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A simple and effective Verlet-type algorithm for simulating Langevin dynamics
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We present a revision to the well known Störmer–Verlet algorithm for simulating second order differential equations. The
revision addresses the inclusion of linear friction with associated stochastic noise, and we analytically demonstrate that
the new algorithm correctly reproduces diffusive behaviour of a particle in a flat potential. For a harmonic oscillator, our
algorithm provides the exact Boltzmann distribution for any value of damping, frequency and time step for both underdamped
and overdamped behaviour within the usual stability limit of the Verlet algorithm. Given the structure and simplicity of the
method, we conclude that this approach can trivially be adapted for contemporary applications, including molecular dynamics
with extensions such as molecular constraints.

Keywords: molecular dynamics; simulating Langevin equations; Störmer–Verlet algorithms; computational statistical
mechanics

1. Introduction

In molecular dynamics (MD) simulations, Newton’s equa-
tions of motion are solved numerically to produce trajec-
tories of the system in the microcanonical (N,V,E) en-
semble. The most commonly used scheme for this purpose
is the Verlet method, which is based on truncated Taylor
expansions for the evolution of a particle with mass m,
coordinate r(t), velocity v(t) and force f (r, t) [1, 2]. In-
troducing the discrete-time variables rn = r(tn), vn = v(tn)
and f n = f (rn, tn), the so-called velocity explicit Verlet
(or velocity Verlet) scheme reads

rn+1 = rn + vndt + dt2

2m
f n, (1)

vn+1 = vn + dt

2m
(f n + f n+1). (2)

By considering two successive time steps and eliminating
the velocity variables from the equations, the more original
form of the Störmer–Verlet method [3, 4] (here called the
position-Verlet method) is found

rn+1 = 2rn − rn−1 + dt2

m
f n, (3)

∗Corresponding author. Email: ngjensen@ucdavis.edu

with the associated velocity calculated by the central
difference

vn = rn+1 − rn−1

2dt
. (4)

The Verlet scheme is accurate to second order in dt , which
means that the deviation, per time step, of the computed
trajectory from the true (analytic) one, scales with the third
power of dt . The merits of the Verlet scheme that make
it so widely popular for MD simulations include its con-
venience, efficiency and time reversibility, which ensures
that the error of the total energy of long-time integrations is
bounded and does not drift or diffuse, as illustrated by the
exact solution to the Verlet method applied to a harmonic
oscillator (see, e.g. below).

The most frequently used ensemble in statistical-
mechanics is the canonical (N,V, T ) ensemble where the
temperature of the system, rather than its energy, is constant.
A variety of methods for conducting MD simulations in the
canonical ensemble have been proposed over the years. A
very appealing class of such methods include integrators for
Langevin dynamics (LD) simulations. In LD, two forces are
added to the conservative force field - a friction force pro-
portional to the velocity with friction coefficient α ≥ 0, and
thermal white noise β(t). Explicitly, the Langevin equation
of motion is given by [5]

C© 2013 Taylor & Francis
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984 N. Grønbech-Jensen and O. Farago

ṙ = v, (5)

mv̇ = f (r, t) − αv + β(t). (6)

In order to satisfy the dissipation-fluctuation theorem, it
is often assumed that the stochastic force is Gaussian
distributed, and has the statistical properties [5]

〈β(t)〉 = 0, (7)

〈β(t)β(t ′)〉 = 2αkBT δ(t − t ′), (8)

where kB is the Boltzmann’s constant and T is the thermo-
dynamic temperature of the heat bath.

The difficulty to develop accurate integrators for LD
stems from the non-analytic nature of β(t), which invali-
dates the Taylor expansion commonly used for the deriva-
tion of the Verlet scheme. The most naive way to overcome
this difficulty is to replace the delta-function correlated
noise with a set of rectangular pulses of mean-squared size√

2kBT α/dt , each of which acting over the centred time
interval (tn − dt/2, tn + dt/2). Employing this approxima-
tion for β(t) yields the famous Brooks-Brünger-Karplus
(BBK) scheme [6], which unfortunately turns out to exhibit
a simulated temperature that differs by O(dt) from the cor-
rect one [7]. This disappointing result can be attributed
to the effect of a small time step dt , which results in a
stochastic velocity change of order

√
dt that overshadows

the ‘regular’ (deterministic) linear velocity change of order
dt . Statistical analysis of the small time interval shows, in
fact, that the opposite is true, since the average over all
noise realisations vanishes. In order to develop a reliable
integrator for LD one therefore needs to carefully treat the
coupling between the stochastic and analytic contributions.
This is, unfortunately, not easily accomplished with a dis-
cretised approximation for β(t). A different approach to
the problem has been introduced by Ermak and Buckholz
(EB) [8]. The EB method is based on a numerical integra-
tion of the formal solution to the Langevin equation. This
gives

vn+1 = vn exp(−αdt/m) + 1

m

∫ tn+1

tn

exp[−α(tn+1−t ′)/m]

× [f (t ′) + β(t ′)] dt ′, (9)

rn+1 = rn + mvn

α
[1 − exp (−αdt/m)]

+ 1

α

∫ tn+1

tn

{1 − exp[−α(tn+1 − t ′)/m]}

× [f (t ′) + β(t ′)] dt ′. (10)

Several features distinguish the EB method from Verlet-
type schemes such as BBK. First, the friction force is
accounted for separately from the other two forces, via

exponentially decaying functions. Second, this scheme
considers an ensemble of trajectories instead of a single
one, thereby requiring two random Gaussian numbers per
time step. The one appearing in the velocity equation,∫ dt

0 exp[−α(dt − t ′)/m]β(t ′)dt ′, represents the stochastic
change in velocity during the time interval. The other,∫ dt

0 {1 − exp[−α(dt − t ′)/m]}β(t ′)dt ′, appears in the po-
sition equation and characterises the random displacement.
These two numbers are different, but correlated. Third,
there is formally no need to compute the new position be-
fore the new velocity as in the velocity-Verlet scheme and,
in principle, one can interchange the order by which the
equations are evolved. The last point is particularly im-
portant since it is directly related to the most critical is-
sue that remains unsolved with the EB approach, which is
how to perform the numerical integration over the deter-
ministic force f (t). The appearance of exponential ‘weight
functions’ in the integrals in Equations (9) and (10) opens
the possibility for using a variety of linear combinations
involving f n−1, f n and f n+1. The most popular integra-
tion schemes for the deterministic force constitute the van
Gunsteren-Berendsen [9] and the Langevin impulse [10]
methods.

More recently, Ricci and Ciccotti (RC) introduced a for-
malism for a systematic derivation of numerical integrators
for LD [11]. The essential steps of the formalism are to
(1) express the integrator as an exponential operator, (2)
split the time interval dt into a series of even smaller
time steps and (3) use the Suzuki–Trotter expansion for
time-ordered exponential operators to find an approxima-
tion for the evolution operator corresponding to dt . By
using mid-point splitting, RC arrived at a scheme that
require only one random number per dt . The same for-
malism was later used to develop a new family of in-
tegrators that more carefully treat the coupling between
the stochastic and deterministic components of the dy-
namics [12, 13]. A characteristic feature of these new
schemes is that they require two independent random num-
bers per time step, which is different from the EB fam-
ily of schemes, where two correlated random numbers are
involved.

Returning for a moment to MD simulations of
Newtonian dynamics, it is important to recall that, due
to its computational efficiency and time reversibility, the
Verlet method is regarded as superior to other integration
methods that may produce more accurate trajectories. In
the case of LD, the trajectories include a random com-
ponent and, therefore, their accuracy (which can only be
defined in statistical terms) becomes an issue of even less
importance. The efficiency of different methods for canon-
ical ensemble simulations of many-particles systems must
be tested according to their ability to reproduce measur-
able statistical quantities, such as the Boltzmann distribu-
tion corresponding to the temperature of the heat bath. To
this end, none of the existing methods has managed to
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Molecular Physics 985

demonstrate exact thermodynamic response [7]. We here
present a novel Verlet-type scheme for LD simulations
that is very simple to implement and which yields cor-
rect statistical-mechanical behaviour of a particle diffusing
in both a flat and a harmonic potential.

2. Derivation of the algorithm

In the spirit of the simplicity of the Verlet algorithm in its
traditional forms, we here arrive at a new useful method
through a straight-forward derivation. Starting with the
continuous-time Langevin Equations (5)–(8), we integrate
Equation (6) over a (small) time interval dt between two
times, tn and tn+1 = tn + dt :

∫ tn+1

tn

mv̇ dt ′ =
∫ tn+1

tn

f dt ′ −
∫ tn+1

tn

αṙ dt ′

+
∫ tn+1

tn

β(t ′) dt ′. (11)

With no approximation, this can be written

m(vn+1 − vn) =
∫ tn+1

tn

f dt ′ − α(rn+1 − rn) + βn+1,

(12)

where

βn+1 ≡
∫ tn+1

tn

β(t ′) dt ′ (13)

is a Gaussian random number with 〈βn〉 = 0 and 〈βnβl〉 =
2αkBT dtδn,l .

Integrating over Equation (5) yields

∫ tn+1

tn

ṙ dt ′ = rn+1 − rn =
∫ tn+1

tn

v dt ′, (14)

which can be approximated with

rn+1 − rn ≈ dt

2
(vn+1 + vn). (15)

An equation similar to Equation (15) has been used by
Ricci and Ciccotti in one of the forms of their scheme (see
Equation (18) in Ref. [11]). It introduces errors that scale
with dt3 in the deterministic trajectory and in the variance
of the stochastic component (see discussion in Ref. [14]).

Inserting vn+1 from Equation (12) into Equation (15)
provides a convenient pair of equations

rn+1 − rn = bdt vn + bdt

2m

∫ tn+1

tn

f dt ′ + bdt

2m
βn+1,

(16)

vn+1 − vn = 1

m

∫ tn+1

tn

f dt ′ − α

m
(rn+1 − rn) + 1

m
βn+1,

(17)

where

b ≡ 1

1 + αdt
2m

. (18)

For any given realisation of βn, Equation (16) is correct to
second order in dt , while Equation (17) is exact as written.
We now approximate the integral of the deterministic force
f such that both equations are correct to second order in
dt :

rn+1 = rn + bdt vn + bdt2

2m
f n + bdt

2m
βn+1, (19)

vn+1 = vn + dt

2m
(f n + f n+1)

− α

m
(rn+1 − rn) + 1

m
βn+1. (20)

We first notice that when α = 0, the above Equations (19)
and (20) reduce to the standard velocity-Verlet scheme
given in Equations (1) and (2). Second, we notice the very
reasonable feature of the representation of the damping,
which is calculated as the integral of the actual path that
the object has travelled during the time step dt . Third, the
noise is represented as a single stochastic variable for each
time step, realised by a single aggregated impulse during
dt that influences the dynamics over the time step. In this
regard, Equations (19) and (20) constitute a simple func-
tional Verlet-type scheme for solving stochastic Langevin
equations. Unlike the aforementioned EB-type family of
schemes [8–10], our method does not employ two stochas-
tic variables. This is a consequence of our main objec-
tive; namely, to produce the correct statistical-mechanics
for large ensembles (spatial or temporal), while focusing
less on the detailed dynamics within each time step.

Before proceeding to analysing the behaviour of the
developed scheme, we rewrite the method in a couple of
equivalent different forms that can be useful and that can
illustrate close connections to previously published work.
First, we observe that by inserting Equation (19) into Equa-
tion (20), the equations can be rewritten

rn+1 = rn + bdtvn + bdt2

2m
f n + bdt

2m
βn+1, (21)

vn+1 = avn + dt

2m
(af n + f n+1) + b

m
βn+1, (22)
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986 N. Grønbech-Jensen and O. Farago

where

a ≡ 1 − αdt
2m

1 + αdt
2m

. (23)

This form reveals that the derived method presented here
parallels one mentioned in passing by Melchionna (Equa-
tion (41) in Ref. [12]), where the contribution of the friction
force has been integrated similarly, but with a different noise
term that includes two independent random numbers per
time step. Second, we rewrite the scheme in the form given
only by displacement coordinates. This is accomplished by
subsequently inserting the expressions for vn (22) and rn

(21) into that of rn+1 given in Equation (21). The result is

rn+1 = 2brn − arn−1 + bdt2

m
f n

+ bdt

2m
(βn+1 + βn) (24)

with the associated velocity given by

vn = a

b2

rn+1 − rn−1

2dt
− α

2m

bdt3

m
f n

+ bdt

2m
(aβn+1 − βn). (25)

Equation (24) shows that our formulation is also in
close proximity to the BBK scheme [6], which is of a
position-Verlet-type. (Notice that it is essential to have the
proper form for the accompanying velocity in order to de-
termine if a position formulation is the same as a velocity
explicit form.) However, unlike our Equation (24), the BBK
scheme employs only a single stochastic number for the two
time steps covered in the displacement equation. In fact, the
methods of Melchionna and BBK, while not identical, are
closely related, since the use of a single stochastic number in
the position representation (BBK) translates into applying
two random numbers in the velocity equation (Melchionna).
Conversely, in our scheme, we have a single random num-
ber in the velocity formulation, and two in the position
representation covering two time steps.

3. Linear analysis

In order to evaluate the general applicability of the above
method, we calculate key statistical measures of the numer-
ical scheme for some characteristic linear cases [15], and
compare them to known statistical-mechanical behaviour
of the true Langevin system.

3.1. Thermal diffusion: f = 0

The first basic property to investigate is the diffusive be-
haviour of a particle moving in a flat potential (f = 0) at

temperature T . In this case, Equation (22) reads

vn+1 = avn + b

m
βn+1. (26)

By using the same equation to express vn in terms of vn−1

and βn, and by repeating this procedure until reaching the
initial velocity v0, one arrives at the relation

vn = anv0 + b

m

n−1∑
k=0

akβn−k, (27)

= anv0 + b
√

2αkBT dt

m

n−1∑
k=0

akσ n−k, (28)

where σ is a standard Gaussian random number with
〈σ 〉 = 0 and 〈σ 2〉 = 1, the superscript denoting different
realisations of this variable such that 〈σnσ l〉 = δnl . Sum-
ming over the random numbers in Equation (28) yields
another Gaussian random number, and in combination with
Equation (18), one arrives at

vn = anv0 +
√

1 − a2n

√
kBT

m
σ. (29)

For large n, beyond the transients from the initial condi-
tion (an � 1), we find that the velocity is characterised by
a Gaussian (Maxwell–Boltzmann) distribution with zero
mean and

〈(vn)2〉 = kBT

m
, (30)

which results in reproducing the exact expectation for the
average kinetic energy (thermal energy)

Ek = 1

2
m〈(vn)2〉 = 1

2
kBT . (31)

Complementing this result, we turn to the displacement
coordinate Equation (21) for f = 0:

rn = rn−1 + bdtvn−1 + bdt

2m
βn. (32)

Inserting Equation (28) for vn−1, and repeating the proce-
dure until reaching the initial position r0, we obtain the
result

rn = r0 + m

α
(1 − an) v0

+ b

α

[
αdt

2m
βn +

n−1∑
k=1

(
1

b
− ak

)
βn−k

]
. (33)

By using the definitions of a (23) and b (18), we find that
for large n (such that an � 1), Equation (33) can be written
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Molecular Physics 987

as

rn = r0 + m

α
v0 +

√
ndt

2kBT

α
σ. (34)

The second term in Equation (34), which is the transient
ballistic displacement, matches exactly the corresponding
value predicted by the Langevin solution [second term on
the right-hand side of Equation (10) for dt → ∞]. More
importantly, we find that our scheme results in a simulated
diffusion coefficient

D = lim
ndt→∞

〈rn − r0〉2

2ndt
= kBT

α
, (35)

which agrees with Einstein’s fluctuation-dissipation rela-
tionship for LD [5]. Notice that the exact results for fluc-
tuations and diffusion obtained here are independent of the
magnitudes of the time step dt , damping α > 0, and tem-
perature T .

3.2. Thermal harmonic oscillator: f = −κ r

Encouraged by the performance of the method for f = 0,
we now turn to analysing the method applied to a damped
thermal harmonic oscillator, where f = −κr represents
a linear Hooke’s spring with spring constant κ > 0. Our
Equations (21) and (22) now read(

rn+1

vn+1

)
= V

(
rn

vn

)
+ Nβn+1, (36)

where

V =

⎛
⎜⎜⎝ 1 − b

�2
0dt2

2
bdt

−b�2
0dt

(
1 − �2

0dt2

4

)
a − b

�2
0dt2

2

⎞
⎟⎟⎠ , (37)

N = b

m

⎛
⎜⎝

dt

2

1 − �2
0dt2

4

⎞
⎟⎠ , (38)

and where �0 = √
κ/m is the resonance frequency of the

undamped continuous-time oscillator. The matrix V has the
eigenvalues �±:

�± = b

(
1 − �2

0dt2

2

)
±
√

b2

(
1 − �2

0dt2

2

)2

− a,

(39)

from where we can evaluate the formal stability limit
�0dt < 2, consistent with the requirement |�±| < 1. No-
tice that �+�− = a for all parameter values.

We analyse the basic thermodynamic properties of the
thermal harmonic oscillator by perpetuating the map Equa-
tion (36) from initial conditions r0 and v0,(

rn

vn

)
= V

(
rn−1

vn−1

)
+ Nβn, (40)

Figure 1. Sketch of the characteristic regimes for the Verlet in-
tegrator applied to the damped harmonic oscillator. Regimes are
defined by the eigenvalues given in Equation (39). Solid curve
is the boundary between physical (left) and unphysical (right)
behaviour. Vertical dash-dotted line is the formal stability bound-
ary of the Verlet method, �− = −1. Marker • indicates where
�± = 0. Regimes are: (a) Underdamped, �± complex; (b) Over-
damped, 0 < a < �± < 1 real; (c) −1 < �± < −a < 0 real;
(d) �± real, �− negative, �+ positive (a < 0) and (e) Unstable,
�− < −1.

= Vn

(
r0

v0

)
+

n−1∑
k=0

VkNβn−k, (41)

where the kth iteration is conveniently given by the unitary
transformation

Vk = U
(

�k
+ 0

0 �k
−

)
U−1. (42)

The two characteristic parameters of the Verlet method
applied to a damped harmonic oscillator are α/2m�0 and
�0dt . Figure 1 displays the five different regimes of sim-
ulated oscillator behaviour as a function of those two pa-
rameters. The two physically relevant dynamical regimes,
underdamped (A) and overdamped (B), are considered first.

3.2.1. Regime A: underdamped dynamics

The oscillator is always stable in this regime, where
(α/2m)2 < �2

0(1 − �2
0dt2/4), and the eigenvalues can be

conveniently written

�± = √
a e±i�V dt . (43)

Here, �V is the underdamped Verlet-oscillator resonance
frequency given by

√
a cos �V dt = b

(
1 − �2

0dt2

2

)
, (44)

√
a sin �V dt = bdt

√
�2

0

(
1 − �2

0dt2

4

)
−
( α

2m

)2
, (45)
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988 N. Grønbech-Jensen and O. Farago

such that

V =
⎛
⎝

√
a cos �V dt + 1 − b bdt

−bdt

[
a

b2dt2
sin2 �V dt +

(
α

2m

)2] √
a cos �V dt + a − b

⎞
⎠ . (46)

The diagonalising transformation is then given by

U = 1

|u|

⎛
⎝ 1 1

− α

2m
+ i

√
a

bdt
sin �V dt − α

2m
− i

√
a

bdt
sin �V dt

⎞
⎠ (47)

with |u| being the normalisation of the eigenvectors of V that appear as the column vectors in U . The kth time step can then
be expressed from Equation (42) in the explicit form:

Vk = bdt√
a sin �V dt

√
a

k

⎛
⎜⎜⎝

√
a

bdt
sin �V dt cos �V kdt+ α

2m
sin �V kdt sin �V kdt

−
(

a

b2dt2
sin2 �V dt +

(
α

2m

)2)
sin �V kdt

√
a

bdt
sin �V dt cos �V kdt − α

2m
sin �V kdt

⎞
⎟⎟⎠ , (48)

from where we obtain the explicit form of the expression of interest in Equation (41)

VkNβn−k = bdt
√

2αkBT

2m
√

a sin �V dt

√
a

k

⎛
⎝

√
a sin �V dt cos �V kdt + (1 + √

a cos �V dt) sin �V kdt(
1 − �2

0dt2

4

)
2

dt
[
√

a sin �V dt cos �V kdt − (1 − √
a cos �V dt) sin �V kdt]

⎞
⎠ σn−k.

(49)

The thermodynamic limit of 〈(rn)2〉 and 〈(vn)2〉 can now be found by inserting Equation (49) into Equation (41), whereafter
the square sum can be evaluated since each term in the summation is an independent Gaussian random number. Taking the
limit n → ∞, this yields for the variance of the displacement:

〈(rn)2〉 = αkBT b2dt3

2m2a sin2 �V dt

[
1

2
(1 + a + 2

√
a cos �V dt)

∞∑
k=0

ak − 1

2
(1 + a cos 2�V dt + 2

√
a cos �V dt)

∞∑
k=0

ak cos 2�V kdt

+√
a sin �V dt(1 + 2

√
a cos �V dt)

∞∑
k=0

ak sin 2�V kdt

]

= αkBT b2dt3

2m2a sin2 �V dt

[
1

2

4b(1 − �2
0dt2

4 )

1 − a
− (1 − a)

√
a cos �V dt + 1

2 (1 − a2)

1 + a2 − 2a cos 2�V dt

]

= αkBT b2dt3

2m2a sin2 �V dt

�2
0(1 − �2

0dt2

4 ) − ( α
2m

)2

αdt
2m

�2
0

= kBT

m�2
0

. (50)

We similarly obtain the result for the statistical variance of the velocity:

〈(vn)2〉 = 2αkBT b2dt

m2a sin2 �V dt

(
1 − �2

0dt2

4

)2
[

1

2
(1 + a − 2

√
a cos �V dt)

∞∑
k=0

ak − 1

2
(1 + a cos 2�V dt − 2

√
a cos �V dt)

×
∞∑

k=0

ak cos 2�V kdt + √
a sin �V dt(1 − √

a cos �V dt)
∞∑

k=0

ak sin 2�V kdt

]

= 2αkBT b2dt

m2a sin2 �V dt

(
1 − �2

0dt2

4

)2 [
b

�2
0dt2

2

1 − a
+ (1 − a)

√
a cos �V dt − 1

2 (1 − a2)

1 + a2 − 2a cos 2�V dt

]

= 2αkBT b2dt2

m2a sin2 �V dt

(
1 − �2

0dt2

4

)
�2

0(1 − �2
0dt2

4 ) − ( α
2m

)2

4 α
2m

= kBT

m

(
1 − �2

0dt2

4

)
. (51)
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The two variances are noteworthy, since evaluation of
the average potential and kinetic energies gives

Ep = 1

2
κ〈(rn)2〉 = 1

2
kBT , (52)

Ek = 1

2
m〈(vn)2〉 = 1

2
kBT

(
1 − �2

0dt2

4

)
. (53)

These hold true for any parameter choice in the under-
damped regime. Notably, Equation (52) implies that our
method produces the exact statistical distribution regard-
less of time step, frequency (potential curvature), damping
parameter or temperature. Therefore, it is reasonable to
expect that this method will provide correct Boltzmann dis-
tribution in thermodynamic equilibrium when simulating
complex many-particle systems, that may have a multiple
of participating frequencies. To our knowledge, this impor-
tant feature has not previously been reported for a numerical
integrator of the Langevin equation [7].

Complementing the Boltzmann distribution of the dis-
placement is the variance of the velocity, Equation (53).
Despite the obvious discrepancy between the true kinetic
energy of the Langevin equation and the one shown for our
algorithm, we submit that the presented result is the best
possible for a method that builds on the discretised Verlet
formalism. The reduction in the variance of the velocity by
a factor of (1 − �2

0dt2/4) does not arise from the treatment
of friction and noise, as implied by the fact that this factor
depends on neither damping nor temperature. Instead, the
observed deviation arises from the approximation of the po-
tential curvature introduced by the discrete integrator. This
is consistent with the well-known inherent discrepancy be-
tween displacement and associated velocity that causes the
periodic deviations with magnitude dt2 from strict energy
conservation in a simulated harmonic oscillator. This can be
explicitly demonstrated by using the Verlet Equations (1)
and (2) for an undamped harmonic oscillator with initial
conditions r0 and v0. The result is(

rn

vn

)
=
(

r0

v0

)
cos �V ndt + 1√

�2
0

(
1 − �2

0dt2

4

)

×
(

v0

−�2
0(1 − �2

0dt2

4 )r0

)
sin �V ndt, (54)

which illustrates that the Verlet velocity (momentum) is
depressed and is not exactly the conjugated coordinate to
the displacement, and that the discrepancy is related to
the proportionality seen between the two thermodynamic
expressions (52) and (53).

3.2.2. Regime B: overdamped dynamics

This regime is defined by the requirements (α/2m)2 >

�2
0(1 − �2

0dt2/4) and αdt/2m < 1 (a > 0). The latter
condition is imposed to ensure �± > 0, which is necessary
for physically meaningful dynamics, where only monotonic
decay is possible in the overdamped regime for T = 0.

The matrix V appearing in Equation (36), which is now
expressed by

V =( √
a cosh λV dt + 1 − b bdt

−bdt[( α
2m

)2 − a
b2dt2 sinh2 λV dt]

√
a cosh λV dt + a − b

)
,

(55)

has the eigenvalues

�± = √
a e±λV dt , (56)

where λV is given by

√
a cosh λV dt = b

(
1 − �2

0dt2

2

)
, (57)

√
a sinh λV dt = bdt

√( α

2m

)2
− �2

0

(
1 − �2

0dt2

4

)
. (58)

The matrix V can be diagonalised [see Equation (42)] using
the transformation matrix

U =⎛
⎜⎜⎝

1

|u+|
1

|u−|
1

|u+|

[
− α

2m
+

√
a

bdt
sinh λV dt

]
1

|u−|

[
− α

2m
−

√
a

bdt
sinh λV dt

]
⎞
⎟⎟⎠

(59)

with |u+| and |u−| being the normalisations of the two real
eigenvectors of V . This leads to the explicit results:

Vk = bdt√
a sinh λV dt

√
a

k

⎛
⎜⎜⎝

√
a

bdt
sinh λV dt cosh λV kdt + α

2m
sinh λV kdt sinh λV kdt

−
((

a

2m

)2

− a

b2dt2
sinh2 λV dt

)
sinh λV kdt

√
a

bdt
sinh λV dt cosh λV kdt − α

2m
sinh λV kdt

⎞
⎟⎟⎠ (60)

and

VkNβn−k = bdt
√

2αkBT

2m
√

a sinh λV dt

√
a

k

⎛
⎝

√
a sinh λV dt cosh λV kdt + (1 + √

a cosh λV dt) sinh λV kdt(
1 − �2

0dt2

4

)
2

dt
[
√

a sinh λV dt cosh λV kdt − (1 − √
a cosh λV dt) sinh λV kdt]

⎞
⎠ σn−k.

(61)
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Following the same procedure used in the underdamped case above, we insert Equation (61) into Equation (41), and evaluate
the variances of the displacement and velocity in the thermodynamic limit for n → ∞ by calculating the square sum of the
amplitudes of the independent stochastic numbers of each term. After some calculations, we arrive at

〈(rn)2〉 = αkBT b2dt3

2m2a sinh2 λV dt

[
− 1

2
(1 + a + 2

√
a cosh λV dt)

∞∑
k=0

ak + 1

2
(1 + a cosh 2λV dt + 2

√
a cosh λV dt)

×
∞∑

k=0

ak cosh 2λV kdt + √
a sinh λV dt(1 + 2

√
a cosh λV dt)

∞∑
k=0

ak sinh 2λV kdt

]

= αkBT b2dt3

2m2a sinh2 λV dt

[
− 1

2

4b(1 − �2
0dt2

4 )

1 − a
+ (1 − a)

√
a cosh λV dt + 1

2 (1 − a2)

1 + a2 − 2a cosh 2λV dt

]

= αkBT b2dt2

2m2a sinh2 λV dt

( α
2m

)2 − �2
0(1 − �2

0dt2

4 )
α

2m
�2

0

= kBT

m�2
0

, (62)

which is exactly the same result as for the underdamped case Equation (50). We similarly obtain the result for the variance
of the velocity:

〈(vn)2〉 = 2αkBT b2dt

m2a sinh2 λV dt

(
1 − �2

0dt2

4

)2
[

− 1

2
(1 + a − 2

√
a cosh λV dt)

∞∑
k=0

ak + 1

2
(1+a cosh 2λV dt−2

√
a cosh λV dt)

×
∞∑

k=0

ak cosh 2λV kdt − √
a sinh λV dt(1 − √

a cosh λV dt)
∞∑

k=0

ak sinh 2λV kdt

]

= 2αkBT b2dt

m2a sinh2 λV dt

(
1 − �2

0dt2

4

)2 [
b

�2
0dt2

2

1 − a
+ (1 − a)

√
a cosh λV dt − 1

2 (1 − a2)

1 + a2 − 2a cosh 2λV dt

]

= 2αkBT b2dt2

m2a sinh2 λV dt

(
1 − �2

0dt2

4

)
�2

0(1 − �2
0dt2

4 ) − ( α
2m

)2

4 α
2m

= kBT

m

(
1 − �2

0dt2

4

)
, (63)

which is also identical to the comparable underdamped result from Equation (51). The averages of potential and kinetic
energies are therefore given by Equations (52) and (53) also for the overdamped regime. Thus, we can now conclude that
our method produces the exact Boltzmann distribution for any physical dynamics, underdamped or overdamped, regardless
of time step, frequency (potential curvature), damping parameter or temperature.

3.2.3. Regime C: �V = π/dt

This somewhat unphysical regime, is characterised by conditions similar to the overdamped regime B; i.e. αdt/2m < 1 (a >

0) and ( α
2m

)2 > �2
0(1 − �2

0dt2

4 ). However, while regime B corresponds to �0dt <
√

2, regime C is defined for �0dt >
√

2,
resulting in �± < 0. Thus, this regime is typically reached for large time steps when simulating lightly damped dynamics, and
it is the precursor for violating formal stability, given by �0dt < 2 (see Figure 1). At T = 0 and with initial conditions r0 �= 0,
the dynamics is characterised by rn and vn alternating their signs every time step (i.e. �V = π/dt) with an exponentially
decaying envelope. For T > 0, the thermodynamic properties of this regime can, therefore, be evaluated similarly to that of
the overdamped regime, since we here can write

Vk = (−1)k U
(

�k
+ 0

0 �k
−

)
U−1 , (64)

where U and �± are given by Equations (56)–(59). Apart from the alternating sign change in Equation (64), this is identical
to the corresponding mapping in regime B. This implies that Equations (62) and (63) from regime B for the variances of rn

and vn also apply here. Thus, we conclude that the thermodynamic results, Equation (52) and Equation (53), are found also
in this regime, which is physically unreasonable, yet numerically accessible.
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3.2.4. Regime D: unphysical

This unphysical regime, αdt/2m > 1 (yet within the formal
stability criterion �0dt < 2), is typically reached for large
time steps when simulating moderate to strongly damped
dynamics (see Figure 1). Since this regime involves one pos-
itive and one negative eigenvalue, we can map this onto the
analysis from regime B with

√
a → √|a| and λV → −λV

to complete the analysis and obtain the correct distributions.

4. Discussion and conclusion

We have presented a new Verlet-type algorithm for simu-
lating Langevin dynamics. The method, written in the three
different forms: Equations (19) and (20), Equations (21)
and (22) or Equations (24) and (25), is aligned with other
published methods that have demonstrated first and second
order accuracy for both simulated trajectories and derived
thermodynamic quantities [6–15]. Linear analysis demon-
strates that the method of this paper is robust and capable of
providing exact representation of both diffusive behaviour
in a flat potential and the Boltzmann distribution in a har-
monic potential regardless of damping and frequency (cur-
vature of the potential). The exact distribution is obtained
for any time step subject to the usual Verlet stability limit
and the condition αdt < 2m, which is a necessary require-
ment for a meaningful attenuated trajectory. The method is
very simple and in the usual Verlet structure, which means
that it can be readily implemented for any Langevin ap-
plication, including molecular dynamics of many-particle
systems with and without molecular constraints and other
commonly used modelling features.

As a final note, we underline that a Verlet-simulated
oscillator may not measure the exact temperature from the
variance of the velocity [see Equation (53)]. This deficiency,

which is common to all Verlet-type methods, arises from the
known discrepancy between displacement and momentum
as conjugated variables. This means that using the variance
of the velocity for precisely assessing the temperature of
a simulated system may be counterproductive. The appro-
priate criterion for obtaining the desired temperature is the
achievement of correct statistical sampling, which is indeed
given by our method.
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