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Statistical mechanics of bilayer membrane with a fixed projected area
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The equilibrium and fluctuation methods for determining the surface tensioand bending
modulus, k, of a bilayer membrane with a fixed projected area are discussed. In the fluctuation
method the elastic coefficientsand x are measured from the amplitude of thermal fluctuations of
the planar membrane, while in the equilibrium method the free energy required to deform the
membrane is considered. The latter approach is used to derive new expressioasidor (as well

as for the saddle-splay modujus/hich relate them to the pair-interactions between the amphiphiles
forming the membrane. We use linear response theory to argue that the two routes lead to similar
values foro and «. This argument is confirmed by Monte Carlo simulations of a model membrane
whose elastic coefficients are calculated using both method20@ American Institute of
Physics. [DOI: 10.1063/1.1639000

I. INTRODUCTION
H=f dS[og+ 3 ko(J—2Co)%+KoK], 1)
The bilayer membrane, a double sheet of surfactants A

separating two aqueous phases, is one of the structur
formed by the self-assembly of amphiphilic molecules in
water! The driving force in this process is the hydrophobic
effect which favors exposing the hydrophilic part of the mol-
ecules to the water while shielding the “oily” part from
aqueous contaét The ongoing interest in such membranes

Shere J=c;+c, and K=c,c, are the total and Gaussian
curvatures, respectively. The integration in Eb).is carried
over the whole surface of the membrane. The Helfrich
Hamiltonian is derived by assuming that local curvatures are
small, and the free energy can be expanded to second order
in J and to first order irK. It, therefore, involves four phe-
) st X ] ) rf‘\tomenological parameters: the spontaneous curvatyre
role in the organization of the biological ceflsand their and three elastic coefficients—the surface tensign the
various applications in many industrial sectdBilayer am- bending modulusk,, and the saddle-splay modu’lu_a),
phiphilic sheets have very special mechanical propertiesyhose values depend on the area density of the amphiphiles.
While being strongly resistant to lateral mechanical stretchif the number of these is fixed, then one should also consider
ing or compression, they are highly flexible and can exhibithe corrections to Hamiltoniafl) due to the changes in the
large thermally excited undulatiofi€ This unique elastic be- area of the fluctuating membrane. For weakly fluctuating
havior, namely the stability against external perturbations o,embranes these corrections can be assumed to be small.
the one hand, but the ease in going from one shape to anothepe syrface tension, which is usually associated with the free
on the other hand, is important for the activity of living energy cost for adding molecules to the membré@te fixed
cells® Consequently, there has been a great effort to undegiensity, is related in the case of membranes with fixed num-
stand the elasticity of bilayer systefh§?*° ber of amphiphiles to the area-density depend8ohulman
Bilayer membranes are quasi-two-dimensiof#) ob-  g|astic energy?~1°
jects: their thickness is typically of the size of a few nanom-  The Helfrich Hamiltonian has been very successful in
eters (roughly, twice the length of the constituent am- describing the shape and the phase diagram of vesfti&s.
phiphilic moleculeg while their lateral extension can reach |t also yields a correct description of the thermal fluctuations
up to several micrometers. Since the membrane appears aggund the equilibrium surface stafe?*and of the entropic
thin film on the mesoscopic scale, its physical properties argorces between membran&sBecause it is phenomenologi-
often studied using coarse-grained phenomenological mode{s|, the Helfrich Hamiltonian provides no information about
treating the membrane as a smooth continuous 2Bhe values of the elastic coefficients. Many theories have
sheef:”**Membrane elasticity has been traditionally stud-peen developed that attempt to relate the elastic coefficients
ied using the Helfrich effective surface Hamiltonian which introduced by the Helfrich Hamiltonian to microscopic enti-
relates the elastic energy to the local principle curvatures ofies and the interactions between th&hf’ In fact, these
the membranec; and c,, and which has the following theories are usually concerned with the free energy of the
form:*? surface, rather than the Hamiltonian. The free energy is as-
sumed to have the same form as the Helfrich Hamiltonian

dAlso at Physics and Materials Departments and Program in Biomolecula?-nd' henc_e’ US_Ua”y (_:a"e_d theelfrich free _ehergwsee a
Science and Engineering, UCSB. more detailed discussion in Sec).[The coefficients appear-
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ing in the expression for the free energy, which we denote bympossible to determine and« accurately, and only a rough
o, k, and k, are also referred to as the surface tension, thestimate of these quantities could be obtained.
bending modulus, and the saddle-splay modulus, respec- A third problem, a more fundamental one, is related to
tively. Despite the similarity in names, there is a significantthe method of calculating the rigidity constant@and « and
difference between the Hamiltonian coefficieritgith the  to our interpretation of their physical meaning. The theoret-
subscript 0 and the free energy coefficients. The former areical and experimental methods for determining the elastic
“material properties” which depend on the intern@oten-  coefficients of interfaces can be classified irfguilibrium
tial) energy of the surface. The latter, on the other hand, aréor mechanical methods andluctuation methods®>° The
thermodynamic quantities and, as such, are also influencetlfference between these two approaches is in the context in
by the entropy associated with the thermal fluctuations of thevhich the Helfrich Hamiltonian and the associated free en-
system. Their values, therefore, may also depend on the terergy are used: In the equilibrium approach one extracts the
perature and the size of the system. elastic coefficients by comparing the free energies of two
In addition to the above-mentioned theories, there hagquilibrium surfaces with different curvatures. In the fluctua-
been also an effort to analyze the elastic behavior in théion approach, on the other hand, the Helfrich Hamiltonian is
context of the thermodynamics and statistical mechanics afised to calculate the free energy cost due to a thermal fluc-
curved interface$®~**The last approach has the potential of tuation that changes the local curvature from its equilibrium
providing exact “virial” expressions forr, k, andx in terms  value. The elastic coefficients are derived from the mean-
of the microscopic forces between the amphiphiles and thequare amplitudes of the fluctuations. The situation in which
pair distribution function. One of the systems whose statistithere exist two methods for calculating elastic moduli is
cal mechanics has been studied extensively is that of eeminiscent of other cases, for instance, the two different
simple liquid—vapor interface. Although this seems to be amethods of evaluating the elastic constants of thermody-
rather simple system, the determination of its elastic modulnamic systems in linear elasticity thedfy*® and the two
is quite complicated and involves a set of technical and conapproaches for determining the surface tension of a planar
ceptual problems. Below we discuss some of them. interface**“®In the latter examples the different approaches
One problem is related to the finite thickness of the in-lead to the same values for the mechanical moduli, in accord
terface, namely to the fact that the local concentration is nowith the linear response theof*” This is not the case with
a step function but changes gradually while going from onethe rigidity constants of a liquid—vapor interfateThe dis-
phase to the other. Consequently, there is some ambiguityrepancy between the two methods is due to the fact that in
about the location of the dividing plane that separates therder to change the equilibrium radius of curvature of, say, a
two phases and to which the Helfrich Hamiltonian is applied.spherical liquid drop, it is necessary to change its volume as
It turns out that the values of the rigidity constarteandx  well. This means a change in the volume fractions of the two
(the coefficients of the second order terms in the curvatureghasedi.e., the condensation of vapor or the evaporation of
c, andc,) depend on the choice of the dividing surfége. liquid), and it thus requires the variation of the thermody-
The dependence of the rigidity constants on the referenceamic variables like the temperature or the chemical poten-
surface had led people to question the validity of continuingdtial. In the fluctuation case the radius of curvature is varied
the Helfrich free energy expansion beyond the linear term irby thermal fluctuations, while the thermodynamic variables
curvature. This problem has been recently tackled by vamre not altered.
Giessen and Blokhui® who used computer simulation to In this paper we discuss the statistical mechanics of fluid
determine the rigidity constants of a curved liquid—vaporbilayer membranes. We derive expressions for the elastic co-
interface in a system of particles interacting via a truncatecfficientso, x, andx of the membranes, relating them to the
Lennard-JonesLJ) potential. They have demonstrated thatinteractions and the correlation functions between the am-
although one needs to state which convention for locating thehiphiles forming the bilayer. We use these expressions for a
dividing surface is used when providing the valuescaind  Monte Carlo(MC) determination of the elastic coefficients
', this fact does not render the Helfrich free energy uselesxf a bilayer membrane computer model. Unlike the expres-
nor does it diminish the importance of these quantities irnsions derived for the rigidity constants of a liquid-vapor in-
describing the elastic properties of the interface. terface, our expressions are such that they can be evaluated
A second problem that makes the determination of thaising asingle MC run performed on théquasjflat mem-
rigidity constants difficult is a technical one: In their pafer brane reference system only. This feature greatly simplifies
van Giessen and Blokhuis used the virial expressions givethe computational procedure, and makes it more efficient and
in Ref. 37 to evaluate the values efand k. These expres- well controlled. Another important distinction between the
sions relate the rigidity constants to the derivative of the paimembranes discussed in this paper and the system of liquid—
density distribution function with respect to the radius of vapor interface studied in Ref. 36 is the fact that the me-
curvatureR; . This means that the values of the rigidity con- chanical and the fluctuation methods for determining their
stants of aplanar interface cannot be determined from the rigidity constants lead to similar results. Our expressions are
simulation of that system only, but it is necessary to perfornderived using the mechanical approach, namely by calculat-
a set of simulations of curved interfaces with very large val-ing the free energy variations resulting from the change in
ues ofR; . For the interfaces investigated in Ref. 36, it turnsthe area and curvature of the membrane. The numerical val-
out that in the largeR; regime the dependence of the pair ues of the elastic coefficients which we obtain from these
density function onR. is very weak. Consequently, it was expressions are compared with the values extracted from a
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spectral analysis of the thermal fluctuations around the flatic moduli. For example, when a 2fat interface is slightly
reference state. We find a very good agreement between tlstretched or compressed from its equilibrium afea the
two methods. This agreement, which is expected by virtue ofariation of the(smal) surface pressurH is given by®>°
linear response theoffgee discussion in Sec)lIreflects the

fact that the curvature of the membrane can be varied by KA:_AOEr
changing the shape of the contaifieamely, by the applica- oA
tion of external forceswithout affecting the thermodynamic
properties of the bulk agueous phases surrounding it.
should be noted that the experimental valuex aheasured
(for the same lipid bilayedsusing mechanical and fluctuation
methods can differ by as much as a factor 6f Fhe origin

of these discrepancies is not well understood.

The bilayer computer model which we use in this pape
has been recently introduced by one of‘tigHere we use a
slightly modified version of that model which we describe in o ksTA
Sec. IV) This model has two features which simplify the (A=Ag)%)= Ky ©)
derivation of thermodynamic expressions for the elastic co-
efficients and the simulations performed for the calculationvhereks is the Boltzmann constant affdis the temperature,
of these expressions. First, the simulations are conductedhile (---) denotes a thermal average. Linear response
with no solvent present in the simulations cell, i.e., as if thetheory can be also applied to describe the normal, curvature-
membrane is in vacuum. This feature great|y reduces thg)rmiﬂg, fluctuations of the 2D interface. The discussion in
number of atoms in the simulation cell, thus enabling us tdhis case(of normal fluctuationk is, however, somewhat
simulate a relatively large membrane over a very long Mcmore complicated. A proof of the equivalence between the
run. The ab|||ty to perform |0ng MC runs is very important equilibl’ium and the fluctuation routes to tkarface tension
since the quantities whose thermal averages we try to evaly of a fluctuating interface had been presented with great
ate are very “noisy,” and accurate results can be obtaine@larity by Caiet al>* Below we extend that proof and ad-
only if they are measured for a large number of configuradress the two routes to theending modulus as well. One
tions. The other feature is the nature of the interactions belmportant difference between the present discussion and the
tween the molecules forming the membrane. In our Compute@ne presented in Ref. 52 is related to the nature of the fluc-
model the amphiphilic molecules are modeled as trimers anfating surfaces in question. Here, we consider an elastic
the interactions between their constituent atoms are pairwisglrface consisting of a fixed number of molecules whose
additive. For such systems the derivation of expression foprea density is varied when it fluctuates. By contrast, the
the elastic coefficientésee Sec. 1)l is simpler than for sys- surface studied in Ref. 52 is incompressible and its area den-
tems inc|uding many_body potentia's_ Our discussion in th|sS|ty iS ﬁXed to |tS equilibl’ium Value. The Variation Of the tO'[a|
paper is, therefore, restricted to central force Systems on|y_area of the latter is achieved via the EXChange of molecules

The paper is organized in the following way: The theo-between the surface and the embedding solvent. A more de-
retical aspects of our study are presented in Secs. Il and lIfailed discussion on the differences between the elastic prop-
In Sec. Il we describe the relation between the equilibriungrties of compressible and incompressible surfaces appears
and the fluctuation routes for determining the surface tensiof? Ref. 15.

o and the bending modulug of bilayer membranes, and Let us consider a 2D surface that spans a planar frame of
exp|ain Why these methodﬁ used appropriateW|ead to a total areao\p which doesnot necessar“y coincide with the
similar results. Then, in Sec. Ill, we derive expressions foréquilibrium (Schulman areaA,. The surface is free to un-
these quantities based on the equi”brium approach_ Our e)d.ulate in the direction normal to frame. The ensemble of
pressions relater and « to the interactions and the correla- conformations which the surface attains is governed by a
tion functions between the “interaction sites” of the am- Hamiltonian(h(r)) relating the elastic energy to the con-
phiphilic molecules. The numerical results are presented iformation of the surface. The conformation of the surface is
Sec. IV where we calculate the elastic coefficients of ourdescribed by some “gauge” function(r), wherer=(x,y)
model system using the two methods and find a very good)abel the points on the reference surface. The exact form of
agreement between them. Some technical aspects of tﬁae HamiltoniarnH is Unimportant and, in partiCUIar, it is not
simulations are discussed in the Appendix. Finally we condimited to the Helfrich form(1). As we are interested in

@)

whereA is the area of the interface aiid, is the stretching/
II:ompression modulus. The above relation provides one way
to measur& 5 . An alternative approach for measurikg is

to consider the thermal fluctuations of the afearound the
equilibrium areaA,.*"*! The equipartition theorem suggests
that in the low temperature limit when fluctuations around
er are small

clude in Sec. V. moderately fluctuating surface@vith no overhangs we
shall use the the so-called Monge gaugeh(r), whereh is

Il. THE EQUILIBRIUM AND FLUCTUATION ROUTES the height of the surface above the frame reference plane. In

TO MEMBRANE ELASTICITY what follows we will restrict our discussion to symmetric

surfaces(such as bilayejswith no spontaneous curvature,

Linear response is a fundamental theorem which reIateﬁe” with no preference to bend toward either the “upper” or
the fluctuations of a system around its equilibrium state andlower” side of the surface. In other words. we assume that

the response of'the system _to Wegk pertur.baﬁéﬁéln the the average conformation of the surface is flat and for €ach
context of elasticity theory it provides a link between the

shape fluctuations of thermodynamic systems and their elas- (h(r))=0. (4
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We also assume that the surface under consideration is mesal space. Let us take a square fraihe reference surfage
chanically stable, and that the validity of Ed) is not due to  of linear sizel ,= JA,, and discretized it intd\? square
the partition of the configurations phase space into severalells (“patches”) of linear sizel=L,/N, wherel is some
subspaces for whicth(f))# 0. microscopic length of the order of the size of the constituent
If the frame(projected areaA, is not equal to the equi- molecules. Since the description of the membrane as a 2D
librium areaA, then it is necessary to apply a tangential continuous sheet breaks down on length scales beldhe
surface pressure in order to fix the area of the frame. If, irsurface has to be defined only over a discrete set of points
addition, normal forces are applied then relatidh breaks  {ry=(xg4,Y4)} €ach of which located in the center of a grid
down. The function cell. Outside the frame region, the function can be defined by

W(F)=<h(r*)> 5) periodic Extension of periodL,, i.e., F(xg+ nily,Yg
+n,L,)=h(Xg,Ys) Wheren; andn, are integer numbers.

can be regarded as the strain field describing the dgformeflhe Fourier transform of thereal) functionﬁ(r*g) is defined
state of the surface. The free energy of a system subjected

a small deformation can be expanded in a power series in the

strain variables. In full analogy to Hamiltonidd), we can — 1 — i

write the Helfrich free energy of the surface in the following a=L—prZ h(rg)e ", (12
form: 9

— = = 1 — — where the two-dimensional wave vectgrhas N? discrete
F(h)=F(h=0)+o(A(h)=Ap)+ zxI%(h)+xkK(h)+hot, o satisfying

(6)
whereA(W) is total area of the surface defined by the func-

tion h(), while J(h) and K(h) denote, respectively, the The inverse transform is given by
integratedtotal and Gaussian curvatures defined by

{ax,Qy=2mm/L,, m=—N/2,...N/2—1}. (13)

_ | .
_ _ 7= — L ldr
7= dramiey @ MTLF et "
Ap
and If the topology of the surface is fixed and it does not form
“handles” then the periodicity of the surface leads to the
EEJ dFK(W(r*)). ®) vanishing of_the Gausaan_curvatu(e) (GaLEs—Bonnet
A theorem. Writing the expressions for the arégh) and the

p

In Eq. (6) we set the spontaneous curvatage=0 [see Eqs integrated total curvatura in terms of Fourier coordinates,

(4) and(5)], and use theffective(normalized values of the o 2 L
elastic coefficients which are different from the “bare” val- A(h)=A,+ EZ qzhah_ i+ O(
ues appearing in the Hamiltonidh) (see discussion earlier q

in Sec. ). The higher order terméh.o.p in Eq. (6) include 54
both products of the small variableA - A,)/A,, J?, andK,

as well as terms involving thgradientsof the local curva-

tures. The latter are assumed to be small since we consider
only nearly flat surfaces described by functidmhich vary
slowly in space. Since, k, and« appear as the coefficients
of the free energy expansion in strain variabJ&s. (6)],

“) (15

hg

J2()=122 g*hgh_g+O(|hg*), (16)
q

and substituting them in E6), we obtain the following
expression for the free energy:

they can be also related to the following partial derivatives: . o 2 L
I F(h)=F(h=0)+ X [00*+xq"+0(q°)Ihgh_5
o=— , 9 a
IA = —
h(r)=0 +0(|hg). 17
2
= E (10) The free energyl7) can be related to the surface Hamil-
a2 |- tonianH({h(fy)}) via the partition function. We may use the
h(n=0 Fourier transform
and
I o
_OF hi=p— 2 h(fg)e 4 (18)
2 (19 P Ty
oK |—.-
h(r)=0 of the functionh({rg}), and express the Hamiltonian as a
evaluated at the reference stat@g)=0. function of the Fourier modegi({hg}). Introducing the set

Equationg9)—(11) express the equilibriurtmechanicgl ~ of Lagrange multipliers{js} each of which enforcing the
route to o, «, and k. The complementary fluctuations ap- value of hg=(hg), we write the partition function of the
proach is more easily formulated in Fourier rather than insurface as
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ZG[AP’{jd}]:f D[{hd}]exp[—ﬁ{H({jq})—% hﬁjdH’

Rt e e

(19 .
where 8= (kgT) . The associated Gibbs free energy is
G[A, {jgt]=—kgTInZg. (20

From Egs.(19) and (20) it is easy to derive the following

relation:
o (ha) = — oo (1)
- \Ngy= = 55~
djg
and
d’G b
_ ulk phase
(hdh_d>—<hd)<h_d)——kBTW. (22 p
q-)-q [ e
The Helmholtz free energk is related toG via d e
hal— . i FIG. 1. A schematic picture of a bilayer membraigeay) in the reference
F[Ap ’{hq}] G[Ap Al q}] + % th q- (23 state(a), and in two deformed statél) and(c). The solid line represents the
characteristic surface of the membrane, to which the Helfrich free energy is
where applied. The areas of the characteristic surfaces and the volumes of the
membranesgrepresented by the gray-shaded area in the figoré) and(c)
dF are identical. The membrane depictedbhis shown in(d) together with the
e =jq. (24 containing cell and the embedding solvent. The end points marked by the
d hd open circles belong to the perimeterof the characteristic surface. Another

deformation of the container, which does not change the total area of the
If we use expressiofil7) for the Helmholtz free energy, we characteristic surface, is shown (e).

find from Eq.(24) that

jg=1oa*+ kq'+0(°) Th_g+- - (29 demonstrate, using computer simulations of a bilayer mem-
[note thath(jq=O):O]. Combining Egs.(17), (23), and brane model, the agreement between the two different meth-

(25 we obtain to the following expression for Gibbs free ods of calculation.

energy:
o jai g Ill. THERMODYNAMIC EXPRESSIONS
G=F({hgt={0})— E N oq?+ k" O] FOR THE ELASTIC COEFFICIENTS
4 A. The surface tension
+0(ligl*. (26)

Let us return to the equilibrium route to membrane elas-
When this expression foG is substituted in Eq(22) and ticity and to expression®)—(11) which describe the relation
evaluated fofj4}={0} (which corresponds to the reference petween the free energy and the elastic coefficients. The sur-
state{hg}={0}), we find that the mean square amplitude offace tension can be computed by comparing the free energy
the fluctuations with a wave vectdy (the “spectral inten- of the membrane at the reference stathich is assumed to

sity”) is given by be flaj and the free energy of a flat membrane with a slightly
(hah_ i —(Ihali larger area. These two membranes are shown schematically,
a"'-a/l{hgt =10} al /1{hgt={0} without the underlying microscopic details, in Figgaland
keT 1(b). We reemphasize that the total number of amphiphilic

= T oqf+ kg™ F O] (27 molecules W_hich form the membrane is fixed, and that the
surface tension should be related to the free energy depen-
This result, which quantifies the magnitude of the fluctua-dence on the area density of the amphiphitesher than the
tions around the flat equilibrium state, provides a secondree energy cost to add molecules to the membramhke
(“fluctuation™) route for calculatingr and « (but not for the  characteristic surfaceof the membrane to which the free
saddle-splay modulus). It is frequently quoted in an incor- energy is applied, is chosen as the midsurface between the
rect form with oy and kg, the coefficients in the Helfrich two layers. The total volume of the membrane is assumed to
Hamiltonian(1), instead ofo and . The equivalence of the be fixed; otherwise, an additional term involving the volume
two routes to membrane elasticity is expressed by the faatompression modulus must be introduced in &j.
that the elastic coefficients appearing in expressif are It is important to remember that in Figs(al and 1b),
the same as those obtained from E@—(11), and which  only the mean configurations of the surfdaethe reference
are associated with the “equilibrium” route. In the next sec-and deformed statgare depicted, and that the surface undu-
tion we use Eqs(9)—(11) to derive statistical-mechanical lates around theséensemblg average conformations. In
expressions for the elastic coefficients. Then, in Sec. IV, wether words, “the state of the surface” refers to its average
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conformation. As has been discussed earlier in Sec. Il, notem together with the bulk phases, and replace the sum in Eq.
mal forces must be applied in order to deform the surfacé30) with integration of the coordinates of all atonig”}

from its reference stat®.If the membrane is embedded in a over the entire volume of containéor the simulation cell
solution and placed in a container, than these forces can bé.,
generated by deforming the entire container, as demonstrated N
in Fig. 1(d). Such a system can be conceptually divided into :f 1—[ 47 ex
bulk agueous phases and the interface between them which v

includes the membrane and the adjacent hydration layers.

The volumes of the bulk phases above and below the menin addition to the above integral, it is necessary to specify the
brane are fixed by the presence of solute particles that cannbbundary conditions for the positions of the amphiphiles
permeate the membrane. The deformation of the boundarigwar the walls of the container, so that the perimeter of the
of the container “percolates” to the interface and the lattercharacteristic surface would be described/y

acquires the shape of the surface of the container. However, Let us assume that our célontainey has a square cross
since the bulk solution is fluid and has a vanishing sheasection of linear sizé , with —L /2<x,y<+L /2. The de-
modulus, its deformation without changing its volume doesformation of the cell depicted in Fig.(d) can be described

p(— > b(rP)lkgT]. (32)
(aB)

celly=1

not add any contribution to the free energy. by the following linear transformation:
Even though real bilayer systems are always embedded
in a solvent(which influences their elastic propertigshe Iy 1 0 0)\/R,
calculation of the surface tension can be also performed for ryl=10 1 0](Ry, (32

model systems that exclude the latter and leave only the r,
interfacial region. This is possible due to the fact that the
surface tension can be calculated by considering a deformeghich maps every poinf{ on the boundaries of the unde-
flat membrane. Such a membrane can be uniquely defined Byrmed cell to its strained spatial positién The character-

the perimeterP(h(r)) of the characteristic surfadeepre- istic surface has the same shape as the upper and lower faces
sented by open circles in Fig(d)]. The free energy of the of the cell, and its area is given by

membrane can be derived from the partition functibwia

the relation A:Apm:Ap
F=—-kgTInZ. (28

e 0 1/ \R;

62

2

1+ +O(e4)>, (33

. . . . whereA,=L2 is the area of the reference surface. Since the

The expression for the partition function must take into ac- PP . . . . .
. . deformed surface which we consider is flat, its free energy is

count the microscopic nature of the membrane, and the POiven b [see Eqs(6) and (33)]

tential energyE due to the interactions between the am—g y q

phiphilic molecules. In what follows we assume tliatan €2

be written as the sum of pair interactions between the atoms  F=F(e=0)+0A, 5, (34)

(“interaction sites”) forming the molecules
from which we conclude that

E= refy, 29
2, 40P (29 e
= N deE (39
wherer ## is the distance between atomsand 8, and sum- p Y€ Te—o

mation over all pairs of atoméf) is performed. The vari- sing the relation between the free energy and the partition

ous interactions are not identical but rather pair dependen - . )
L . . unction (28), we may also write the above result in the
as each amphiphilic molecule is typically composed of mam{‘ollowing form:

different atoms. They also depend on whether the atoms be-
long to different molecules or part of the same amphiphile. keT[1d%Z 1 [/dz\?
In the latter case some atoms are covalently bonded to each o= — A_[Z a2 ?(E)

other, what brings in an additional contribution Eo For P

brevity we will omit the subscripts of the potential and the If we now turn to our expressiof8l) for the partition
indices of the argumemt*? will serve as an indicator of the function, we notice that it depends anonly through the

specific potential. With the potential energy described by Eqintegration volumeV,. The differentiation ofZ with re-

(29), the partition function is given by spect toe, however, could be carried out more easily if the
dependence oar is removed fromV and brought into the
z= > ex;{ - > B(r*P)kgT|, (30) integrand. In other words, we wish to change the integration
P cont (h) variables in(31) from i’” to R?, where the latter are confined
where the sum runs over all the conformations is which thenside the undeformed cell. This is achieved using transfor-
perimeter of the characteristic surface is depicted by thenation (32), which originally described the deformation of
closed curveP. Our assumption that the membrane has nahe boundary points, and is now being applied inside the
spontaneous curvature guarantees that its average conformaslume of integration. With the new set of variables, the
tion is indeed flat. Alternatively, one may consider the sys-distance between two atoms is given by

(36)

e=0
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r*f=[(R*)%+2eRyPR;P + €*(RyF)?]Y2. (37)
In the undeformed reference statt’(e=0)=R*#. The partition function reads
f H dRyexp( —<§‘,> [ (R)2+2eRIPRIP + €2(RP)?]/KgT |, (38)
Voy=1 aB

whereVy =V . (e=0) is the volume of the undeformed cell. The Jacobian of the transformation has been eliminated from the
integrand in the above expression since it is unity. Note that no approximation has been made in deri{@8yg #bich gives
the same value for the partition function as expres$&i. We do not argue that th@nearn coordinates of atoms deform
affinely, but rather use transformatid@2) as a mapping between the configuration phase spaces of the reference and the
deformed systems.

With expression38) the differentiation ofZ with respect toe is straightforward but lengthy. We skip the details of the
calculation, and write below the final expressions for the first and second derivatives, evaluatedfponly the value at
e€=0 is required in Eq(36)],

dz LI ¢'(R*) RyFR;P
— dR”expg — Ry || — 39
def vovgl F{ <azﬁ> d)( ){ <azﬁ> keT R %9
and
d?z A &' (R°F) RIPRIF]2
— dR”expg — >, H(RA)[{| > —
de*| vovgl F{ @ ? @ keT ~— R™
¢"(R*P) [REPRIF\2 ¢/ (RF) (RFF)® ¢/ (R*F) (RYPRYP)? 10
"G T TRF T TG RT T eT RPY ] 40
where ¢’ =d¢/dR and ¢"=d?¢/dR?. When these expressions are substituted into(&8). we readily find that
RaﬁRaﬁ RaBRaB 2 1 RC{BRC(B 2
o= 57| 2 ¢'(R*¥)—=3 > < > &' (R*) —=3 m <2 ¢"(R*)| —=a )>
ApkBT[ <<aﬁ R/ (aB) R/ (aB) R/
REP) 1 R{PRYF)?
+ R*# - RYP) ———=5— ), 41
<<a2ﬁ>¢< ) Raﬁ> <<a2ﬁ>¢ (") (41)

where the thermal averages are evaluated at the undeformed reference state of the sy&tpnif(the system is macro-
scopically invariant with respect to reversal of the sign of theoordinates Z— —z), then the first term in the above
expression foro vanishes. If, in addition, the system is invariant with respect to rotation around tes (X—V;
y— —X), then another expression can be derived \Hlﬁ’? replaced bny,"B. Defining Rf‘ﬁz (Ry )2+(R;' )2, we finally

arrive at the following expression:
Ve {5 (]
2A,\ @B RA

apy) RO\ 1 1 ooy (REPRED)?
+toA <<a2ﬁ>¢ R*) —map >—ﬁ<2 ¢'(R 'B)(F\,a—ﬁ)s : (42)

uzﬁ DzB

1 < |: 2 . aﬁ
O=— i T ¢ (RF) —7

Ry
H & R e

This expression can be also written in the following compactwith the much better knowfand more frequently useex-

form: pression for the surface tensf6ri®
Cooxrt Cyzyi— Pro— P (R{#)2—2(Ry#)?
o= Lz[ I yHE W ”} Lottt (43 < 2 ¢ (R ——xap
(ap)
. . . : 2P,,~ Py — P
wherelL, is the linear size of the systefthe cel) in the z =L, Zzz X WY (44)
direction (normal to the membramnewhile P and C denote 2

the pressure tensor and the tensor of elastic constants of the
system. The quantityt,, is the shear modulus associated The latter expression is obtained when one considers the
with the deformation depicted at Fig(d).*>>° variation of the free energy resulting from thgolume-

In is interesting to compare the above resg)—(43) preserving variation of theprojected area 4,
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-
- S

oF
oA,

(49)

o=

\%
The deformed state associated with the surface tersien
shown in Fig. 1c). For fluid membranes we anticipate that

o=7 since the difference between them .
~ szxz+ Cyzyz /', /',
O—0=L, T_Pzz EI—z:U«tz- (46) ,' g
/ ’
;!
/
is proportional to the shear modulys, associated with the ,/ )

deformation shown in Fig. (). The shear modulug.,, is e
expected to vanish because the areas of the characteristic |
surfaces of the membranes in Fig$a)land Xe) are identi- 04
cal; and the Helfrich free energy of a flat membrane depends® |
only on the area of the characteristic surface, but not on the ' \ i’
orientation of the plane of the membrane with respect to the .
walls of the container. This argument for the coincidence of * '\ .
o anda could be applied directly to the membranes in Figs. NN , P
1(b) and Xc), whose characteristic areaas well as their N 2,
volumes are also identical. The tilt of the cell's wall, how- AN R
ever, can be safely ignored only in the thermodynamic limit, AT -7 .
when the width of the membrane becomes much smaller than Sl . _-
its lateral dimensions. If the system is not sufficiently large
than the Helfrich form for the free energy in which the mem-F!G- 2. A cylindrical bilayer membranggray) with radius of curvature,
brane is associated with a 2D characteristic surface is nqahnd apex angl@. The solid line |n'the.m|ddle of the membrane represents
e characteristic surface. The cylindrical shape of the membrane is obtained
entirely applicable. The finite width of the membrane mustvia a deformation of the containing cell, depicted by the bold dashed line in

show up in the expression for the free energy, and the surfadbe figure. The membrane may be thought of as part of a cylindrical vesicle
tensionso and do not perfectly agree (depicted by the thin dashed linef a similar radius of curvature.

B. The bending modulus ol?
) = (5

The bending modulus can be calculated by considering a
deformation of the characteristic surface from a flat to cylin-
drical geometry. The deformation, which is depicted in Fig.,yhere
2, can be described by the following nonlinear transforma-
tion of the boundaries of the cdltompare with Eq(32)]:

Ry, J= Ry’ (52
(47)

=Ry, ry=

— 2 2 2 2
2= Ret VR~ VRS s The calculation of the right-hand sidens) of the above
where — L ,/2<x<+L,/2, andRy,>L, is the radius of cur- equation is very similar to the one presented in Sec. Il A
vature of the cylinder. The integrated total curvatig.(7)] ~ which was based on expressi@8) for the partition func-
of the characteristic surface is tion. The deformed pair distance, which in that case was

given by Eq.(37), is now depicted by the following relation:

— L

== (48) _ _

0 rf=[(R*)?—2X“PRIPRPI+ (X*F)2(RyF)2321H2, (53
and its area is

where
A=A +2 arcsi Lo ~A,| 1+ i?Jr(o(?) (49)
p 2R, P 24 '
—p XOHXP
The free energy is, hence, given by Xr= . (54)
ol? -
F=log ToK" (50 comparing Eqs(37) and (53), and, respectively, Eq$35)
and(51), it is easy to realize that the result of the calculation
from which we deduce the following relation: is the following expression:
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XaﬁRaﬁRgﬁ XaﬁRwBthlB 2
<2 MRM)—H <{Eﬁ>¢<Raﬂ>—Ras 1 >]

ol? N
_ K= ————
12 ApkBT <CVB

XaBRaBRaB 2 1 < (Xa,BRaﬁ)2>
+_ "(RB ( Z z — Raﬁ +
< & YO e > A\ R
1 (XPRIPRIP)?
- "(RBy — 2 2 °
Ap<<a2ﬁ> ¢ (R) —gamye— | (55

which is similar to Eq(41), except for the fact thaR%” is everywhere replaced byY“BR;‘B.
Among the five terms on the rhs of E&5), only the s_econd inv_olves averages of quantities including the prodifet”®
with {@B)#{y4). In the other four terms, the quantiti¥$” and X“#)? can be replaced by their averages

_ 1 [Ly2
(X“‘*):—f x dx=0 (56)
LpJ-1,m2
and
_ 1 (Lp2 L2
af\2y— __P
e I 7

since they multiply quantities which depend only on the separation between atants8 and whose averages, therefore, are
independent of the location of the pdprovided the system is invariant to translations in thandy directions. This, in
combination with Eq(41), yield the following expression fok:

)]

1 R“ER“B
K= R
AkBT[< <azfs>¢( : H <
ReplacingR? with RY?, andX*# with V“BE(Y“JrYB)/Z, we obtain the “symmetric” formula

L2 R;’BR;"B L2 5 RyPREP X*PRPREP|?
ol S g e g o
YePRIPREE)
< E o (R“B)Tl >] (59

(ap)

Itis |mportant to remember here that the above expressior {68) applies to square membranes only with the origin of
axes located at the center of the membrane so-tHal/2<x,y<+L,/2. A formula which does not depend neither on the
shape of the membrane nor on the location of the origin is obtained as follows: The first and third term$58) Eqn be
written jointly in the following form:

YaepRaBpaf
2 &' (Raﬁ)u

1

K=

RaﬁRaﬁR75R75 L2
"(RBY A (RY) 22 2 2 _waByyd
<a2ﬁ><%><¢(R VR R (12 XX ) (60)
RaﬁRaﬁR)’ﬁRVﬁ L2
=2 <25>< (R“%(R’&)W[ —(xaﬁvﬁ>2+<A“ﬁyﬁ>} , (61)
@ Y
where
— X4 X7?
X (62)
2
and
Yaﬁ_fy&
Aﬁ'éﬂ'y‘sz—z . 63

The terms appearing before the square brackets if@g.depend only on the relative coordinates of atoms with respect to
each other. Therefore, the average Ef’f”&)z (the second term in square brackets, which depends on the location of the
center of the pair/triplet/quartet in questjazan be performed separately. As in E§7) we have((Y“ﬁ’75)2)= L,23/12, which

leads to the cancellation of the first two terms in square brackets if6EQ.Applying the same argument for the second and
fourth terms in Eq(59), and definingY“#79=(Y*A+Y7%)/2 andA$F 7= (Y*#—Y7%)/2, we arrive at the following expres-
sion:
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1 RPRY?
K= ’ Raﬁ ! R’y5 4 4 RQ’,BR’y5 Aaﬁ,75 2+ RCK,BR75 Aa/,B,’y5 2 >, 64
—ZApkBT% % ¢'(RF) " (R™) mapmys[RERI(ALE )2+ RIPRY(AYF7)?] (64)
|
which is the more general form for expressi®d) since it is L2 i
independent of the shape of the membrane and of the loca- F=Ap §+2K+K Ho - (67)

tion of the origin of axes.
The deformed membrane, shown schematically in grayyhereH =1/R,. From the above expression fBr the rela-

shade in Fig. 2, may be considered as part of a closed cylinign-

drical vesicle(depicted by the dashed line Fig). ZAccord-

ingly, one may argue that its free energy is given by o2 1 d¥F
) T+4K+2K:A_pw oo (68)
F= EFvesiclev (65

) i is easily derived. The deformed pair distance is
whereF e iS the free energy of the vesicle amdis the

apex angle of the deformed membrane. This relation, how- raB:[(Raﬁ)Z_z(Yaﬁ'Raﬁ_'_VaﬂRaﬂ)RaBH

ever, is incorrect since qqqe iNCludes a term which is X vz

unique to closed vesicles and should be omitted in the case +(Y"ER§B+V“5R;4’)2H2]1’Z, (69)

of open membranes. The additional contributionRg;e

which has been termed “tharea-differenceelastic energy,” \yhereX*8 and Y2 have been defined in Sec. Il B. Since

should not be confusgd with the bending energy. The_ latter iEqs.(68) and(69) have, respectively, the same form as Egs.
the free energy required to bend the membrane while keeq51) and (53), we immediately conclude that the rhs of Eq.

ing its area density f|?<ed. The former, on the other hand(68) is given by expression similar €5 in which X*#R2#
originates from the simple fact that upon closure of the Bl YuBpaf

vesicle, it becomes impossible to preserve the area densitiés VeryYWhere exchanged with""R, "+ Y*"Ry ™. Follow-
of the amphiphiles in both the outer and the inner monolay-mg the same steps descnb(?q in the dgnvauon of &g
ers. The outer monolayer is stretched and the inner mond ™M (59, and using the additional relation

layer is compressed relative to the midcharacteristic surface. 1 (L2 (L2

The elastic energy resulting from such curvature-induced <§aﬁ7aﬁ>:_zj P J P xy dx dy=0, (70)
changes in the monolayer areas inanlocal effect because Lo J-Ly2) -2

the monolayers are capable of independent lateral redistribu-

tion to equalize the area per molecule of each leaflet. Thave finally arrive at the following result:

distinction betweertlocal) bending elasticity andnonloca)

area-difference elasticity has been discussed by Helfrich, not _ B XPRYPREP
long after introducing his famous HamiltonidhThe idea, K=—Kk— AkeT <aEB> ¢'(R )T
however, did not gain much popularity until the issue had

been analyzed systematically by Svetielal. some years Y“BRAPRAP

later® Early theoretical works and experimental measure- X
ments of the bending modulus failed to separate the local and
nonlocal contributions® This is not the case with our ex-
pression64) for x which has been derived by considering an
open membrane. For an open membrane, the two leafle
have the same area as the tbptton surface of the contain-
ers and, consequently, area-difference elasticity do not show

_ 1
up. e DI <¢'(Raﬁ>¢'<w§)
prB ! (ap) (o)
C. The saddle-splay modulus

> . (71D

This expression applies to square membranes only, with the
origin located at the center of the membrane. The more gen-
al expression is

> ¢ (R ———
(aP) R

afpyd
Finally, we derive our expression for the saddle-splay XWR)‘ZEAQB”"SR;,Y&A$B’75>. (72
modulus «. The following transformation, applied to the

boundaries of the container,

=Ry, r,=Ry, (66) IV. NUMERICAL RESULTS

The purpose of the MC simulations which we conducted
and present in this section is twofold: The first is to test the
(with —L /2=x,y<+L/2), describes a deformation of the validity and accuracy of our expressions for the elastic coef-
surface to spherical geometry where the sphere’s ra@jus ficients. The second is to examine the agreement between the
>L,. It is not difficult to show that the free energy of the mechanical and the fluctuation routes to membrane elasticity,
spherical surface is given by as discussed in Sec. Il. The model system whose elastic

r,=R,+ VR§—x*—y?*—Ri—-L3/2
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1 2 3

FIG. 4. Equilibrium configuration of a fluid membrane consisting of 1000

- - . molecules(500 molecules in each monolayer
FIG. 3. A schematic picture of a lipid molecule in our model system—a

trimer consisting of three spherical atoms of diameteThe atom labeled 1

(solid circle represents the hydrophilic head of the lipid, while the atoms . . . .
labeled 2 and Zopen circle represent the hydrophobic tail. brane, and no boundaries for the simulation cell were defined

in the normal direction. The linear size of ttequarg mem-
brane was set th,=29.37%. Subsequent MC configura-
tions were generated by two types of move attempts: trans-
Sations of lipids (which also included some minute changes
in the relative locations of the three atoms with respect to
&ach otherand rotations around the midatom. A set df 2

) . . . = 2000 move attempts of randomly chosen molecules is de-
each other via pairwise LJ potentidlshose details can be fined as the MC time unit. Both types of movsanslations

Ifgzgdrallrr]lgieghfesr.a?t)ioanVsOIq[htgeL?Jor:(?tltlai\?itgolgShlg\\//gl\é)eeder\:wtrr]unand rotationswere attempted with equal probability, and the
) ! . . . acceptance probabilities of both of them was approximatel
cated at some cutoff separati®{?=r,=2.5a and, in addi- b b PP y

tion, modified to ensure the vanishing éfand its first two half. The MC relaxation time has been evaluated in Ref. 48.

S T It is of the order of 16 MC time units and has been very
! n
der!vat!ves,cb andc_ﬁ ’ atrc: Th_e con_tmwty of the secon_d little affected by the changes introduced in the model. A
derivative of the pair potentials is an important feature sinc

" appears in our expressiofs?) for o. Two changes have %ypical equilibrium configuration of the membrane is shown

: . . in Fig. 4.
been made in comparison to the original model presented in g

Ref. 48. The first is a small reduction of the temperatureA. The fluctuation route
which, in this paper, has been set toT,9hereT, is the
original temperaturéin Ref. 48. The second is the addition

properties were studied by the simulations has been d
scribed in great details in Ref. 48. Briefly, the “lipids” that
serve as the building blocks of the membrane consist of thre
spherical atoms of diameter (see Fig. 3 interacting with

In the fluctuation method the elastic coefficientand «
are determined by calculating the Fourier transfohm,of
&he height function(18), and fitting the values of mean

samemolecule. In Ref. 48 the molecules were linear rigid 5, ared amplitudes of the different modes to the inverse
trimers with a fixed distanca between the centers of the form of Eq. (27)

constituent atoms. Here, we allow some little variations of

the separation between the atoms. The midatiaieled 2 1 17og’+xq*+0(q°)] 75
has been linked to the two end atottiabeled 1 and Bvia (Ihgl%y kgT '
harmonic springs with spring constakt and equilibrium

The details of the calculation have been described in Ref. 48,

and will not be repeated here. The results of this spectral
#(R)= 1K(R—a)? (73 analysis are summarized in Fig. 5, where we plot the value of
. . _ 1/1%(|hg/?) as a function ofy®. The error bars represent one

while the pair potential between the end atoms has been sgfyndard deviation in the estimates of the averages, which

to were obtained from simulations of 16 different membranes
#(R)= LK(R—2a)2, (74) and a total number of 1.2510 measurements of the spec-

trum per membrane. The measurements were done at time

We use a large value for the spring constakt intervals of 100 MC time units. The curve depicts the best fit

=8000kg T/a?, for which the separations between the atomsto Eqg.(75), which is obtained whem and « take the follow-

do not exceed the order of 1% of their equlibrium values.ing values:

While this means that the molecules in our model are “al- T

most” linear and rigid, the use of the above potential8) o=(—0.620.2 —5, Kk=(46+2)kgT. (76)

and(74) creates a situation in which all interatomic interac- a

tions (whether between atoms belonging to the same or difThe contribution of theg® term to the fit was, indeed, sig-

ferent moleculesare depicted by smooth potentials; and so,njficantly smaller than that of the other two terms on the rhs
our expressions for the elastic constants can be used withogf gq. (75).

any further complications. The total number of lipids in our
simulations wasN= 1000 (500 lipids in each monolaygr 5. Th flibri

and no additional solvent molecules were included inside th&: "€ eaullibrium route

simulation cell(as if the membrane is vacugmPeriodic While the measurement of and « using the fluctuation
boundary conditions were applied in the plane of the memapproach was a relatively straightforward matter, the appli-

lengtha,
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25 . . — T . . pression involves not only the relative locations of the par-
ticles with respect to each othdas in the case of the
expressions for the surface tensiobut also the absolute
coordinates of atoms. This wouldot create a problem if

only the central coordinateX(¢? andY“?) of the pairs had

to be found[as one may, naively, conclude from E&9)],

since that among the set including the pairB) and all its

periodic images, only one satisfies the requiremert,/2

<X%B, Y“ﬁ<+Lp/2. However [and this becomes clear

from the derivation of expressiqB4) from expressiori59)],

what we actually have here is a periodic boundary conditions

problem where theairs play the role of the particles, and

X and Y* serve as the coordinates of these “particles.”
I IR S S| This means that eadjuartet((«,8),(v,9)) is identified as the

0 0.1 02 0':2” 0'24 0.5 06 07 pair («,B) and the paify,d) or its image nearest t@,3) and,

q [laT] in addition, that the center of the quartet must satisfy

_ XaB,yd yaB,ys i
FIG. 5. The inverse of the spectral intensity for undulatory modes I_‘P/2$x Y <Lp/2' Th_e _faCt that sometimes a
11%(|h|?) as a function of the square wave numiér The circles mark ~ Pair must be replaced by one of its imagesich are located
numerical results, while the solid line depicts E@5) with the values ofr outside the boundaries of the simulation £&l problematic
and « given by Eq.(76). since this means that the location of the pair, which is needed
in expression59), cannot be specified by a single value. A

cation of the equilibrium approach emerged as somewha%omtIon t-o this problem IS obtalne_d by dividing the simula-
tion cell into stripes parallel to either the or they axes

more challenging task. The most significant differences be-d di heth lculate the third or fourth t
tween the two approaches was the amount of computer ré- epending on whether we calcuiate the third or Tourth term

sources required for an accurate determination of the elastlf E9- (59, and to split the summation over all the pairs to

coefficients. The results which we present in this sectiorpcVeral partial sums over the pairs included in the different
have been obtained using 64 nodes on a Beowolf clusteiIPes: The partial sums corresponding to the images of each
consisting of Intel architecture PCs, where the CPU time pef!iP€ (Which consist of all the images of the pairs included
node was of the order of three months. The need of such & the stripe can be found with almost no additional effort.
large computer time should be compared to the relative easE!e Product of two partial sums gives the contribution of all
with which the results in Eq76) have been obtained—using e quartets consisting of pairs located inside the two rel-
a total number of only 16 nodes over a period of about terfVant stripes. Depend|_ng on the_z d|stance bet_ween the stripes
days. The reason that the equilibrium approach is so mucklong the relevant axisand their locations with respect to
computer-time consuming is the “noisy” nature of the statis-the center of the cell, it isisually easy to decide in which
tics of the terms whose averages are evaluated in expressiof@se a stripe should be replaced by one of its images. Ambi-
(42) and(59). From the conceptual point of view, the deter- guities about the correct decision occur in a finite number of
mination of the surface tensiom using expressiorf42) is  casesli.e., for a finite number of pairs of stripedn these
pretty simple. The determination of the surface tension Cases, individual decisions must be made for each quartet.
from expression44) is even easier since it is a much less The number of such quartets can be reduced significantly if
noisy quantity. In fact, the computational effort required for the system is divided into a large number of stripgs since

an accurate determination of the valuetois even smaller the narrower the stripes the smaller the number of pairs in-
than the one required for the calculationoby the fluctua-  cluded in each one of them. A more elegant solution is to
tion method. The surface tensidndoes not apply directly to choose a certain convention about the ways the contribution
membranes with a fixed projected area. Yet, it is expected tfom the ambiguous quartets is added to Exf). This will

[\
<
]

—
W
I

q

—_
o
I

1/°<h [*> [1/a"]

coincide witho in the thermodynamic limit. inevitably introduce a systematic error to our estimates.of
The determination of is more complicated. Here we However, if we make a set of estimates based on increasingly
can, in principle, choose between expressi@® and (64). larger values olNg, we can obtain the correct averages by

The latter is more genergince it is not restricted to square extrapolating our results to the limitN{—0. The method,
membranes but prohibitively time consuming. This can be which is described in more details in the Appendix, can be
understood by considering the number of operations requiregeneralized to handle correctly the calculationxof How-

for a single measurement of the quantities of interest. Asever, because of the mixing of tikeandy coordinates in Eq.
suming each atom in our simulations interact with a finite(71), the implementation of the method becomes more com-
number of other atoms, the total number of operations replicated. For this reason, and due to the fact that the fluctua-
quired by expressioii64) is O(N?), while the number re- tion approach does not provide a value of saddle-splay
quired by expressiofb9) is only O(N). In our simulations modulus to compare with, we did not use our simulations to
the total number of atoms is 3000, which means a differencealculatex.

of about 4 orders of magnitude in efficiency. Using expres-  In Sec. Il we have explained in great details why the
sion (59) to measurex is, however, tricky because this ex- elastic coefficients obtained from the fluctuation approach
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are the free energy coefficients and « rather than the 60 . ; . . T
Hamiltonian coefficientsog and k. This means that the - 1
guantities in expression@?2) and (59) should be averaged 40
over the ensemble of all possible microscopic configurations.
However, it is also easy to understand that sheneexpres-

sions can be used to calculate the Hamiltonian coefficients. =
The latter, which characterize the energy changes caused by
deformations of the flat membrane, can be obtained by re- -
stricting the averages to conformations wha(g,) =0 for »
every grid cell, thus avoiding the entropic contribution of the -20
thermal fluctuation to the free energy. To sample this con-
figuration phase space one need to accompany every MC  -40
move attempt with one or tw¢depending on whether the
molecule leaves the grid cell or noadditional moves of 60—
adjacent molecules. Moreover, one can also sample the 0 005 Ol Oi}lfl 02 025 03
phase-space consisting of only those conformations of the s

membrane with wave vectors '_n the range/2p$/\<q. FIG. 6. The bending modulus, as a function of the inverse of number of
The results of such a calculation are the wave-dependeRtipes dividing the simulation cell, . The curve depicts the weighted
coefficientso(A) and k(A). One of the problems which can least squares fit of a second order polynomial iNglib the data.

be studied by such investigation is the value of the numerical

coefficientc in the formula for the renormalized bending _ _ _
modulus®’~®° ment is expected to fail and to lead to the incorrect

conclusion that«=0. We used this incorrect result as a test
ke T for our code.
k(A)=kg+c——In(Al). (77 The values of the elastic coefficients have been extracted
4 . . . . .
from simulations of 64 membranes starting at different initial

configurations. The initial configurations were generated by

This problem aroused a renewed interest recently _s_ince itr%mdomly placing 500 lipids in two different layers with a
has been suggested that the valuecoimay be positive, vertical (along thez direction separatiora (the size of the

which meandquite remarkably that the fluctuations stiffen atoms between them. The initial configurations were “ther-

=63

rather then softer_l t_he membratfie. i . malized” over a period of X10° MC time units, followed

While determ!m_ng the value wa_as not possible given y a longer period of 1.2 10° time units during which quan-
the Iardg_g unceIErta|7nt|§s of the nlun"_lerl?arllly mealsur((a)d value q ties of interest were evaluated. The uncertainties in our final
K% v&/e '7 used qr(] ?'Eoﬁr ana yS|_sdo tbe results. d urneed rasults correspond to one standard deviation in the estimates
of Eq. (77) and the n that it provides .etwee.man KolS— of the averages. We first made the simulations with nonfluc-
related to the peculiar nature of our simulations which are[uating membranes. from which we extracted the values of
made in a solvent-free env!ronment. As ha§ been_ ‘_j's'the Hamiltonian coefficients. Then, we removed the part in
cussed in Sec. lll, our expressions for the elastic coefﬁmentgur algorithm which is responsible for keeping the mem-
have been derived based on the assumption that the MePrane flat. The membranes were equilibrated again, and then

brane is embedded in solvent and that the entire container We values of the thermodynamitree energy coefficients
deformed. In our simulations, however, we have no container

. : _ . X were determined.
(the_re are no boundanesf for_t_he simulation cell in the- For the bare coefficients we find the following values for
rection and, so, the applicability of our approach should bethe surface tension:
examined carefully. The arguments which we presented in
Sec. lll A[see, in particular, the discussion around Bf)]
demonstrate that the presence of solvent is essential only for

the calculation of« andx, but not for the calculation of the

keT  _ kgT
0'0:(08i05)?—, 0'0:(—007i001)?— (78)

. ~ S The comparison of these results with each other, and with the
surface tensiong and . By contrast, the Hamiltonian co- . -
values of the elastic coefficients extracted from the fluctua-

efficients can beall measured in a “solvent-free” model tion approachiEq. (76)] reveals:(a) a disagreement between
since they are extracted from simulations of flat, nonfluctu-, bp q: i 9

. . . the two surface tensions, ando, which should be attrib-
ating, membranes. The value of and the relation given by uted to the finite size of our membrafeee our discussion in
Eq. (77) provide then an estimate for the value saf Since

the finite-size correction to the value gfgrows only loga- Sec. IILA); ano!(b) a disagreement _betwem) andUWh'Ch
S : : . should be attributed to the entropic contribution to the sur-
rithmically with the size of the system, and sineg=>kgT, : . .

. . S face tension. The bending modulkg has been obtained by
the difference betweer, and « is not significantly large. In . 7" : . .

: : . - LS dividing the system intd\N stripes and extrapolating the re-
our simulations it actually falls within the uncertainty in our

. . : sults for k¢ to the limit 1Ng— 0, as explained earlier in this
estimates of the bending modulus, which means thand . . .
. 2 o section(see also the AppendixFrom the extrapolation pro-
Ko are practically indistinguishable. In addition to our mea-

. . cedure, which is summarized in Fig. 6, we find that
surement ofkg, we also measured directly from the simu-
lations. As we have just explained above, such a measure- «y=(44=10)kgT. (79
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10 . — 7T T T 7 is based on the fact that and « describe the free energy
- . variations due to area-changing and curvature-forming defor-
5k — mations and, therefore, can be related to the derivatives of

T . the partition function with respect to the relevant strain vari-
- ables. Using this kind of relation, we have derived formal
i expressions foo- and k in central force systems. Our expres-
sions associate the elastic coefficients to the interactions be-
tween the molecules and the two-, three-, and four-particles
distribution functions. The most important feature of these
expressions is the fact that even thougland « (as well as
the saddle-splay modulus) are related to deformations of
the membrane, they can be extracted from a single MC run
o performed on the referendanstrained system.
'200 005 01 015 02 025 03 One of the puzzles about curved interfaces elasticity is
/N related to the correspondence between the above two ap-
proaches for determining their rigidity constants. We used
FIG. 7. The “gppargn_t"_bending _modul_us* as a function of the in\{erse of Jinear response theory to prove that the two methods must
number of stripes dividing the simulation cellNY/. The curve depicts the . .
weighted least squares fit of a first ordénear polynomial in 1Ny to the agree for the values af and « pr0V|ded that the system Is
data. deformed by the application of external forces and not by
altering other thermodynamic variables such as the tempera-
ture or the chemical potential of surface molecules. More-
This result also serves as our estimate #disee discussion over, our discussion clarifies that the coefficients in question,
earlier in this section The similarity of the above value &f 5 and «, are theeffectiveelastic coefficients which appear in
(which is, unfortunately, obtained with a somewhat large nuthe Helfrich free energy(rather than the Helfrich Hamil-
merical uncertaintyto the one quoted in E76) corrobo-  tgnjan and which are influenced by the thermal undulations
rates the argument presented in Sec. Il regarding the equivgf the membrane. Our computer simulations and the numeri-
lence of the two routes to membrane elasticity. Further| yalues of the elastic coefficients which we find, confirm

support to this argument is obtained from the agreement o jgea of equivalence between the two routes to membrane
our result in Eq.(76) to o, with the value of the surface elasticity.

tension obtained from equilibrium approaphsing expres- Comparison of the computational efficiency of the two

sion (42)], methods shows that for our membrane model system the

kg fluctuation method provides more accurate estimates of the

0=(-03£0.9 az - (80) elastic coefficients than the equilibrium method, and requires
less CPU time. The major shortcomings of the fluctuation
approach is the fact that it can be utilized for measurements
kg of the effective coefficients only, and that it requires the de-

0=(-0.41+0.0) —=. (81)  termination of the profile of the interface during the course

o ) ) of the simulations. While this is easy with our “water-free”
These values are quite different from those given in®8),  computer model, this may not be so in other cases, for in-

t_hus demonstrating the_importance of the entropic Contribu'stance, for membranes which tend to exchange molecules
tion ;O tk;le surfa(ie tgnlsél_on.7 its for the * . with the embedding solvent, or for liquid—vapor interfaces
b d.ma Y v(;/el P O*t mh'I% Oﬁr resubtts. ordt € _apparent near the critical point when the interface is difficult to dis-
si?)rr]1 I(ns%)m?roumutimvl\jlaliior\:\ée O?V: ?Iucil?a‘latir; us::gﬁggﬁ: tinguish from the bulk phases. In these cases the equilibrium
o . g " method may be more attractive since the interactions in the
These simulations serve as a test for our code. We #ihd )
Co . : g bulk phases do not contribute to the valuesradnd x when
=(—4=x8) kgT which is consistent with the anticipated . : : -
. calculated using our expressions for the elastic coefficients.
value k* =0. . . :
Moreover, with the same mechanical expressionsof@nd
k, the bare(Hamiltonian coefficients can be also calculate.
V. SUMMARY AND DISCUSSION Our measurements demonstrate that close to the tensionless

Motivated by the lack of a well accepted theory to dealsState of the membrane, the entropic component of the surface
with the statistical-mechanical behavior of curved interfacestension is quite significant. This has been also found recently
we have studied the elastic properties of fluid bilayer memin a theoretical study of the surface tension of fluctuating
branes using analytical and computational tools. Two distincsurfaces?®
methods have been employed to measure the surface tension Finally, we would like to re-emphasize that our expres-
o, and the bending modulug of a model membrane. In the sions for the elastic coefficients apply for central force sys-
first (“fluctuation”) method the elastic coefficients were ex- tems only. Following our derivation of these expression one
tracted from the analysis of the spectrum of thermal fluctuashould be able to generalize them to more complicated cases
tions of the membrane. The secoffdquilibrium” ) method including many-body interactions. A more realistic model

K [k,T]

Our result forg [expressior(44)] is not very much different,
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must also include electrostatic interactions whose long-range 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
nature pose a computational challenge.
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APPENDIX: DETERMINATION OF « FIG. 8. A schematic picture of a system of linear sizeconsisting of four
USING THE METHOD OF STRIPES pairs (@,b,c,d) and their periodic imagesa(,b’,c’,d"). The bold frame

Th t ¢ d finit . ffects | marks the boundaries of the primitive simulation cell which is divided into
€ most common way 10 reduce Tinite size erlects InNS=8 stripes labeled from 5 to 12. The images of the stripes which belong

computer simulations is obtained by employing periodiCio the nearest periodic extensions of the primitive cell are labeled 1-4 and

boundary conditions, namely by regarding the simulationl3-16.

cell as part of an infinite periodic lattice of identical cells.

When the range of the interactions is less thgf? (half the

linear size of the cellthan each particle interacts only with In order to calculate the third term in E(9) we divide

the nearest periodic image of any other partigleThis, in  our system into an even number of stripdg=2M

turn, is identified as the pail,B). Eachpair has infinitely ~ (M-integey parallel to thex axis, as shown in Fig. 8. The

many periodic images each of which is associated with dourth term in Eq.(59) is calculated in the same manner by

different simulation cell; and with each simulation cell eachdividing the system into the same number of stripes parallel

pair is associated exactly once. The set of all the differento they axis. In addition to the primitive cell we also need to

pairs associated with one of the cellsay, the original consider the nearest periodic extensions of linear bjZ2.

(“primitive” ) cell] is the one over which the summation in These periodic extensions, which are also shown in Fig. 8,

expressiong4?2) and (44) for the surface tension should be consist of periodic images of the stripes. We label the stripes

performed. included in the primitive cell with the numbers
Things become more complicated when we try to evaluM +1,...,3V, the stripes on the left periodic extension with

ate the bending modulus using expressior(59). In this 1,...M (they are the periodic images of stripes

case, coordinates associated with the location of the pa@M+1,...,3M, and the stripes on the right periodic exten-

(X*# and Y*) appear in the expression, and so it becomesion (the images of stripesM+1,...,2M) with 3M

necessary to decide which of the periodic images of each pait 1,...,4M. For each pair we calculate the quantipy?

is actually associated with primitive simulation cett [ ,/2  =¢'(R*)R’R;#/R*#. The location of the pair, which is

<x,y<+Ly/2) over which the sum in Eq(59) is per- identified with the midcoordinatg*#= (X“+ X?)/2, defines

formed. The intuitive candidate is the periodic image withthe stripe with which the pair should be associated. In Fig. 8

—L/2=X*8,Y*B< +L /2. Making this choice, however, is each pair is depicted as a particle. The pair labeledor

not the right convention. The correct way to handle the suminstance, is located in the fifth stripe, whereas its periodic

mation in expressioli59) can be deduced from our deriva- imagea’ is located in stripe number 13. For each stiipe

tion of expression(64) which is independent of the location the primitive cell we calculate the sum

of the origin of axes. Following the discussion that led from -

Eqg. (59) to Eq. (64) it becomes clear thata) each quartet 3= > perX B, (A1)

(v, B),(7,6)) must be reproduced exactly twice from sums in pairs in stripe #i

Eq. (59 [or once, if the quartets((a,8),(7,0) and  The sum corresponding to stripe the image of stripe, is

((7.9),(a,B)) are treated as differehtand(b) that the central  given by

coordinate of the quartetX¢? 7%, Y*£:7%) must lie inside

the region of the primitive simulation cell. These require- = 2 p“ﬁ(f"f"i Lp), (A2)

ments can be perceived as a periodic boundary condition pairs in stripe #1i

problem with the pairs playing the role of particles and withwhere the sign £) in the above expression depends on

(X*#,Y*) serving as the coordinates of the pairs. What carwhether the image is situated to the right or the left of the

also be learned from expressigf4) is the fact thatx is  primitive cell. The produci ., gives the contribution to

associated wittpair—pair correlations. Therefore, its accu- the third term in Eq(59) of the quartets whose constituent

rate measurement is difficult in systems whose linegr pairs are included, respectively, in strippsand q. These

<2¢&, where¢ is the relevant correlation length. We proceed contributions should be in accord with requiremerg} &nd

our discussion assuming that our system is sufficiently largéb), mentioned in the preceding paragraph, about the quar-

and obeys the above criterion. tets and their locations. In some cases these requirements are
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fulfilled by the image of the stripe rather than the stripe it- (1 for [p—qg/|<M—-1 and M+1<p
self. A few illustrative examples are given in Fig. 8. The +q<6M+1

contribution of the quartetsa(b) and (b,c), for instance, is '

obtained from the product8s3g and g3 4,, respectively. 05 for [p—qg|=M and M+1<p

The quartet ,c), on the other hand, shouldot be intro-  f ,q:< +g<6M+1,

duced into expressiofb9) for « via the product s ;. The 0.5 for [p—g/<M—1 and p+q=2N+1,

distance froma to the imagec’ is smaller than toc

and so the quartet should be identified as eitlac’() or as .

(a’,c). The latter is the correct choice because the center of | O otherwise.

the quartet &',c) satisfies —L,/2<X3°=(X* +X%)/2 (A4)

<+Ly/2, while the center of the quarte ') falls outside ~ The value of« obtained using the above expressigasjs.

the primitive cell. The contribution to the expression foof ~ (A3) and (A4)] are not accurate since the contribution of

this pair is, thus, obtained from the proddtt;S 3. some of the quartets is introduced in an approximated way.
The nice feature of the above examples is that the argu-owever, the fraction of such quartets and the resultant nu-

ments we used to reach our decisions about the correct wdyerical error can be diminished by taking the lirig—o.

to handle the quartets haveot been based on thprecise In our simulations we have used a set of five approximations

coordinates of the pairs, but rather on the identity of theith NS:h4' 6“' 8, iz 24. q h lculation of: Th

stripes and their locations with respect to the center of the . Another "trick” to speed up t e calculation ot: The

simulation cell. This means that the produgiss., repro- third and fourth terms in expressi@d9) for « depend on the

Lo . coordinates of the particles. Therefore, several values for

duce the contribution cdll the quartets corresponding to the - : . !
. L - these quantities can be obtained from a single MC configu-
relevant stripes. Individual decisions are necessary only for g

I b f ot iated with the followi ration by generating replicas of the original simulation cell.
ig‘;s number of quartets, associated wi € 1ollowWiNgrhege replicas can be generated by shifting the position of

] ) ) ) ) the origin of axes, and using the “minimal image conven-
The first case is related with quartets in which the nuM+jo,» 1" define a replicated primitive cell which is centered

ber of stripes separating the pairs is equaMo as in the  5r6ynd the new origin. The computational effort required for

case of the pairb andd in Fig. 8 which are located, respec- {he calculation of expressioi®9) in the replicas is substan-

tively, inside the eighth and the twelfth striped €4 inthe  tjally smaller than that required for the generation of a new

above example The separation between the pairandd  MC configuration. For one special set of replicas the calcu-

along thex axis is very close td /2, and it is impossible to  |ation can be done witlialmosi no additional effort at all:

know (without checking the coordinates of the pairs This set include the replicas generated when the origin is

whether the paid should be replaced by its periodic image shifted by constant intervaléx=_L, /N in the x direction

d’ located in the fourth strips. In a homogeneous systenféy=L,/N in they direction. Such shifts are computation-

about half of such pairs should be exchanged with their imally favorable because they lead to cyclic permutations of the

ages, and so the best estimate for the contribution to exprestripes, but do not mix the pairs included in each one of

sion(59) for « arising from guartets including one pair inside them.

the eighth stripe and the other inside the twelfth stripe is

0-528(E4+212)' 1J. Israelachvili,Intermolecular and Surface Forcdécademic, London,
Another case occurs when the stripes containing the two 1985.

pairs are symmetric with respect to the center of the primi-2l\C/l-iCzahgfgfﬁ/’lyr‘nebgﬁrgP&?&&iﬁﬂ':yé%e‘aﬁgg t‘i-?t%d M

tive cell and, in addition, the distance between them is larger Gelbart, A. Ben-Shaul, and D. Romspr’inger_Verlaginew YO”Z 1594'

thanM. A typical example is the quartea(d) in Fig. 8, in “B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson,

whicha is inside the fifth stripe and is in the twelfth stripe. ~_Molecular Biology of the CellGarland, New York, 1989

In this case it is obvious thata(d) has to be replaced by M. J. RosenSurfactants and Interfacial Phenomefi#iley, New York,

either @,d") or by (a’,d), but the two are equally probable. ¢s A safran,Statistical Thermodynamics of Surfaces, Interfaces, and
Therefore, the contribution of such quartets is best estimatedMembranegAddison-Wesley, New York, 1994
bv 0 5(2 S.+3.LS 3) "Structure and Dynamics of Membranesdited R. Lipowsky and E.
Y Uo&ass 12513+ . . Sackmanr(Elsevier, Amsterdam, 1995
The above rules for correct summation over the dmerentSR. B. Gennis, Biomembranes: Molecular Structure and Function
guartets can be summarized by the following compact for- (Springer, New York, 1980
mula for the third term in expressic(|59): 9Statistical Mechanics of Membranes and Surfademceedings of the
Fifth Jerusalem Winter School for Theoretical Physics, edited by D. R.
Nelson, T. Piran, and S. Weinbef@/orld Scientific, Singapore, 1989
10A. G. Petrov,The Lyotropic State of Matter: Molecular Physics and Living
Matter PhysicgGordon and Breach, Amsterdam, 1999

0.5 for |[p—g|<M—-1 and p+q=6N+1,

mw 1G. Gompper and M. Schick, “Self-assembling amphiphilic systems,” in
2 2 fp qE pzq ) (A3) Phase Transitions and Critical Phenomerealited by C. Domb and J. L.
p=1g=1 Lebowitz (Academic, London, 1994
2\W. Helfrich, Z. Naturforsch28¢ 693 (1973.
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14p. G. De Gennes and C. Taupin, J. Phys. CH@®n2294(1982.
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