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Fluctuation formalism for elastic constants in hard-spheres-and-tethers systems

Oded Farago and Yacov Kantor
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69 978, Israel

~Received 11 October 1999!

Methods which relate the elastic constants of thermodynamic systems to the fluctuations of the pressure or
the volume are called ‘‘fluctuation’’ methods. In this paper we derive expressions, within the fluctuation
method, for determining elastic constants in systems composed of hard spheres tethered by inextensible bonds.
Such systems are frequently used as athermal models of real physical systems whose thermodynamic proper-
ties are primarily determined by entropy rather than energy. Our expressions relate the elastic constants to the
probability densities of contacts between the spheres and the probability densities of having stretched bonds.
We use our formalism to compute, from Monte Carlo simulations, the elastic constants of hard-sphere systems.
Our results agree well with analytical predictions and improve the existing numerical data.

PACS number~s!: 62.20.Dc, 05.10.2a, 65.50.1m, 05.70.Ce
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I. INTRODUCTION

The theory of elasticity describes deformations of therm
dynamic systems in response to external forces. When a
tem is deformed, the distance between two bulk poin
which prior to the deformation were separated byRW , be-
comes

r 5@RiRj~d i j 12h i j !#
1/2, ~1!

where the subscripts denote Cartesian coordinates, and
mation over repeated indices is implied. The quantitiesh i j ,
which describe the deformation, are the components of
Lagrangian strain tensor, while d i j is the Krönecker delta. If
Eq. ~1! can be applied to any pair of bulk points, i.e.,h i j is
independent of the position, then the deformation is ca
homogeneous. Usually, however, Eq.~1! can only be applied
to neighboring points, i.e.,h i j is not constant in the entire
volume. In an atomic system it is convenient to apply def
mation with constanth i j to all boundarypoints, while the
positions of internal atoms are determined by the laws
statistical mechanics. This~constant! h i j is definedas the
homogeneous strain applied to such a system. The mean
energy density,f 5F/V0 ~per original, unstrained, unit vol
ume! of a system subjected to a small deformation can
expanded in a power series in the strain variables

f ~$h%!5 f ~$0%!1s i j h i j 1
1

2
Ci jkl h i j hkl1•••. ~2!

The coefficients in this expansion are thestress tensors i j
and thetensor of elastic constants Ci jkl , characterizing the
elastic response of a given material.

Condensed matter systems can be broadly divided
two classes: those whose physical properties are determ
by energy considerations, and those which are entropy do
nated. Hard crystalline materials are examples of materia
the first kind. These systems are likely to be found in th
energy ground states, while thermal fluctuations allow o
small deviations from these configurations. When such a
tem is deformed, a macroscopic number of atoms are sh
from their equilibrium positions, and this involves a larg
PRE 611063-651X/2000/61~3!/2478~12!/$15.00
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energy penalty. This is the origin of their highly nonflexib
nature. Rubber and gels are examples of materials of
second kind. In these systems different microscopic confi
rations possess very similar internal energies. Energy sc
related to translations of atoms and rotations of bonds, in
materials, are of the order ofkT and, therefore, tend to b
obscured by thermal fluctuations. Strain, applied to the s
tem, imposes topological restrictions on allowed microsco
configurations, thus leading to a reduction in entropy, wh
is essentially the~logarithm of the! number of microscopic
configurations. The significant response of such systems
modest shear results from the moderate free energy di
ences associated with this entropy reduction.

Computational methods for calculation of elastic co
stants are classified into ‘‘strain’’ methods and ‘‘fluctuation
methods. In a strain method calculation@1# one evaluates the
elastic constants, which are the derivatives of the stress
sor components with respect to the strain variables, by p
forming numerical differentiation, i.e., by measuring th
~small! stress variations in response to small deformations
the fluctuation method@2#, on the other hand, formal expres
sions for the elastic constants are derived, relating them
the mean squared thermal fluctuation of the correspond
stress components~or to the volume fluctuations, if the pres
sure is fixed@3#!. These expressions, obtained by differen
ating the free energy twice with respect to the strain, can
computed directly from Monte Carlo~MC! or molecular dy-
namics simulations performed on the unstrained refere
system. The fact that simulations are performed in the re
ence system, with no need to deform the simulation cell
the major advantage of the fluctuation method over the st
method, which makes it a more efficient and well-controll
technique. Moreover, unlike the strain method, where diff
ent deformations must be applied in order to compute
different elastic constants, in the fluctuation method they
all computed in a single run.

In this paper we focus our attention on central force s
tems, where the internal energy is the sum of pair inter
tions

E5 (
aÞb

f~r ab!. ~3!
2478 ©2000 The American Physical Society
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PRE 61 2479FLUCTUATION FORMALISM FOR ELASTIC CONSTANTS . . .
@r ab is the distance between atomsa andb. The interactions
between various pairs of atoms do not have to be~and, in this
work, will not be! identical. Thus, we should denote the pa
potential asfab(r ab). However, for brevity we will omit the
subscripts of the potential and the indices of the argum
r ab will serve as an indicator of the specific potential.# For
such systems, one can apply the fluctuation formalism p
vided the pair potentialf(r ) is twice differentiable. This
requirement is due to the appearance of the second deriv
of f(r ) in the expressions for the elastic constants~which
we shall present in Sec. II!. Unfortunately, this requiremen
is not fulfilled in many models of entropy-dominated sy
tems, such as hard sphere systems and tethered surface@4#.
In this paper we extend the fluctuation formalism to apply
such models.

The paper is organized in the following way: In Sec. II w
explain why models like hard spheres and tethered surfa
are frequently used to study entropy-dominated systems.
also introduce the fluctuation method, and discuss why in
standard form it cannot be used to study the elastic const
of such models. In Sec. III we repeat the mathematical d
vation of thegeneralfluctuation formalism. We discuss ou
strategy in obtaining the version of the method to the cas
hard-spheres-and-tethers systems. The new formalism is
sented in Sec. IV, where a short summary of the deriva
of the method and the expressions for the stress and el
constants are given, while a detailed mathematical deriva
of the formalism is relegated to the Appendix. We find
relation between the components of the elastic tensor and
probability densities of contact between spheres and p
ability densities of having stretched bonds. In Sec. V
demonstrate the validity, efficiency, and accuracy of
method by using our formalism in MC simulations of ha
sphere systems. We summarize and discuss the resu
Sec. VI.

II. HARD POTENTIALS
AND THE FLUCTUATION FORMALISM

The specific details of interatomic interactions are qu
unimportant in entropy-dominated systems, due to the m
influence of the internal energy on their thermodynam
properties. In real gases, for instance, the pair potentia
frequently sharply repulsive at short distances and wea
attractive at longer separations. If the system is either v
dilute or very dense, the attractive part of the potentia
hardly felt. In polymer physics, the details of interaction b
tween neighboring monomers often become irrelevant p
vided that the molecules are sufficiently long. Similar co
siderations apply to gels, in particular close to the gel po
One can therefore use various ways to model these inte
tions provided they capture the essential physical featu
such as excluded volume effects and chemical bonding.
possible method of description is a combination of the pur
repulsive 6-12 Lennard-Jones potential, sharply increas
for r ,a to represent the excluded volume; and an attrac
potential, diverging atr 5b, representing a bond@5#. An ex-
ample of such a potential is depicted in Fig. 1. An alternat
way is to use ‘‘hard’’ potentials which take only two value
zero or infinity. Excluded volume interactions can be d
scribed by the hard sphere potential
nt
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f1~r !5H ` for r ,a

0 for r>a.
~4!

Similarly, real chemical bonds can be replaced by inext
sible ~‘‘tether’’ ! bonds

f2~r !5H 0 for r<b

` for r .b,
~5!

which limit the distance between the bonded atoms tob, but
have zero energy at all permitted distances. The sum
‘‘hard’’ potentials ~4! and ~5!, i.e., f1(r )1f2(r ), also ap-
pears in Fig. 1. The similarity of this potential to the oth
potential shown in Fig. 1~as well as to many other ‘‘mode
potentials’’ used in other works! is evident, and it is there-
fore not surprising that both of them can be used to stu
real systems without yielding qualitatively different result

When real potentials are modeled by their ‘‘hard’’ an
logs, the energy of all microscopic configurations is set to
same value—zero~configurations with infinite energy ar
non-physical!. Such models are calledathermal. Because the
internal configurationalenergy is fixed in an athermal sys
tem, the Helmholtz free energy is given byF52TS, where
S is the entropy andT is the temperature. The physics o
athermal systems is exclusively determined by entropy c
siderations.~Throughout this paper we omit thekinetic part
of the energy since it is independent of deformation a
therefore does not contribute to the elastic behavior. Nev
theless, ‘‘kinetic’’ contributions will appear in the expressio
for the stress and elastic constants because they will be
erated by the configurational part ofF.! Entropy itself does
not depend on the temperature, but is a function of the
ometry of the microscopic structure alone. The temperat
dependence of the free energy and other quantities~such as
the stress or the elastic constants! is therefore trivially linear.
Due to these properties of ‘‘hard’’ potentials, using them c
be quite beneficial from mathematical and computatio
points of view. Simulations of such systems are relativ

FIG. 1. Three different potentials used to describe the pair
teraction between two bonded atoms. The solid line is the poten
used in Ref.@5# by Kremer and Grest. The dashed line is the ha
spheres-and-tether potential,f1(r )1f2(r ) @Eqs.~4! and ~5!#. The
dot-dashed line is a smooth approximation to the ‘‘hard’’ poten
~see the last paragraph in Sec. III!. Both axes are in arbitrary units
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2480 PRE 61ODED FARAGO AND YACOV KANTOR
simple since there is no need to make any energy calc
tions, but rather check whether certain geometrical rest
tions are obeyed.

Thirty years ago Squire, Holt, and Hoover~SHH! @2# per-
formed MC simulations to evaluate the elastic constants
solid argon. SHH followed the Born theory of elastic co
stants@6#, but applied it to the Helmholtz free energy rath
than to the internal energy. As a result, their expression
the elastic constants included a term which was absent f
Born’s expression. This additional term is equal to the me
squared thermal fluctuation of the stress; hence the n
‘‘fluctuation’’ method. For the present discussion we brie
sketch the SHH derivation originally devised for cent
force systems.~We repeat it, in detail, in Sec. III.! In such
systems the potential internal energy@Eq. ~3!# depends only
on the relative distances between atoms. Therefore, the
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grangian strain tensorh i j , which describes the modification
of these distances@Eq. ~1!#, also describes energy variation
and, through the canonical partition functionZ, also de-
scribes the free energy variations. Once the formal dep
dence of the free energy on the strain is established,
following expressions for the stress tensors i j and the tensor
of elastic constantsCi jkl ~which are the coefficients of the
free energy expansion in strain variables@Eq. ~2!#! can be
easily obtained:

s i j 5
1

V

]F

]h i j
U
$h%5$0%

5
1

V K (
^ab&

f8~Rab!
Ri

abRj
ab

Rab L 2
NkTd i j

V
~6!

and
Ci jkl 5
1

V

]2F

]h i j ]hkl
U
$h%5$0%

5
1

VkTH K (
^ab&

f8~Rab!
Ri

abRj
ab

Rab L K (
^ab&

f8~Rab!
Rk

abRl
ab

Rab L 2K F (
^ab&

f8~Rab!
Ri

abRj
ab

Rab GF (
^ab&

f8~Rab!
Rk

abRl
ab

Rab G L J
1

1

V K (
^ab&

f9~Rab!
Ri

abRj
abRk

abRl
ab

~Rab!2 L 2
1

V K (
^ab&

f8~Rab!
Ri

abRj
abRk

abRl
ab

~Rab!3 L 1
2NkTd i l d jk

V
. ~7!
n
an-

en
c-

c-
om,
ys-
In the above expressions summation over all distinct pair
atoms^ab& is performed.Rab is the interparticle distance o
the pair under consideration, andRi

ab denotes thei th Carte-

sian component of the vectorRW ab[RW a2RW b. The symbol̂ &
denotes a thermal average. The term in braces in Eq.~7! is
the ‘‘fluctuation term,’’ while the following two terms form
the ‘‘Born term.’’ The terms 2NkTd i j /V and
2NkTd i l d jk /V in Eqs.~6! and~7!, respectively, are the ‘‘ki-
netic’’ contributions to the stress and the elastic tenso
They originate in the additive term2NkT ln V in the free
energy.

As mentioned at the end of the Sec. I, the fluctuat
formalism cannot be trivially used to measure the ela
constants of systems interacting via ‘‘hard’’ potentials, b
cause these potentials are nondifferentiable while the der
tives of the pair potential are needed in expression~7!. In this
paper we generalize this expression for the case of ‘‘ha
potentials. In fact, the proper expression for the stress te
in the case of ‘‘hard’’ potentials has been known for ma
years@7#. It is mathematically simple to derive this expre
sion because the integral that expresses the stress tenso@the
averages in Eqs.~6! and ~7! are expressed in terms of inte
grals over the configurations phase space# contains the func-
tion f8(r )exp@2f(r)/kT#, which for ‘‘hard’’ potentials is
simply the Diracd function. The expression for the tensor
elastic constants includes the functionsf9(r ) and@f8(r )#2,
which for ‘‘hard’’ potentials yield terms including the de
rivative and the square of ad function. The appearance o
these functions complicates the mathematical treatmen
of

s.

n
c
-
a-

’’
or

In

particular, some of the terms in expression~7! diverge when
applied for ‘‘hard’’ potentials. We show in the derivatio
that only the combination of these terms does have a me
ingful limit.

III. GENERAL CONSIDERATIONS

If the internal energy of a thermodynamic system is giv
by Eq. ~3!, then the corresponding canonical partition fun
tion is

Z5
~2pmkT!3N/2

h3N E
V($h%)

)
g51

N

drWg expS 2 (
^ab&

f~r ab!/kTD
5

~2pmkT!3N/2

h3N
ZC , ~8!

whereN is the number of atoms,m the mass of an atom,T
the temperature,k the Boltzmann constant, andh the Planck
constant. The integration volumeV($h%) is the volume in
space occupied by the deformed system. The functionZC is
the configurational part of the partition function. The prefa
tor is associated with the momentum degrees of freed
and, since they are unaffected by the deformation of the s
tem, it will be omitted hereafter. The~elastic part of the! free
energy is related toZC by

F52TS52Tk ln ZC . ~9!
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In a canonical ensemble calculation only the surface of
system, not the entire volume, deforms homogeneously.
surface of the systemS($h%) defines the boundaries of th
integration volume,V($h%). The surfaceS($h%) of the
strained volume, and the surfaceS($0%) of the unstrained
one, are related by alinear transformation

r i5Mi j Rj , ~10!

which maps every pointRW on S($0%) to its strained spatia
position rW on S($h%). In Eq. ~8! we note that the partition
function depends on the strain variables$h% only through the
integration volumeV($h%), and not through the integrand
The idea of the fluctuation formalism is to change the in
gration variables fromr i to Ri , and replace the strain depe
dence of the boundaries of integration by strain depende
of the integrand,

ZC5e2F/kT5E
V($0%)

)
g51

N

dRW gJ~$h%!

3expS 2 (
^ab&

f„@Ri
abRj

ab~d i j 12h i j …#
1/2!/kTD ,

~11!

whereJ is the Jacobian of the linear transformation~10!. To
find the dependence ofJ on $h%, we note that the above
linear transformation gives

ur u25r kr k5RiRjM ikM jk5RiRjM ikMk j
t ,

whereMt is the transpose ofM. When this equation is com
pared with Eq.~1!, we readily see that

@MMt# i j 52h i j 1d i j .

For a system ofN particles,

J5@det~M !#N5$@det~M !#2%N/25$ det~2@h#1@ I # !%N/2,
~12!

where@h# is the matrix with the elements@h# i j 5h i j , and
@I# is the identity matrix. With this identity, substituted int
Eq. ~11!, we have a formal expression for the partition fun
tion. When Eq.~9! for the free energy is differentiated wit
respect to$h%, one immediately finds expressions~6! and~7!
for the stress and elastic constants.

As we have already explained, the pair potential must
twice differentiable to enable differentiation with respect
$h%. Inserting ‘‘hard’’ potentials directly into the formal ex
pressions for elastic constants leads to what looks like i
nite terms or terms involving products of discontinuous fun
tions with d functions centered at discontinuity, and ma
other ambiguities and divergences. It is, therefore, con
nient to use smooth approximations of these ‘‘hard’’ pote
tials f1(r ) and f2(r ) @Eqs. ~4! and ~5!#, for which the av-
erages in expressions~6! and ~7! can, in principle, be
determined. An example of such a potential,f(r ), is
sketched in Fig. 1. This potential, which resembles
‘‘hard’’ potential f1(r )1f2(r ), has the following features

~1! f(r ab)/kT!1 for a1«,r ,b2«.
~2! f(r ab)/kT@1 for r ,a2«.
e
he

-

ce

-

e

-
-

e-
-

e

~3! If the pair of atomsa and b is tethered, then
f(r ab)/kT@1 for r .b1«; otherwisef(r ab)/kT!1 for r
.b1«.

~4! In the small intervalsa2«,r ,a1« and b2«,r
,b1« between the above regimes,f(r ab)/kT increases~or
decreases! sharply. Nevertheless, we assume that along th
intervals,f(r ) is interpolated in a smooth way.

After defining these properties of the potentialf(r ), we
substitute it into expressions~6! and ~7! for the stress and
elastic constants. We then look for what we call the ‘‘ath
mal limit’’ of these expressions, namely, the limiting expre
sions obtained when we set the size of the interpolation
terval, «, to zero, while at the same time the potent
difference between the regimesr ,a and r .a tends to in-
finity. In the ‘‘athermal limit,’’ f(r ) becomes a ‘‘hard’’ po-
tential. The ‘‘athermal limit’’ of expressions~6! and~7! can
be regarded as the fluctuation expressions of hard-sphe
and-tethers systems. As we show in the derivation, they
not depend on the exact form of approximating poten
f(r ).

IV. STRESS AND ELASTIC CONSTANTS

In this section we introduce our fluctuation expression
the elastic constants of hard-spheres-and-tethers syst
Since the mathematical derivation of the expression is ra
lengthy, we will not present it here in detail. We leave t
detailed mathematical formulation of the method to the A
pendix, while here we restrict ourselves to a short descrip
of the major points in the derivation. We will introduce th
expressions obtained for the stress and elastic constants
discuss shortly their ‘‘physical’’ meaning. A demonstratio
of the applicability of the method is found in Sec. V, whe
we present numerical results obtained for hard sphere
tems, and discuss some technical aspects of the simulat

Expression~6! for the stress tensors i j suggests that the
stress is the thermal-volume average of quantities relate
the local forces applied to the atoms. For the present dis
sion, let us assume that we deal with a central force sys
in which the pair interactions are described by a certain
proximating potentialf(R) ~see Sec. III!. For such a poten-
tial we note that the forcef ab52f8(Rab) acting between
the pair of atomŝ ab& almost always vanishes, except fo
very short instances of time~in a statistical ensemble lan
guage, only in a small portion of the configurations pha
space!, when Rab;a, or ~if the two atoms are tethered!
Rab;b. Hard-spheres-and-tethers models can be regarde
limiting cases in which these pair forces become infinite
large for time intervals which become vanishingly sma
keeping the rate of momentum exchange between at
fixed. From the mathematical point of view it is important
note that what we actually have in the integral expressi
for s i j @Eq. ~6!# are the derivatives of the Boltzmann facto
@exp„2f(Rab) / kT…#8 5 @2f8(Rab) / kT# exp„2f(Rab) /
kT…. In the ‘‘athermal limit’’ the Boltzmann factor converge
to a step function where the discontinuity~from zero to
unity! occurs atRab5a, and an opposite discontinuity~from
unity to zero! occurs atRab5b, if the pair^ab& is tethered.
The derivative of a step function is just the Diracd function.
We thus find that, in order to recover the ‘‘athermal limit’’ o
s i j , we only need to perform the simple transformation
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f8~Rab!→2kTDab[2kT@d~Rab2a!2nabd~Rab2b!#,
~13!

wherenab, the ‘‘topology variables,’’ take the value 1 if th
pair ^ab& is tethered, and 0 otherwise. This gives the kno
result @7#

s i j 52
kT

V H (
^ab&

K Ri
abRj

ab

Rab
DabL 1Nd i j J ~14!

for the components of the stress tensor. Note that the the
average ofDab is just the difference between the probabili
density of contact between the pair of spheres^ab&,
p(Rab5a1), and the probability density,p(Rab5b2), of
finding the tether connecting them stretched to its maxim
length.@If a tether between them does not exist (nab50), we
simply ignore this second probability density.#

The above transformation@Eq. ~13!# is also useful in ob-
taining the ‘‘athermal limit’’ of many of the terms appearin
re
rs
he
st

n-

s
et
em
d

t a
th
an

n
u

n
gu
e-

e
s i
la
n

al

l

in expression~7! for the components of the elastic tenso
More specifically, it should be applied in all the terms whi
contain the first derivativef8(Rab), or the products
f8(Rab)f8(Rgd), corresponding to two distinct pairs of a
oms ^ab&Þ^gd&. @This product should be simply replace
by (kT)2DabDgd.# This leaves us with only two types o
terms, containing the squares of the first derivativ
f82(Rab), and the second derivatives,f9(Rab). Finding the
‘‘athermal limit’’ of both terms is the ‘‘missing piece in the
puzzle’’ in the formulation of the method. When we subs
tute an approximating potential into these terms, it is n
difficult to find that neither of them has a definite ‘‘atherm
limit.’’ Only if we combine them into a single term do we
manage to find an appropriate limit, which can be also
pressed in terms of the quantitiesDab. A major part of the
derivation, which appears in the Appendix, is devoted to
mathematical treatment of this combined term. Here we
give the final expression for the elastic constants:
Ci jkl 5
2NkT

V
d i l d jk1

kT

V H ~D12! (
^ab&

K Ri
abRj

abRk
abRl

ab

~Rab!3
DabL

2
1

2 (
^ab&

(
gÞa,b

K FRi
abRj

abRk
abRl

ab

~Rab!2
DabS RW ab

•RW ag

RabRag
Dag1

RW ab
•RW gb

RabRgb
DbgD G L

1F (
^ab&

K Ri
abRj

ab

Rab
DabL GF (

^ab&
K Rk

abRl
ab

Rab
DabL G2 (

^ab&
(

^gd&Þ^ab&
K Ri

abRj
abRk

gdRl
gd

RabRgd
DabDgdL J . ~15!
d to

act

nts.
we

hard

an

ds.
nce

er-
a

an
nd

r

In the above expression we distinguish between the diffe
sums: (^ab& denotes summation over all pai
^ab&; (^gd&Þ^ab& denotes summation over the rest of t
pairs, ^gd&; while (gÞa,b denotes summation over the re
of theatoms, g ~distinct froma andb). D is the dimension-
ality of the system.

Expressions~14! and~15! relate the stress and elastic co
stants of hard-spheres-and-tethers systems@in which the pair
potential is given by Eqs.~4! and~5!# to the thermal average
of geometrical quantities. We see that except for the kin
term, originating in the change of the volume of the syst
caused by the deformation, contributions to the stress are
to pairs of atoms touching each other or due to bonds tha
stretched to their maximal length. These are indeed
mechanisms through which tethered hard spheres exch
momentum with each other. Alternatively, expressions~14!
and~15! can be understood as follows: In hard-spheres-a
tethers systems entropy measures the extent of config
tional phase space. Changes in entropy~to which the stress
and elastic constants correspond! are related to the exclusio
and inclusion of configurations. When an unstrained confi
ration is infinitesimally transformed to its deformed corr
spondent, it may become physically forbidden~or, con-
versely, physically forbidden configuration may becom
allowed!, only when there exist at least one pair of sphere
contact or when one bond is in maximal stretching. The e
nt

ic

ue
re
e
ge

d-
ra-

-

n
s-

tic properties of these systems must, therefore, be relate
such events.

V. NUMERICAL EXAMPLES

The major advantage of the fluctuation method is the f
that expressions like Eqs.~14! and~15! provide a direct way
for numerical computation of the stress and elastic consta
In order to test the accuracy and efficiency of the method,
have implemented it to measure the elastic constants of
sphere~HS! systems~i.e., topologies for whichnab50 for
all the pairŝ ab&). HS systems have been the subject of
intensive research for several decades now@8#. They serve as
the simplest model for real fluids, glasses, and colloi
Moreover, many perturbation theories use them as refere
systems for more realistic models including attractive int
actions. The phase diagram of HS’s is well known. It is
function of one parameter only—the volume fraction,r, oc-
cupied by the spheres. Forr,r freezing50.495 the stable
phase is an isotropic fluid phase. At the freezing density
entropically driven first-order phase transition occurs, a
over a remarkably large range of densities, 0.495,r
,0.545, both fluid and solid phases coexist@9#. The solid
phase is stable forr.rmelting50.545, and can be furthe
compressed up to the close-packing densityr05p/(3A2)
.0.74 into either the face-centered-cubic~fcc! or the
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hexagonal-closed-packed~hcp! crystalline arrangements
The free energy differences between the two structures
extremely small. Recent numerical simulations indicate
preference for the fcc structure@10#. Due to the obvious re-
lation between the phase behavior and the elastic prope
of thermodynamic systems, the elasticity of HS systems
also been the subject of many studies~see, e.g., Refs
@11,12#!. Nevertheless, the accuracy of the values of the e
tic constants still leaves much to be desired. Therefore,
though the main purpose of this section is to demonstrate
validity and applicability of the formalism, the numeric
results have their own physical usefulness.

The appearance of Diracd functions in expressions~14!
and ~15! deserves a special consideration: In~MC! simula-
tions the average of a certain quantityg(RW ) is estimated by

^g&'
1

Nc
(
p51

Nc

g~RW p!,

whereRW p is the value ofRW at thepth sampled configuration
andNc is the total number of MC configurations used in t
simulation. Clearly, this sum does not lead to the corr
mean when the averaged quantities included functions, as
we have in expressions~14! and ~15!, because such quant
ties vanish at almost every configuration~except for a group
of configurations whose measure vanishes—at which t
values are not defined at all!. This is just a restatement of th
fact that in MC simulations we measure probabilities rat
than probability densities. A solution to this problem is
measure the relevant quantities every time sphere’s sep
tion is found in the small interval of distancesa<R<a1e,
and to normalize them by the size of the ‘‘bin,’’e. If the
probability density of pair contact is finite, this approxim
tion would lead to an error which is at most of the order
the small parametere/a. Obviously, one would like to set th
size of e as small as possible, in order to minimize th
correction. However, there is a limit to the extent to whiche
can be reduced, imposed byNc , the number of MC configu-
rations. Ase becomes smaller, one needs more MC sa
plings in order to count a sufficient number of events
which spheres are separated by a distance inside the bi
terval @a,a1e#. An elegant way which incorporates bo
necessary features, namely, a smalle size but also a large
number of successful samplings, is to measure a set of i
pendent averages: Each member in this set is the ave
obtained when we count the contributions of the pairs wh
separations fall in one of the intervals

DRn[@a1en2e/2,a1en1e/2#, n51,2, . . . , ~16!

where en[(n21/2)e. After evaluating these average
~which are statistically independent quantities since each
is computed using different events!, we obtain the correc
average by extrapolating them to the limiten→0. In Fig. 2
we demonstrate this extrapolation procedure for MC m
surements of the pressure and elastic constants of a HS
crystal at a reduced densityr/r050.8. The curves are th
weighted~i.e., each point was weighted by a reciprocal to
error bar! least squares fits of the data to polynomials of
third order inen .
re
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Our simulations were performed on systems consisting
13500 spheres with periodic boundary conditions. We
not use conventional Metropolis single atom steps to gen
ate the MC configurations, but rather collective steps
chains of atoms, as recently suggested by Jaster@13#. We
define a MC time unit as the time~measured in number o
MC configurations! in which, on the average, we attempt
start one ‘‘chain move’’ from every particle. The acceptan
probability of these moves was approximately half. O
simulations were extended over 93105 MC time units. This
time is substantially larger than the relaxation time whi
was estimated from the autocorrelation function of the a
plitude of the longest wavelength phonon in the system,
which for all densities@that ranged from the melting densit
(r/r050.736) up to almost the close packing dens
(r/r050.99)# was found to be less than 3000 MC tim
units. The relevant quantities were evaluated every three
time units. The error estimates, which appear in graphs w
the results, represent one standard deviation in the estim
of the corresponding averages.

Due to the cubic symmetry of the fcc lattice, its stre
tensor is diagonal, andsxx5syy5szz52P, whereP is the
external pressure applied on the system. The high cubic s
metry also implies that many of the elastic constants
identical. In fact, there are only three independent nonv
ishing elastic constants@14#, which in the Voigt notation are
defined by

C115Cxxxx5Cyyyy5Czzzz,

C125Cxxyy5Cyyzz5Czzxx5•••,

C445Cxyxy5Cyzyz5Czxzx5•••.

Our results for the pressureP, bulk modulus k5 1
3 (C11

12C121P), and two elastic constantsC12 and C44 of HS
fcc solids are presented in Figs. 3–6, respectively~solid
circles!. Note that since we compute all the non-vanishi
components of the tensorCi jkl , we obtain three independen

FIG. 2. The pressureP and the three elastic constantsC11, C12,
andC44 for r/r050.8, as a function ofen @see the definition in Eq.
~16!#. en was normalized bya02a, wherea anda0 are the sphere
diameters atr and r0, respectively. The curves are the weight
least squares fits of the third order polynomials inen to the data.
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2484 PRE 61ODED FARAGO AND YACOV KANTOR
estimates for each of the above constants. For instanceC12
.Cxxyy.Cyyzz.Czzxx, and therefore we use the estima
C125

1
3 (Cxxyy1Cyyzz1Czzxx), which has a smaller statistica

error. The solid curves in Figs. 3–6 depict expressions, s
gested by Stillinger and Salsburg@15#, for the asymptotic
behavior of these quantities, at the limit of the close pack
density,r0. These authors have shown that the free volu
approximation gives thecorrect asymptotic results for the
pressure and bulk modulus:

P5
3A2

r0 /r21

kT

a3
, ~17!

and

k5
C1112C121P

3
5

3A2

~r0 /r21!2

kT

a3
. ~18!

FIG. 3. The pressureP in units of kT/a3, as a function of the
inverse reduced density,r0 /r. The circles mark numerical results
while the solid line depicts the free volume approximation for t
pressure@Eq. ~17!#.

FIG. 4. The bulk modulusk in units of kT/a3, as a function of
the inverse reduced density,r0 /r. The circles mark numerical re
sults, while the solid line depicts the free volume approximation
the bulk modulus@Eq. ~18!#.
g-

g
e

For the elastic constantsC12 and C44, it has been conjec-
tured in Ref.@15# that close tor0 their density dependencie
have also free volume functional forms:

C125
A1

~r0 /r21!2

kT

a3
~19!

and

C445
A2

~r0 /r21!2

kT

a3
, ~20!

but with constantsA1 andA2 which have not been accurate
determined. Our results confirm the validity of the
asymptotic expressions. Most of our data points fall on
solid curves. This shows that the asymptotic expressions
vide rather good estimates of the stress and elastic const
even for densities which are close to the melting density
Figs. 5 and 6, we used the valuesA151.8460.14 andA2
55.8660.11 obtained by fitting the results for the four lar
est densities (r/r050.99, 0.975, 0.95, and 0.9! to expres-
sions~19! and ~20!.

r

FIG. 5. The elastic constantC12 in units ofkT/a3, as a function
of the inverse reduced density,r0 /r. The circles mark numerica
results, while the solid line depicts Eq.~19! with A151.84.

FIG. 6. The elastic constantC44 in units ofkT/a3, as a function
of the inverse reduced density,r0 /r. The circles mark numerica
results, while the solid line depicts Eq.~20! with A255.86.
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We also compared our results with existing numeri
data published by Frenkel and Ladd@11#. They used the
strain method technique~see Sec. I! and performed simula
tions on smaller systems of 108 spheres. At the smaller d
sities we found their results to be in a very good agreem
with ours. At a larger density (r/r050.9), however, we ob-
served a considerable disagreement, where our results
to be more consistent with the asymptotic expressions
Stillinger and Salsburg. This inconsistency with the results
Ref. @11# is partially explained by finite size effects, but pa
tially it is also due to the difficulties in using the stra
method in systems at high pressure. In such systems, s
deformations invoke relatively large pressure changes a
therefore, in order to achieve a good estimate for the num
cal derivatives one must use extremely small strains
measure the stress components with a very high accurac
our high density fluctuation method simulations, we need
to fine tune the small bin size parameter~see earlier in this
section!. Nevertheless, our results at these densities~which
extend beyond the largest density in Ref.@11#! do not suffer
from a significant increase of the relative errors, and sh
excellent agreement with the asymptotic expressions.

Finally, we present results obtained for HS fluid syste
~Fig. 7!. In the fluid phase the system is isotropic, and the
fore characterized by the pressure and two elastic mo
@14#. The shear modulus vanishes, while the pressure and
bulk modulus can be accurately calculated from the vi
expansion of the equation of state.~The curves appearing in
the figure were derived using the first seven terms of
expansion@16#.! We measured the elastic moduli at four d
ferent volume fractionsr50.1, 0.2, 0.3, and 0.4. The simu
lations were performed on systems of 8000 spheres ov
total time of 1.353106 MC time units. The rest of the tech
nical details are identical to these applied in the solid ph
simulations~see text, earlier in this section!. The good agree-
ment of the numerical results with the analytical predicti
is, again, evident.

FIG. 7. The pressure and two elastic constants of a HS syste
the fluid phase as function of the volume fraction occupied by
spheres,r. The shear modulus vanishes at the fluid phase. Cu
depicting the pressure and the bulk modulus were calculated u
the first seven terms of the virial expansion~see Ref.@16#!. The
circles, triangles, and squares mark numerical results obtained
densities,r50.1, 0.2, 0.3, and 0.4.
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VI. SUMMARY AND DISCUSSION

We extended the fluctuation formalism for calculations
the elastic constants, originally devised for conventional
tentials, to apply to ‘‘hard’’ potentials. We found expressio
relating the components of the tensor of elastic constant
the~two-, three-, and four-point! probability densities of con-
tact between hard spheres and the probability densitie
stretching tether bonds, which are the mechanisms thro
which atoms exchange momentum with each other in s
systems. The formalism is not restricted to certain topo
gies, but is general to all ‘‘hard-spheres-and-tethers’’ s
tems. In this paper we applied it to HS systems both in fl
and solid phases. Our results, which agree well with anal
cal predictions, demonstrate the efficiency and accuracy
the method.

Implementing the method in numerical simulations
generally speaking, quite straightforward. The only no
trivial point is the fact that the probability densities of sphe
contacts~and bonds stretching! are evaluated from the prob
abilities of finding the spheres ‘‘almost touching each othe
~i.e., finding their separationR in the interval @a,a1e#).
Correctly setting the size ofe is a key feature for a success
ful computation. A considerable improvement in the acc
racy of the results is obtained by computing several estim
for the probability densities, which are extrapolated to t
correct value.

The method presented in this work can be used to st
the elastic properties of a wide range of model systems.
future publication we will present the results of MC simul
tions of topologically simple regular networks@17#. In the
further future, we plan to study more complicated, rando
structures.
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APPENDIX: DETAILED DERIVATION
OF THE FORMALISM

1. Stress tensor

The starting point of the derivation is the following ex
pression for the stress tensor:

s i j 5
1

V

]F

]h i j
U
$h%50

52
kT

V

1

ZC
H E )

g51

N

dRW gF S (
^ab&

2f8~Rab!

kT

Ri
abRj

ab

Rab D
3expS 2 (

^gd&
f~Rgd!/kTD

1
]J

]h i j
U
$h%50

expS 2 (
^gd&

f~Rgd!/kTD G J , ~A1!

which is easily derived from Eqs.~9! and~11!. The first term
in the square brackets on the right hand side of Eq.~A1!, the
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configurational term, is composed ofN(N21)/2 terms, each
corresponding to one distinct pair. Each of these terms
also be written as

E dRW a dRW b
d@exp„2f~Rab!/kT…#

dRab H 1

ZC
E )

gÞa,b
dRW g

3FexpS 2 (
^gd&Þ^ab&

f~Rgd!/kTD G J Ri
abRj

ab

Rab
, ~A2!

where (^gd&Þ^ab& represents the sum over all pairs^gd&,
distinct from the pair̂ ab&. Note that the limit$h%5$0%,
was already taken at this stage.

If we now substitute an approximating potential,f(r ), in
the Boltzmann factor, exp„2f(Rab)/kT…, and take the
‘‘athermal limit’’ ~see definitions in the last paragraph
Sec. III!, we find the Boltzmann factor converging to a st
function, where the discontinuity~from zero to unity! occurs
at Rab5a and an opposite discontinuity~from unity to zero!
occurs atRab5b if the pair ^ab& is tethered. The derivative
of a step function is just the Diracd function. There-
fore, in the ‘‘athermal limit,’’ the function
d@exp(2f(Rab)/kT)#/dRab, which appears in the integrand i
expression~A2!, turns into

d@exp„2f~Rab!/kT…#

dRab
→@d~Rab2a!2nabd~Rab2b!#

[Dab, ~A3!

where nab51 (nab50) for a tethered~nontethered! pair.
The remaining part of the integrand,

H 1

ZC
E )

gÞa,b
dRW gFexpS 2 (

^gd&Þ^ab&
f~Rgd!/kTD G J Ri

abRj
ab

Rab

[ p̃~RW a,RW b!
Ri

abRj
ab

Rab
, ~A4!

is a smooth function, including atRab5a or Rab5b. Since
only the values of this function atRab5a and ~if nab

51) Rab5b are relevant, the function might be replaced
any other function whose values at these points are the s
For a,Rab,b, the values ofp̃(RW a,RW b), coincide with the
values of the function

p~RW a,RW b!5
1

ZC
exp„2f~Rab!/kT…

3E )
gÞa,b

dRW g expS 2 (
^gd&Þ^ab&

f~Rgd!/kTD ,

which is the probability density to find atoma in RW a and
atomb in RW b, since in that regionf(Rab)50. We thus find
that, for ‘‘hard’’ potentials, expression~A2! becomes

E dRW a dRW bH Ri
abRj

ab

Rab
Dabp~RW a,RW b!J 5K Ri

abRj
ab

Rab
DabL .

~A5!
n

e.

@Unlike the functionp̃(RW a,RW b), the functionp(RW a,RW b) suf-
fers a discontinuity atRab5a and~if nab51) Rab5b, and
therefore the transition between the two sides of Eq.~A5!
should be made with some caution. The integral in Eq.~A5!
and in the following expressions of this type should be u
derstood as if the delta functions reproduce the finite val
p(a1) and p(b2). In practice, when we evaluate expre
sion ~A5! by a numerical computation, this mathematica
delicate point becomes unimportant.# When we sum all
N(N21)/2 terms corresponding to all pairs of atoms, w
obtain

s i j
conf52

kT

V H (
^ab&

K Ri
abRj

ab

Rab
DabL J . ~A6!

The second term in Eq.~A1! is known as the kinetic term
It appears even whenf[0, i.e., for an ideal gas, and i
contributes the termNkTd i j /V. To obtain this contribution
we start from Eq.~12!, from which we find that

]J

]h i j
5

N

2
$det~2@h#1@ I # !% [(N/2)21]

]$det~2@h#1@ I # !%

]h i j
.

~A7!

When the explicit expression for det(2@h#1@ I #) is written
down and the derivative with respect toh i j is taken, it is
trivial to see that

]J

]h i j
U
$h%50

5Nd i j , ~A8!

which when substituted in Eq.~A1! yields

s i j
kinetic52NkTd i j /V. ~A9!

If we now combine Eqs.~A6! and ~A9!, we obtain expres-
sion ~14! for the stress tensor:

s i j 5s i j
conf1s i j

kinetic52
kT

V H (
^ab&

K Ri
abRj

ab

Rab
DabL 1Nd i j J .

2. Tensor of elastic constants

For the tensor elastic constants, we have

Ci jkl 5
]2F

]h i j ]hkl
U
$h%5$0%

52
kT

V F 1

ZC

]2ZC

]h i j ]hkl
2S 1

ZC
D 2]ZC

]h i j

]ZC

]hkl
GU

$h%5$0%

.

~A10!

If we use Eq.~11!, the first of the two terms on the right
hand side of Eq.~A10! splits into four terms~which for the
sake of later reference throughout this derivation we den
by T1-1, T1-2, T1-3, andT1-4, respectively!
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2
kT

V

1

ZC
E )

g51

N

dRW gH J

]2 expS (
^ab&

f„@Rm
abRn

ab~dmn12hmn!#
1/2
…/kTD

]h i j ]hkl

1
]J

]hkl

] expS (
^ab&

f„@Rm
abRn

ab~dmn12hmn!#
1/2
…/kTD

]h i j
1

]J

]h i j

] expS (
^ab&

f„@Rm
abRn

ab~dmn12hmn!#
1/2
…/kTD

]hkl

1
]2J

]h i j ]hkl
expS (

^ab&
f„@Rm

abRn
ab~dmn12hmn!#

1/2
…/kTD J U

$h%50

. ~A11!

The most challenging term in expression~A11! is, of course, the first one,T1-1. If we perform the two derivatives in this
term, it yields the following three terms~which we denote byT1-1-1, T1-1-2, andT1-1-3, respectively!:

1

ZC
E )

g51

N

dRW gH 1

kT
expS 2 (

^gd&
f~Rgd!/kTD F (

^ab&

f8~Rab!

~Rab!3
Ri

abRj
abRk

abRl
abG2

1

kT
expS 2 (

^gd&
f~Rgd!/kTD

3F (
^ab&

f9~Rab!

~Rab!2
Ri

abRj
abRk

abRl
abG1S 1

kTD 2

expS 2 (
^gd&

f~Rgd!/kTD F (
^ab&

f8~Rab!

Rab
Ri

abRj
abGF (

^ab&

f8~Rab!

Rab
Rk

abRl
abG J .

~A12!

@Note that in Eq.~A12! the limit $h%5$0%, at whichJ51, was already taken#. Following the derivation of the configurationa
stress tensor@Eq. ~A5!#, it can be easily shown that in the ‘‘athermal limit,’’ the termT1-1-1 becomes

2 (
^ab&

K Ri
abRj

abRk
abRl

ab

~Rab!3
DabL . ~A13!

A straightforward generalization of this derivation shows that thenondiagonalelements in termT1-1-3, i.e., those terms for
which ^ab& pairs are different in the last two sums, give

(
^ab&

(
^gd&Þ^ab&

K Ri
abRj

abRk
gdRl

gd

RabRgd
DabDgdL . ~A14!

Note that the nondiagonal terms include both three-particle terms@^ab& and^ag&] and four-particle terms@^ab& and^gd&].
We were thus left with theT1-1-2 term, and with thediagonal elements of theT1-1-3 term, which may be written in the

following combined form:

2
1

kTE )
g51

N

dRW gH expS 2 (
^gd&

f~Rgd!/kTD (
^ab&

F „f9~Rab!2f8~Rab!2/kT…S Ri
abRj

abRk
abRl

ab

~Rab!2 D G J .

Let us now look at one of these expressions, corresponding to the pair^ab&. After performing the integrations over the res
of the coordinates,$RW gugÞa,b%, we are left with

E dRW a dRW b p̃~RW a,RW b!
Ri

abRj
abRk

abRl
ab

~Rab!2

d2@exp„2f~Rab!/kT…#

d~Rab!2
~A15!

@ p̃(RW a,RW b) is defined in Eq.~A4!#. At this point we change the variables of integration fromdRW a dRW b to dRW ab dRW b, where
RW ab5RW a2RW b, and then changedRW ab to spherical coordinates (Rab)D21 dRabdVab, whereVab is the solid angle aperture
aroundRW ab, andD is the dimensionality of the system. We also note that the terms (Ri

abRj
abRk

abRl
ab)/(Rab)2 in Eq. ~A15!

can be written as (Rab)2f i jkl (V
ab), where f i jkl is a function of the solid angle alone~for instance, for a two-dimensiona

system,f xxxx5cos4 V, fyyyy5sin4 V, fxyxy5fyxyx5fxxyy5fyyxx5cos2 V sin2 V, etc.!. Thus Eq.~A15! takes the form

E dRW a dVab dRabH ~Rab!D11p̃~RW a,RW b! f i jkl ~Vab!
d2@exp„2f~Rab!/kT…#

d~Rab!2 J .

When integration by parts is performed over the variableRab, this expression becomes
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52E dRW a dVab f i jkl ~Vab!dRab
]@~Rab!D11p̃~RW a,RW b!#

]Rab

d@exp„2f~Rab!/kT…#

dRab

52E dRW a dVab f i jkl ~Vab!dRab
]@~Rab!D11p̃~RW a,RW b!#

]Rab
Dab . ~A16!
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~Integration is taken from 0 tò and, therefore, the boundar
terms vanish.! The second expression in Eq.~A16! is ob-
tained for the ‘‘athermal limit’’ using substitution~A3!. In
order to bring this expression into a more useful form,
perform the derivative in Eq.~A16!:

]@~Rab!D11p̃~RW a ,Rab,Vab!#

]Rab

5~D11!~Rab!Dp̃~RW a ,Rab,Vab!

1~Rab!D11
]@ p̃~RW a, Rab,Vab!#

]Rab
. ~A17!

After the first term on the right-hand side of Eq.~A17! is
substituted into Eq.~A16!, we may switch back to the origi
nal integration variables,dRW a dRW b, and, again, use substitu
tion ~A3!. In fact, we obtain an expression which is identic
with expression~A13!, except for a prefactor (D11). Thus
their joint contribution is

2~D12! (
^ab&

K Ri
abRj

abRk
abRl

ab

~Rab!3
DabL . ~A18!

The task imposed by the second term in Eq.~A17! is
slightly more complicated: we need to evalua
]@ p̃(RW a,RW b)#/]Rab. We remind the reader thatp̃(RW a,RW b) is
given by Eq. ~A4!. The dependence ofp̃ on Rab in this
expression comes from the exponent

(
^gd&Þ^ab&

f~Rgd! ~A19!

appearing in Eq.~A4!. Instead of the set of variables$RW gug
51, . . . ,N%, we may use the set ofindependentvariables

$RW a,RW g2RW a5RW gaug51, . . . ,N,gÞa%, to express the term
in exponent ~A19!. Since we look for the derivative o
p̃(RW a,RW b) with respect toRab ~the size of one of the vari
ables,RW ba), we need to find which of the terms in expressi
~A19! actually depend on this variable. One can easily fi
that the terms included in the set$f(Rbg)ug51, . . . ,N;g
Þa,b% are the relevant terms.RW bg andRW ab are two of the
edges of a triangle whose vertices are the positions of at
a, b, andg. It is not difficult to show that if the length o
RW ab is slightly changed, while the length ofRW ag is fixed,
then the change in the length of the third edge,RW bg, obeys
e

l

d

s

]Rbg

]Rab
5

RW ab
•RW gb

RabRgb
.

With this identity, we find in a straightforward manner tha

]@ p̃~RW a,Rab,Vab!#

]Rab
5 p̃~RW a,Rab,Vab! (

gÞa,b

2
1

kT
f8~Rbg!

RW ab
•RW gb

RabRgb
.

In this expression the indicesa and b appear in an asym
metrical way. If we interchange their roles, we obtain t
following symmetrical form:

]@ p̃~RW a,Rab,Vab!#

]Rab
5

p̃~RW a,Rab,Vab!

22kT

3 (
gÞa,b

H f8~Rbg!
RW ab

•RW gb

RabRgb

1f8~Rag!
RW ab

•RW ag

RabRag J . ~A20!

We now need to substitute this last identity into the integra
of Eq. ~A16!, switch back to the original integration var
ables,dRW adRW b, and use transformation~A3!, to finally ob-
tain that the contribution of the second term in Eq.~A17! is

2
1

2 (
^ab&

(
gÞa,b

K H Ri
abRj

abRk
abRl

ab

~Rab!2
Dab

3S RW ab
•RW ag

RabRag
Dag1

RW ab
•RW gb

RabRgb
DbgD J L .

~A21!

We still need to treat termsT1-2, T1-3, and T1-4 in Eq.
~A11!, and the second term in Eq.~A10!. TermT1-2 is iden-
tical to the configurational stress term, except for the mu
plicative term]J/]hkl which appears in the former. There
fore, using result~A8!, we find that the contribution of this
term is

Ndkls i j
conf. ~A22!

Similarly, theT1-3 term yields

Nd i j skl
conf. ~A23!
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The second term in Eq.~A10! is obviously equal to

kT

V H (
^ab&

K Ri
abRj

ab

Rab
DabL

1Nd i j J
3H (

^ab&
K Rk

abRl
ab

Rab
DabL 1NdklJ . ~A24!

Finally we need to differentiate expression~A7! with respect
to hkl , in order to calculate termT1-4, which is given by

2
kT

V

]2J

]h i j ]hkl
U
$h%5$0%

52
kT

V
$N2d i j dkl22Nd i l d jk%.

~A25!

We thus find that thejoint contribution of these four term
Eqs.@~A22!–~A25!# to the expression for the tensor of elas
constants is

2NkT

V
d i l d jk1

kT

V H (
^ab&

K Ri
abRj

ab

Rab
DabL J

3H (
^ab&

K Rk
abRl

ab

Rab
DabL J . ~A26!
s

a

To this contribution we need to add terms~A14!, ~A18!, and
~A21! to obtain the following final expression for the tens
of elastic constants~15!:

Ci jkl 5
2NkT

V
d i l d jk

1
kT

V H ~D12! (
^ab&

K Ri
abRj

abRk
abRl

ab

~Rab!3
DabL

2
1

2 (
^ab&

(
gÞa,b

K FRi
abRj

abRk
abRl

ab

~Rab!2
Dab

3S RW ab
•RW ag

RabRag
Dag1

RW ab
•RW gb

RabRgb
DbgD G L

1F (
^ab&

K Ri
abRj

ab

Rab
DabL GF (

^ab&
K Rk

abRl
ab

Rab
DabL G

2 (
^ab&

(
^gd&Þ^ab&

K Ri
abRj

abRk
gdRl

gd

RabRgd
DabDgdL J .
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