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We study the nucleation of a single pore in a fluctuating lipid membrane, specifically taking into
account the membrane fluctuations, as well as the shape fluctuations of the pore. For large enough
pores, the nucleation free energy is well-described by shifts in the effective membrane surface
tension and the pore line tension. Using our framework, we derive the stability criteria for the
various pore formation regimes. In addition to the well-known large-tension regime from the
classical nucleation theory of pores, we also find a low-tension regime in which the effective line
and surface tensions can change sign from their bare values. The latter scenario takes place at
sufficiently high temperatures, where the opening of a stable pore of finite size is entropically
favorable. © 2005 American Institute of Physics.@DOI: 10.1063/1.1835952#

I. INTRODUCTION

Lipid bilayers play an important role in living cells as
barriers separating the inside of the cell from the extracellu-
lar environment, as well as segregating the cell into separate
internal compartments.1 A vital feature of those membranes
is the ability to remain intact under variety of external
perturbations.2 At the same time, however, many cellular
processes, including endo- and exocytosis, lysis, and cell sig-
naling require breaking the membrane structure and forming
a nonbilayer transient, such as a membrane pore.3–6 The
opening of stable pores in biological membranes is also an
important step for drug delivery7 and gene therapy.8 Conse-
quently, much attention has been focused on understanding
the processes leading to the formation of pores and the
mechanisms controlling their stability.

Two types of pores dominate membrane permeability:
free lipid pores and peptide-lined pores.9 The interest in lipid
pores has greatly increased in the past few years with the
development of new experimental techniques to induce and
study pore formation in biomimetic, single-component, lipid
membranes. One approach to nucleate a pore is known as
electroporation, where an electric field that produces com-
pressive stress is used to disrupt the membrane.10–14Holes in
lipid membranes have also been opened by other methods,
including intense illumination,15,16 suction through a micro-
pipette,17 adhesion on porous or decorated substrates,18,19

and osmotic swelling.20,21

Most theories of pore formation to date derive from a
model based on classical nucleation theory.22 The model con-
ceives the membrane as a two dimensional elastic medium
characterized by a free energy per unit area~‘‘surface ten-
sion’’! s. The formation of a circular hole of radiusr 0 is

driven by the reduction in the tension energy2spr 0
2 and is

opposed by an edge energy proportional the pore perimeter
G2pr 0 , whereG, the line tension, denotes the energy per
unit length along the pore’s rim. The net energy is, thus,
given by

E5G2pr 02spr 0
2. ~1!

AssumingG.0 ands.0, Eq.~1! predicts that a pore with a
radius larger than the critical value of

r 0.
G

s
~2!

is unstable in the sense that it will grow without bound and,
ultimately, will rupture the membrane. Such a large pore will
be created only if the nucleation energy barrier

dE5
pG2

s
~3!

is accessible by thermal fluctuations. For typical estimates of
the line tension,G;1026 dyn,23–25 thermally driven rupture
requires a surface tension on the order of 1 dyn/cm.

The problem with the above model is that it precludes
the existence of stable pores of finite size. Nevertheless,
long-lived pores that remained open for several seconds be-
fore resealing have been observed in experiments.14,16,23–25

Opening of transient pores has been also reported is several
computer simulations.26–29This has led people to re-examine
the basic assumptions underlying Eq.~1!. Improved theoret-
ical models succeeded in explaining the formation of stable
or long-lived metastable pores by considering the fact that,
once pores have been nucleated, their further opening is ex-
pected to relax the surface tension.24,28,30–34In the case of a
planar membrane, it is the increase of the area density of the
lipids ~occurring concurrently to the dilation of the pore! that
reduces the mechanical tension. For vesicles, the opening of
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a pore allows the internal contents to escape, which reduces
the osmotic pressure and the associated Laplace tension.

Most of the theoretical models have so far, however,
neglected the effect of membrane fluctuations on the opening
and thermodynamic stability of pores. The entropy associ-
ated with the shape of the pore has mostly been ignored also.
A few recent studies of the entropic contribution to the free
energy of nucleating a pore, have led to some new interesting
predictions. The most remarkable result has been obtained by
Shillcock and Boal35 in computer simulations of two-
dimensional fluid tethered surfaces. They found that pores
appeared at zero, and even small negative surface tension.
Their interpretation of this surprising finding was that en-
tropy, which favors the formation of noncircular pores, re-
duces the effective line tension of the pore and makes it
negative at sufficiently high temperature. An entirely differ-
ent fluctuation effect has been discussed by Sens and
Safran36 who considered circular pores, but allowed mem-
brane fluctuations. Their study suggests that positive stress
must be applied in order to facilitate the opening of a pore in
a fluctuating membrane, and that the nucleation barrier for
pore formation is too high to be overcome by thermal fluc-
tuations. More recently, we37 have demonstrated that the pri-
mary effect of membrane fluctuations on circular holes is to
reduce the effective surface tension, thereby making the
opening of a pore more difficult in comparison to the zero-
temperature case.

In this paper, we carry out a statistical mechanical analy-
sis of pore formation in bilayer membranes. Membrane elas-
ticity is described by the Helfrich Hamiltonian, which in-
cludes the curvature energy and a surface tension term. A
line tension term is introduced to account for the energetic
penalty at the pore edge. We calculate the free energy for
nucleating a single pore, systematically taking into account
both membrane fluctuations and the entropy due to pore
shape. We show that, for large enough pores, the pore nucle-
ation free energy takes the form of Eq.~1!, with the surface
and line tensions replaced by their effective~renormalized!
values,seff and Geff . The effective coefficients are usually
smaller than the bare counterparts and, at high enough tem-
peratures, may even be negative. WhenGeff,0, the opening
of a stable pore becomes entropically favored and may occur
in weakly stressed membranes. The size of a thermal pore
can be varied by changing the tension applied on the mem-
brane.

The paper is organized as follows: The system Hamil-
tonian is constructed in Sec. II. We show that Eq.~1! for the
energy should be augmented by terms representing correc-
tions due to the pore’s shape and membrane’s height fluctua-
tions. Tracing over the relevant variables yields the corre-
sponding free energy. The derivation of the free energy is
presented in Secs. III and IV, in which the thermal correc-
tions to the surface and line tensions are calculated. In Sec. V
we discuss our results and suggest some possible further ex-
tensions of the present study.

II. DERIVATION OF THE HAMILTONIAN

We consider a bilayer membrane consisting ofN lipids
that spans a planar circular frame of total areaAp5pLp

2, in

which a quasicircular pore has been formed. For a nearly flat
membrane with arbitrary parametrizationX(x1,x2), the Hel-
frich Hamiltonian is given by

H5E
M

dx1dx2AgFs1
k

2
H21k̄KG , ~4!

whereg is the determinant of the metric tensorgab5]aX
•]bX, while H and K denote the total and Gaussian curva-
tures, respectively. The elastic coefficients appearing in the
Helfrich Hamiltonian are the surface tensions, the bending
rigidity k, and the Gaussian rigidityk̄. We assume that the
bilayer membrane is symmetric with no spontaneous curva-
ture. The integration in Eq.~4! is carried over the two-
dimensional manifoldM, representing the surface of the
membrane.

A. Gaussian curvature

Understanding the contribution of the Gaussian curva-
ture term@last term in Eq.~4!# to the free energy requires
looking at the structure of the membrane on the molecular
level. Two distinct models of pores have been discussed in
the literature and are shown schematically in Fig. 1. Figure
1~a! depicts a cylindrical pore where the lipids in the vicinity
of the pore remain oriented parallel to the membrane surface.
Such a pore is called ‘‘hydrophobic,’’ and the origin of the
pore line tension is the energy due to the exposure of the tails
of the lipids at pore’s rim to water. The other case is of a
‘‘hydrophilic’’ pore, shown in Fig. 1~b!, where the lipids
curve at the pore’s rim thus shielding their hydrophobic parts
from the aqueous contact. The line tension of a hydrophilic
pore is due to the curvature energy involved in the reorien-
tation of end molecules.

The Gaussian curvature term in the Helfrich Hamil-
tonian is calculated differently for hydrophobic and hydro-
philic pores. For hydrophobic pores, this term reduces to an
integral of the geodesic curvature on the pore boundary.38 A
similar situation is encountered in the case of proteins and
other membrane inclusions, where the orientation of the lip-
ids at the membrane-inclusion boundary is determined by the
structure of the protein.37 The change in the Gaussian curva-
ture in that case is

FIG. 1. Schematic microscopic models for hydrophobic~a! and hydrophilic
~b! pores. For a hydrophilic pore, the boundary actually joins the two mono-
layers of the lipid membrane.
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DHgauss52pk̄~cosV21!, ~5!

whereV is the contact angle along the boundary.
The case of a hydrophilic pore, on the other hand, is

more subtle. Each of the two monolayers making up a bi-
layer can have an associated Helfrich energy, and the two
monolayers are joined at the pore boundary. This, however,
does not present a topological boundary and, therefore, there
is no integral of the geodesic curvature. The opening of a
hydrophilic pore results in a contribution to the Hamiltonian
due to the change in topology: The bilayer is topologically a
sphere~if we assume both bilayers are linked at the outer
radiusLp), which changes genus upon the opening of a pore,
becoming a torus. For a manifold without boundary, the
Gauss–Bonnet theorem ensures that the total Gaussian cur-
vature is a topological invariant and thus measures, to some
extent, the global properties of the membrane. The change in
Gaussian curvature energy due to the formation of a hydro-
philic pore is given by

DHgauss524pk̄. ~6!

The Gaussian curvature modulus may take both positive
or negative values, hence leading to either an increase (k̄
,0) or decrease (k̄.0) in the energy upon the opening of a
pore. Strict comparison with classical nucleation theory@Eq.
~1!# is possible only fork̄50 and, therefore, we will restrict
the following discussion to this special case. The Gaussian
curvature term can be interpreted as an additional contribu-
tion that lowers or raises the free energy depending on the
sign of k̄. This contribution is independent of the pore size.
It will influence the probability of opening a small nucleation
pore, but will have no effect on the size to which metastable
long-lived pores grow.

B. Membrane fluctuation energy

The first two terms of the Helfrich Hamiltonian~4! are
local in character. Therefore, the above argument regarding
the absence of boundaries in a porous membrane fails, and
the pore can be treated as if representing the inner membrane
boundary. In order to study the statistical mechanical behav-
ior of the membrane, we define a coordinate system (r ,u)
5(r 0<r<Lp,0<u,2p) in which the pore is described by
a curve of constantr 5r 0 ,

X~r ,u!5@r cos~u!1hx~r ,u!# x̂1@r sin~u!1hy~r ,u!# ŷ

1h~r ,u!ẑ. ~7!

The functionh(r ,u) represents the height of the membrane
above some flat reference plane. The functionr cos(u)x̂
1r sin(u)ŷ1h(r ,u) is a mapping from coordinates (r ,u) in
which the membrane pore will be circular, to points in three-
dimensional space in which the pores will have an arbitrary
shape~see Fig. 2!. Thus,h(r 0 ,u) is a measure of the devia-
tion of the pore from having a circular projected area, which
we will assume to be small. Our choice orr 0 , which we will
defineas the radius of the quasicircular pore, is made by
equating the projected area of the pore topr 0

2. More specifi-
cally, we will require thath satisfies the following boundary
conditions~BCs!:

û•h~r 0 ,u!50, ~8!

E
0

2p

du@r 01 r̂ •h~r 0 ,u!#25pr 0
2. ~9!

On the outer~frame! boundary we set

h~Lp ,u!50. ~10!

With the embedding defined by Eq.~7! we have, keeping
terms up to quadratic order inh andh,

grr 5112r̂ •] rh1~] rh!21~] rh!2,

gru5 r̂ •]uh1r û•] rh1] rh]uh1] rh•]uh, ~11!

guu5r 212r û•]uh1~]uh!21~]uh!2,

for the metric, thus giving us after a lengthy but straightfor-
ward calculation

Ag'r @11 1
2~“h!21“"h1“"h2#, ~12!

where

h25~hx]uhy!~ r̂ /r !2~hx] rhy!û. ~13!

One also finds that to lowest order the total curvature is
given by

H5
1

Ag
]a~Aggab]bX!' ẑ¹2h1O~h2,h2!. ~14!

Substituting Eqs.~12! and~14! into Eq. ~4! and keeping
terms up to quadratic order inh andh, we find

H5sp~Lp
22r 0

2!1
1

2E drdur @s~¹h!21k~¹2h!2#

1E drdurs@“"h1“"h2#. ~15!

FIG. 2. The mappingX(r ,u) takes a flat reference plane containing a cir-
cular pore into a curved nearly flat membrane with a hole of nearly circular
projected area.
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The last integral in the above Hamiltonian can be converted
into a line integral by the application of the divergence theo-
rem. Using Eqs.~8!, ~10!, and ~13! we arrive, after some
calculation, to the following form:

H5sp~Lp
22r 0

2!1
1

2E drdur @s~¹h!21k~¹2h!2#

2
s

2 E
0

2p

du@ r̂ •h~r 0 ,u!#22sr 0E
0

2p

du r̂ •h~r 0 ,u!.

~16!

An important feature of Eq.~16! is that,to quadratic order,
the dependence of the Hamiltonian onh(r ,u) and h(r ,u)
decouples completely. Also, notice that Eq.~16! depends
only on the boundary value ofh. This is a consequence of
the fact that away from the boundary,h is merely a transfor-
mation of coordinates under which the Helfrich Hamiltonian
should be invariant. We will henceforth use the scalar func-
tion h~u! to denote the boundary values of the mapping
h(r ,u), i.e., h(u)[ r̂ •h(r 0 ,u). Using BC ~9! of h~u!, we
find out that the last two terms of Eq.~16! cancel each other.
This leaves us withH5sp(Lp

22r 0
2)1Hh , where

Hh[
1

2 E drdur @s~¹h!21k~¹2h!2#. ~17!

The Laplacian in the height-dependent Hamiltonian~17!
requires that we have two BCs on each boundary. On the
outer boundary (r 5Lp) we impose the BCs,

h~Lp!50 and ¹2h~Lp!50. ~18!

The first BC corresponds to a membrane which is attached to
a static frame on its external perimeter. The second is ob-
tained by considering the discrete version of the Helfrich
surface Hamiltonian and requiring that in the continuum
limit, the same equation describes the motion of the bound-
ary and bulk elements. The BCs on the inner boundary (r
5r 0) are quite similar,

h~r 0 ,u!5H~u! and ¹2h~r 0!50, ~19!

with the only difference that the height is set toH(u) rather
than vanishes. The vector

Y~u![X~r 0 ,u!5@r 01h~u!# r̂ 1H~u!ẑ, ~20!

depicts the locus of the pore boundary in the 3D embedding
space. Note that in the case of a membrane inclusion of
radiusr 0 , the second BC in Eq.~19! should be replaced by
2n̂•“h(r 0 ,u)5]h(r 0 ,u)/]r 5H8(u) where the contact
slope,H8, depends on the geometry and the tilt angle of the
inclusion.37

We proceed by writing the height function ash5h0

1 f , whereh0 is the extremum of Hamiltonian~17!, i.e.,

2s¹2h01k¹4h050, ~21!

subject to the BCs that

h0~Lp!50, ¹2h0~Lp!50,
~22!

h0~r 0 ,u!5H~u!, ¹2h0~r 0!50.

Equations~19! and ~22! imply that the functionf, which
depicts the fluctuations around the equilibrium profileh0 sat-
isfies

f ~Lp!50, ¹2f ~Lp!50,
~23!

f ~r 0!50, ¹2f ~r 0!50.

Hamiltonian~17! can be thus written as

Hh~h01 f !5E drdur H 1

2
@s~¹h0!21k~¹2h0!2#

1@s¹h0•¹ f 1k¹2h0¹2f #

1
1

2
@s~¹ f !21k~¹2f !2#J . ~24!

For the cross term~second term inHh) we obtain, upon
integration by parts,

E drdur @s¹h0•¹ f 1k¹2h0¹2f #

5E drdur @2s¹2h01k¹4h0# f

1E
]M

k¹2h0~ n̂•¹! f 1E
]M

~ n̂•¹!@sh02k¹2h0# f ,

~25!

where the last two integrals in the above equation are per-
formed on the boundaries of the system. The boundary terms
in Eq. ~25! vanish due to the BCs~22! and ~23!, while the
bulk term vanishes due to Eq.~21!.

Without the cross term in Eq.~24!, the height-dependent
Hamiltonian takes the simple formHh(h01 f )5Hh(h0)
1Hh( f ), where the energies associated withh0 ~the equilib-
rium term! and f ~fluctuation term! completely decouple. In-
tegrating both terms by parts twice, we find expressions
similar to Eq.~25!, whereh0 is replaced byf ~in the fluctua-
tion term! or vice versa~equilibrium term!. In the former, the
boundary terms vanish due to Eq.~23! and we are left with

Hh~ f !5E drdur
1

2
@s~¹ f !21k~¹2f !2#. ~26!

In the latter, the bulk term is eliminated by virtue of Eq.~21!.
Considering the BCs onh0 ~22!, one can easily find that

Hh~h0!5
1

2 E0

2p

dur 0H~u!
]~k¹2h02sh0!

]r U
r 0

. ~27!

In a manner similar to the last two terms in Eq.~16!, the last
result demonstrates that contributions to the Hamiltonian due
to the pore can only appear through boundary~line! inte-
grals.

C. Pore line tension

An additional contribution to the free energy is due to
the line tension of the pore, which arises from the curvature
and packing of the lipid molecules at the pore boundary~Fig.
1!. The pore’s shape is depicted by the curveY~u! ~20!, and
the line tension energy is given by
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GE
0

2p

duA~dY~u!/du!2

.G2pr 01GE
0

2p

duh~u!1
G

2r 0
E

0

2p

du@~dH~u!/du!2

1~dh~u!/du!2#, ~28!

whereG is the line tension coefficient, i.e., the edge energy
per unit length.

D. The full Hamiltonian

Collecting expressions~16!, ~26!, ~27!, and~28!, we find
that the Helfrich Hamiltonian~excluding the Gaussian cur-
vature term! can be written as the sum of two terms:

H5Hs1Hl . ~29!

The first term is the surface Hamiltonian associated with the
membrane fluctuations:

Hs5sp~Lp
22r 0

2!1
1

2E drdur @s~¹ f !21k~¹2f !2#.

~30!

The second is the inner boundary term, consisting of the
various contributions to the energy due to the pore

Hl5G2pr 01
1

2 E0

2p

duH F2Gh~u!1
G

r 0
S dh~u!

du D 2G
1F G

r 0
S dH~u!

du D 2

1r 0H~u!
]~k¹2h02sh0!

]r U
r 0

G J .

~31!

III. SURFACE TENSION

In calculating the contribution of the surface
Hamiltonian~30! to the free energy, we follow the procedure
described in our previous manuscript on membrane
inclusions.37 We fix H(u) and h~u! and integrate over the
membrane fluctuationsf first. We will integrate over the re-
maining fields in Sec. IV. The integration over the field
f is performed by expanding in a series of eigenfunctions
f m,n(r ) of the operator L[2s¹21k¹4: f (r ,f)
5(m,nAm,nf m,n(r )eimf. The functionsf m,n(r ) can be writ-
ten as the linear combination of the Bessel functions,Jm(r )
andYm(r ), of the first and second kinds of orderm, and the
modified Bessel functions of the first and second kinds of
orderm, Km(r ) and I m(r ):

f m,n~r !5AJm~l1
m,nr !1BYm~l1

m,nr !1CKm~l2
m,nr !

1DI m~l2
m,nr !, ~32!

where the l i ( i 51,2) are the positive solutions of
(21)i 11s(l i

m,n)21k(l i
m,n)45mm,n , andmm,n is the eigen-

value corresponding to the functionf m,n(r ): Lf m,n(r )
5mm,nf m,n(r ).

Applying the BCs~23! at r 0 andLp , we derive the ei-
genvalue equation

Jm~l1
m,nr 0!Ym~l1

m,nLp!2Jm~l1
m,nLp!Ym~l1

m,nr 0!50.
~33!

Although this eigenvalue equation is different from the one
we had in Ref. 37, the asymptotic behavior of the eigenval-
ues is the same. In the long wavelength limit,l1

m,nr 0!umu,
Eq. ~33! reduces to the eigenvalue equation in the absence of
pores

Jm~l1
m,nLp!50. ~34!

This is a manifestation of the fact that modes with character-
istic lengths much larger than the pore radius are hardly per-
turbed by its presence. In the opposite limit,l1

m,nr 0@umu, we
find that the difference between two consecutive eigenvalues
saturates tol1

m,n112l1
m,n5p/(Lp2r 0), which is a factor

Lp /(Lp2r 0) larger than in the case with no pore. The physi-
cal interpretation of this result is that the pore acts like a hard
wall for modes with characteristic lengths much smaller than
its radius, reducing the effective linear size of the membrane
for these modes toLp2r 0 .

Integrating over the membrane fluctuationsf, the Gibbs
free energy is given by36

FIG. 3. The free energyDFs as a function of the pore’s radius fork
510kBT and various values ofs0 . The inset to graph~a!: a log–log plot of
the numerical results fors050. The slope of the straight dotted line is 2.
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G~s,Ap ,r 0!5sp~Lp
22r 0

2!1Hl

1
kBT

2 (
m,n

lnH @s~l1
m,n!21k~l1

m,n!4#ApldB
2

2pkBTN J ,

~35!

whereldB is the thermal de-Broglie wavelength of the lipids.
The Helmholtz free energy is given byF(A,Ap ,r 0)5G
2sA, where the total membrane areaA is related to the
surface tension by

A5p~Lp
22r 0

2!2
1

2 E0

2p

dur 0H~u!
]h0

]r U
r 0

1
kBT

2 (
m,n

1

s1k~l1
m,n!2

. ~36!

Assuming that the membrane is incompressible and, there-
fore, that its total area is fixed, we can use Eq.~36! to derive
the following equation, relating the surface tension andr 0 :

2pr 0
22

1

2 E0

2p

dur 0H~u!
]h0

]r U
r 0

1
kBT

2 (
m,n

F 1

s1k~l1
m,n!2

2
1

s01k~l1,~0!
m,n !2G50. ~37!

In the above equationl1,(0)
m,n are the corresponding solutions

of the eigenvalue equation in the absence of the inclusion
(r 050): Jm(l1,(0)

m,n Lp)50, ands0[s(r 050). The first two
terms on the left-hand side of Eq.~37! give thechangeDA0

in the equilibrium area, i.e., the difference between the area
of the surface whose profile is parametrized byh0 and Ap

5pLp
2, the equilibrium area of the nonporous membrane.

The second two terms give thechangein the area stored in
the fluctuations around the equilibrium profile. These
changes cancel each other due to the conservation of the
total area. Since we assume a finite size pore in the thermo-
dynamic limit (r 0!Lp) and sinceH(u)!Lp and u]h0 /]r u
!1 ~which is why we keep only terms up to quadratic order
in h0), DA0!Ap . In this limit, we can expands arounds0 ,
and need only consider terms linear inDA0 /Ap :

s5s0~11d!, where d;O~DA0 /Ap!. ~38!

After some straightforward algebra we find that the pore
free energy, defined asDF(r 0 ,h0 ,h)[F(r 0 ,h0 ,h)
2F(0,0,0), can be expressed by the following sum:37

DF~r 0 ,h0 ,h!

5Hl~s→s0 ,h0 ,h!2ps0r 0
2

1
kBT

2 (
m,n

lnF s0~l1
m,n!21k~l1

m,n!4

s0~l1,~0!
m,n !21k~l1,~0!

m,n !4

Lp
22r 0

2

Lp
2 G

[Hl~s→s0 ,h0 ,h!1DFs~r 0!, ~39!

where the sum runs over the modesn50,1,...,AN0, and,m
52AN0,...,AN0 so that the total number of modes 2N0 is
proportional to the number of molecules forming the mem-
braneN, while l1,(0)

m,n are the corresponding solutions of the

eigenvalue equation in the absence of pores~34!. Note that
despite the implicit coupling between membrane and pore
fluctuations~the fieldsf andh0, respectively!, introduced by
Eq. ~37!, we were able to express the free energy as a sum
of: ~1! a free energy associated only with the membrane fluc-
tuationsDFs , and ~2! the HamiltonianHl which depends
only on the boundary valuesh0(u) and h~u!. This can be
done only in the thermodynamic limit and for nearly-flat
membranes, where terms higher than linear ind can be ne-
glected in Eq.~38!.

An analytical approximation ofDFs is obtained by as-
suming~based on our discussion of the asymptotic behavior
of the eigenvaluesl1

m,n) that eigenvalues such thatl1
m,nr 0

,aumu ~long wavelength! are not affected by the pore,
whereas modes withl1

m,nr 0.aumu ~short wavelength! grow
by a factorLp /(Lp2r 0).37 The dimensionless constanta is
of the order of unity and its value will be determined later by
exact numerical calculation ofDFs . Using this ‘‘step-
function’’ approximation for the eigenvaluesl1

m,n , and
evaluating the sum in Eq.~39! as an integral, we obtain the
simple result~correct up to quadratic order inr 0) that

DFs52pr 0
2s01

kBTr0
2

a l 0
2 H 22a2S l 0

pj D 2

lnF S pj

l 0
D 2

11G J
[2pr 0

2~s01Ds![2pr 0
2seff , ~40!

wherej[Ak/s0, and l 05Lp /AN0 is a microscopic length
cutoff which is of the order of the bilayer thickness. From the
above equation, we identify the thermal correction to the
surface tension as

Ds5
kBT

pa l 0
2 H a221S l 0

pj D 2

lnF S pj

l 0
D 2

11G J . ~41!

In order to test the accuracy of expression~40!, we have
numerically solved the eigenvalue equation~33! and used the
solutions to evaluate the sum in Eq.~39!. Numerical values
of DFs(r 0) ~for k510kBT and various values ofs0) are
shown in Figs. 3~a!–3~b!. They have been extracted by ex-
trapolating the numerical results obtained for several values
of 750<N0<2000 to the thermodynamic limitN0→`. In
the inset to Fig. 3~a!, the results fors050 are replotted on a
logarithmic scale, showing that our prediction of a quadratic
relation betweenDFs andr 0 is attained only for large~mac-
roscopic! pores withr 0*100l 0 ~the slope of the straight dot-
ted line is 2!. The discrepancy between the numerical values
of DFs and Eq.~40! in the smallr 0 regime is due to the
significant contribution to the free energy of the crossover
modesl1

m,nr 0;1 which is poorly calculated by the ‘‘step
function’’ approximation. The solid curves in Figs. 3~a!–3~b!
depict our analytical expression~40! for DFs , with a deter-
mined by fitting the results for larger 0 to Eq.~40!. The value
of a shows a slight dependence on the surface tension vary-
ing from 1.60 fors050 to 1.75 forj5Ak/s055l 0 /p.

Our numerical and analytical results suggest thatDs,0,
making the effective surface tension smaller than the bare
surface tension. Of particular interest is the fact, demon-
strated in Fig. 3~a!, that for weakly stretched membranes
~largej! the effective tension may be negative. In such a case
the effective surface tension would act to prevent, rather than
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facilitate, the opening of a pore. For strongly stretched mem-
branes~small j! the dominant contribution toseff is of the
bare surface tension. In this regime, the surface tension part
of the free energy is well approximated by the second term
of Eq. ~1!, i.e., DFs.2s0pr 0

2.2spr 0
2.

IV. LINE TENSION

In order to complete the calculation of the free energy,
we now need to trace over the fieldsh and h0 which in
Hamiltonian~31! @see also Eq.~39!# are decoupled from each
other. Introducing the Fourier transform of the fieldh,

h~u!5
ddB

A2N1
(

m52N1

N1

h̃meimu, ~42!

whereddB is the de-Broglie thermal wavelength. Making the
particular choice ofh̃0 that satisfies the BC~9!,

h̃0.2
ddB

A2N1
(

mÞ0

uh̃mu2

2r 0
, ~43!

the corresponding Hamiltonian takes the form

Hl
h5

pddB
2

2N1
(

m52N1
mÞ0

N1

uh̃mu2
G

r 0
~m221!. ~44!

The umu51 modes are trivial translation modes which do not
contribute to the energy of the pore. The number ofm>2
modes is equal to the number of microscopic degrees of free-
dom, namely the number of molecules on the rim of the pore.
Since this number is proportional to the perimeter of the
pore, we can write

N1.bS r 0

l 0
D , ~45!

whereb is a numerical factor of the order of unity. Tracing
over the variablesh̃m is straightforward, giving the free en-
ergy

Fl
h5

kBT

2 (
umu.1

lnFddB
2 ~m221!G/r 0

kBTN1
G . ~46!

If the number of modes is largeN1@1 ~i.e., l 0!r 0) then the
sum in the above expression can evaluated as an integral,
giving

Fl
h.2pr 0

bkBT

p l 0
F1

2
lnS bddB

2 G

kBTl0
D 21G . ~47!

The contribution of the fieldh0 to the line tension free
energy is also tractable. From the partial differential equation
~21! and the BCs~22!, it is easy to show that~for s0.0) h0

can be written by the following mode representation

h0~r ,u!5
ddB

A2N1
(

m52N1

N1

h̃mS r 0

r D umu

eimu1h̃0

ln~r /r 0!

ln~r 0 /Lp!
. ~48!

Notice that¹2h050 everywhere and not only at the bound-
aries. Substituting expression~48! in Eq. ~31!, one arrives at
the following Hamiltonian:

Hl
h5

pddB
2

2N1
(

m52N1

N1

uh̃mu2S G

r 0
m21s0umu D . ~49!

Assuming thats0!G/r 0 ~the weak stretching regime!, it is
easy to conclude that the resulting contribution to the free
energyFl

h.Fl
h , and thus

Fl52pr 0G1Fl
h1Fl

h

.2pr 0H G1
bkBT

p l 0
F lnS bddB

2 G

kBTl0
D 22G J

[2pr 0~G1DG![2pr 0Geff . ~50!

We thus identify the thermal correction to the line tension of
the pore

DG5
bkBT

p l 0
F lnS bddB

2 G

kBTl0
D 22G . ~51!

For phospholipid bilayers at room temperatureDG is nega-
tive and is typically in the range of 1027– 1026 dyn.

V. DISCUSSION AND SUMMARY

The opening of a membrane pore has been traditionally
regarded as an energetically-driven process. According to
this view, the surface and line tensions are the forces driving,
respectively, the opening and closure of pores. The balance
between these opposing forces creates a nucleation barrier
for the formation of long-lived pores, and requires the open-
ing of a sufficiently large hole at the initial stage.

In previous studies, the role of thermal fluctuations has
been limited to facilitating the opening of a nucleation pore.
The critical pore size~2! and the height of the barrier~3!
have been determined from Eq.~1! for the pore energy. How-
ever, at nonzero temperature an entropic part must be added
to Eq. ~1!. To fill the gap in the literature on the subject, we
have calculated the thermal contributions to the pore free
energy associated with~a! the shape of the boundary of the
hole, and~b! the fluctuation spectrum of the membrane. Our
study suggests that the pore free energy may be expressed by
an equation similar to~1!

F5Geff2pr 02seffpr 0
2, ~52!

in which the bare surface and line tensions are replaced by
effective ~renormalized! values. Typically, we find thatGeff

,G andseff,s, reflecting two opposite tendencies. The de-
crease in the line tension reduces membrane stability against
pore formation. It reflects the larger configuration space
available to a membrane with a hole present. The decrease in
the surface tension, on the other hand, makes the formation
of pores harder in comparison to the zero-temperature case.
This effect originates from the change in the spectrum of
membrane fluctuation occurring upon the opening of the
pore and the resulting increase in bending energy.

We can identify a number of different regimes of pore
stability. For tense membranes with positive effective line
tension, we find the standard regime of classical nucleation
theory. From Eq.~52!, we can identify the stability criteria
for the growth of large pores to ber 0.Geff /seff . For mem-
branes with low surface tension, the effective surface tension
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will be negative. In this regime, pores will increase the free
energy for all radii and one should not expect the formation
of pores spontaneously as long as the effective line tension is
positive. This regime is quite unlike classical nucleation
theory, where a nucleation barrier for pore formation always
exists.

In the theory of thermally activated poration, the nucle-
ation rate of critical pores depends strongly on the free en-
ergy barrierdF5pGeff /seff , as exp(2dF/kBT). The height of
the nucleation barrier decreases as one approaches the tem-
perature at which the effective line tension,Geff ~50!, van-
ishes. Above this temperature the barrier disappears and the
formation of pores occurs spontaneously. The growth of the
pore will not be stopped as long as the surface tension re-
mains positive. If the rate at which the surface tension is
relaxed is too small, the membrane will rupture. However,
we have demonstrated in Sec. III that membrane fluctuations
renormalize the surface tension, making theeffectivetension
negative when theapplied tension is small. Therefore, we
may have a situation where bothGeff andseff are negative. In
such a case, the free energy attains a minimum, not a maxi-
mum, for r 05Geff /seff , and a stable pore of that radius will
be spontaneously formed. The radius of such a pore can be
easily varied by several orders of magnitude by varying the
applied tension and thereby tuning the value ofseff .

The pore size can be also varied by manipulating the
magnitude of the line tension, e.g., by the addition of colip-
ids that modify the ability of the lipids to pack at the edge
region. Experiments in bilayer lipids to which lysoPC and
cholesterol were added demonstrated that these molecules
affect the line tension in opposite ways, with the former de-
creasing the line tension39 and the latter increasing it.23,25

Typical values of the line tension found experimentally are in
the range of our estimate of the thermal correctionDG or
somewhat larger. This demonstrates the significance of ther-
mal effects in determining the stability of membranes against
pore formation. In membranes composed of diblock copoly-
mers these effects will probably be weaker since the bare line
tension is expected to increase with the membrane thickness
while the thermal correction is expected to decrease@see Eq.
~51!, where the membrane thickness enters as a short-
distance cut-off#. Re-examining previous studies which do
not include temperature-dependent corrections is of particu-
lar importance because the experimental determination of the
line tensionGeff is not direct. It is based on a suitable model
relating the line tension to other measurable quantities such
as the surface tension, pore radius, etc.

To better understand the effect of thermal fluctuations on
pore formation, it is necessary to go beyond the second order
expansion of the Helfrich Hamiltonian inh and h. In the
Geff,0 regime, the system gains free energy by having pores
with large perimeter, which means that holes with shapes that
strongly deviate from circular will be highly favorable.35 By
restricting our analysis to small values of the fieldh ~and
hence to quasicircular pores only!, we probably underesti-
mate the magnitude of the thermal correction to the line ten-
sion. Moreover, for negative values of the effective line ten-
sion the formation of many pores is also likely to occur, as
has been shown in some computer simulations.40 The collec-

tive behavior of these pores and the~membrane-mediated!
interactions between them41 are not well understood. The
effect of solvent and in-plane viscosity, which may strongly
influence the late-stage dynamical evolution of metastable
pores, has been neglected in the present model and should be
discussed.31 More insight on the pores’ architecture and their
evolution can be gained by molecular-level studies and com-
puter simulations.
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