW g expF2 (
^ab&

f~Rab!GF2 (
^ab&

f8~Rab!

kBT

Rx
abRz

ab

Rab G ~39!

and

d2Z

de2 U
e50

5E
V0

)
g51

N

dRW g expF2 (
^ab&

f~Rab!G H F (
^ab&

f8~Rab!

kBT

Rx
abRz

ab

Rab G2

2 (
^ab&

Ff9~Rab!

kBT S Rx
abRz

ab

Rab D 2

1
f8~Rab!

kBT

~Rx
ab!2

Rab 2
f8~Rab!

kBT

~Rx
abRz

ab!2

~Rab!3 G J , ~40!

wheref8[df/dR andf9[d2f/dR2. When these expressions are substituted into Eq.~36! we readily find that

s5
1

ApkBT H F K (
^ab&

f8~Rab!
Rx

abRz
ab

Rab L G2

2K F (
^ab&

f8~Rab!
Rx

abRz
ab

Rab G2L J 1
1

Ap
K (

^ab&
f9~Rab!S Rx

abRz
ab

Rab D 2L
1

1

Ap
K (

^ab&
f8~Rab!

~Rx
ab!2

Rab L 2
1

Ap
K (

^ab&
f8~Rab!

~Rx
abRz

ab!2

~Rab!3 L , ~41!

where the thermal averages are evaluated at the undeformed reference state of the system (e50). If the system is macro-
scopically invariant with respect to reversal of the sign of thez coordinates (z→2z), then the first term in the above
expression fors vanishes. If, in addition, the system is invariant with respect to rotation around thez axis (x→y;
y→2x), then another expression can be derived withRx

ab replaced byRy
ab . Defining Rt

ab[A(Rx
ab)21(Ry

ab)2, we finally
arrive at the following expression:

s52
1

2ApkBT K F (
^ab&

f8~Rab!
Rx

abRz
ab

Rab G2

1F (
^ab&

f8~Rab!
Ry

abRz
ab

Rab G2L 1
1

2Ap
K (

^ab&
f9~Rab!S Rt

abRz
ab

Rab D 2L
1

1

2Ap
K (

^ab&
f8~Rab!

~Rt
ab!2

Rab L 2
1

2Ap
K (

^ab&
f8~Rab!

~Rt
abRz

ab!2

~Rab!3 L . ~42!

This expression can be also written in the following compact
form:

s5LzFCxzxz1Cyzyz2Pxx2Pyy

2 G[Lzmzt , ~43!

whereLz is the linear size of the system~the cell! in the z
direction ~normal to the membrane!, while P and C denote
the pressure tensor and the tensor of elastic constants of the
system. The quantitymzt is the shear modulus associated
with the deformation depicted at Fig. 1~d!.43,50

In is interesting to compare the above results~42!–~43!

with the much better known~and more frequently used! ex-
pression for the surface tension28,35

s̃5
1

2Ap
K (

^ab&
f8~Rab!

~Rt
ab!222~Rz

ab!2

Rab L
5LzF2Pzz2Pxx2Pyy

2 G . ~44!

The latter expression is obtained when one considers the
variation of the free energy resulting from the~volume-
preserving! variation of theprojected area Ap ,
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s̃5
]F

]Ap
U

V

. ~45!

The deformed state associated with the surface tensions̃ is
shown in Fig. 1~c!. For fluid membranes we anticipate that
s5s̃ since the difference between them

s2s̃5LzFCxzxz1Cyzyz

2
2PzzG[Lzm tz , ~46!

is proportional to the shear modulusm tz associated with the
deformation shown in Fig. 1~e!. The shear modulusm tz is
expected to vanish because the areas of the characteristic
surfaces of the membranes in Figs. 1~a! and 1~e! are identi-
cal; and the Helfrich free energy of a flat membrane depends
only on the area of the characteristic surface, but not on the
orientation of the plane of the membrane with respect to the
walls of the container. This argument for the coincidence of
s ands̃ could be applied directly to the membranes in Figs.
1~b! and 1~c!, whose characteristic areas~as well as their
volumes! are also identical. The tilt of the cell’s wall, how-
ever, can be safely ignored only in the thermodynamic limit,
when the width of the membrane becomes much smaller than
its lateral dimensions. If the system is not sufficiently large
than the Helfrich form for the free energy in which the mem-
brane is associated with a 2D characteristic surface is not
entirely applicable. The finite width of the membrane must
show up in the expression for the free energy, and the surface
tensionss and s̃ do not perfectly agree.

B. The bending modulus

The bending modulus can be calculated by considering a
deformation of the characteristic surface from a flat to cylin-
drical geometry. The deformation, which is depicted in Fig.
2, can be described by the following nonlinear transforma-
tion of the boundaries of the cell@compare with Eq.~32!#:

r x5Rx , r y5Ry ,
~47!

r z5Rz1AR0
22x22AR0

22Lp
2/4,

where2Lp/2<x,1Lp/2, andR0@Lp is the radius of cur-
vature of the cylinder. The integrated total curvature@Eq. ~7!#
of the characteristic surface is

J̄5
Lp

R0
, ~48!

and its area is

A5Ap12 arcsinS Lp

2R0
D.ApF11

1

24
J̄21O~ J̄4!G . ~49!

The free energy is, hence, given by

F5FsL2

24
1

1

2
kG J̄21¯ , ~50!

from which we deduce the following relation:

sL2

12
1k5

1

Ap

d2F

dJ2 U
J50

, ~51!

where

J[
1

R0
. ~52!

The calculation of the right-hand side~rhs! of the above
equation is very similar to the one presented in Sec. III A
which was based on expression~38! for the partition func-
tion. The deformed pair distance, which in that case was
given by Eq.~37!, is now depicted by the following relation:

r ab5@~Rab!222X̄abRx
abRz

abJ1~X̄ab!2~Rx
ab!2J2#1/2, ~53!

where

X̄ab[
Xa1Xb

2
. ~54!

Comparing Eqs.~37! and ~53!, and, respectively, Eqs.~35!
and~51!, it is easy to realize that the result of the calculation
is the following expression:

FIG. 2. A cylindrical bilayer membrane~gray! with radius of curvatureR0

and apex angleu. The solid line in the middle of the membrane represents
the characteristic surface. The cylindrical shape of the membrane is obtained
via a deformation of the containing cell, depicted by the bold dashed line in
the figure. The membrane may be thought of as part of a cylindrical vesicle
~depicted by the thin dashed line! of a similar radius of curvature.
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sL2

12
1k5

1

ApkBT H F K (
^ab&

f8~Rab!
X̄abRx

abRz
ab

Rab L G 2

2K F (
^ab&

f8~Rab!
X̄abRx

abRz
ab

Rab G 2L J
1

1

Ap
K (

^ab&
f9~Rab!S X̄abRx

abRz
ab

Rab D 2L 1
1

Ap
K (

^ab&
f8~Rab!

~X̄abRx
ab!2

Rab L
2

1

Ap
K (

^ab&
f8~Rab!

~X̄abRx
abRz

ab!2

~Rab!3 L , ~55!

which is similar to Eq.~41!, except for the fact thatRx
ab is everywhere replaced by2X̄abRx

ab .
Among the five terms on the rhs of Eq.~55!, only the second involves averages of quantities including the productX̄abX̄gd

with ^ab&Þ^gd&. In the other four terms, the quantitiesX̄ab and (X̄ab)2 can be replaced by their averages

^X̄ab&5
1

Lp
E

2Lp/2

Lp/2

x dx50 ~56!

and

^~X̄ab!2&5
1

Lp
E

2Lp/2

Lp/2

x2 dx5
Lp

2

12
, ~57!

since they multiply quantities which depend only on the separation between atomsa andb and whose averages, therefore, are
independent of the location of the pair~provided the system is invariant to translations in thex and y directions!. This, in
combination with Eq.~41!, yield the following expression fork:

k5
1

ApkBT H K Lp
2

12F (
^ab&

f8~Rab!
Rx

abRz
ab

Rab G2L 2K F (
^ab&

f8~Rab!
X̄abRx

abRz
ab

Rab G 2L J . ~58!

ReplacingRx
ab with Ry

ab , andX̄ab with Ȳab[(Ya1Yb)/2, we obtain the ‘‘symmetric’’ formula

k5
1

2ApkBT H K Lp
2

12F (
^ab&

f8~Rab!
Rx

abRz
ab

Rab G2

1
Lp

2

12F (
^ab&

f8~Rab!
Ry

abRz
ab

Rab G2L 2K F (
^ab&

f8~Rab!
X̄abRx

abRz
ab

Rab G 2L
2K F (

^ab&
f8~Rab!

ȲabRy
abRz

ab

Rab G 2L J . ~59!

It is important to remember here that the above expression fork ~59! applies to square membranes only with the origin of
axes located at the center of the membrane so that2Lp/2<x,y,1Lp/2. A formula which does not depend neither on the
shape of the membrane nor on the location of the origin is obtained as follows: The first and third terms in Eq.~59! can be
written jointly in the following form:

(
^ab&

(
^gd&

K f8~Rab!f8~Rgd!
Rx

abRz
abRx

gdRz
gd

RabRgd S L2

12
2X̄abX̄gdD L ~60!

5 (
^ab&

(
^gd&

K f8~Rab!f8~Rgd!
Rx

abRz
abRx

gdRz
gd

RabRgd FL2

12
2~X̄ab,gd!21~DX

ab,gd!2G L , ~61!

where

X̄ab,gd[
X̄ab1X̄gd

2
~62!

and

DX
ab,gd[

X̄ab2X̄gd

2
. ~63!

The terms appearing before the square brackets in Eq.~61! depend only on the relative coordinates of atoms with respect to
each other. Therefore, the average of (X̄ab,gd)2 ~the second term in square brackets, which depends on the location of the
center of the pair/triplet/quartet in question! can be performed separately. As in Eq.~57! we havê (X̄ab,gd)2&5Lp

2/12, which
leads to the cancellation of the first two terms in square brackets in Eq.~61!. Applying the same argument for the second and
fourth terms in Eq.~59!, and definingȲab,gd[(Ȳab1Ȳgd)/2 andDY

ab,gd[(Ȳab2Ȳgd)/2, we arrive at the following expres-
sion:
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k5
1

2ApkBT (
^ab&

(
^gd&

K f8~Rab!f8~Rgd!
Rz

abRz
gd

RabRgd @Rx
abRx

gd~DX
ab,gd!21Ry

abRy
gd~DY

ab,gd!2#L , ~64!

which is the more general form for expression~59! since it is
independent of the shape of the membrane and of the loca-
tion of the origin of axes.

The deformed membrane, shown schematically in gray
shade in Fig. 2, may be considered as part of a closed cylin-
drical vesicle~depicted by the dashed line Fig. 2!. Accord-
ingly, one may argue that its free energy is given by

F5
u

2p
Fvesicle, ~65!

whereFvesicle is the free energy of the vesicle andu is the
apex angle of the deformed membrane. This relation, how-
ever, is incorrect sinceFvesicle includes a term which is
unique to closed vesicles and should be omitted in the case
of open membranes. The additional contribution toFvesicle

which has been termed ‘‘thearea-differenceelastic energy,’’
should not be confused with the bending energy. The latter is
the free energy required to bend the membrane while keep-
ing its area density fixed. The former, on the other hand,
originates from the simple fact that upon closure of the
vesicle, it becomes impossible to preserve the area densities
of the amphiphiles in both the outer and the inner monolay-
ers. The outer monolayer is stretched and the inner mono-
layer is compressed relative to the midcharacteristic surface.
The elastic energy resulting from such curvature-induced
changes in the monolayer areas is anonlocaleffect because
the monolayers are capable of independent lateral redistribu-
tion to equalize the area per molecule of each leaflet. The
distinction between~local! bending elasticity and~nonlocal!
area-difference elasticity has been discussed by Helfrich, not
long after introducing his famous Hamiltonian.54 The idea,
however, did not gain much popularity until the issue had
been analyzed systematically by Svetinaet al. some years
later.55 Early theoretical works and experimental measure-
ments of the bending modulus failed to separate the local and
nonlocal contributions.56 This is not the case with our ex-
pression~64! for k which has been derived by considering an
open membrane. For an open membrane, the two leaflets
have the same area as the top~button! surface of the contain-
ers and, consequently, area-difference elasticity do not show
up.

C. The saddle-splay modulus

Finally, we derive our expression for the saddle-splay
modulus k̄. The following transformation, applied to the
boundaries of the container,

r x5Rx , r y5Ry , ~66!

r z5Rz1AR0
22x22y22AR0

22Lp
2/2

~with 2Lp/2#x,y,1Lp/2), describes a deformation of the
surface to spherical geometry where the sphere’s radiusR0

@Lp . It is not difficult to show that the free energy of the
spherical surface is given by

F5ApFsL2

12
12k1k̄GH21¯ , ~67!

whereH51/R0 . From the above expression forF, the rela-
tion:

sL2

6
14k12k̄5

1

Ap

d2F

dH2 U
H50

~68!

is easily derived. The deformed pair distance is

r ab5@~Rab!222~X̄abRx
ab1ȲabRy

ab!Rz
abH

1~X̄abRx
ab1ȲabRy

ab!2H2#1/2, ~69!

where X̄ab and Ȳab have been defined in Sec. III B. Since
Eqs.~68! and~69! have, respectively, the same form as Eqs.
~51! and ~53!, we immediately conclude that the rhs of Eq.
~68! is given by expression similar to~55! in which X̄abRx

ab

is everywhere exchanged withX̄abRx
ab1ȲabRy

ab . Follow-
ing the same steps described in the derivation of Eq.~59!
from ~55!, and using the additional relation

^X̄abȲab&5
1

Lp
2 E

2Lp/2

Lp/2 E
2Lp/2

Lp/2

xy dx dy50, ~70!

we finally arrive at the following result:

k̄52k2
1

ApkBT K F (
^ab&

f8~Rab!
X̄abRx

abRz
ab

Rab G
3F (

^ab&
f8~Rab!

ȲabRy
abRz

ab

Rab G L . ~71!

This expression applies to square membranes only, with the
origin located at the center of the membrane. The more gen-
eral expression is

k̄52k2
1

ApkBT (
^ab&

(
^gd&

K f8~Rab!f8~Rgd!

3
Rz

abRz
gd

RabRgd Rx
abDX

ab,gdRy
gdDY

ab,gdL . ~72!

IV. NUMERICAL RESULTS

The purpose of the MC simulations which we conducted
and present in this section is twofold: The first is to test the
validity and accuracy of our expressions for the elastic coef-
ficients. The second is to examine the agreement between the
mechanical and the fluctuation routes to membrane elasticity,
as discussed in Sec. II. The model system whose elastic
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properties were studied by the simulations has been de-
scribed in great details in Ref. 48. Briefly, the ‘‘lipids’’ that
serve as the building blocks of the membrane consist of three
spherical atoms of diametera ~see Fig. 3! interacting with
each other via pairwise LJ potentials~whose details can be
found in Ref. 48!. To avoid the complications involved with
long-range interactions, the LJ potentials have been trun-
cated at some cutoff separationRab5r c52.5a and, in addi-
tion, modified to ensure the vanishing off and its first two
derivatives,f8 andf9, at r c . The continuity of the second
derivative of the pair potentials is an important feature since
f9 appears in our expressions~42! for s. Two changes have
been made in comparison to the original model presented in
Ref. 48. The first is a small reduction of the temperature
which, in this paper, has been set to 0.9T0 whereT0 is the
original temperature~in Ref. 48!. The second is the addition
of new interactions between atoms which are part of the
samemolecule. In Ref. 48 the molecules were linear rigid
trimers with a fixed distancea between the centers of the
constituent atoms. Here, we allow some little variations of
the separation between the atoms. The midatom~labeled 2!
has been linked to the two end atoms~labeled 1 and 3! via
harmonic springs with spring constantK and equilibrium
lengtha,

f~R!5 1
2 K~R2a!2, ~73!

while the pair potential between the end atoms has been set
to

f~R!5 1
2 K~R22a!2. ~74!

We use a large value for the spring constantK
58000kBT/a2, for which the separations between the atoms
do not exceed the order of 1% of their equlibrium values.
While this means that the molecules in our model are ‘‘al-
most’’ linear and rigid, the use of the above potentials~73!
and ~74! creates a situation in which all interatomic interac-
tions ~whether between atoms belonging to the same or dif-
ferent molecules! are depicted by smooth potentials; and so,
our expressions for the elastic constants can be used without
any further complications. The total number of lipids in our
simulations wasN51000 ~500 lipids in each monolayer!,
and no additional solvent molecules were included inside the
simulation cell ~as if the membrane is vacuum!. Periodic
boundary conditions were applied in the plane of the mem-

brane, and no boundaries for the simulation cell were defined
in the normal direction. The linear size of the~square! mem-
brane was set toLp529.375a. Subsequent MC configura-
tions were generated by two types of move attempts: trans-
lations of lipids~which also included some minute changes
in the relative locations of the three atoms with respect to
each other! and rotations around the midatom. A set of 2N
52000 move attempts of randomly chosen molecules is de-
fined as the MC time unit. Both types of moves~translations
and rotations! were attempted with equal probability, and the
acceptance probabilities of both of them was approximately
half. The MC relaxation time has been evaluated in Ref. 48.
It is of the order of 104 MC time units and has been very
little affected by the changes introduced in the model. A
typical equilibrium configuration of the membrane is shown
in Fig. 4.

A. The fluctuation route

In the fluctuation method the elastic coefficientss andk
are determined by calculating the Fourier transform,hqW of
the height function~18!, and fitting the values of mean
squared amplitudes of the different modes to the inverse
form of Eq. ~27!,

1

^uhqW u2&
5

l 2@sq21kq41O~q6!#

kBT
. ~75!

The details of the calculation have been described in Ref. 48,
and will not be repeated here. The results of this spectral
analysis are summarized in Fig. 5, where we plot the value of
1/l 2^uhqW u2& as a function ofq2. The error bars represent one
standard deviation in the estimates of the averages, which
were obtained from simulations of 16 different membranes
and a total number of 1.253104 measurements of the spec-
trum per membrane. The measurements were done at time
intervals of 100 MC time units. The curve depicts the best fit
to Eq.~75!, which is obtained whens andk take the follow-
ing values:

s5~20.660.2!
kBT

a2 , k5~4662!kBT. ~76!

The contribution of theq6 term to the fit was, indeed, sig-
nificantly smaller than that of the other two terms on the rhs
of Eq. ~75!.

B. The equilibrium route

While the measurement ofs andk using the fluctuation
approach was a relatively straightforward matter, the appli-

FIG. 3. A schematic picture of a lipid molecule in our model system—a
trimer consisting of three spherical atoms of diametera. The atom labeled 1
~solid circle! represents the hydrophilic head of the lipid, while the atoms
labeled 2 and 3~open circles! represent the hydrophobic tail.

FIG. 4. Equilibrium configuration of a fluid membrane consisting of 1000
molecules~500 molecules in each monolayer!.
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cation of the equilibrium approach emerged as somewhat
more challenging task. The most significant differences be-
tween the two approaches was the amount of computer re-
sources required for an accurate determination of the elastic
coefficients. The results which we present in this section
have been obtained using 64 nodes on a Beowolf cluster
consisting of Intel architecture PCs, where the CPU time per
node was of the order of three months. The need of such a
large computer time should be compared to the relative ease
with which the results in Eq.~76! have been obtained—using
a total number of only 16 nodes over a period of about ten
days. The reason that the equilibrium approach is so much
computer-time consuming is the ‘‘noisy’’ nature of the statis-
tics of the terms whose averages are evaluated in expressions
~42! and ~59!. From the conceptual point of view, the deter-
mination of the surface tensions using expression~42! is
pretty simple. The determination of the surface tensions̃
from expression~44! is even easier since it is a much less
noisy quantity. In fact, the computational effort required for
an accurate determination of the value ofs̃ is even smaller
than the one required for the calculation ofs by the fluctua-
tion method. The surface tensions̃ does not apply directly to
membranes with a fixed projected area. Yet, it is expected to
coincide withs in the thermodynamic limit.

The determination ofk is more complicated. Here we
can, in principle, choose between expressions~59! and~64!.
The latter is more general~since it is not restricted to square
membranes!, but prohibitively time consuming. This can be
understood by considering the number of operations required
for a single measurement of the quantities of interest. As-
suming each atom in our simulations interact with a finite
number of other atoms, the total number of operations re-
quired by expression~64! is O(N2), while the number re-
quired by expression~59! is only O(N). In our simulations
the total number of atoms is 3000, which means a difference
of about 4 orders of magnitude in efficiency. Using expres-
sion ~59! to measurek is, however, tricky because this ex-

pression involves not only the relative locations of the par-
ticles with respect to each other~as in the case of the
expressions for the surface tension!, but also the absolute
coordinates of atoms. This wouldnot create a problem if

only the central coordinates (X̄ab and Ȳab) of the pairs had
to be found@as one may, naively, conclude from Eq.~59!#,
since that among the set including the pair~a,b! and all its
periodic images, only one satisfies the requirement2Lp/2

<X̄ab, Ȳab,1Lp/2. However @and this becomes clear
from the derivation of expression~64! from expression~59!#,
what we actually have here is a periodic boundary conditions
problem where thepairs play the role of the particles, and

X̄ab and Ȳab serve as the coordinates of these ‘‘particles.’’
This means that eachquartet~~a,b!,~g,d!! is identified as the
pair ~a,b! and the pair~g,d! or its image nearest to~a,b! and,
in addition, that the center of the quartet must satisfy

2Lp/2<X̄ab,gd,Ȳab,gd,Lp/2. The fact that sometimes a
pair must be replaced by one of its images~which are located
outside the boundaries of the simulation cell! is problematic
since this means that the location of the pair, which is needed
in expression~59!, cannot be specified by a single value. A
solution to this problem is obtained by dividing the simula-
tion cell into stripes parallel to either thex or the y axes
@depending on whether we calculate the third or fourth term
in Eq. ~59!#, and to split the summation over all the pairs to
several partial sums over the pairs included in the different
stripes. The partial sums corresponding to the images of each
stripe ~which consist of all the images of the pairs included
in the stripe! can be found with almost no additional effort.
The product of two partial sums gives the contribution of all
the quartets consisting of pairs located inside the two rel-
evant stripes. Depending on the distance between the stripes
~along the relevant axis! and their locations with respect to
the center of the cell, it isusually easy to decide in which
case a stripe should be replaced by one of its images. Ambi-
guities about the correct decision occur in a finite number of
cases~i.e., for a finite number of pairs of stripes!. In these
cases, individual decisions must be made for each quartet.
The number of such quartets can be reduced significantly if
the system is divided into a large number of stripesNs , since
the narrower the stripes the smaller the number of pairs in-
cluded in each one of them. A more elegant solution is to
choose a certain convention about the ways the contribution
from the ambiguous quartets is added to Eq.~59!. This will
inevitably introduce a systematic error to our estimates ofk.
However, if we make a set of estimates based on increasingly
larger values ofNs , we can obtain the correct averages by
extrapolating our results to the limit 1/Ns→0. The method,
which is described in more details in the Appendix, can be
generalized to handle correctly the calculation ofk̄. How-
ever, because of the mixing of thex andy coordinates in Eq.
~71!, the implementation of the method becomes more com-
plicated. For this reason, and due to the fact that the fluctua-
tion approach does not provide a value of saddle-splay
modulus to compare with, we did not use our simulations to
calculatek̄.

In Sec. II we have explained in great details why the
elastic coefficients obtained from the fluctuation approach

FIG. 5. The inverse of the spectral intensity for undulatory modes
1/l 2^uhqu2& as a function of the square wave numberq2. The circles mark
numerical results, while the solid line depicts Eq.~75! with the values ofs
andk given by Eq.~76!.
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are the free energy coefficientss and k rather than the
Hamiltonian coefficientss0 and k0 . This means that the
quantities in expressions~42! and ~59! should be averaged
over the ensemble of all possible microscopic configurations.
However, it is also easy to understand that thesameexpres-
sions can be used to calculate the Hamiltonian coefficients.
The latter, which characterize the energy changes caused by
deformations of the flat membrane, can be obtained by re-
stricting the averages to conformations whereh(rWg)50 for
every grid cell, thus avoiding the entropic contribution of the
thermal fluctuation to the free energy. To sample this con-
figuration phase space one need to accompany every MC
move attempt with one or two~depending on whether the
molecule leaves the grid cell or not! additional moves of
adjacent molecules. Moreover, one can also sample the
phase-space consisting of only those conformations of the
membrane with wave vectors in the range 2p/Lp<L,q.
The results of such a calculation are the wave-dependent
coefficientss~L! andk~L!. One of the problems which can
be studied by such investigation is the value of the numerical
coefficient c in the formula for the renormalized bending
modulus:57–60

k~L!5k01c
kBT

4p
ln~L l !. ~77!

This problem aroused a renewed interest recently since its
has been suggested that the value ofc may be positive,
which means~quite remarkably! that the fluctuations stiffen
rather then soften the membrane.61–63

While determining the value ofc was not possible given
the large uncertainties of the numerically measured value of
k, we did use Eq.~77! in our analysis of the results. Our need
of Eq. ~77! and the link that it provides betweenk andk0 is
related to the peculiar nature of our simulations which are
made in a ‘‘solvent-free’’ environment. As has been dis-
cussed in Sec. III, our expressions for the elastic coefficients
have been derived based on the assumption that the mem-
brane is embedded in solvent and that the entire container is
deformed. In our simulations, however, we have no container
~there are no boundaries for the simulation cell in thez di-
rection! and, so, the applicability of our approach should be
examined carefully. The arguments which we presented in
Sec. III A @see, in particular, the discussion around Eq.~30!#
demonstrate that the presence of solvent is essential only for
the calculation ofk and k̄, but not for the calculation of the
surface tensionss and s̃. By contrast, the Hamiltonian co-
efficients can beall measured in a ‘‘solvent-free’’ model
since they are extracted from simulations of flat, nonfluctu-
ating, membranes. The value ofk0 and the relation given by
Eq. ~77! provide then an estimate for the value ofk. Since
the finite-size correction to the value ofk grows only loga-
rithmically with the size of the system, and sincek0@kBT,
the difference betweenk0 andk is not significantly large. In
our simulations it actually falls within the uncertainty in our
estimates of the bending modulus, which means thatk and
k0 are practically indistinguishable. In addition to our mea-
surement ofk0 , we also measuredk directly from the simu-
lations. As we have just explained above, such a measure-

ment is expected to fail and to lead to the incorrect
conclusion thatk50. We used this incorrect result as a test
for our code.

The values of the elastic coefficients have been extracted
from simulations of 64 membranes starting at different initial
configurations. The initial configurations were generated by
randomly placing 500 lipids in two different layers with a
vertical ~along thez direction! separationa ~the size of the
atoms! between them. The initial configurations were ‘‘ther-
malized’’ over a period of 23105 MC time units, followed
by a longer period of 1.23106 time units during which quan-
tities of interest were evaluated. The uncertainties in our final
results correspond to one standard deviation in the estimates
of the averages. We first made the simulations with nonfluc-
tuating membranes, from which we extracted the values of
the Hamiltonian coefficients. Then, we removed the part in
our algorithm which is responsible for keeping the mem-
brane flat. The membranes were equilibrated again, and then
the values of the thermodynamic~free energy! coefficients
were determined.

For the bare coefficients we find the following values for
the surface tension:

s05~0.860.5!
kBT

a2 , s̃05~20.0760.01!
kBT

a2 . ~78!

The comparison of these results with each other, and with the
values of the elastic coefficients extracted from the fluctua-
tion approach@Eq. ~76!# reveals:~a! a disagreement between
the two surface tensionss0 ands̃0 , which should be attrib-
uted to the finite size of our membrane~see our discussion in
Sec. III A!; and~b! a disagreement betweens0 ands which
should be attributed to the entropic contribution to the sur-
face tension. The bending modulusk0 has been obtained by
dividing the system intoNs stripes and extrapolating the re-
sults fork0 to the limit 1/Ns→0, as explained earlier in this
section~see also the Appendix!. From the extrapolation pro-
cedure, which is summarized in Fig. 6, we find that

k05~44610!kBT. ~79!

FIG. 6. The bending modulusk0 as a function of the inverse of number of
stripes dividing the simulation cell, 1/Ns . The curve depicts the weighted
least squares fit of a second order polynomial in 1/Ns to the data.
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This result also serves as our estimate fork ~see discussion
earlier in this section!. The similarity of the above value ofk
~which is, unfortunately, obtained with a somewhat large nu-
merical uncertainty! to the one quoted in Eq.~76! corrobo-
rates the argument presented in Sec. II regarding the equiva-
lence of the two routes to membrane elasticity. Further
support to this argument is obtained from the agreement of
our result in Eq.~76! to s, with the value of the surface
tension obtained from equilibrium approach@using expres-
sion ~42!#,

s5~20.360.5!
kBT

a2 . ~80!

Our result fors̃ @expression~44!# is not very much different,

s̃5~20.4160.01!
kBT

a2 . ~81!

These values are quite different from those given in Eq.~78!,
thus demonstrating the importance of the entropic contribu-
tion to the surface tension.

Finally, we plot in Fig. 7 our results for the ‘‘apparent’’
bending modulusk* which we have obtained, using expres-
sion ~59!, from simulations of a fluctuating membrane.
These simulations serve as a test for our code. We findk*
5(2468) kBT which is consistent with the anticipated
valuek* 50.

V. SUMMARY AND DISCUSSION

Motivated by the lack of a well accepted theory to deal
with the statistical-mechanical behavior of curved interfaces,
we have studied the elastic properties of fluid bilayer mem-
branes using analytical and computational tools. Two distinct
methods have been employed to measure the surface tension
s, and the bending modulusk, of a model membrane. In the
first ~‘‘fluctuation’’ ! method the elastic coefficients were ex-
tracted from the analysis of the spectrum of thermal fluctua-
tions of the membrane. The second~‘‘equilibrium’’ ! method

is based on the fact thats and k describe the free energy
variations due to area-changing and curvature-forming defor-
mations and, therefore, can be related to the derivatives of
the partition function with respect to the relevant strain vari-
ables. Using this kind of relation, we have derived formal
expressions fors andk in central force systems. Our expres-
sions associate the elastic coefficients to the interactions be-
tween the molecules and the two-, three-, and four-particles
distribution functions. The most important feature of these
expressions is the fact that even thoughs andk ~as well as
the saddle-splay modulusk̄) are related to deformations of
the membrane, they can be extracted from a single MC run
performed on the reference~unstrained! system.

One of the puzzles about curved interfaces elasticity is
related to the correspondence between the above two ap-
proaches for determining their rigidity constants. We used
linear response theory to prove that the two methods must
agree for the values ofs andk provided that the system is
deformed by the application of external forces and not by
altering other thermodynamic variables such as the tempera-
ture or the chemical potential of surface molecules. More-
over, our discussion clarifies that the coefficients in question,
s andk, are theeffectiveelastic coefficients which appear in
the Helfrich free energy~rather than the Helfrich Hamil-
tonian! and which are influenced by the thermal undulations
of the membrane. Our computer simulations and the numeri-
cal values of the elastic coefficients which we find, confirm
the idea of equivalence between the two routes to membrane
elasticity.

Comparison of the computational efficiency of the two
methods shows that for our membrane model system the
fluctuation method provides more accurate estimates of the
elastic coefficients than the equilibrium method, and requires
less CPU time. The major shortcomings of the fluctuation
approach is the fact that it can be utilized for measurements
of the effective coefficients only, and that it requires the de-
termination of the profile of the interface during the course
of the simulations. While this is easy with our ‘‘water-free’’
computer model, this may not be so in other cases, for in-
stance, for membranes which tend to exchange molecules
with the embedding solvent, or for liquid–vapor interfaces
near the critical point when the interface is difficult to dis-
tinguish from the bulk phases. In these cases the equilibrium
method may be more attractive since the interactions in the
bulk phases do not contribute to the values ofs andk when
calculated using our expressions for the elastic coefficients.
Moreover, with the same mechanical expressions fors and
k, the bare~Hamiltonian! coefficients can be also calculate.
Our measurements demonstrate that close to the tensionless
state of the membrane, the entropic component of the surface
tension is quite significant. This has been also found recently
in a theoretical study of the surface tension of fluctuating
surfaces.15

Finally, we would like to re-emphasize that our expres-
sions for the elastic coefficients apply for central force sys-
tems only. Following our derivation of these expression one
should be able to generalize them to more complicated cases
including many-body interactions. A more realistic model

FIG. 7. The ‘‘apparent’’ bending modulusk* as a function of the inverse of
number of stripes dividing the simulation cell, 1/Ns . The curve depicts the
weighted least squares fit of a first order~linear! polynomial in 1/Ns to the
data.

2947J. Chem. Phys., Vol. 120, No. 6, 8 February 2004 Statistical mechanics of bilayer membrane

Downloaded 11 Feb 2004 to 128.111.119.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



must also include electrostatic interactions whose long-range
nature pose a computational challenge.
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APPENDIX: DETERMINATION OF k
USING THE METHOD OF STRIPES

The most common way to reduce finite size effects in
computer simulations is obtained by employing periodic
boundary conditions, namely by regarding the simulation
cell as part of an infinite periodic lattice of identical cells.
When the range of the interactions is less thanLp/2 ~half the
linear size of the cell! than each particlea interacts only with
the nearest periodic image of any other particleb. This, in
turn, is identified as the pair~a,b!. Eachpair has infinitely
many periodic images each of which is associated with a
different simulation cell; and with each simulation cell each
pair is associated exactly once. The set of all the different
pairs associated with one of the cells@say, the original
~‘‘primitive’’ ! cell# is the one over which the summation in
expressions~42! and ~44! for the surface tension should be
performed.

Things become more complicated when we try to evalu-
ate the bending modulusk using expression~59!. In this
case, coordinates associated with the location of the pair
(X̄ab and Ȳab) appear in the expression, and so it becomes
necessary to decide which of the periodic images of each pair
is actually associated with primitive simulation cell (2Lp/2
<x,y,1Lp/2) over which the sum in Eq.~59! is per-
formed. The intuitive candidate is the periodic image with
2Lp/2<X̄ab,Ȳab,1Lp/2. Making this choice, however, is
not the right convention. The correct way to handle the sum-
mation in expression~59! can be deduced from our deriva-
tion of expression~64! which is independent of the location
of the origin of axes. Following the discussion that led from
Eq. ~59! to Eq. ~64! it becomes clear that~a! each quartet
~~a,b!,~g,d!! must be reproduced exactly twice from sums in
Eq. ~59! @or once, if the quartets~~a,b!,~g,d!! and
~~g,d!,~a,b!! are treated as different#, and~b! that the central
coordinate of the quartet, (X̄ab,gd,Ȳab,gd), must lie inside
the region of the primitive simulation cell. These require-
ments can be perceived as a periodic boundary condition
problem with the pairs playing the role of particles and with
(X̄ab,Ȳab) serving as the coordinates of the pairs. What can
also be learned from expression~64! is the fact thatk is
associated withpair–pair correlations. Therefore, its accu-
rate measurement is difficult in systems whose linearLp

,2j, wherej is the relevant correlation length. We proceed
our discussion assuming that our system is sufficiently large
and obeys the above criterion.

In order to calculate the third term in Eq.~59! we divide
our system into an even number of stripesNs52M
(M -integer! parallel to thex axis, as shown in Fig. 8. The
fourth term in Eq.~59! is calculated in the same manner by
dividing the system into the same number of stripes parallel
to they axis. In addition to the primitive cell we also need to
consider the nearest periodic extensions of linear sizeLp/2.
These periodic extensions, which are also shown in Fig. 8,
consist of periodic images of the stripes. We label the stripes
included in the primitive cell with the numbers
M11,...,3M , the stripes on the left periodic extension with
1,...,M ~they are the periodic images of stripes
2M11,...,3M , and the stripes on the right periodic exten-
sion ~the images of stripesM11,...,2M ) with 3M
11,...,4M . For each pair we calculate the quantitypab

[f8(Rab)Rx
abRz

ab/Rab. The location of the pair, which is
identified with the midcoordinateX̄ab5(Xa1Xb)/2, defines
the stripe with which the pair should be associated. In Fig. 8
each pair is depicted as a particle. The pair labeleda, for
instance, is located in the fifth stripe, whereas its periodic
imagea8 is located in stripe number 13. For each stripei in
the primitive cell we calculate the sum

S i5 (
pairs in stripe # i

pabX̄ab. ~A1!

The sum corresponding to stripej , the image of stripei , is
given by

S j5 (
pairs in stripe # i

pab~X̄ab6Lp!, ~A2!

where the sign (6) in the above expression depends on
whether the image is situated to the right or the left of the
primitive cell. The productSpSq gives the contribution to
the third term in Eq.~59! of the quartets whose constituent
pairs are included, respectively, in stripesp and q. These
contributions should be in accord with requirements (a) and
(b), mentioned in the preceding paragraph, about the quar-
tets and their locations. In some cases these requirements are

FIG. 8. A schematic picture of a system of linear sizeLp consisting of four
pairs (a,b,c,d) and their periodic images (a8,b8,c8,d8). The bold frame
marks the boundaries of the primitive simulation cell which is divided into
Ns58 stripes labeled from 5 to 12. The images of the stripes which belong
to the nearest periodic extensions of the primitive cell are labeled 1–4 and
13–16.
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fulfilled by the image of the stripe rather than the stripe it-
self. A few illustrative examples are given in Fig. 8. The
contribution of the quartets (a,b) and (b,c), for instance, is
obtained from the productsS5S8 and S8S11, respectively.
The quartet (a,c), on the other hand, shouldnot be intro-
duced into expression~59! for k via the productS5S11. The
distance froma to the imagec8 is smaller than toc
and so the quartet should be identified as either (a,c8) or as
(a8,c). The latter is the correct choice because the center of

the quartet (a8,c) satisfies 2Lp/2<X̄a8,c5(X̄a81X̄c)/2
,1Lp/2, while the center of the quartet (a,c8) falls outside
the primitive cell. The contribution to the expression fork of
this pair is, thus, obtained from the productS11S13.

The nice feature of the above examples is that the argu-
ments we used to reach our decisions about the correct way
to handle the quartets havenot been based on theprecise
coordinates of the pairs, but rather on the identity of the
stripes and their locations with respect to the center of the
simulation cell. This means that the productsSpSq repro-
duce the contribution ofall the quartets corresponding to the
relevant stripes. Individual decisions are necessary only for a
small number of quartets, associated with the following
cases.

The first case is related with quartets in which the num-
ber of stripes separating the pairs is equal toM , as in the
case of the pairsb andd in Fig. 8 which are located, respec-
tively, inside the eighth and the twelfth stripes (M54 in the
above example!. The separation between the pairsb and d
along thex axis is very close toLp/2, and it is impossible to
know ~without checking the coordinates of the pairs!
whether the paird should be replaced by its periodic image
d8 located in the fourth strips. In a homogeneous system
about half of such pairs should be exchanged with their im-
ages, and so the best estimate for the contribution to expres-
sion~59! for k arising from quartets including one pair inside
the eighth stripe and the other inside the twelfth stripe is
0.5S8(S41S12).

Another case occurs when the stripes containing the two
pairs are symmetric with respect to the center of the primi-
tive cell and, in addition, the distance between them is larger
thanM . A typical example is the quartet (a,d) in Fig. 8, in
which a is inside the fifth stripe andd is in the twelfth stripe.
In this case it is obvious that (a,d) has to be replaced by
either (a,d8) or by (a8,d), but the two are equally probable.
Therefore, the contribution of such quartets is best estimated
by 0.5(S4S51S12S13).

The above rules for correct summation over the different
quartets can be summarized by the following compact for-
mula for the third term in expression~59!:

K (
p51

4M

(
q51

4M

f p,qSpSqL , ~A3!

where the functionf is given by

f p,q55
1 for up2qu<M21 and 2M11,p

1q,6M11,

0.5 for up2qu5M and 2M11,p

1q,6M11,

0.5 for up2qu<M21 and p1q52N11,

0.5 for up2qu<M21 and p1q56N11,

0 otherwise.
~A4!

The value ofk obtained using the above expressions@Eqs.
~A3! and ~A4!# are not accurate since the contribution of
some of the quartets is introduced in an approximated way.
However, the fraction of such quartets and the resultant nu-
merical error can be diminished by taking the limitNs→`.
In our simulations we have used a set of five approximations
with Ns54, 6, 8, 12, 24.

Another ‘‘trick’’ to speed up the calculation ofk: The
third and fourth terms in expression~59! for k depend on the
coordinates of the particles. Therefore, several values for
these quantities can be obtained from a single MC configu-
ration by generating replicas of the original simulation cell.
These replicas can be generated by shifting the position of
the origin of axes, and using the ‘‘minimal image conven-
tion’’ to define a replicated primitive cell which is centered
around the new origin. The computational effort required for
the calculation of expression~59! in the replicas is substan-
tially smaller than that required for the generation of a new
MC configuration. For one special set of replicas the calcu-
lation can be done with~almost! no additional effort at all:
This set include the replicas generated when the origin is
shifted by constant intervalsdx5Lp /Ns in the x direction
(dy5Lp /Ns in they direction!. Such shifts are computation-
ally favorable because they lead to cyclic permutations of the
stripes, but do not mix the pairs included in each one of
them.
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S. Svetina and B. Zˇekš, Eur. Biophys. J.17, 101 ~1989!.
56A classical example is the discussion on elasticity of thin plates in Ref. 49

~which has inspired many other works!, where the area difference rather
than the bending energy is calculated.

57L. Peliti and S. Leibler, Phys. Rev. Lett.54, 1690~1985!.
58W. Helfrich, J. Phys.~France! 46, 1263~1985!.
59D. Förster, Phys. Lett. A114, 115 ~1986!.
60H. Kleinert, Phys. Lett. A114, 263 ~1986!
61W. Helfrich, Eur. Phys. J. B1, 481 ~1998!.
62H. A. Pinnow and W. Helfrich, Eur. Phys. J. E3, 149 ~2000!.
63Y. Nishiyama, Phys. Rev. E66, 061907~2002!.

2950 J. Chem. Phys., Vol. 120, No. 6, 8 February 2004 O. Farago and P. Pincus

Downloaded 11 Feb 2004 to 128.111.119.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


