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Abstract

Brownian motion in a periodic potential constitutes one of the fundamental problems

of particle transport with numerous applications in various fields of science and technology.

Despite being studied extensively throughout the years (see review in Riskens’ book, “The

Fokker-Planck Equation” - chapter 11), the general solution of the Smoluchowski (diffusion)

equation for motion in periodic potentials is generally unknown. In this thesis, we close this

gap in the literature and present (in chapter 2) a systematic way to derive the asymptotic

(at large times) solution of the time-dependent equation for any periodic even function U(x).

The leading term of this solution is the well known solution to the simple time-dependent

diffusion equation, namely a Gaussian function with an effective diffusion coefficient D∗,

multiplied by Boltzmann’s factor corresponding to the periodic potential. We present a

method for finding the corrections to the leading term, and derive the first two corrections,

thus obtaining a solution which is asymptotically correct up to terms decaying faster than

∼ t−3/2. The effective diffusion coefficient of the periodic Brownian motion is given by the

Lifson-Jackson formula, which we also recover independently as part of the derivation of the

solution. We conduct Langevin dynamics based simulations, that show excellent agreement

between the analytical solution and the numerical results. The simulations demonstrate that

for small periodic wavelengths and for high potential barriers, the Lifson-Jackson formula

does not hold and, instead, an Arrhenius-Kramer behaviour is observed.

In chapter 3 we address the problem of diffusion in two dimensional (2D) periodic

channels, and attempt to map it into an effective 1D Fick-Jacobs equation, which is a

Smoluchowski equation with an entropic potential. In order to improve the fit to the 2D

description, a periodic, spatially-dependent diffusion coefficient D(x) is added, which signif-

icantly enhances the agreement between Fick-Jacobs 1D simulation results and the results

of 2D channel simulations. We obtain a series of approximations for D(x), and numeri-

cally compare them to previously derived expressions and note that to leading order in the

derivative of the height function of the channel, A′(x) = dA/dx, they all have the same

form: D(x)/D ∼ 1 − A′2/3. Notably, our first order expression coincides with the formula

suggested by Zwanzig. Our results show that the choice of a space dependent diffusion coef-

ficient indeed does improve the 1D fit dramatically, although for short periodic wavelengths
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λ, the series of approximations of D(x) does not converge properly, and the 1D description

may still be quite inaccurate.

In summary, we derive an asymptotic solution to the fundamental problem of single

particle diffusion in 1D periodic potentials. We then use this solution in order to map the

problem of diffusion in a 2D periodic channel into a 1D description, which includes finding

a periodic D(x) in order to improve the agreement to the exact solution of the 2D problem.
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Chapter 1

Introduction

1.1 The Smoluchowski Equation

Brownian motion is the movement of particles due to thermal collisions with solvent molecules

that cause the particles to exhibit random motion, also known as single-particle diffusion. It

is named after the botanist Robert Brown who, while looking through a microscope at pollen

grains and dust particles, noticed that they move erratically through the water [1]. In 1905

(the ”miracle year”), Albert Einstein published a paper that explained precisely how the mo-

tion that Brown observed was a result of the pollen grains colliding with water molecules [2].

Fifty years earlier in 1855, Adolf Fick introduced Fick’s laws of diffusion, which govern the

spontaneous transport of mass through a medium [3]. Instead of considering the motion

of individual particles, Fick’s laws provide a continuum description to the same process in

which the net flow of particles is in accordance to the concentration gradient (i.e., from high

to low concentration).

Particle transport via diffusion is an important phenomenon in many fields of science,

ranging from biophysics (e.g., diffusion of polymers [4]), biology (e.g., diffusion of Oxygen

and Carbon Dioxide in the lungs [5], particle transport through the cell membrane [6]),

chemistry, mechanical engineering (e.g., heat transfer [7]), etc. As a more broad definition,

diffusion could be also referred to how something is widely distributed or spreads across,

and is also used to describe many social processes such as diffusion of innovations [8] and

populations [9], cultural diffusion [10], and changes in income [11]. In this thesis, we address
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the physical problem of mass transport which is described mathematically by Fick’s laws.

Fick’s first law of diffusion describes the relationship between the flux of particles

J(r, t), and the probability distribution function (PDF) of the particles P (r, t)1:

~J(r, t) = −D(r)~∇P (r, t), (1.1)

where r represents the space coordinates, t is the time, and D(r) is the diffusion coefficient

which may coordinate-dependent. If the particle experiences a potential U(r), then the flux

also features a drift term and reads:

~J(r, t) = −D(r)~∇P (r, t)− µ(r)P (r, t)~∇U(r), (1.2)

where µ(r) is the mobility, which is related to the diffusion coefficient via Einstein’s rela-

tion [12]

D(r) = kBTµ(r), (1.3)

where kB is Boltzman’s factor, and T is the temperature.

The continuity equation describes the relation between the temporal derivative of the

P (r, t) and the spatial derivative of the flux:

∂P (r, t)

∂t
= −~∇ · ~J(r, t). (1.4)

Substituting Eq. (1.1) in Eq. (1.4) leads to Fick’s second law of diffusion:

∂P (r, t)

∂t
= ~∇ · [D(r)~∇P (r, t)]. (1.5)

The solution of Eq. (1.5) with delta-function initial condition P (r, t = 0) = δ(r) and con-

stant D is a Gaussian function: P (r, t) = (4πDt)−d/2 exp[−r2/4Dt], where d is the space

dimensionality. The mean displacement of the particle 〈∆r〉 = 0, and the mean square

1The same law is often written with other quantities like the concentration c(r, t) or the mass m(r, t)
which are proportional to the PDF.
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displacement (MSD) satisfies:

〈∆r2〉 = 2dDt. (1.6)

In the presence of a potential U(r), Eq. (1.2) should be substituted into Eq. (1.4),

leading to the Smoluchowski equation [13]:

∂P (r, t)

∂t
= ~∇ · [D(r)~∇P (r, t)] + ~∇ · [µ(r)P (r, t)~∇U(r)]. (1.7)

An alternative form of this equation is:

∂P (r, t)

∂t
= ~∇ ·

{
D(r)e−βU(r)~∇

[
eβU(r)P (r, t)

]}
, (1.8)

where exp[−βU(r)] is Boltzmann’s factor and β = 1/kBT . In case of a constant force

f = −~∇U = const, and constant diffusivity D, the solution to this equation is a ”running”

Gaussian function: P (r, t) = (4πDt)−d/2 exp[(r− µft)2/4Dt].

1.2 Langevin’s Equation

An alternative route for describing the dynamics of a Brownian particle is the Langevin

equation of motion 2 [14]

m
dv(t)

dt
= −α(x)v(t) + f(x) + ξ(t), (1.9)

which is Newton’s second law describing the motion of a particle of mass m, where in addition

to the conservative force, f(x), the particle experiences two forces originating from collisions

with the medium molecules. These include a friction force −α(x)v, where v(t) is the velocity

of the particle and α(x) is the friction coefficient which may depend on the coordinate, and

a stochastic white noise with the following statistical properties:

〈ξ(t)〉 = 0 (1.10)

2In this section we consider for simplicity the one-dimensional case. In d > 1 dimensions, the equation
can be decoupled into d one-dimensional Langevin equations.
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〈ξ(t)ξ(t′)〉 = Γδ(t− t′). (1.11)

For constant α and f , the solution to this stochastic differential equation is:

v(t) = v0e
−αt/m +

f

α

(
1− e−αt/m

)
+

1

m

∫ t

0

ξ(t′)e−(t−t′)α/mdt′, (1.12)

where v0 denotes the initial velocity of the particle.

In order to find the relation between the diffusion coefficient D and the friction coeffi-

cient α, we consider the special case of f = 0 3, and calculate the velocity’s autocorrelation

function (ACF):

〈v(t′)v(t′′)〉 = 〈v2
0〉e−α(t′+t′′)/m +

1

m2

∫ t′

0

∫ t′′

0

〈ξ(t1)ξ(t2)〉e−α(t′+t′′−t1−t2)/mdt1dt2

= e−α(t′+t′′)/m

[
〈v2

0〉 −
Γ

2αm

]
+

Γ

2αm
e−α|t

′−t′′|/m. (1.13)

Substituting t′ = t′′ = t into Eq. (1.13), and arrive at:

〈
v2
〉

= e−2αt/m

[〈
v2

0

〉
− Γ

2αm

]
+

Γ

2αm
. (1.14)

In order to find Γ, we apply the equipartition theorem which states that the internal energy

of a system composed of a large number of particles at thermal equilibrium will distribute

itself evenly among the degrees of freedom. Specifically, the theorem implies that:

〈
1

2
mv2

〉
eq

=
1

2
kBT. (1.15)

As follows, the equilibrium variance satisfies:

〈
v2
〉
eq

=
kBT

m
. (1.16)

Now, by taking the limit of t→∞ in Eq. (1.14), and by using Eq. (1.16), we arrive at:

〈v2〉eq =
Γ

2αm
=
kBT

m
, (1.17)

3It is assumed that the white noise statistics (i.e. Γ) is independent of the determinant force.
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which leads to Γ = 2αkBT , and the noise autocorrelation function [Eq. (1.11)] reads:

〈ξ(t)ξ(t′)〉 = 2αkBTδ(t− t′). (1.18)

Eq. (1.18) describes the relationship between the thermal fluctuations and the friction of the

medium in accordance to the fluctuation-dissipation theorem. Notice that if the initial veloc-

ity is drawn from the equilibrium Maxwell-Boltzmann distribution, i.e., satisfies Eq. (1.16),

then the first term on the r.h.s. of Eq. (1.13) cancels out. Assuming that this is indeed the

case then the velocity’s ACF satisfies:

〈v(t′)v(t′′)〉 =
kBT

m
e−α|t

′−t′′|/m. (1.19)

From Eq. (1.19), we can identify the time scale in which a particle’s velocity becomes un-

correlated, which is known as the balistic time τb ∼ m/α. Time scales much shorter (longer)

than τb are referred to as the ballistic (diffusive) dynamic regimes.

The particle displacement ∆x(t) is related to the velocity by integration:

∆x(t) = x(t)− x0 =

∫ t

0

v(t′)dt′, (1.20)

and from Eq.(1.10) we find that 〈∆x〉 = 0. By squaring Eq. (1.20) and averaging over all

the noise realizations, we arrive at:

〈∆x2〉 =

∫ t

0

∫ t

0

〈v(t′)v(t′′)〉dt′dt′′. (1.21)

Substituting Eq. (1.19) into Eq. (1.21) gives:

〈∆x2〉 =
kBT

m

∫ t

0

∫ t

0

e
− |t
′−t′′|
τb dt′dt′′ =

2kBT

α

[
t− m

α

(
1− e−t/τb

)]
. (1.22)

Eq. (1.22) can be divided into two regions of interest:

〈∆x2〉 =


kBT

m
t2 =

〈
v2

0

〉
eq
t2 t� τb (1.23)

2kBT

α
t t� τb (1.24)
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Eqs. (1.23)-(1.24) show that the dynamics are diffusive (i.e., 〈∆x2〉 ∼ t) only at the large

time scales of the diffusive regime. Only in this regime the Langevin and Smoluchowski

descriptions of the dynamics are equivalent, and can be derived from one another [15]. By

comparing Eq. (1.24) to Eq. (1.6) with d = 1 we arrive at Einstein’s relation:

D =
kBT

α
= kBTµ, (1.25)

where the friction α and the mobility µ are inversely related: α = 1/µ.

In the balistic regime (t � τb) ∆x ' v0t and, thus, ∆x2 ' (v0t)
2. In Eq. (1.23)

it is assumed that the initial velocity is drawn from the equilibrium Maxwell-Boltzmann

distribution, i.e., satisfies Eq. (1.16).

1.3 Numerical Integration

1.3.1 The G-JF algorithm

In most cases, the Smoluchowski equation [Eq. (1.8)] is either unsolvable analytically or

may require many approximations in order to simplify the problem and make it analytically

solvable. A useful way to obtain or verify such solutions is to use the correspondence be-

tween the diffusion equation and the associated Langevin equation. The PDF that solves

the Smoluchowski equation can be calculated numerically, by simulating an ensemble of

Langevin dynamics trajectories. In order to generate such trajectories, an algorithm for

numerically integrating the Langevin equation (1.9) is required. Here we use the algorithm

of Grønbech-Jensen and Farago (G-JF) [16, 17],which is known for producing accurate con-

figurational equilibrium sampling of molecular systems. The method is based on the under-

damped Langevin equation [i.e., including the inertial term on the l.h.s. of Eq. (1.9)], and

(as discussed above) generates statistics that are equivalent to the overdamped Smlochowsky

equation in the diffusive region ( t� τb), i.e., after the short time scale inertial effects have

been decayed. The G-JF algorithm advances the system each time by one time step from

tn to tn+1 = tn + dt. Every time step the position and velocity of the particle at time tn,

denoted by xn and vn respectively, are calculated using the following set of discrete-time

13



equations:

xn+1 = xn + bdtvn +
bdt2

2m
fn +

bdt

2m
ξn+1 (1.26)

vn+1 = avn +
dt

2m

(
afn + fn+1

)
+

b

m
ξn+1, (1.27)

where fn = f (xn) is the deterministic force acting on the particle, ξn+1 is a Gaussian random

number satisfying

〈ξn〉 = 0 ;
〈
ξnξl

〉
= 2αkBTdtδn,l, (1.28)

and the dampening coefficients of the algorithm are

b = [1 + (αdt/2m)]−1 ; a = [1− (αdt/2m)] b. (1.29)

1.3.2 Simulating a coordinate dependent friction α(x)

If the friction varies in space, α(x), the above equations (1.26) and (1.27) must be comple-

mented with a convention for choosing the value of α to be used in Eqs. (1.28)-(1.29) at

each time step. Choosing the appropriate convention is known in the literature as the “Itô-

Stratonovich dilemma” after the two most commonly used conventions - the one of Itô [18]

which uses the value of α at the beginning of the time step, and the one of Stratonovich [19]

which takes the average of the friction function at the initial and the end points. In the over-

damped limit of the Langevin equation (i.e., when the left-hand side of Eq. (1.9) vanishes),

neither of these two interpretations reproduce the equilibrium Boltzmann distribution. It

is Hänggi’s (isothermal) convention [20], in which the friction is chosen from the end of the

time step, which generates the correct equilibrium statistics.

For the underdamped Langevin equation, all (reasonable) conventions lead to the cor-

rect equilibrium description in the limit of dt → 04. Here, we use the recently proposed

inertial convention [12, 21] that assigns to αn+1 the value of the spatial average of α along

4This is because the underdamped Langevin equation is second order in x, while the overdamped approx-
imation is a first order equation. In the latter (overdamped) equation, the velocity is a stochastic (noisy)
variable rather than a physical one.
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the inertial trajectory from xn to x̃n+1 = xn + vndt

αn+1 =

∫ x̃n+1

xn
α(x)dx

x̃n+1 − xn
≈ α(x̃n+1) + α(xn)

2
, (1.30)

where the approximation in the r.h.s. is acceptable for slowly varying friction coefficients.

The advantage of using the inertial convention is that it produces accurate computational

results even for time steps that are not extremely small.

1.4 Periodic Systems

Brownian motion in a periodic systems constitutes one of the fundamental problems of

particle transport with numerous applications in various fields of science and technology.

Many classical examples of diffusion in periodic systems are found in the area of condensed

matter physics, including diffusion of atoms in and on the surface of lattices [22, 23], and

fluctuations of Josephson supercurrent through a tunneling junction [24]. In many situations,

e.g., the cases of superionic conductors [25] and rotating dipoles in external fields [26], a

constant force which biases the stochastic dynamics in a given direction is also present. In

such scenarios, often referred to as diffusion in a tilted periodic potential, different types of

dynamics are observed in the overdamped (high friction) regime depending on whether the

total potential energy (the sum of periodic and linear potentials) has minima or not [27]. In

the former case, the particle moves from one minimum to another and the solution is termed

“locked”; in the latter case, the particle moves down the corrugated potential gradient and

the solution in termed “running” [28].

The problem of diffusion in periodic systems is also relevant to the study of thermal

ratchets [29]. Thermal ratchets employ a time-varying spatially-asymmetric periodic poten-

tial that drives isothermal systems out of equilibrium and allows for the rectification of the

thermal noise in the form of a directed probability (particle) flux. Thermal ratchets attracted

much renewed interest in the 1990s’ as possible models for motor proteins [30]. Advances in

various experimental techniques, most notably in optical trapping (“tweezers”) devices, have

led to novel experimental setups where some of the new theoretical concepts were tested [31].

Another closely-related problem attracting considerable recent attention is diffusion in cor-
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rugated channels [32]. Understanding Brownian motion in confined geometries is important

for the study of transport of materials in, e.g., zeolites [33] and microfluidic channels [34].

Such dynamics can be studied by considering a 1D Fick-Jacobs diffusion equation of a parti-

cle moving in the presence of an effective potential of mean force arising from the variations

in the cross-sectional area of the channel [35,36].

When describing the dynamics of a particle, one of the most interesting features is the

effective diffusion coefficient defined by:

D∗ = lim
t→∞

〈∆x2〉
2t

. (1.31)

In periodic systems, D∗ can be found by using the Lifson-Jackson (LJ) formula [37]:

D∗ =
D

〈e−βU(x)〉 〈eβU(x)〉
. (1.32)

The effective diffusion coefficient D∗ is smaller or equal to the medium diffusion coefficient

D, since the particles tend to linger at the minima of the potential, which slows down their

diffusivity. As the potential function flattens (i.e., the force f → 0 ), D∗ approaches the

medium coefficients D∗ → D. Eq. (1.32) applies for the special case of a constant diffusion

coefficient. When generalizing to the case of a preiodic space dependent D(x), the correct

equation is the modified Lifson-Jackson equation (MLJ):

D∗ =
D

〈e−βU(x)〉 〈eβU(x)/D(x)〉
. (1.33)

The LJ and MLJ formulas, which are derived from the Smoluchowski equation (1.8), are

valid only when the potential barrier, ∆U = Umax−Umin is not too high. In the high barrier

limit, β∆U � 1, the particle only rarely escapes the vicinity of a potential minimum, and

it advances to a neighboring cell with a characteristic time that scales as τ ∼ exp(β∆U).

In this limit, the effective diffusion coefficient is expected to follow an Arrhenius-Kramer

behavior [38]: D∗ ∼ De−β∆U .
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1.5 Thesis Outline

This thesis is organized as follows. In chapter 2 we discuss the problem of single particle

diffusion in a 1D medium with periodic potential and constant diffusion coefficient D. We

present the asymptotic (at long times) solution to the Smoluchowski equation (1.8), and

evaluate the effective diffusion coefficient D∗ in the limits ∆U � kBT and ∆U � kBT . In

chapter 3, we address the problem of diffusion in a two-dimensional (2D) periodic channel

which is unbounded in the x direction, and restricted in the orthogonal direction 0 < y <

A(x), where A(x) is a periodic function. This situation can be mapped into a 1D diffusion

equation of a particle moving under the action of a periodic potential of mean force U(x) =

−kBT ln[A(x)] with a (periodic as well) space-dependent diffusion coefficient D(x). Chapter

4 summarizes the research work.
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Chapter 2

Diffusion in Periodic Potentials

2.1 Introduction

We consider 1D overdamped diffusion with constant diffusion coefficient D. The probability

distribution function, P (x, t), of finding the particle at coordinate x at time t can be found

by solving the Smoluchowski equation (1.8)

∂P (x, t)

∂t
= D

∂

∂x

{
e−βU(x) ∂

∂x

[
eβU(x)P (x, t)

]}
. (2.1)

Throughout this work, we assume that U(x) is an even periodic function with period λ and

consider a particle initially located at the origin, i.e., P (x, t = 0) = δ(x), where δ is the

Dirac delta-function. From symmetry considerations, the mean displacement of the particle

vanishes identically, 〈x〉 = 0. The mean-squared displacement does not vanish but rather

exhibits, at asymptotically large times, a linear growth with time characterizing the diffusive

nature of the dynamics.

Despite the extensive theoretical literature on the problem of diffusion in periodic

potentials, the general solution of Eq. (2.1) subject to the delta-function initial condition is

not known. In this chapter, we close this gap in the literature and find an asymptotic (at

large times) solution for the Smoluchowski equation for any even periodic potential function

U(x). We use Langevin dynamics simulations of a case-study to demonstrate excellent

agreement between our analytical solution and the computed PDF. As part of our derivation,

we independently arrive at the LJ formula (1.32), derived from Eq. (2.1), for the effective
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diffusion coefficient D∗.

As discussed in section (1.2), Langevin dynamics are inertial at time scales much smaller

than the ballistic time τb = m/α, during which the particle moves a characteristic distance

lb ∼ vthτb, where vth =
√
kBT/m is the thermal velocity of the particle. The dynamics

becomes diffusive at length scales much larger than lb. Moreover, the Smoluchowski Eq. (2.1)

correctly describes the dynamics only if the spatial variations of the deterministic force f =

−dU/dx on length scales of the order of lb are much smaller than the characteristic friction

force, i.e., for (m/α2)|df/dx| � 1 [40]. In the case of a periodic force |df/dx| ∼ ∆U/λ2,

where λ is the periodicity, implying that Eq. (2.1) may not be valid when the periodic length

of the potential becomes comparable to the ballistic length, or in the case when ∆U � kBT .

We will later see that, indeed, in these limits, the LJ formula derived from Eq. (2.1) fails to

depict correctly the effective diffusion coefficient D∗.

We notice that if U(x) is periodic then the Boltzmann’s weight exp[−βU(x)] is also a

periodic function. We thus define the periodic function η(x)

1 + εη(x) =
e−βU(x)

〈e−βU(x)〉
, (2.2)

with the variable

ε = 1− e−βUmax

〈e−βU(x)〉
(2.3)

satisfying 0 ≤ ε < 1. The function η(x) has the following properties: (i) 〈η(x)〉 = 0, and (ii)

min[η(x)]=-1. With the definition of ε and η(x), the Smoluchowski equation (2.24) takes the

form

∂P (x, t)

∂t
= D

∂

∂x

{
[1 + εη(x)]

∂

∂x

P (x, t)

[1 + εη(x)]

}
, (2.4)

and LJ formula (1.32) reads

D∗ =
D〈

[1 + εη(x)]−1〉 . (2.5)
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In the high barrier limit ε→ 1, we expect the Arrhenius-Kramer law which takes the form

D∗ ∼ D(1− ε). (2.6)

2.2 Langevin dynamics simulations

We simulate the dynamics of a particle of unity mass m = 1 moving in a system with friction

coefficient α = 1 at constant temperature kBT = 1. For this choice of parameters the ballistic

time τb ∼ m/α = 1 and ballistic length lb ∼
√
mkBT/α = 1. As a numerical example, we

consider the case where η(x) = cos(2πx/λ) (f(x) = −U ′(x) = kBTεη
′(x)/[1 + εη(x)]).

The particle’s trajectory begins at x = 0 with initial velocity which is drawn from the

equilibrium Maxwell-Boltzmann distribution, and is numerically integrated using the G-JF

algorithm with dt = 0.1, which is an order of magnitude smaller than τb. The numerical

results presented here are based on statistical averages of 2 × 108 independent trajectories.

Fig. 2.1(a) shows the ratio between 〈x2〉 and 2t [see Eq. (1.31)] as a function of t for ε = 0.5

and λ = 50 � lb. At asymptotically large times, this ratio converges to the effective

diffusion coefficient D∗ ' 0.863 which is indeed smaller than the medium diffusion coefficient

D = kBT/α = 1. The open circles in Fig. 2.1(b) show our computational results for D∗/D

as a function of ε, for λ = 50. The results exhibit excellent agreement with the solid line

depicting the LJ formula (2.5) which, for the specific choice of η(x) discussed here, gives

D∗/D =
√

1− ε2. Very small deviations from the LJ formula are observed for ε > 0.6 when

the potential barrier becomes larger [exp(−β∆U) . 0.17]. In contrast, the results for λ = 2,

which are plotted in Fig. 2.1(c), exhibit agreement with LJ formula only for ε < 0.1. This

behavior is expected since LJ formula is derived from the Smoluchowski equation, but the

latter becomes invalid when λ is comparable to the ballistic length lb. For ε→ 1, we observe

that D∗/D diminishes like (1− ε), in accordance with Eq. (2.6).
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Figure 2.1: (a) The ratio between the mean squared displacement and twice the time, D∗ =
〈x2〉 /2t, as a function of t for ε = 0.5 and λ = 50. At large times this ratio converges to
D∗ ' 0.863 that matches the value for the effective diffusion coefficient D∗ predicted by the
LJ formula. (b) The effective diffusion coefficient D∗ (normalized by the medium diffusion
coefficient D) as a function of ε for λ = 50. Circles - simulation results, solid curve - the LJ
formula. (c) Same as (b) for λ = 2. The dashed line depicts the function (1− ε).

21



-400 -200 0 200 400
0

0.5

1

1.5

2

2.5

3

3.5
10-3

-1000 -500 0 500 1000

-3000

-2000

-1000

0

1000

2000

3000

(a)

(b)

100 200 300 400

-1000

500

0

500

1000

Figure 2.2: (a) The function Π(x, t) as a function of x for ε = 0.5 and λ = 50, at t = 104

(squares) and and t = 5×104 (circles). The solid curves depict the Gaussian formG(x,D∗t) =

exp(−x2/4D∗t)/
√

4πD∗t with D∗ = 0.863. (b) The function t [Π(x, t)/G(x,D∗t)− 1] as a

function of x for t = 5 × 104 (red) and t = 2 × 105 (black). The light blue curve is the

analytical approximation xg(x)/(4D∗) with g(x) given by Eq. (2.15). The inset shows a

magnification of the region with the best agreement between the analytical approximation

and numerical results.

Fig. 2.2(a) shows the PDF normalized by the Boltzmann factor, Π(x, t) = P (x, t)/[1 +

εη(x)], for ε = 0.5 and λ = 50 at t = 104 (squares) and t = 5 × 104 (circles). The

graphs indicate that at large times, the function Π(x, t) is very well approximated by a

Gaussian form (solid lines) G(x,D∗t) = exp(−x2/4D∗t)/
√

4πD∗t, where D∗ = 0.863 is the
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effective diffusion coefficient for the corresponding values of ε and λ (see above). This,

however, is only an approximation, and it is straightforward to check that P (x, t) = [1 +

εη(x)]G(x,D∗t) is not a solution of Eq. (2.4). Careful inspection of Fig. 2.2(a) reveals small

undulations of Π(x, t) with wavelength λ around the Gaussian form. We thus speculate

that the Gaussian form is the leading term in an expression including additional terms, and

write P (x, t) = [1 + εη(x)]G(x,D∗t) [1 + q0(x) + q1(x, t)], where q0(x) and q1(x, t) denote,

respectively, static and time-decaying corrections exhibiting oscillations with periodicity λ.

The static term can be ruled out based on the simple argument that it contributes a term

equal to G(x,D∗t) d{[1 + εη(x)]q′0(x)}/dx on the right hand side of Eq. (2.4), and this term

dominates the asymptotic behavior of ∂tP (x, t) at long times. Since the Gaussian function

G(x,D∗t) is positive, it follows that the long time limit of ∂tP (x, t) has the same sign as the

static function d{[1 + εη(x)]q′0(x)}/dx that oscillates between positive and negative values 1.

This, however, is impossible because the particle propagates to further distances with time

and the probability density cannot accumulate at any point in space. Stated differently, for

any x0, the probability density P (x0, t) must decay at large times, namely ∂tP (x0, t) < 0 for

some t > t0. This property of P (x, t) precludes the possibility of a static correction q0(x)

and allows only a time-decaying term q1(x, t).

Insight into the form of the time-decaying correction can be gained from Fig. 2.2(b)

where we plot the function t [Π(x, t)/G(x,D∗t)− 1] = tq2(x, t) as a function of x for ε = 0.5

and λ = 50, at t = 5 × 104 (red) and t = 2 × 105 (black). While the collapse of the data

for the different times is not perfect, it seems to indicate that the time-decaying correction

may have the form q1(x, t) ∼ (x/t)g(x), where g(x) is a scaling function with periodicity

λ. This term decays at a rate t1/2 faster than the leading Gaussian form because of the

scaling x ∼ (D∗t)1/2. (Larger values of x need not be considered because for x2 � D∗t

the PDF is practically zero.) The solution can be further refined by introducing a series

of corrections P (x, t) = [1 + εη(x)]G(x,D∗t) [1 + q1(x, t) + q2(x, t) + · · · ], with each term

decaying t1/2 faster than the previous one. Here, we attempt to find the first two leading

1The last statement is incorrect when q′0(x) = [1 + εη(x)]−1. However, this possibility can be ruled out
since in this case the average slope of q0 does not vanish, which implies that q0(x) and, therefore, also the
probability density P (x, t) obtain large negative values for some x.
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corrections and, therefore, consider the following form 2

P (x, t) =

{
[1 + εη(x)]G(x,D∗t)

[
1 +

λxg(x)

4D∗t
Q1

(
x2

4D∗t

)
+
λ2h(x)

4D∗t
Q2

(
x2

4D∗t

)]}
, (2.7)

where g(x) and h(x) are two dimensionless functions with periodicity λ, while Q1 and Q2 are

polynomials in x2/4D∗t. This solution constitutes the asymptotic solution to Smoluchowski

equation (2.4) at large times t� τb, up to order G(x,D∗t)/t ∼ 1/t3/2.

2.3 The probability distribution:

We consider a symmetric system with an even function η(x), which implies that the PDF

is symmetric and, therefore, g(x) must be an odd function while h(x) is even. Both scaling

functions are periodic with periodicity λ and have a finite amplitude. Thus, η′(x), as well

as g′(x) and h′(x), are all of order 1/λ. With this in mind, we substitute the solution (2.7)

into Eq. (2.4). On the right hand side, we find terms that scale as like G(x,D∗t)(x/λt).

These terms must cancel each other, which occurs provided that (i) Q1 = const (which, by

a proper definition of g(x), can be arbitrarily set to unity), and (ii) the scaling function g(x)

satisfies the ordinary differential equation

[1 + εη(x)]λg′′(x) + εη′(x) [λg′(x)− 2] = 0. (2.8)

Taking into account that g(x) is an odd function and therefore g(0) = 0, we readily arrive

at the solution

λg(x) = kI

[
1

1 + εη(x)

]
+ 2x, (2.9)

where I[y(x)] denotes the primitive function of y(x) with I(x = 0) = 0. The constant k can

be found from the requirement that g(x) is periodic. Thus,
∫ λ

0
g′(x)dx = g(λ) − g(0) = 0,

2We note that (because g(x) is a periodic function which also assumes negative values) the solution (2.7)
becomes negative for some x � D∗t/λ ,which is obviously impossible. At large times, this regime is found
at the tail of the distribution function where PDF is, anyhow, negligible.
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which gives

k = − 2〈
[1 + εη(x)]−1〉 . (2.10)

We now proceed and find the function h(x) and the polynomial Q2 by comparing terms

of the form G(x,D∗t)(x2/4D∗t)n/t (where n is an integer), on both sides of Eq. (2.4). From

this comparison, we readily conclude that Q2 (x2/4D∗t) = [1 + bx2/(4D∗t)]. This leaves us

with two different differential equations for the scaling function h(x) which cannot be solved

simultaneously unless we set b = −2, in which case the equations coincide and read

(1 + φ) [1 + εη(x)]
[
λ2h′′(x) + 2λg′(x)

]
+ (2.11)

(1 + φ) εη′(x)
[
λ2h′(x) + λg(x)

]
= 2φ [1 + εη(x)] ,

where φ = D/D∗ − 1. By defining the function h̃(x) = [1 + εη(x)] [λ2h′(x) + λg(x)], we

arrive at the simple equation

h̃′(x) = −
[

2

1 + φ
+ k

]
− 2εη(x)

1 + φ
, (2.12)

which can be integrated once to yield h̃(x), from which the scaling function h(x) can be

derived by performing yet another integration in x. Importantly, the fact that h(x) is an

even periodic function with a finite amplitude imposes the relationship 2/(1 + φ) + k = 0

from which D∗ can be deduced. Using Eq. (2.10) we find

D∗ =
D

1 + φ
= −kD

2
=

D〈
[1 + εη(x)]−1〉 , (2.13)

which is identical to the LJ formula (2.5). The scaling function h(x) is given by

λ2h(x) = kI

{
I [εη(x)]

1 + εη(x)
− I

[
1

1 + εη(x)

]}
− x2 + λ2C, (2.14)

where the constant C is determined by the normalization condition
∫∞
−∞ P (x, t)dx = 1 (which

must be satisfied up to an order of 1/t).

Returning to our simulation results above for η(x) = cos(2πx/λ), the corresponding
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scaling function g(x) can be found

g(x) = − 2

π
arctan

[√
1− ε
1 + ε

tan
(πx
λ

)]
+

2x

λ
, (2.15)

where the arctan function is interpreted such that it returns a value between −π/2 and π/2

which is then shifted by an integer number of π in order that g(λ/2 +nλ) = 0 (where n is an

integer). We were unable to find the scaling function h(x); however, we take advantage of the

fact that it represents a correction to the Gaussian form of Π(x, t) which is asymptotically

smaller than the one involving the function g(x) [see Eq. (2.7)], and use the approximation

t [Π(x, t)/G(x,D∗t)− 1] ' xg(x)/(4D∗). This approximation, which is plotted in Fig. 2.2(b)

in light blue, shows a good fit to the simulation results. The deviations, which can be

attributed to the higher order correction term in Eq. (2.7), are particularly small for x2 '

2D∗t - see inset in Fig. 2.2(b).

2.4 Coordinate-dependent diffusion coefficient

Let us now consider the same system, but with a space-dependent diffusion periodic function,

D(x), with periodicity λ similar to that of η(x). In the next chapter we will discuss the

connection of this 1D equation to the problem of diffusion in 2D periodic channels. We now

need to solve the Smoluchowski equation (1.8), the solution of which has the same general

form as in Eq. (2.7). Focusing on the leading time-decaying term, we write

P (x, t) = [1 + εη(x)]G(x,D∗t)

[
1 +

λxg(x)

4D∗t

]
, (2.16)

which is correct up to order O(G/t1/2) ∼ O(1/t) provided that the correct function g(x) is

found. This is done by substituting the solution (2.7) into Eq. (1.8) and comparing terms

that scale like G(x,D∗t)(x/t), which yields the following differential equation

{D(x)[1 + εη(x)](g′ − 2)}′ = 0. (2.17)
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Integrating this equation once with respect to x gives

g′ = 2 +
c1

[1 + εη(x)]D(x)
. (2.18)

The constant c1 can be determined by acknowledging that g(x) is periodic and, therefore,

0 = g(λ)− g(0) =

∫ λ

0

g′(x)dx = 2λ+ c1

∫ λ

0

dx

[1 + εη(x)]D(x)
. (2.19)

Thus, the constant c1 is given by:

c1 = − 2

〈{[1 + εη(x)]D(x)}−1〉
. (2.20)

Integrating Eq. (2.18) once again with respect to x gives

g(x) = 2x− 2

〈{[1 + εη(x)]D(x)}−1〉
I

[
1

D(x)[1 + εη(x)]

]
, (2.21)

which reduces to (2.9) when D(x) = const. Notice that when the diffusion coefficient

depends on the coordinate x, the effective diffusion coefficient D∗ is given by the modified

Lifson Jackson (MLJ) formula (1.33), which in terms of η(x) reads

D∗ =
1

〈D(x)[1 + εη(x)]〉
(2.22)

which reduces to (2.5) when D(x) = const, and allows one to also write

g(x) = 2x− 2D∗I

[
1

D(x)[1 + εη(x)]

]
. (2.23)

2.5 Diffusion in a tilted periodic potential

Another interesting problem is when a particle diffuses in a medium with constant diffu-

sivity D, under the action of both a periodic potential U(x) and a constant force f , the
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Figure 2.3: The function
√
tΠ(x, t) vs. x for η(x) = cos(2πx), ε = 0.5, λ = 50 and f = 0.005,

at t = 5× 104 (red) and t = 2× 105 (black).

Smoluchowski equation reads

∂P (x, t)

∂t
= D

∂

∂x

{
e−β(U(x)−fx) ∂

∂x

[
eβ(U(x)−fx)P (x, t)

]}
= −µf ∂P

∂x
+D

∂

∂x

{
[1 + εη(x)]

∂

∂x

P (x, t)

[1 + εη(x)]

}
, (2.24)

where µ = D/kBT , while η(x) and ε are defined similarly to Eq. (2.2).

In Fig. 2.3, we present Langevin dynamics simulations results of the same system as in

Fig. 2.2 of the non-tilted potential with an additional constant force f = 0.005. The graph

shows
√
tΠ(x, t) =

√
tP (x, t)/[1 + εη(x)] as a function of x at different times [t = 5 × 104

(red) and t = 2 × 105 (black)]. The two main differences with respect to the case f = 0

considered previously: (i) The Gaussian “moves” at constant velocity fµ∗, where µ∗ 6= µ is

the effective mobility coefficient satisfying µ∗ → D∗/kBT for f → 0 [41]. (ii) The oscillations

of the PDF around the Gaussian form do not decay with time and have the periodicity λ

of the potential U(x). This implies that the corrections to the Gaussian form also include a

static term q0(x) missing when f = 0. Thus, we speculate that the solution takes the form

P (x, t) = [1 + εη (x)]G (x− µ∗ft,D∗t) [1 + q0(x) + q1(x, t) + q2(x, t) + · · · ] , (2.25)
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where G(x−µ∗ft,D∗t) = exp[−(x−µ∗ft)2/4D∗t]/
√

4πD∗t denotes the “running” Gaussian,

while q1 and q2 are the time decaying corrections of order 1/t1/2 and 1/t, respectively, having

the same general form as in Eq. (2.7).

Upon substituting the solution (2.25) into Eq. (2.24) and comparing terms of similar

order, we first arrive at the following differential equation for the static term q0(x)

∂

∂x
{[1 + εη (x)] [βf + βfq0 (x)− q′0 (x)]} = 0. (2.26)

From the requirements that (i) q0(x) does not diverge exponentially for x → ∞, and that

(ii) P (x, t) is normalized to unity at any time (including for t→∞, when the time-decaying

terms become irrelevant), we arrive at

q0(x) = βfeβfxI

[
e−βfx

(
c1

1 + εη(x)
+ 1

)]
, (2.27)

and

c1 =

{
βf

〈
[1 + εη (x)] eβfxI

[
e−βfx

1 + εη(x)

]〉}−1

. (2.28)

The first time-decaying correction q1(x) can be now found by solving the equation

obtained from the terms that scale as 1/t1/2. This equation involves the already found static

scaling function q0(x). Then, the second correction, q2(x), can be found from the equation

corresponding to the terms proportional to 1/t, which involves q0(x) and q1(x) (and so on).

Notice that the form of q0 (2.27) does not give any information on the effective parameters

µ∗ and D∗. These will be found from the equations for q1 and q2, respectively.

2.6 Summary

In this chapter, we derived an asymptotic (at large times) expression for the PDF of a par-

ticle diffusing in a periodic potential energy landscape U(x). The solution, which is given

by Eq. (2.7), is correct to order O(t−3/2). Faster decaying corrections can, in principle,

be systematically derived by comparing, on both sides of Eq. (2.4), terms of order O(t−2),

O(t−5/2) . . . . This will require solving increasingly complicated differential equations in-
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volving the scaling functions of slower decaying terms. We continued by showing that this

approach can also be applied to the case of a coordinate dependent diffusion coefficient D(x),

a fact that we will take advantage of in the next chapter in order to project the problem of a

2D channel into an effective 1D description. Finally, we have briefly examined the question

of diffusion in a tilted periodic potential, and how our approach can be modified to solve

such problems.
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Chapter 3

Diffusion in Periodic Channels

3.1 Introduction

In this chapter we address the problem of diffusion in a 2D corrugated channel, which is a

special class of periodic systems where there is in fact no potential [42]. We consider a particle

moving in an open channel whose long axis lies along the x-direction (−∞ < x <∞). In the

perpendicular y direction, the channel is bounded between 0 ≤ y ≤ A(x), where A(x) is a

periodic function with wavelength λ. The 2D problem may be mapped onto an effective 1D

picture of a particle diffusing in an effective potential of mean force. This potential is derived

from the collisions with the reflecting walls of the channel [as depicted by fig. (3.1)], and

satisfies 〈fx〉 = −dUent/dx. Fig. (3.1) illustrates a periodic channel, where the mean force

〈fx〉 biases the dynamics of the particle and forces it towards the areas where the channel

height is maximal. (The arrows indicate the direction in which the mean force pushes the

particles.) The entropy S, is related to the number of possible states Ω by S = kB ln(Ω),

and Ω is proportional to the height of the channel Ω ∼ A(x). Therefore, the entropy scales

as

S = kB ln[A(x)]. (3.1)
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Figure 3.1: An illustration of a two dimensional periodic channel. The arrows indicate the
direction of the mean force f+ and f− respectively (which is perpendicular to the reflecting
wall). f+ (f−) is the force where the slope of the wall is most positive (negative) and thus
the absolute value of the x coordinate of the mean force fx is maximal.

In order to take into account the entropy, we calculate the Helmholtz free energy, which

satisfies [43]:

F (x) = U(x)− TS(x) = U(x)− kBT ln[A(x)]. (3.2)

When no potential exists in the channel, U(x) = 0, we identify the entropic potential as

follows:

Uent(x) = F (x) = −kBT ln[A(x)]. (3.3)

The 2D probability density, ρ(x, y, t) 1, satisfies the diffusion equation

∂ρ(x, y, t)

∂t
= D∇2ρ(x, y, t). (3.4)

1In chapter 1 we noted the multi-dimensional PDF as P (r, t). In this chapter we refer to the 2D PDF as
ρ(x, y, t), and use P (x, t) to denote the projected 1D PDF.
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Equation (3.4) must be solved subject to reflecting (Neumann) boundary conditions on the

walls of the channel (see Fig. 3.1)

∂ρ(x, y, t)

∂y
|y=0 = 0 (3.5)

and

∂ρ(x, y, t)

∂y
|y=A(x) = A′(x)

∂ρ(x, y, t)

∂x
. (3.6)

As the motion is limited to the longitudinal x-direction, one is naturally interested in

the 1D PDF

P (x, t) =

∫ A(x)

0

ρ(x, y, t) dy. (3.7)

It has been suggested that P (x, t) may be found by solving the 1D Smoluchowski equation

describing Brownian dynamics under the action of an entropic potential of mean force as

describes by Eq. (3.3)

∂P (x, t)

∂t
= D

∂

∂x

{
e−βUent(x) ∂

∂x

[
P (x, t)

e−βUent(x)

]}
= D

∂

∂x

{
A (x)

∂

∂x

[
P (x, t)

A (x)

]}
. (3.8)

This is Eq. (2.4) with A(x)/A0 = 1+εη(x), and the mean hight of the channel A0 = 〈A(x)〉 =

(λ)−1
∫ λ

0
A(x)dx. Eq. (3.8) is also known as Fick-Jacobs (FJ) equation [47]. Strictly speak-

ing, the 1D description provided by the FJ equations holds only when the two-dimensional

probability density is uniform along the y-direction, i.e., when ρ(x, y, t) = P (x, t)/A(x),

which is generally not the case. Since the agreement between the solution of FJ equation

(3.8) and simulation results may be quite poor [48,49], a modified version of the FJ equation

with a coordinate-dependent diffusion coefficient, D(x), has been considered

∂P (x, t)

∂t
=

∂

∂x

{
D(x)A(x)

∂

∂x

[
P (x, t)

A(x)

]}
, (3.9)

which is Eq. (1.8) in 1D with exp[−βU(x)] = A(x), and D(x) is supposedly a function of
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A(x) and its derivatives 2.

Eq. (3.9) was first derived by Zwanzig [32], by analyzing the temporal evolution of the

deviations in the local density from uniformity, δρ(x, y, t) = ρ(x, y, t)− P (x, t)/A(x). From

the analysis, Zwanzig concluded that the introduction of a spatially-dependent diffusion

coefficient can improve the agreement between the 2D and 1D descriptions, and he proposed

the following expression for D(x)

DZ(x) =
D

1 + A′ 2(x)/3
. (3.10)

Notice that the reduction of the 2D diffusion equation (3.4) to an effective 1D equation (3.9)

cannot yield exact results since the 2D diffusion process projected onto the x direction is

not Markovian and thus cannot be described by a 1D diffusion equation with local diffusion

coefficient D(x) [50]. Nevertheless, Zwanzig’s framework of Eq. (3.9) for depicting trans-

port in corrugated channels has become popular and other expressions for D(x) have been

proposed, for instance,

DRR(x) =
D

[1 + A′ 2(x)]1/3
, (3.11)

and

DKP(x) = D
arctan [A′(x)]

A′(x)
, (3.12)

which were suggested, respectively, by Reguera and Rubi (RR) [35] and by Kalinay and

Percus (KP) [36]. All the above three formulas for D(x) (i) satisfy D(x)/D ∼ 1− A′ 2(x)/3

for A′(x) � 1, and (ii) ignore the higher order derivatives of A(x). The latter property

of these expressions is not mathematically well justified. In fact, the expression of KP

(3.12) was derived using a mapping formalism [51] that generates a series of expressions that

include increasingly higher order derivatives of A(x). Unfortunately, the formalism involves

a complicated differential operator containing derivatives of all orders, which makes it rather

impractical. An alternative analytical approach has been more recently introduced, which is

2The framework of Eq. (3.9) employing a local diffusion coefficient is applicable for continuous functions
A(x) only, see discussion in M. Mangeat, T. Guérin and D. S. Dean, J. Chem. Phys. 149 124105 (2018).

34



based on formulation of the 2D problem in the complex plane [52]. The derivation, via this

route, of expressions for D(x) that take higher order derivatives into account is still highly

non-trivial; however, the method has been recently exploited successfully for the derivation

of a series of expressions for the effective diffusion coefficient D∗ in periodic channels [50].

In this chapter, we consider dynamics in channels with periodic cross-sectional area

A(x). We derive a series of approximations for D(x), successively taking into account higher

order derivatives of A(x). In contrast to almost all previous studies of the problem (an

exception is ref. [53]), our derivation is not based on calculations of the steady-state PDF,

but rather on the solution of the time-dependent Smoluchowski equation with delta-function

initial conditions P (x, 0) = δ(x). Similarly to [36], each new term in the series of expressions

for D(x) requires the calculation of an exponentially increasing number of derivatives of

functions of A(x); but in contrast to [36], the differentiations that need to be performed at

each step are clearly expressed and not formulated with differential operators that are hard to

interpret. The leading approximation coincides with Zwanzig’s formula (3.10). We explicitly

give expressions for D(x) up to the fourth approximation involving the 7th derivative of

A(x). Finally, we use computer simulations of a case study to evaluate the importance of

the higher order corrections. For slowly varying (long wavelength) channels, the contribution

of the higher order derivatives appear to be rather small and unimportant, and the agreement

between the 1D and 2D simulations is excellent. As the periodicity decreases, the higher order

corrections may exhibit instability, leading, locally, to D(x) > D, and stronger deviations

are found between the effective diffusion coefficient computed in the 1D and 2D simulations.

This chapter is organized as follows: In section 3.2 we consider the 2D problem. First,

in subsection 3.2.1, we derive an expression for the 2D density, ρ(x, y, t), in the form of an

expansion in even powers in y. Then, in subsection 3.2.2, the 2D density is projected onto

the x direction, and by comparison with the PDF derived in section 2.4, we arrive at the

expansion for D(x) in subsection 3.2.3. The first few terms in this expansion are calculated

in subsection 3.2.4. In section 3.3, we use computer simulations to test the newly derived

approximations for D(x), and in section 3.4 we summarize our results.
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3.2 Diffusion in a two-dimensional periodic channel

3.2.1 The two-dimensional density

In section 2.4 we presented the solution of the modified FJ equation for a given diffusion

function D(x). It is given by Eq. (2.16) [with D∗ and g(x) given by Eqs. (1.33) and (2.23),

respectively], and it is correct up to order ∼ O(1/t) at large times. The goal now is to find

an expression for D(x), for which this solution provides the best approximation to the true

projected PDF. The latter is obtained, via Eq. (3.7), from the 2D density, ρ(x, y, t), that

solves the 2D diffusion equation (3.4) with the reflecting boundary conditions (3.5) and (3.6)

at the walls of the channel. The fact that the projected 1D PDF takes the asymptotic (large

t) form of Eq. (2.16) implies that the 2D density has following asymptotic form

ρ(x, y, t) =
G(x,D∗t)

Ao

[
1 +

λx

4D∗t

∞∑
n=0

fn(x)y2n

]
, (3.13)

where fn(x) are some functions to be determined. Only even powers of y are included in this

expression due to the invariance of the equation and the boundary conditions with respect

to reflection around the x axis (y ↔ −y).

We note here that although Eqs. (2.16) and (3.13) represent solutions that are only

asymptotically correct and that they miss higher order time-decaying terms, these forms are

sufficient for the sake of the task in hand which is to find the best choice of D(x). This is

because, as hinted by Eq. (2.21), the information needed for the determination of D(x) is

encompassed in the leading asymptotic correction.

We proceed by first noting that expression (3.13) satisfies automatically the boundary

condition (3.5) at y = 0. We then follow a route similar to the one presented in section 2.4

for the determination of g(x), and substitute expression (3.13) in Eq. (3.4). By comparing

terms of the form G(x,D∗t)(xy2n/t) on both sides of the equation we arrive at the following

recurrence relation (for n ≥ 1)

f ′′n−1(x) + 2n(2n− 1)fn(x) = 0, (3.14)
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which can be successively solved to yield

fn(x) =
(−1)n

(2n)!
f

(2n)
0 (x), (3.15)

where (throughout this thesis) f
(m)
0 (x) denotes the derivative of order m of the function

f0(x).

The function f0 [from which all other functions fn can be derived via relation (3.15)] can

be found from the remaining boundary condition at y = A(x). This is done by substituting

expression (3.13) in (3.6) and, again, comparing only terms proportional to G(x,D∗t)(x/t).

This leads to the following equation

∞∑
n=1

2nfn(x) [A(x)]2n−1 = A′(x)

{
−2

λ
+
∞∑
n=0

f ′n(x) [A(x)]2n
}
, (3.16)

which by using relation (3.15) can be also written in the form

∞∑
n=1

(−1)nf
(2n)
0 (x) [A(x)]2n−1

(2n− 1)!
= A′(x)

{
−2

λ
+
∞∑
n=0

(−1)nf
(2n+1)
0 (x) [A(x)]2n

(2n)!

}
, (3.17)

involving only the function f0(x). Finally, we define the function

ψ(x) = f ′0(x)− 2

λ
, (3.18)

and rewrite Eq. (3.17) as

∞∑
n=1

(−1)nψ(2n−1)(x) [A(x)]2n−1

(2n− 1)!
= A′(x)

[
∞∑
n=0

(−1)nψ(2n)(x) [A(x)]2n

(2n)!

]
. (3.19)

3.2.2 The projected one-dimensional PDF

By using Eqs. (3.13) and (3.15) in Eq. (3.7) we arrive at

P (x, t) =

∫ A(x)

0

ρ(x, y, t)dy =
G(x,D∗t)A(x)

A0

{
1 +

λx

4D∗t

∞∑
n=0

(−1)nf
(2n)
0 (x) [A(x)]2n

(2n+ 1)!

}
.

(3.20)
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This form has to be compared to Eq. (2.16) with 1 + εη(x) = A(x)/A0:

P (x, t) =
G(x,D∗t)A(x)

A0

[
1 +

λxg(x)

4D∗t

]
. (3.21)

From the comparison we conclude that

g(x) =
∞∑
n=0

(−1)nf
(2n)
0 (x) [A(x)]2n

(2n+ 1)!
. (3.22)

3.2.3 The spatially-dependent diffusion coefficient

The coordinate-dependent diffusivity D(x) can be now identified by writing the function g(x)

in Eq. (3.22) in the form of Eq. (2.23). Thus, we wish to find the function D(x) satisfying

∞∑
n=0

(−1)nf
(2n)
0 (x) [A(x)]2n

(2n+ 1)!
= 2x− 2A0D

∗I

[
1

D(x)A(x)

]
. (3.23)

Differentiating Eq. (3.23) with respect to x gives

2A0D
∗

A(x)D(x)
= 2−

{
∞∑
n=0

(−1)nf
(2n)
0 (x) [A(x)]2n

(2n+ 1)!

}′
, (3.24)

and by using Eq. (3.18) we may also write

2A0D
∗

A(x)D(x)
= −ψ(x)−

{
∞∑
n=1

(−1)nψ(2n−1)(x) [A(x)]2n

(2n+ 1)!

}′
. (3.25)

By reciprocating Eq. (3.25) we finally arrive at

D(x) = − 2A0D
∗

A(x)

[
ψ(x) +

{∑∞
n=1

(−1)nψ(2n−1)(x)[A(x)]2n

(2n+1)!

}′] . (3.26)

In order to find D(x) from Eq. (3.26), we now need to find the function ψ(x) by

solving Eq. (3.19). Unfortunately, this equation involves derivatives of ψ(x) of any order

and, therefore, cannot be solved. In what follows we present a set of approximations for ψ(x)

and D(x). Notice, that Eq. (3.19) is a homogeneous differential equation and, therefore, the
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function ψ(x) can be determined up to a multiplicative constant. Therefore, we will rewrite

Eq. (3.26)

D(x) =
A0D

A(x)

[
ψ(x) +

{∑∞
n=1

(−1)nψ(2n−1)(x)[A(x)]2n

(2n+1)!

}′] , (3.27)

where D is some diffusion coefficient that depends on the choice of the multiplicative constant

in the definition of ψ(x). The diffusion constantD will be determined by other considerations.

3.2.4 Series expansion

The function ψ(x) is periodic with wavelength λ. Introducing the dimensionless parameter

ω = A0/λ ∼ A′ which becomes vanishingly small for narrow and slowly varying channels,

we can formally write the function ψ(x) as an expansion in terms of increasing orders of ω,

namely

ψ(x) = ψ0(x) + ψ1(x) + ψ2(x) + · · · , (3.28)

where

ψn(x) ∼ ω2n (3.29)

The scaling behavior (3.29) follows from the fact to be shown henceforth that ψn+1 ∼ A2ψ′′n ∼

A2ψn/λ
2 ∼ ω2ψn.

In order to obtain the n-th function ψn(x), we need to identify the terms in Eq. (3.19)

of order ω2n+1.

3.2.4.1 The zeroth approximation.

In this approximation ψ(x) = ψ0(x), and only the first terms in the sums on both sides of

Eq. (3.19) are kept. Thus we have the equation

−ψ′0(x)A(x) = ψ0(x)A′(x), (3.30)
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with terms of order ∼ ω on both sides, and with the solution

ψ0(x) =
A0

A(x)
. (3.31)

Notice that in order to keep the function ψ dimensionless, we pick A0 as our choice for the

“arbitrary” multiplicative constant in its definition [see discussion around Eq. (3.27) above].

The zeroth approximation of D(x) is obtained by substituting ψ = ψ0(x) in Eq. (3.27)

and keeping only the leading term in the square brackets in the denominator. This gives

D(x) =
A0D

A(x)ψ0(x)
= D. (3.32)

Since the zeroth approximation of D(x) must converge to the correct value in the limit

ω → 0, which corresponds to the case of a flat channel, we must set D = D. Let us denote

the n-th approximation of D(x) by Dn(x). Thus, to zero order in ω

D0(x) = D0 = D, (3.33)

which upon substitution in the modified FJ equation (3.9), reduce it to the form of the

original FJ equation (3.8). To highlight that the zeroth approximation coincides with the

medium diffusion coefficient, we will henceforth denote the latter as D0.

3.2.4.2 The first approximation

To a first approximation, ψ(x) = ψ0(x) + ψ1(x), where ψ0(x) is given by Eq. (3.31). The

function ψ1(x) is found by solving the following equation

−ψ′1(x)A(x) +
1

3!
ψ

(3)
0 (x)A3(x) = A′(x)

[
ψ1(x)− 1

2!
ψ′′0(x)A2(x)

]
. (3.34)

This equation is derived by: (i) writing Eq. (3.19) for ψ = ψ0 + ψ1 with only two terms

in each sum on both sides (i.e., one term more than in the zeroth approximation), and (ii)

isolating the terms that scale ∼ ω3. (The terms scaling ∼ ω constitute the already solved

Eq. (3.30), and the terms scaling ∼ ω5 are discarded.) Since Eq. (3.34) can be also written
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as

[ψ1(x)A(x)]′ =
[ψ′′0(x)A3(x)]

′

3!
, (3.35)

we immediately find that

ψ1(x) =
ψ′′0(x)A2(x)

3!
. (3.36)

The first approximation, D1(x), is derived by substituting ψ(x) = ψ0(x) +ψ1(x) in the

leading term in the square brackets, and ψ(x) = ψ0(x) in the first term in the sum (n = 1).

Thus, to first approximation

D1(x) =
A0D0

A(x)
[
{ψ0(x) + ψ1(x)} − {ψ′0(x)A2(x)/3!}′

] , (3.37)

which is correct to order ω2. (In general, Dn(x), is correct to order ω2n.) By using Eq. (3.36),

we can also write the alternative form for (3.37)

D1(x) =
A0D0

A(x) [ψ0(x)− 2ψ′0(x)A(x)A′(x)/3!]
. (3.38)

By using Eq. (3.31) in Eq. (3.38) we arrive at

D1(x) =
D0

1 + [A′(x)]2 /3
, (3.39)

which is the Zwanzig formula (3.10).

3.2.4.3 The second approximation

Similarly, the second approximation for the function ψ reads ψ = ψ0 +ψ1 +ψ2, and the latter

term can be found from the equation for the terms in (3.19) scaling ∼ ω5. The equation

reads

−ψ′2A+
1

3!
ψ

(3)
1 A3 − 1

5!
ψ

(5)
0 A5 = A′

[
ψ2 −

1

2
ψ′′1A

2 +
1

4!
ψ

(4)
0 A4

]
, (3.40)
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which can be also written as

(ψ2A)′ =

[
− 1

5!
ψ

(4)
0 A5 +

1

3!
ψ′′1A

3

]′
. (3.41)

Thus,

ψ2 = − 1

5!
ψ

(4)
0 A4 +

1

3!
ψ′′1A

2. (3.42)

The second approximation, D2(x), is derived by truncating the sum in the denominator at

n = 2, and keeping only terms up to order ω4. This yields,

D2(x) =
A0D0

A

[
{ψ0 + ψ1 + ψ2} − {(ψ′0 + ψ′1)A2/3!}′ +

{
ψ

(3)
0 A4/5!

}′] . (3.43)

Using Eqs. (3.31), (3.36), and (3.42) in Eq. (3.43), we arrive at the second approximation

for D(x)

D2(x) =
D0

1 + A′ 2/3 + (A2A′A(3) − AA′ 2A′′ − 4A′ 4)/45
. (3.44)

3.2.4.4 Higher order corrections

Following the same scheme, one can readily find that the ψn can be obtained recursively via

the relation

ψn =
n−1∑
k=0

(−1)n−k−1ψ
(2n−2k)
k A2n−2k

(2n− 2k + 1)!
, (3.45)

with ψ0 = A0/A (3.31). The n-th approximation, Dn(x) is given by

Dn(x) =
A0D0

A

[∑n
k=0 ψk +

∑n
k=1

(−1)k

(2k+1)!

{∑n−k
l=0 ψ

(2k−1)
l A2k

}′] . (3.46)
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A more “user-friendly” expression can be wrtiten for the n-th approximation of the friction

coefficient 1/Dn(x)

1

Dn(x)
=

A

A0D0

 n∑
k=0

ψk +
n∑
k=1

(−1)k

(2k + 1)!

{
n−k∑
l=0

ψ
(2k−1)
l A2k

}′  , (3.47)

which can be decomposed into two contributions as follows:

1

Dn(x)
=

A

A0D0

n−1∑
k=0

ψk +
n−1∑
k=1

(−1)k

(2k + 1)!


(n−1)−k∑
l=0

ψ
(2k−1)
l A2k


′  (3.48)

+
A

A0D0

[
ψn +

{
n∑
k=1

(−1)k

(2k + 1)!
ψ

(2k−1)
n−k A2k

}′ ]

=
1

Dn−1(x)
+

A

A0D0

[
ψn +

{
n∑
k=1

(−1)k

(2k + 1)!
ψ

(2k−1)
n−k A2k

}′ ]
.

By using Eq. (3.45) and changing the index of summation in (3.48) from k to l = n− k, we

arrive at

1

Dn

=
1

Dn−1

+
AA′

A0D0

n−1∑
l=0

(−1)n−l(2n− 2l)

(2n− 2l + 1)!
ψ

(2n−2l−1)
l A2n−2l−1. (3.49)

Using Eqs. (3.45) and (3.49), we calculate the third approximation

1

D3

=
1

D2

+
1

945D0

[
2A4A′A(5) + 8A3A′ 2A(4) − 12A3A′A′′A(3) (3.50)

− 27A2A′ 3A(3) − 58A2A′ 2A′′ 2 + 31AA′ 4A′′ + 44A′ 6
]
,

and the fourth approximation

1

D4

=
1

D3

+
1

14175D0

[
3A6A′A(7) + 39A5A′ 2A(6) + 5A5A′A′′A(5) (3.51)

+ 74A4A′ 3A(5) − 53A5A′A(3)A(4) − 412A4A′ 2A′′A(4) − 118A3A′ 4A(4)

− 911A4A′ 2[A(3)]2 − 682A3A′ 3A′′A(3) + 451A2A′ 5A(3) − 467A4A′A′′ 2A(3)

+ 157A3A′ 2A′′ 3 + 1956A2A′ 4A′′ 2 − 555AA′ 6A′′ − 428A′ 8
]
.

In principle one can proceed and derive the higher order approximations Dn(x) in the
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same manner, but in practice the number of differentiations that need to be carried grows

exponentially with n and the calculations become tedious. The same feature complicates

the calculation of the series of Dn(x) in ref. [36], but the approach in that work “suffers”

from an extra complication which is the use of differential operators containing derivatives

of all orders that are very hard to identify. The use of Eqs. (3.45) and (3.49) clearly offers

a far more tractable route to finding the higher order terms. The expressions for D1, D2,

and D3 given here by Eqs. (3.39), (3.44), and (3.50), respectively, are different from their

counterparts in ref. [36] [see Eq. (13) therein]. However, if we Taylor expand the former

and leave in the expansion only terms up to order ω2n than the latter are recovered. It is

reasonable to speculate that this also holds true for n > 3.

3.3 Simulation results

As a case study, we consider diffusion in a channel with cross sectional area given by A(x) =

h0 + ∆[(2x/λ)2 − 1]2 for x ∈ [−λ/2, λ/2] and repeated periodically outside of this interval.

We set the parameters h0 = 3 (minimum channel opening) and ∆ = 12 (amplitude of

channel height oscillations), and take the channel periodicity to be either λ = 90 or λ = 30.

The average height of the channel is A0 = 〈A(x)〉 = 8∆/15 + h0 = 9.4. Therefore, the

corresponding values of ω = A0/λ are 0.10 and 0.31 for λ = 90 and λ = 30, respectively. We

set the medium diffusion coefficient D0 to unity. Fig. 2.1 shows the first three approximations

Dn(x) [n = 1, 2, 3 in Eqs. (3.39), (3.44), and (3.50), respectively], as well as the expression

of Kalinay and Percus (KP) [Eq. (3.12)] which is the limit (n → ∞) expression when all

the derivatives of A(x), except for the first one, are set to zero. In Fig. 3.2 (a) we plot the

diffusion functions corresponding to the channel with the long wavelength λ = 90. All the

expressions look remarkably identical, which is not surprising since the variable ω in the

power expansion in section 3.2.4 is indeed small in this case and the higher order corrections

are expected to vanish rapidly. In contrast, for the case of a short wavelength channel with

λ = 30 depicted in Fig. 3.2 (b), significant variations between the different expressions are

observed. This is the regime where for some values of x, |A′(x)| > 1, and the series expansion

fails to converge. Particular notice should be given to the fact that truncating the expansion

at a finite n may locally lead to D(x) > D0 = 1 [see, e.g., D3(x) in Fig. 3.2 (b)], which best
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Figure 3.2: The coordinate-dependent diffusion coefficients D1 (red diamonds), D2(blue
circles), D3(green stars), and KP expression DKP (black pluses) for the case studies discussed
in the text. The periodicity of the channel is λ = 90 (ω = 0.10) in (a) and λ = 30 (ω = 0.31)
in (b).

demonstrates that the higher order corrections may become increasingly large.

To further test the accuracy of the 1D effective description of the dynamics, we per-

formed Langevin dynamics simulations of both 2D channels with a height profile A(x) and

a constant diffusion coefficient D = 1 (case 1), and of 1D systems with a periodic potential

U(x) = −kBT ln [A (x)] and various periodic diffusion functions D(x), including D0 = 1 (case

2), our expressions for D1, D2, D3 (cases 3-5), and DKP (case 6). In each case, we measured

the effective diffusion coefficient D∗ via Eq. (1.31), by simulating 5× 108 long trajectories of

particles starting at the origin. The trajectories were computed using the G-JF integrator,

and the spatial variations in D(x) were accounted for using the “inertial convention”[see dis-
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cussion in 1.3.2]. Our results are summarized in tables 3.1 and 3.2 which give the simulation

values, along with the corresponding values derived from the MLJ formula (1.33) for 1D

periodic systems. Table. 3.1 shows the results for a channel of wavelength λ = 90. As can

be deduced from the table, the first order diffusion coefficient D1(x) [Zwanzig’s expression

(3.10)] gives remarkably precise results when compared to the 2D case. The higher order

corrections, which in Fig. 3.2 (a) appear rather small, are unnecessary and do not yield any

further improvement in the results. Furthermore, the data confirms that for slowly varying

channels, The MLJ formula gives values of D∗ that are identical to the numerical counter-

parts (see discussion in [54]). In contrast, table 3.2 reveals that for λ = 30, the agreement

of the 1D simulations results with the 2D case is far from perfect. The first order diffusion

coefficient D1 exhibits significant improvement compared to the zeroth approximation D0,

but D2 is no better than D1. Both D3 and DKP appear to give D∗ that is quite close to

the value measured in the 2D simulations, but this is clearly coincidental. Once the series

expansion fails to converge (as demonstrated by the strong variations between the successive

approximations exhibited in Fig 3.2), the accuracy of the 1D effective picture of the dy-

namics becomes highly questionable. The MLJ results follow the trends exhibited by their

corresponding numerical values, albeit with a lesser degree of accuracy than for λ = 90.

Table 3.1: Effective diffusion coefficients for channels with λ = 90

Case studied Simulation results MLJ formula

(1) 2-dim 0.7340(5)

(2) D0 0.7543(5) 0.7564

(3) D1 0.7344(3) 0.7367

(4) D2 0.7353(5) 0.7377

(5) D3 0.7351(3) 0.7376

(6) DKP 0.7346(3) 0.7372
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Table 3.2: Effective diffusion coefficients for channels with λ = 30

Case studied Simulation results MLJ formula

(1) 2-dim 0.6276(3)

(2) D0 0.7419(5) 0.7564

(3) D1 0.6022(2) 0.6093

(4) D2 0.6624(4) 0.6716

(5) D3 0.6213(4) 0.6283

(6) DKP 0.6244(3) 0.6325

With the above said, we can clearly see from table 3.2 that the zeroth approximation

of a constant diffusion coefficient D(x) = D0 gives far worse results for D∗ than all the

proposed expressions for coordinate-dependent D(x). This observation supports Zwanzig’s

idea that the modified FJ equation (3.9) provides a better effective 1D description of the 2D

diffusion problem than the simple FJ equation (3.8). To further support this conclusion, we

plot in fig 3.3 the function Π(x, t) = P (x, t)A0/A(x) for λ = 30 at t = 2 × 104. The plot

shows the function Π computed from simulations of the 2D channel (blue circles), along with

those computed from 1D FJ simulations with D0 (green stars), D1(x) = DZ(x) (Zwanzig’s

formula - red diamonds), and DKP(x) (Kalinay-Percus formula - black pluses). The degree of

agreement between the function Π of the 2D simulations and the approximations correspond-

ing to D0 (very poor agreement), D1 (significantly improved agreement), and DKP (nearly

perfect agreement), is clearly in accord with the results for D∗ in table 3.2 showing precisely

the same trends. We do not show the PDF for the higher order approximations (D2, D3)

since, as evident from fig. 3.2 (b), these expressions are derived from a non-converging series

expansion (see discussion in the previous paragraph). In contrast, both D1 = DZ and DKP

satisfy 0 < D(x)/D0 ≤ 1 [for any periodic function A(x)], which precludes strong oscillations

in D(x) like the ones exhibited by D3(x) in fig. 3.2 (b). We thus conclude that although the

1D projection method becomes less accurate for higher values of ω, there is still a significant

improvement in the accuracy of the PDF when D1(x) = DZ(x) and DKP(x) are used instead
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Figure 3.3: The numerical results for the function Π(x, t) = P (x, t)A0/A(x) computed from
2D channel simulation (blue circles), and from 1D FJ simulations with D0 (green stars),
D1(x) (red diamonds), and DKP(x) (black pluses) for λ = 30. The data is collected at
t = 2× 104.

of the constant D0.

3.4 Summary

In this chapter we revisited the problem of describing diffusive dynamics along 2D periodic

corrugated channels via a 1D FJ equation with a spatially-dependent diffusion coefficient.

In contrast to previous attempts to derive expressions for D(x) which were based on steady

state solutions, here we consider the non-stationary state of a particle moving in an open

channel. Similarly to the work in ref. [36], the expression derived here for D(x) is in the

form of a series expansion in the parameter ω associated with the aspect ratio of the channel;

but in contrast to that work, the formalism presented herein does not involve complicated

differnetal operators that are very hard to identify. The first order approximation, D1(x),

coincides with Zwanzig’s formula for D(x), and for long wavelength channels (small ω) it

yields results that are in perfect agreement with the 2D description. The agreement is

lost when ω is not sufficiently small, reflecting two problems of the method. The first

problem is a mathematical one: When ω is not small, the series expansion does not converge
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properly and cannot be truncated. The second problem is physical. The 1D description

via FJ equation assumes a Markovian diffusion process, which is only the case in the limit

of fast relaxation of the probability density in the transverese direction, i.e., for nearly flat

thin channels. Therefore, one should not be surprised by the disagreement between the

Langevin dynamics simulations of 1D periodic systems and the 2D simulation results for

short wavelength channels. In fact, in this regime the 1D simulation results for the effective

diffusion coefficient do not even agree with the Lifson-Jackson formula, which highlights

yet another problem of the FJ equation - its overdamped nature. FJ is a Smoluchowski

equation which is applicable only if, at length scale of the ballistic distance of the dynamics,

the variations in the force associated with the entropic potential are much smaller than the

characteristic friction force (see discussion in [54]) . This requirement is also not fulfilled for

short wavelength channels.

Finally, we point out that the derivation of a series expansion for D(x) presented

here for 2D channels can be extended to three-dimensional (3D) geometries with cylindrical

symmetry. In order to do so, we assume that the 3D density, ρ(x, r, t), has the same form

as the 2D density (3.13) but with y replaced by r, and then substitute this form in the

3D diffusion equation written in cylindrical coordinates. The resulting recurrence relation,

which is different than Eq. (3.14) for the 2D problem, needs now to be solved, and the steps

of the derivation presented in section 3.2 should be followed.

49



Chapter 4

Summary and Conclusions

Diffusion of particles in periodic systems is a prominent phenomena whose understanding is

essential to a broad spectrum of fields of science and engineering. In this thesis, we have

presented a method that can be used to solve a variety of different diffusion equations in the

presence of a periodic potential U(x). The method is based on the fact that, at asymptotically

large times, the leading term of the solution to the Smoluchowski equation (2.1) is the

known solution to the basic diffusion problem, i.e. the Gaussian function G(x,D∗t), with

an effective diffusion coefficient D∗, multiplied by Boltzmann’s factor exp[−βU(x)]. The

solution is written as a series of corrections to the leading term, where each correction decays

t−1/2 faster than the previous one. The terms are found successively by substitution into

the Smoluchowski equation and solving a differential equation that involves the previously

found (lower order) terms.

By following this method, we found an asymptotic solution to the 1D Smoluchowski

equation (2.1) for any periodic, even potential function U(x) up to the second correction

(which scales ∼ t−3/2). Our solution has been verified by numerical simulations via the highly

accurate and robust G-JF algorithm [16]. These results show excellent fit to the analytical

solution as seen in Fig. (2.2). The effective diffusion coefficient D∗ can also be determined

via this approach by solving for the second correction, by which we independently derived

the LJ formula (1.32). Since the Smoluchowski equation is valid only in large time scales (i.e.

t � m/α), and only when the spatial variations in the force are rather slow, our solution

is also limited accordingly. Furthermore, as we have shown numerically, when the potential
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barrier is high (i.e. β∆U � 1), the effective diffusion coefficient D∗ no longer follows the LJ

formula, but rather follows the Arrhenius-Kramer law, scaling as D∗ ∼ D exp(−β∆U).

In Chapter 3, we use this method in order to map the problem of diffusion in a 2D

periodic channel, into a 1D description. This mapping is done by using the FJ equation (3.9),

and adding a space dependent diffusion coefficient D(x). We present a systematic method for

finding D(x) in a form of a series expansion in ω ∼ 1/λ, where λ is the periodic length of the

channel. By truncating this expression up to order of ω2n, we arrive at the nth approximation

Dn(x). To zeroth approximation, D0(x) = D, where D is the medium diffusion coefficient.

The first order expression D1(x) is identical to Zwanzig’s expression (3.10). Based on our

simulation results, we find that there is a delicate trade off between the stability of the

expansion, and the contribution of the higher order expressions to the fit to the 2D results.

On the one hand, when the periodicity λ is too small, the series expansion does not converge

properly and thus the truncated expressions are not reliable. This fact is not surprising

since as the periodicity approaches the ballistic length lb, the validity of the FJ equation

diminishes. On the other hand, when the periodicity λ is too large, the contribution of

higher order terms is quite small.

We numerically compared results of the 1D FJ equation with (i) our series of expres-

sions for D(x) and (ii) the expression of Kalinay and Percus, with 2D channel simulations.

We conclude that the expression of Kalinay and Percus matches best the 2D simulation

results. Although there is an instability problem for low values of ω, we find that the first

approximation D1 significantly improves the fit to the 2D simulation results compared to

constant diffusion coefficient D0. (see Tables 3.2,3.1).

In a future work, it would be interesting to compare the 1D Fick-Jacobs equation to

simulations of diffusion in confined non-periodic 2D channels with a random profile and

in open wedges. In random channels, we expect the leading term of the solution to be a

Gaussian function multiplied by Boltzmann’s factor corresponding to the entropic potential

associated with the channels’ profile. It would be interesting to see if one can find corrections

to this leading term or, at least, a new formula for the effective diffusion coefficient of the

random channel.
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