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Pore formation in fluctuating membranes
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We study the nucleation of a single pore in a fluctuating lipid membrane, specifically taking into
account the membrane fluctuations, as well as the shape fluctuations of the pore. For large enough
pores, the nucleation free energy is well-described by shifts in the effective membrane surface
tension and the pore line tension. Using our framework, we derive the stability criteria for the
various pore formation regimes. In addition to the well-known large-tension regime from the
classical nucleation theory of pores, we also find a low-tension regime in which the effective line
and surface tensions can change sign from their bare values. The latter scenario takes place at
sufficiently high temperatures, where the opening of a stable pore of finite size is entropically
favorable. ©2005 American Institute of Physic§DOI: 10.1063/1.1835952

I. INTRODUCTION driven by the reduction in the tension energyrrrrg and is
opposed by an edge energy proportional the pore perimeter

Lipid bilayers play an important role in living cells as I'2zr,, wherel, the line tension, denotes the energy per

barriers separating the inside of the cell from the extracelluunit length along the pore’s rim. The net energy is, thus,

lar environment, as well as segregating the cell into separatgiven by

internal compartmentsA vital feature of those membranes )

is the ability to remain intact under variety of external ~E=I'2@To—omry. @

perturbationg. At the same time, however, many cellular Assumingl’>0 anda>0, Eq.(1) predicts that a pore with a

processes, including endo- and exocytosis, lysis, and cell sigzgi,s larger than the critical value of

naling require breaking the membrane structure and forming

a nonbilayer transient, such as a membrane pdtahe r

opening of stable pores in biological membranes is also an r0>; 2

important step for drug delivehyand gene theragyConse- ] o )

quently, much attention has been focused on understandirlg Unstable in the sense that it will grow without bound and,

the processes leading to the formation of pores and thH timately, will rupture the mer_nbrane. Such allarge pore will

mechanisms controlling their stability. be created only if the nucleation energy barrier

Two types of pores dominate membrane permeability: a2
free lipid pores and peptide-lined por&She interest in lipid SE=— 3
pores has greatly increased in the past few years with the 7
development of new experimental techniques to induce ani accessible by thermal fluctuations. For typical estimates of
study pore formation in biomimetic, single-component, lipid the line tension]'~ 106 dyn,23_25thermally driven rupture
membranes. One approach to nucleate a pore is known agquires a surface tension on the order of 1 dyn/cm.
electroporation, where an electric field that produces com-  The problem with the above model is that it precludes
pressive stress is used to disrupt the membt8néHoles in  the existence of stable pores of finite size. Nevertheless,
lipid membranes have also been opened by other methodng-lived pores that remained open for several seconds be-
including intense illumination?® suction through a micro- fore resealing have been observed in experiménis23-25
pipette}” adhesion on porous or decorated substrétés, Opening of transient pores has been also reported is several
and osmotic swelling>** computer simulation&~2°This has led people to re-examine

Most theories of pore formation to date derive from athe basic assumptions underlying Efj). Improved theoret-
model based on classical nucleation thédijhe model con-  ical models succeeded in explaining the formation of stable
ceives the membrane as a two dimensional elastic mediumr long-lived metastable pores by considering the fact that,
characterized by a free energy per unit aftsurface ten-  once pores have been nucleated, their further opening is ex-
sion”) o. The formation of a circular hole of radiug is  pected to relax the surface tensidrt®3°-34n the case of a
planar membrane, it is the increase of the area density of the

aCurrent address: Department of Physics and Astronomy, University of Pids (occurring Conc_urrently to the d"atio_n of the pﬂthat_
Pennsylvania, Philadelphia, Pennsylvania 19104. reduces the mechanical tension. For vesicles, the opening of
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a pore allows the internal contents to escape, which reduces
the osmotic pressure and the associated Laplace tension. % %
Most of the theoretical models have so far, however,
neglected the effect of membrane fluctuations on the opening g g g g g
and thermodynamic stability of pores. The entropy associ-
ated with the shape of the pore has mostly been ignored also. (a)
A few recent studies of the entropic contribution to the free
energy of nucleating a pore, have led to some new interesting 3 359 Oll %z
predictions. The most remarkable result has been obtained by A0 g:.:(;
Shillcock and Boaf in computer simulations of two- "‘z,b
dimensional fluid tethered surfaces. They found that pores
appeared at zero, and even small negative surface tension. ®)
Their interpretation of this surprising finding was that en-
tropy, which favors the formation of noncircular pores, re-FIG. 1. Schematic microscopic models for hydrophdbicand hydrophilic
duces the effective line tension of the pore and makes itb) pores. For_a'hydrophilic pore, the boundary actually joins the two mono-
negative at sufficiently high temperature. An entirely differ- 12Y8s of the lipid membrane.
ent fluctuation effect has been discussed by Sens and
Safrari® who considered circular pores, but allowed mem-
brane fluctuations. Their study suggests that positive stresghich a quasicircular pore has been formed. For a nearly flat
must be applied in order to facilitate the opening of a pore inmembrane with arbitrary parametrizati¥iix1,x2), the Hel-
a fluctuating membrane, and that the nucleation barrier fofrich Hamiltonian is given by
pore formation is too high to be overcome by thermal fluc-
tuations. More recently, wéhave demonstrated that the pri- H=| dxdx, \/a
mary effect of membrane fluctuations on circular holes is to M
e nere Tk Winereq 1 e ceterminar of the merc tersr, =, X
P 9 P P -dgX, while H andK denote the total and Gaussian curva-
temperature case. . . - .
. - . tures, respectively. The elastic coefficients appearing in the
In this paper, we carry out a statistical mechanical analy- ; S . .
. L Helfrich Hamiltonian are the surface tensionthe bending
sis of pore formation in bilayer membranes. Membrane elas-. . .. . L
o . . S .. rigidity «, and the Gaussian rigidity. We assume that the
ticity is described by the Helfrich Hamiltonian, which in- ) A
) ilayer membrane is symmetric with no spontaneous curva-
cludes the curvature energy and a surface tension term. . Lo . .
X . o .ture. The integration in Eq(4) is carried over the two-
line tension term is introduced to account for the energetic,. : . .
dimensional manifoldM, representing the surface of the

penalty at the pore edge. We calculate the free energy for

: . : L [[nembrane.
nucleating a single pore, systematically taking into accoun
both membrane fluctuations and the entropy due to poré. Gaussian curvature
shape. We show that, for large enough pores, the pore nucle-
ation free energy takes the form of Hd), with the surface
and line tensions replaced by their effectirenormalized

Understanding the contribution of the Gaussian curva-
ture term[last term in Eq.(4)] to the free energy requires

) - looking at the structure of the membrane on the molecular
values,aer andI'e. The effective coefficients are usually level. Two distinct models of pores have been discussed in

smaller than the barebcounterpartsv\a/md, foh'?]h enough e literature and are shown schematically in Fig. 1. Figure
peratures, may even be negative. Wiigg=0, the opening 1(a) depicts a cylindrical pore where the lipids in the vicinity

,Of a stable pore becomes entropically fqvored and may OCCHt the pore remain oriented parallel to the membrane surface.
in weakly stressed membranes. The size of a thermal PO'& \ch a pore is called “hydrophobic,” and the origin of the

can be varied by changing the tension applied on the men}iore line tension is the energy due to the exposure of the tails

brar]reH . ed as follows: Th Hamil of the lipids at pore’s rim to water. The other case is of a
€ paper is organized as follows: The system Hami “hydrophilic” pore, shown in Fig. 1b), where the lipids

tonian is ﬁonlsdtrttj)cted in Sec. (IjI.QNe show that Etj.fqr the curve at the pore’s rim thus shielding their hydrophobic parts
energy should be augmented by terms representing Corregs, ) e aqueous contact. The line tension of a hydrophilic

tions due to the pore’s shape and membrane’s height fIlJCtu%’ore is due to the curvature energy involved in the reorien-

tions. Tracing over the relevant variables yields the COMM€iation of end molecules.

sponding free energy. The derivation of the free energy is The Gaussian curvature term in the Helfrich Hamil-
presented in Secs. Il and IV, in which the thermal correc-

fi 0 th ; d line tensi lculated. In S tonian is calculated differently for hydrophobic and hydro-
lons 1o the surface and line tensions are caicuiated. In Sec. ;Zhilic pores. For hydrophobic pores, this term reduces to an

we d_iscuss our results and suggest some possible further e itegral of the geodesic curvature on the pore bouniiay.
tensions of the present study. similar situation is encountered in the case of proteins and
other membrane inclusions, where the orientation of the lip-
ids at the membrane-inclusion boundary is determined by the
We consider a bilayer membrane consisting\ofipids  structure of the proteif’ The change in the Gaussian curva-

that spans a planar circular frame of total afga= wL2, in  ture in that case is

II. DERIVATION OF THE HAMILTONIAN
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AHgayss 2mK(COSQ— 1), (5)

where() is the contact angle along the boundary.

The case of a hydrophilic pore, on the other hand, is
more subtle. Each of the two monolayers making up a bi-
layer can have an associated Helfrich energy, and the two
monolayers are joined at the pore boundary. This, however,
does not present a topological boundary and, therefore, there
is no integral of the geodesic curvature. The opening of a
hydrophilic pore results in a contribution to the Hamiltonian
due to the change in topology: The bilayer is topologically a
sphere(if we assume both bilayers are linked at the outer
radiusL ), which changes genus upon the opening of a pore,
becoming a torus. For a manifold without boundary, the
Gauss—Bonnet theorem ensures that the total Gaussian cur-
vature is a topological invariant and thus measures, to some
extent, the global properties of the membrane. The change in ) o )
FIG. 2. The mapping(r, ) takes a flat reference plane containing a cir-

Gaussian curvature energy due to the formation of a hydrc’c?ular pore into a curved nearly flat membrane with a hole of nearly circular

philic pore is given by projected area.
AHgauss — 47k, (6)

The Gaussian curvature modulus may take both positive
or negative values, hence leading to either an increase ( 0-n(rg,0)=0, (8
<0) or decreasex>0) in the energy upon the opening of a
pore. Strict comparison with classical nucleation thedty. 2m - 2
(1)] is possible only forx=0 and, therefore, we will restrict 0 delrotr-a(ro,6)]°=mro. ©)
the following discussion to this special case. The Gaussian
curvature term can be interpreted as an additional contribu®n the outer(frame boundary we set
tion that lowers or raises the free energy depending on the Ao .0)=0 (10)
sign of k. This contribution is independent of the pore size. P '
It will influence the probability of opening a small nucleation With the embedding defined by E() we have, keeping
pore, but will have no effect on the size to which metastablgerms up to quadratic order i andh,
long-lived pores grow.

Orr = 1+2r- drm+ (0, 77)2+(arh)21

B. Membrane fluctuation energy Gro=F - Agm+16- 3,9+ ,hagh+d,m- 9, 1y

The first two terms of the Helfrich Hamiltoniaf@) are
local in character. Therefore, the above argument regarding
the absence of boundaries in a porous membrane fails, arfdr the metric, thus giving us after a lengthy but straightfor-
the pore can be treated as if representing the inner membramerd calculation
boundary. In order to study the statistical mechanical behav-
ior of the membrane, we define a coordinate systend)( VO=r[1+3(Vh)2+V-n+ V-5,], (12
=(rossr=>L,,0<6<2m) in which the pore is described by

Qoo=r2+2r 8- dom+(9,m) %+ (3,2,

a curve of constant=r, where
X(r,0)=[r cog 8) + ny(r,0)1X+[r sin(8) + 5,(r,6)]y 1= (1xdgmy) (T17) = (149, 77y) 6. (13)
+h(r,0)z. (7)  One also finds that to lowest order the total curvature is

The functionh(r, 8) represents the height of the membrane?' " by

above some flat reference plane. The functiocos@)x 1

+rsin(@)y+ n(r, ) is a mapping from coordinates @) in H=—=0d,(1/gg*?3,X)~2V?h+ O(h?, 7). (14)
which the membrane pore will be circular, to points in three- Vg

dimensional space in which the pores will have an arbitrary Substituting Eqs(12) and (14) into Eq.(4) and keeping

shape(see Fig. 2 Thus, (1, 0) is a measure of the devia- o\ up to quadratic order ip andh, we find
tion of the pore from having a circular projected area, which

we will assume to be small. Our choicergy, which we will , o1 ) oo
defineas the radius of the quasicircular pore, is made by H:UW(Lp_rO)+§J drdor[o(Vh)“+ k(V<h)“]
equating the projected area of the poreﬂcﬁ. More specifi-

cally, we will require thatyp satisfies the following boundary
conditions(BCs): + | drdoro[V-n+V-a]. (15
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The last integral in the above Hamiltonian can be convertedEquations(19) and (22) imply that the functionf, which
into a line integral by the application of the divergence theo-depicts the fluctuations around the equilibrium profijesat-
rem. Using Eqs(8), (10), and (13) we arrive, after some isfies

calculation, to the following form: f(L,)=0, sz(Lp)=0,

1 23
H=m(|_§—r§)+§f drdor[ o(Vh)2+ x(V2h)?] f(ro)=0, V(ro)=0. @3
Hamiltonian(17) can be thus written as
o (27 2
- _ . 2_ r- 1
2fo deLr: n(ro.6)] ‘”Ofo dér- (o, 6). Hh(ho+f)=fdrd&r(E[J(VhO)ZJrK(VZhO)Z]
1
(16) +[oVhg- V+kV2hV?f]
An important feature of Eq(16) is that,to quadratic order
the dependence of the Hamiltonian bfr,) and #(r,0) +E[(T(Vf)2+K(V2f)2]]. (24)
decouples completely. Also, notice that E{.6) depends 2

only on the boundary value af. This _is a consequence of £o. the cross termsecond term ink,) we obtain, upon
the fact that away from the boundany,is merely a transfor- integration by parts,

mation of coordinates under which the Helfrich Hamiltonian
should be invariant. We will henceforth use the scalar func-
tion 7(6) to denote the boundary values of the mapping
7(r,0), i.e., n()=r-5(ry,6). Using BC(9) of 7(h), we

drdor[aVh- Vi+«xV2hoV2f]

find out that the last two terms of E(L6) cancel each other. :J drdér[ — oV2hy+ k V4] f
This leaves us wittH= (L5~ r§)+Hy,, where
1 2h (N- n- — V2
HhEEJ drdor[a(Vh)2+ x(V2h)?]. (17 +LM"V ol V)HLM(“ Vllaho= xV7holt,

L . . 2
The Laplacian in the height-dependent Hamiltoniaw) _ ' ' @9
requires that we have two BCs on each boundary. On th#here the last two integrals in the above equation are per-

outer boundary(=L,) we impose the BCs, formed on the boundaries of the system. The boundary terms
) in Eq. (25 vanish due to the BC&2) and (23), while the
h(Lp)=0 andV<h(L,)=0. (18 bulk term vanishes due to E(R1).

The first BC corresponds to a membrane which is attached tﬂ V_\Ilithqut thtekc rOthterm in qulfl) ,ntige EeiJ??t—ij(;{perr:dent
a static frame on its external perimeter. The second is op-amitonian takes the simple for n(ho ) =7n(No)

tained by considering the discrete version of the HeIfrichTLHh(f)’ where the energies associated wig(the equilib-

surface Hamiltonian and requiring that in the continuum4M term andf (fluctuation term completely decouple. In-

. ; : : tegrating both terms by parts twice, we find expressions
limit, the same equation describes the motion of the bound-7~". ; )
g similar to Eq.(25), wherehy is replaced by (in the fluctua-

ary and bulk elements. The BCs on the inner boundar ! ) A
y y (t|on term or vice versgequilibrium tern). In the former, the

= ite similar, . :
o) are quite similar boundary terms vanish due to E@3) and we are left with
h(ro,6)=H(#) and V2h(rq)=0, (19

with the only difference that the height is sethid 8) rather
than vanishes. The vector

Hh(f)zf drd&r%[a(Vf)z-FK(sz)z]. (26

In the latter, the bulk term is eliminated by virtue of E81).

Y(6)=X(ro,0)=[ro+7(6)]F +H(6)Z, (20 Considering the BCs ohg (22), one can easily find that
2
depicts the locus of the pore boundary in the 3D embedding _ E JZ" d(kVho—ohp)
space. Note that in the case of a membrane inclusion of Hn(ho) 2Jo déroH() or @7

"o

radiusrg, the second BC in Eq19) should be replaced by
—N-Vh(rg,8)=dh(ry,60)/dr=H’(6) where the contact Inamanner similar to the last two terms in Kg6), the last
slope,H’, depends on the geometry and the tilt angle of the'€sult demonstrates that contributions to the Hamiltonian due
inclusion3’ to the pore can only appear through boundéiye) inte-

We proceed by writing the height function 4s=h,  grals.
+f, wherehg is the extremum of Hamiltoniafi?), i.e.,

— oV2hy+ kV*hy=0, 21) C. Pore line tension

An additional contribution to the free energy is due to

subject to the BCs that the line tension of the pore, which arises from the curvature

ho(L,)=0, V2hy(L,)=0, and packing of the lipid molecules at the pore boundé&ig.
P P (22) 1). The pore’s shape is depicted by the cud@) (20), and
ho(rq,8)=H(6), Vzho(ro)=0. the line tension energy is given by
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FIG. 3. The free energAF¢ as a function of the pore’s radius for
=10kgT and various values af,. The inset to grapka): a log—log plot of
the numerical results for;=0. The slope of the straight dotted line is 2.

Ffzwdax/(dY(G)/de)z
0

2w T 2w
:rzwr0+rf dan(a)+—f d6[(dH(8)/d6)?
0 2rg Jo

+(d7n(6)/d6)?], (28)

wherel is the line tension coefficient, i.e., the edge energy

per unit length.
D. The full Hamiltonian

Collecting expressionél6), (26), (27), and(28), we find
that the Helfrich Hamiltoniariexcluding the Gaussian cur-
vature term can be written as the sum of two terms:

H=He+H,. (29)

J. Chem. Phys. 122, 044901 (2005)

The second is the inner boundary term, consisting of the
various contributions to the energy due to the pore

m T 2
Hy=T 271 o+ Efz deHzrn(a)Jr—(dn(a)
0

J)

(31)

2 ro\ de

&( szho_ O'ho)
ar

F(dH(a)
o\ de

2
) +roH(8)

o

Ill. SURFACE TENSION

In calculating the contribution of the surface
Hamiltonian(30) to the free energy, we follow the procedure
described in our previous manuscript on membrane
inclusions®” We fix H(6) and n»(6) and integrate over the
membrane fluctuationkfirst. We will integrate over the re-
maining fields in Sec. IV. The integration over the field
f is performed by expanding in a series of eigenfunctions
fmn(r) of the operator L=—0V2+kV*  f(r,¢)
=3 nAmnfma(r)€M?. The functionsf , ,(r) can be writ-
ten as the linear combination of the Bessel functiahgr)
andY,(r), of the first and second kinds of ordex and the
modified Bessel functions of the first and second kinds of
orderm, K,(r) andl (r):

fn(N)=AJnNT"r) +BY (N T""r) + CKp(A5"Tr)
+DIy(ASr), (32

where the \;(i=1,2) are the positive solutions of
(=1 Loe(\™) 2+ k(A" *= wmn, andum , is the eigen-
value corresponding to the functiof., ,(r): Lfg,(r)
= pmnfmn(r).

Applying the BCs(23) atr, andL,, we derive the ei-
genvalue equation

Jm()\lm’nrO)Ym(}\rlnyan) _\]m()\lm’an)Ym(Arln'nrO) =0.
(33

Although this eigenvalue equation is different from the one

we had in Ref. 37, the asymptotic behavior of the eigenval-

ues is the same. In the long wavelength limif"r y<|m|,

Eq. (33) reduces to the eigenvalue equation in the absence of
pores

Jn(N""Lp) =0. (34)

This is a manifestation of the fact that modes with character-
istic lengths much larger than the pore radius are hardly per-
turbed by its presence. In the opposite limify"r o> |m|, we

find that the difference between two consecutive eigenvalues
saturates ton]"" "' —\[""=7/(L,~r0), which is a factor
Lo/(L,—ro) larger than in the case with no pore. The physi-

The first term is the surface Hamiltonian associated with th(—?al interpretation of this result is that the pore acts like a hard

membrane fluctuations:

1
Hs= UW(LS—I’SH—EJ drdér[o(VF)%+ k(V23£)?].
(30

wall for modes with characteristic lengths much smaller than
its radius, reducing the effective linear size of the membrane
for these modes tb,—rg.

Integrating over the membrane fluctuatidnshe Gibbs
free energy is given 6§
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kgT
T

[a(AT"M) 2+ k(A" *]AN G
2’7TkBTN

G(a,Ap.ro)=om(L2—rf)+H,

In[
(39

where\ gg is the thermal de-Broglie wavelength of the lipids.
The Helmholtz free energy is given biy(A,A;,rg)=G

— oA, where the total membrane ardéais related to the
surface tension by

2 2 1 2m (9h0
AZW(LP—I’O)—E o deroH(a)?
o
ksT 1

— 2 . 36
2 mn o+ k( T,n)2 39

J. Chem. Phys. 122, 044901 (2005)

eigenvalue equation in the absence of pd@8. Note that
despite the implicit coupling between membrane and pore
fluctuations(the fieldsf andhg, respectively, introduced by
Eq. (37), we were able to express the free energy as a sum
of: (1) a free energy associated only with the membrane fluc-
tuationsAF¢, and(2) the HamiltonianH, which depends
only on the boundary values,(6) and 7(6). This can be
done only in the thermodynamic limit and for nearly-flat
membranes, where terms higher than lineasican be ne-
glected in Eq.(39).

An analytical approximation oAFg is obtained by as-
suming(based on our discussion of the asymptotic behavior
of the eigenvaluea ") that eigenvalues such that™"r
<a|m| (long wavelength are not affected by the pore,
whereas modes with""r ;> a|m| (short wavelengthgrow
by a factorL,/(L,—ro).>” The dimensionless constaatis
of the order of unity and its value will be determined later by

Assuming that the membrane is incompressible and, thergsxact numerical calculation oAF. Using this “step-

fore, that its total area is fixed, we can use B3§) to derive
the following equation, relating the surface tension apd

kgT

2 &

1
o+ K()\T’n)2

dh
Ihol
ar
"o

1 (2w
— 73— > fo déroH(6)

1

oot K()\Tig))z

37)

In the above equation]'q are the corresponding solutions

function” approximation for the eigenvalues’"", and
evaluating the sum in Eq39) as an integral, we obtain the
simple result(correct up to quadratic order ir) that

SR

7 )
E—ﬂTr(z)(O'O"r‘AO')E_WrgO'effy (40)

where é= x/ag, andly=L,/\Ny is a microscopic length
cutoff which is of the order of the bilayer thickness. From the

2

|
0 +1

mE

2

AFg=—mrjogt+

of the eigenvalue equation in the absence of the inclusioRpoye equation, we identify the thermal correction to the

(ro=0): In(A\T(o)Lp) =0, andoo=0(ro=0). The first two
terms on the left-hand side of E(B7) give thechangeAA,

in the equilibrium area, i.e., the difference between the are
of the surface whose profile is parametrizedtyand A,
=7-rL§, the equilibrium area of the nonporous membrane
The second two terms give tlilhangein the area stored in
the fluctuations around the equilibrium profile. These

changes cancel each other due to the conservation of th
total area. Since we assume a finite size pore in the thermo-

dynamic limit (ro<L,) and sinceH(6)<L, and|dhq/dr|
<1 (which is why we keep only terms up to quadratic order
in ho), AAp<<A,. In this limit, we can expand aroundoy,
and need only consider terms linearAml\, /A, :

o=0o(1+5), where 5~0O(AA/A,). (38)

After some straightforward algebra we find that the por
free energy, defined asAF(rq,hg,7)=F(rq,hg,”)
—F(0,0,0), can be expressed by the following st/m:

AF(rO’hO!n)
=M, (0—0a9,hg, 7) =TTl
a2+ k(AP L3-1)

ao(N1jo) >+ k(\Tio)*  Lp

keT
2

(39

where the sum runs over the modes 0,1,...,/N,, and,m
—No,....//Ng so that the total number of modedg is

=H|(oc—0g,hg,7)+AF(ry),

e

surface tension as

kgT

l[a—2+

2

T
f—i—l

lo

- §) In ( ]
In order to test the accuracy of expressidf), we have
numerically solved the eigenvalue equati@8) and used the
solutions to evaluate the sum in E®9). Numerical values
«(ro) (for k=10kgT and various values of) are
shown in Figs. 8)—-3(b). They have been extracted by ex-
trapolating the numerical results obtained for several values
of 750=Ny=2000 to the thermodynamic limig—-ce. In
the inset to Fig. @), the results fory=0 are replotted on a
logarithmic scale, showing that our prediction of a quadratic
relation betwee\F¢ andr g is attained only for largémac-
roscopi¢ pores withr ;=100 (the slope of the straight dot-

a

= (41

2
malg

o% AF

ted line is 2. The discrepancy between the numerical values
of AF¢ and Eq.(40) in the smallr, regime is due to the
significant contribution to the free energy of the crossover
modes\""rq~1 which is poorly calculated by the “step
function” approximation. The solid curves in Figgap-3(b)
depict our analytical expressiqd0) for AF, with « deter-
mined by fitting the results for largg) to Eq.(40). The value

of « shows a slight dependence on the surface tension vary-
ing from 1.60 foroy=0 to 1.75 foré=klog=5ly/ .

Our numerical and analytical results suggest that<0,
making the effective surface tension smaller than the bare
surface tension. Of particular interest is the fact, demon-
strated in Fig. &), that for weakly stretched membranes

proportional to the number of molecules forming the mem-(large¢) the effective tension may be negative. In such a case
braneN, while )\’f'(?)) are the corresponding solutions of the the effective surface tension would act to prevent, rather than
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facilitate, the opening of a pore. For strongly stretched mem- deB Np r

branes(small £ the dominant contribution oo is of the H'= > hy2l —m2+og|m| | (49)
. . . . 2N1 m=—N ro

bare surface tension. In this regime, the surface tension part 1

of the free energy is well approximated by the second termAssuming thatoo<I'/r, (the weak stretching regimeit is
of Eq. (1), i.e.,AFS:—aowrSz—awré. easy to conclude that the resulting contribution to the free
energyF'=F/, and thus

Fi=2mrl +F/+F]
IV. LINE TENSION

bkgT[ [bd%sl

In order to complete the calculation of the free energy, =2mro| I'+ g In KeTly -2
we now need to trace over the fields and hy which in
Hamiltonian(31) [see also Eq(39)] are decoupled from each =2mro(I+Al) =271 ol . (50
other. Introducing the Fourier transform of the fiejd We thus identify the thermal correction to the line tension of

dys Ny the pore
0)= - eimﬁ, 42
" 2N1m;N1 " “ ar= el n( D) _ (51)
B 7T|0 kBTlo

wheredgg is the de-Broglie thermal wavelength. Making the
particular choice ofp, that satisfies the B(@9), For phospholipid bilayers at room temperat&E is nega-
tive and is typically in the range of 16—10 ®dyn.

~ ddB |%m|2

7=~ o (43
V2N m#0 0 V. DISCUSSION AND SUMMARY

the corresponding Hamiltonian takes the form The opening of a membrane pore has been traditionally
d2. M r regarded as an energetically-driven process. According to
U4 ~ e . . .S

H= 5 |7l ?— (M?—1). (44)  this view, the surface and line tensions are the forces driving,

N1 m;;gl To respectively, the opening and closure of pores. The balance

between these opposing forces creates a nucleation barrier
The|m|=1 modes are trivial translation modes which do notiy the formation of long-lived pores, and requires the open-
contribute to the energy of the pore. The numbemst2  ing of a sufficiently large hole at the initial stage.

modes is equal to the number of microscopic degrees of free- ~ |5 previous studies, the role of thermal fluctuations has
dom, namely the number of molecules on the rim of the porepeen |imited to facilitating the opening of a nucleation pore.
Since this number is proportional to the perimeter of thetne critical pore sizg2) and the height of the barrieB)

pore, we can write have been determined from E@) for the pore energy. How-
ro ever, at nonzero temperature an entropic part must be added
Nl:b(l_)’ (45  to Eq.(1). To fill the gap in the literature on the subject, we
0

have calculated the thermal contributions to the pore free
whereb is a numgrical factor of the order of unity. Tracing energy associated witfa) the shape of the boundary of the
over the variablesy, is straightforward, giving the free en- hole, and(b) the fluctuation spectrum of the membrane. Our

ergy study suggests that the pore free energy may be expressed by
KeT déB(mz— 1)Ir, an equation similar t@1)
N—_— e
i 2 \ﬁ%l n kgTN; (46) F=Te2ml o= oyl 5, (52

If the number of modes is large;>1 (i.e.,1,<r,) then the in which the bare surface and line tensions are replaced by

sum in the above expression can evaluated as an integr&ffective (renormalizedl values. Typically, we find thal
giving <I' and o <o, reflecting two opposite tendencies. The de-

, crease in the line tension reduces membrane stability against
lln bdggl’ B pore formation. It reflects the larger configuration space
2 '\ kgTlg available to a membrane with a hole present. The decrease in
The contribution of the fieldh, to the line tension free

the surface tension, on the other hand, makes the formation
energy is also tractable. From the partial differential equatio

r](I)_f pores harder in comparison to the zero-temperature case.
(21) and the BCg22), it is easy to show thafor o>0) h, his effect originates from the change in the spectrum of
can be written by the following mode representation

bksT

7T|0

F|7722’7Tr0

(47)

membrane fluctuation occurring upon the opening of the
pore and the resulting increase in bending energy.
B Ni 0 [m| ~ In(r/rg) We can identify a number of different regimes of pore
ho(r,0)= > hm<_ eM'+hog—————. (489  stability. For tense membranes with positive effective line
2N g T In(ro/L,) ! . : . .
tension, we find the standard regime of classical nucleation
Notice thatV?h,=0 everywhere and not only at the bound- theory. From Eq(52), we can identify the stability criteria
aries. Substituting expressi®48) in Eq. (31), one arrives at  for the growth of large pores to bg>I"o4/oe. FOr mem-
the following Hamiltonian: branes with low surface tension, the effective surface tension
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will be negative. In this regime, pores will increase the freetive behavior of these pores and ttrmembrane-mediated

energy for all radii and one should not expect the formatiorinteractions between thémare not well understood. The

of pores spontaneously as long as the effective line tension i&ffect of solvent and in-plane viscosity, which may strongly

positive. This regime is quite unlike classical nucleationinfluence the late-stage dynamical evolution of metastable

theory, where a nucleation barrier for pore formation alwayspores, has been neglected in the present model and should be

exists. discussed! More insight on the pores’ architecture and their
In the theory of thermally activated poration, the nucle-evolution can be gained by molecular-level studies and com-

ation rate of critical pores depends strongly on the free enputer simulations.

ergy barrierdF = 7T’ ¢ /oo, aS expt F/kgT). The height of

the nucleation barrier decreases as one approaches the tem-

perature at which the effective line tensidn,; (50), van-  ACKNOWLEDGMENTS
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