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Fluctuation formalism for elastic constants in hard-spheres-and-tethers systems
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Methods which relate the elastic constants of thermodynamic systems to the fluctuations of the pressure or
the volume are called “fluctuation” methods. In this paper we derive expressions, within the fluctuation
method, for determining elastic constants in systems composed of hard spheres tethered by inextensible bonds.
Such systems are frequently used as athermal models of real physical systems whose thermodynamic proper-
ties are primarily determined by entropy rather than energy. Our expressions relate the elastic constants to the
probability densities of contacts between the spheres and the probability densities of having stretched bonds.
We use our formalism to compute, from Monte Carlo simulations, the elastic constants of hard-sphere systems.
Our results agree well with analytical predictions and improve the existing numerical data.

PACS numbd(s): 62.20.Dc, 05.10-a, 65.50+m, 05.70.Ce

[. INTRODUCTION energy penalty. This is the origin of their highly nonflexible
nature. Rubber and gels are examples of materials of the
The theory of elasticity describes deformations of thermo-second kind. In these systems different microscopic configu-
dynamic systems in response to external forces. When a sygations possess very similar internal energies. Energy scales
tem is deformed, the distance between two bulk pointsfelated to translations of atoms and rotations of bonds, in soft
which prior to the deformation were separated Ry be- ~ Materials, are of the order &T and, therefore, tend to be
comes obscured by thermal fluctuations. Strain, applied to the sys-
tem, imposes topological restrictions on allowed microscopic
r=[RR(&;+27;)]1"2 (1)  configurations, thus leading to a reduction in entropy, which
is essentially thelogarithm of the number of microscopic
where the subscripts denote Cartesian coordinates, and sugenfigurations. The significant response of such systems to a
mation over repeated indices is implied. The quantitigs modest shear results from the moderate free energy differ-
which describe the deformation, are the components of thences associated with this entropy reduction.
Lagrangian strain tensomwhile &;; is the Kranecker delta. If Computational methods for calculation of elastic con-
Eq. (1) can be applied to any pair of bulk points, i.e;; is  stants are classified into “strain” methods and “fluctuation”
independent of the position, then the deformation is callednethods. In a strain method calculatidr one evaluates the
homogeneoudJsually, however, Eq.l) can only be applied elastic constants, which are the derivatives of the stress ten-
to neighboring points, i.e.y;;; is not constant in the entire sor components with respect to the strain variables, by per-
volume. In an atomic system it is convenient to apply deforforming numerical differentiation, i.e., by measuring the
mation with constanty;; to all boundarypoints, while the (small stress variations in response to small deformations. In
positions of internal atoms are determined by the laws ofhe fluctuation methof2], on the other hand, formal expres-
statistical mechanics. Thigonstank 7; is definedas the sions for the elastic constants are derived, relating them to
homogeneous strain applied to such a system. The mean fréfee mean squared thermal fluctuation of the corresponding
energy densityf =F/V, (per original, unstrained, unit vol- stress componentsr to the volume fluctuations, if the pres-
ume of a system subjected to a small deformation can beure is fixed 3]). These expressions, obtained by differenti-

expanded in a power series in the strain variables ating the free energy twice with respect to the strain, can be
computed directly from Monte CarldMC) or molecular dy-

1 namics simulations performed on the unstrained reference

FAm)=Ft{0) +oijmj+ 5Cipamjmat -+ (2 system. The fact that simulations are performed in the refer-

ence system, with no need to deform the simulation cell, is

The coefficients in this expansion are thgess tensow; the major advantage of the fluctuation method over the strain
and thetensor of elastic constants; , characterizing the method, which makes it a more efficient and well-controlled
elastic response of a given material. technique. Moreover, unlike the strain method, where differ-

Condensed matter systems can be broadly divided intgnt deformations must be applied in order to compute the
two classes: those whose physical properties are determinglifferent elastic constants, in the fluctuation method they are
by energy considerations, and those which are entropy domg@ll computed in a single run.
nated. Hard crystalline materials are examples of materials of In this paper we focus our attention on central force sys-
the first kind. These systems are likely to be found in theirtems, where the internal energy is the sum of pair interac-
energy ground states, while thermal fluctuations allow onlytions
small deviations from these configurations. When such a sys-
tem is deformed, a macroscopic number of atoms are shifted E= 2 B(rF). @)
from their equilibrium positions, and this involves a large az B
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[r%# is the distance between atomsand3. The interactions
between various pairs of atoms do not have tdarel, in this -
work, will not be) identical. Thus, we should denote the pair
potential a&baﬁ(r"ﬁ). However, for brevity we will omit the
subscripts of the potential and the indices of the argument r
re# will serve as an indicator of the specific potenfidtor
such systems, one can apply the fluctuation formalism pro-
vided the pair potentiakp(r) is twice differentiable. This
requirement is due to the appearance of the second derivative -
of ¢(r) in the expressions for the elastic constafvidich
we shall present in Sec.)llUnfortunately, this requirement
is not fulfilled in many models of entropy-dominated sys- r
tems, such as hard sphere systems and tethered suddces .
In this paper we extend the fluctuation formalism to apply to r

such models. . . . -
FIG. 1. Three different potentials used to describe the pair in-

Th? paper s organllzed in the following way: In Sec. Il we teraction between two bonded atoms. The solid line is the potential
explain why models like hard spheres and tethered surfaces

. sed in Ref[5] by Kremer and Grest. The dashed line is the hard-
are fljequently used to study emmpy_domma.ted systemg. . gpheres-and-tether potentidl; (r) + ¢,(r) [Egs.(4) and(5)]. The
also introduce _the fluctuation method, and dlscus§ why in "Jot-dashed line is a smooth approximation to the “hard” potential
standard form it cannot be used to study the elastic _constar?@ee the last paragraph in Sec).IBoth axes are in arbitrary units.
of such models. In Sec. lll we repeat the mathematical deri-
vation of thegeneralfluctuation formalism. We discuss our
strategy in obtaining the version of the method to the case of " (r)=[
hard-spheres-and-tethers systems. The new formalism is pre- !
sented in Sec. IV, where a short summary of the derivation
of the method and the expressions for the stress and elastimiarly, real chemical bonds can be replaced by inexten-
constants are given, while a detailed mathematical derivatiogjp|e (“tether”) bonds
of the formalism is relegated to the Appendix. We find a
relation between the components of the elastic tensor and the 0 for r<b
probability densities of contact between spheres and prob- ¢>z(r):[ (5)
ability densities of having stretched bonds. In Sec. V we o for r>b,
demonstrate the validity, efficiency, and accuracy of the

method by using our formalism in MC simulations of hard which limit the distance between the bonded atomb, tout
sphere systems. We summarize and discuss the results fiave zero energy at all permitted distances. The sum of
Sec. VL. “hard” potentials (4) and (5), i.e., ¢1(r) + ¢,(r), also ap-
pears in Fig. 1. The similarity of this potential to the other
Il HARD POTENTIALS potent?al Ehown in Fig. 1as Wel! as to many other “model
AND THE FLUCTUATION EORMALISM potentials us_ec_i in other workds evident, and it is there-
fore not surprising that both of them can be used to study
The specific details of interatomic interactions are quitereal systems without yielding qualitatively different results.
unimportant in entropy-dominated systems, due to the minor When real potentials are modeled by their “hard” ana-
influence of the internal energy on their thermodynamiclogs, the energy of all microscopic configurations is set to the
properties. In real gases, for instance, the pair potential isame value—zergconfigurations with infinite energy are
frequently sharply repulsive at short distances and weaklyon-physical. Such models are callethermal Because the
attractive at longer separations. If the system is either verynternal configurationalenergy is fixed in an athermal sys-
dilute or very dense, the attractive part of the potential isem, the Helmholtz free energy is given By= — TS, where
hardly felt. In polymer physics, the details of interaction be-S is the entropy andr is the temperature. The physics of
tween neighboring monomers often become irrelevant proathermal systems is exclusively determined by entropy con-
vided that the molecules are sufficiently long. Similar con-siderations(Throughout this paper we omit thenetic part
siderations apply to gels, in particular close to the gel pointof the energy since it is independent of deformation and
One can therefore use various ways to model these interatherefore does not contribute to the elastic behavior. Never-
tions provided they capture the essential physical featuretheless, “kinetic” contributions will appear in the expression
such as excluded volume effects and chemical bonding. Onfer the stress and elastic constants because they will be gen-
possible method of description is a combination of the purelyerated by the configurational part Bf) Entropy itself does
repulsive 6-12 Lennard-Jones potential, sharply increasingot depend on the temperature, but is a function of the ge-
for r<a to represent the excluded volume; and an attractivemetry of the microscopic structure alone. The temperature
potential, diverging at =b, representing a bond]. An ex-  dependence of the free energy and other quantisesh as
ample of such a potential is depicted in Fig. 1. An alternativethe stress or the elastic constarisstherefore trivially linear.
way is to use “hard” potentials which take only two values: Due to these properties of “hard” potentials, using them can
zero or infinity. Excluded volume interactions can be de-be quite beneficial from mathematical and computational
scribed by the hard sphere potential points of view. Simulations of such systems are relatively

o(r)

o for r<a

4

0 for r=a.
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simple since there is no need to make any energy calculagrangian strain tensay;; , which describes the modifications

tions, but rather check whether certain geometrical restricef these distancedEq. (1)], also describes energy variations

tions are obeyed. and, through the canonical partition functiah also de-
Thirty years ago Squire, Holt, and Hoou&HH) [2] per-  scribes the free energy variations. Once the formal depen-

formed MC simulations to evaluate the elastic constants oflence of the free energy on the strain is established, the

solid argon. SHH followed the Born theory of elastic con-following expressions for the stress tensgy and the tensor

stants[6], but applied it to the Helmholtz free energy rather of elastic constant€;j,; (which are the coefficients of the

than to the internal energy. As a result, their expression fofree energy expansion in strain variablégy. (2)]) can be

the elastic constants included a term which was absent froreasily obtained:

Born’s expression. This additional term is equal to the mean

squared thermal fluctuation of the stress; hence the name ; .- 1 RWR*B\  NKTS.
“fluctuation” method. For the present discussion we briefly o= T— :_< > ¢’ (R*P) r > — 4
sketch the SHH derivation originally devised for central Vil -y V\ (@B R*# v
force systems(We repeat it, in detail, in Sec. I)lIn such (6)
systems the potential internal eneifdqg. (3)] depends only
on the relative distances between atoms. Therefore, the Land
c 1 ¢F
ikl =N 90 90
V9 0 |- o)
1 R{PR™ REPRMP RPR™ REPRMP
=i | 2 R —=)( > ¢'(R) ([ 2 ' (RPY——|| > ¢'(R)
VKT <<aﬁ> R [\ (aB) R*A (aB) R* || (aB) R*A
1 R¥PR¥PRIPRM\ 1 ROPRIPREPRIP\  2NKTS) 8
+v E (ﬁ”(Raﬁ)IJT _v 2 ¢/(Ra,3) ! Ja'B s V' J . (7)
(aB) (R*P) (ap) (R%P)

In the above expressions summation over all distinct pairs gparticular, some of the terms in expressi@h diverge when
atoms({aB) is performedR*# is the interparticle distance of applied for “hard” potentials. We show in the derivation
the pair under consideration, aﬁq;rﬁ denotes théth Carte- that only the combination of these terms does have a mean-

sian component of the vect&=R*—RA. The symbok )  'Mgful limit.

denotes a thermal average. The term in braces in(Bgs
the “fluctuation term,” while the following two terms form Ill. GENERAL CONSIDERATIONS

the “Born term.” The terms —NkT¢;/V and If the int | fath d . term is di
2NKT&; 6 /V in Eqgs.(6) and(7), respectively, are the “ki- € Internal energy ot a thermodynamic system 1 given

netic” contributions to the stress and the elastic tensorsby Eq.(3), then the corresponding canonical partition func-

They originate in the additive term- NkTInV in the free tion is
energy.

As mentioned at the end of the Sec. I, the fluctuation _ _ (2q-rmk'|‘)3'\"2f ﬁ dr”exd — E (r*P) /KT
formalism cannot be trivially used to measure the elastic = h3N V) y=1 (aB) ¢
constants of systems interacting via “hard” potentials, be-
cause these potentials are nondifferentiable while the deriva-  (27m kT)3NIZZ )
-7,

tives of the pair potential are needed in expres$nin this a h3N
paper we generalize this expression for the case of “hard”

potentials. In fact, the proper expression for the stress tensor _
in the case of “hard” potentials has been known for manyWhereN is the number of atomsn the mass of an atonT,

years[7]. It is mathematically simple to derive this expres- the témperaturek the Boltzmann constant, ardthe Planck
sion because the integral that expresses the stress fémsor constant. The integration volumé({»}) is the volume in
averages in Eqg6) and (7) are expressed in terms of inte- SPace occupied by the deformed system. The funcfignis
grals over the configurations phase sjamntains the func- the ponflgurqtlonal part of the patrtition function. The prefac-
tion ¢’ (r)exp —#(r)/kT], which for “hard” potentials is oF iS _assomated with the momentum degree_s of freedom,
simply the Diracs function. The expression for the tensor of @1d, Since they are unaffected by the deformation of the sys-
elastic constants includes the functiop&(r) and[ ¢'(r)]2, tem, it V\_/lll be omitted hereafter. Thiglastic part of thefree
which for “hard” potentials yield terms including the de- €nergy is related t@c by

rivative and the square of a function. The appearance of

these functions complicates the mathematical treatment. In F=—-TS=-TkInZ.. 9)
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In a canonical ensemble calculation only the surface of the (3) If the pair of atomsa and B is tethered, then
system, not the entire volume, deforms homogeneously. The(r “#)/kT>1 for r>b+¢; otherwiseg(r *?)/kT<1 for r
surface of the syster8({#}) defines the boundaries of the >b+e.

integration volume,V({7}). The surfaceS({#n}) of the (4) In the small intervala—e<r<a+e andb—ge<r
strained volume, and the surfa&{0}) of the unstrained <b+ ¢ between the above regimes(r “#)/kT increasesor
one, are related by near transformation decreasessharply. Nevertheless, we assume that along these
intervals, ¢(r) is interpolated in a smooth way.
ri=MjRy, (10) After defining these properties of the potentiglr), we

. = ] ) ) substitute it into expression®) and (7) for the stress and
which maps every poink on S({0}) to its strained spatial g|asic constants. We then look for what we call the “ather-
positionr on S({7}). In Eq. (8) we note that the partition mal limit” of these expressions, namely, the limiting expres-
function depends on the strain variabfeg only through the  sions obtained when we set the size of the interpolation in-
integration volumeV({»}), and not through the integrand. terval, £, to zero, while at the same time the potential
The idea of the fluctuation formalism is to change the inteifference between the regimes<a andr>a tends to in-
gration variables from; to R, and replace the strain depen- finity. In the “athermal limit,” ¢(r) becomes a “hard” po-
dence of the boundaries of integration by strain dependenagntial. The “athermal limit” of expression&) and(7) can
of the integrand, be regarded as the fluctuation expressions of hard-spheres-

and-tethers systems. As we show in the derivation, they do

N
_ > not depend on the exact form of approximating potential
ZC:e FIKT — H dRyJ({ﬂ}) (r) p pp gp
V({op =1 #(r).
><exp( —<EB> PRIPRIP(5;+2m)1VAIKT, IV. STRESS AND ELASTIC CONSTANTS

In this section we introduce our fluctuation expression for
(1) the elastic constants of hard-spheres-and-tethers systems.

whereJ is the Jacobian of the linear transformatid®). To ~ Since the mathematical derivation of the expression is rather

find the dependence af on {7}, we note that the above 'engthy, we will not present it here in detail. We leave the

linear transformation gives detailed mathematical formulation of the method to the Ap-
pendix, while here we restrict ourselves to a short description
|r|2:rkrk:RiRjMiijk=RiRjMikMLj, of the major points in the derivation. We will introduce the

expressions obtained for the stress and elastic constants and
whereM' is the transpose dfl. When this equation is com- discuss shortly their “physical” meaning. A demonstration

pared with Eq(1), we readily see that of the applicability of the method is found in Sec. V, where
. we present numerical results obtained for hard sphere sys-
[MM]ij=27;;+ 6 . tems, and discuss some technical aspects of the simulations.

Expression(6) for the stress tensar;; suggests that the
stress is the thermal-volume average of quantities related to

J=[de(M)]N={[de(M)]2N2={ de(2[ 5] +[1])}"?, the local forces applied to the atoms. For the present discus-

sion, let us assume that we deal with a central force system
in which the pair interactions are described by a certain ap-

where[ 7] is the matrix with the elemen{sy];;=»;;, and  proximating potentialp(R) (see Sec. Ill. For such a poten-
[1] is the identity matrix. With this identity, substituted into tial we note that the forcé, ;= — ¢'(R*P) acting between
Eqg. (11), we have a formal expression for the partition func-the pair of atomg«aB) almost always vanishes, except for
tion. When Eq.(9) for the free energy is differentiated with very short instances of timén a statistical ensemble lan-
respect td z»}, one immediately finds expressiof® and(7) guage, only in a small portion of the configurations phase
for the stress and elastic constants. space, when R**~a, or (if the two atoms are tethergd

As we have already explained, the pair potential must bé&k*?~b. Hard-spheres-and-tethers models can be regarded as
twice differentiable to enable differentiation with respect tolimiting cases in which these pair forces become infinitely
{n}. Inserting “hard” potentials directly into the formal ex- large for time intervals which become vanishingly small,
pressions for elastic constants leads to what looks like infikeeping the rate of momentum exchange between atoms
nite terms or terms involving products of discontinuous func-fixed. From the mathematical point of view it is important to
tions with § functions centered at discontinuity, and many note that what we actually have in the integral expressions
other ambiguities and divergences. It is, therefore, convefor oy; [Eq. (6)] are the derivatives of the Boltzmann factor,
nient to use smooth approximations of these “hard” poten{exp(— #(R*?)/kT)]' =[— ¢’ (R*’)/kT] exp(— ¢(R*P) |
tials ¢4(r) and ¢,(r) [Egs.(4) and (5)], for which the av-  kT). In the “athermal limit” the Boltzmann factor converges
erages in expression®) and (7) can, in principle, be to a step function where the discontinuitfrom zero to
determined. An example of such a potentia(r), is  unity) occurs aR*#=a, and an opposite discontinuitfrom
sketched in Fig. 1. This potential, which resembles theunity to zerg occurs aR*#=b, if the pair{ ) is tethered.
“hard” potential ¢1(r)+ ¢,(r), has the following features: The derivative of a step function is just the Dirdc¢unction.

(1) p(reP)IkT<1 forat+e<r<b—e. We thus find that, in order to recover the “athermal limit” of

(2) p(reP)IkT>1 forr<a—se. aij , we only need to perform the simple transformation

For a system oN particles,
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¢’ (R*P)— —kTA*P= —KT[ §(R**—a) — v*FS(R*F—D)], in expression(7) for the components of the elastic tensor.
(13 More specifically, it should be applied in all the terms which

i i contain the first derivative¢’(R*), or the products
wherev®?, the “topology variables,” take the value 1 if the

. ! ) S o' (R ¢’ (R??), corresponding to two distinct pairs of at-
pair{aB) is tethered, and 0 otherwise. This gives the knownoms<a’8>¢<y5>_ [This product should be simply replaced

result[7] by (kT)?A“$A7%] This leaves us with only two types of
KT RYBRYA terms, containing the squares of the first derivatives,
== <%Aaﬂ> + N5|j] (14  ¢'*(R*f), and the second derivatives;(R*#). Finding the
(eB) |\ R® “athermal limit” of both terms is the “missing piece in the

zzle” in the formulation of the method. When we substi-

for the components of the stress tensor. Note that the thermﬁﬂe an approximating potential into these terms, it is not

aﬁ . . . oy
Z\éﬁrs?tge 8? coilst ;léft :)Z?V\%féiret?:;e bzti\r/ve;n ;higéé);;bmty difficult to find that neither of them has a definite “athermal
Y P P : limit.” Only if we combine them into a single term do we

p(R*¥*=a+), and the probability densityp(R**=b—), of . ) o .
finding the tether connecting them stretched to its maximal"anage to find an appropriate limit, which can be also ex-

length.[If a tether between them does not existf=0), we pressed in terms of the quantitias®. A major part of the
simply ignore this second probability density. derivation, which appears in the Appendix, is devoted to the

The above transformatiofEq. (13)] is also useful in ob- mathematical treatment of this combined term. Here we just
taining the “athermal limit” of many of the terms appearing 9'V€ the final expression for the elastic constants:

RIPRIPRYPRIP Aok
(R*)3

2NKT

Ciju="—"— (D+2) >,

(ap)

kT
5” 5jk+ v

RIPRPRIPRP

ap
(RF)? :

Aer+

RaBReY ReBRYB A

ReB.R*Y RaB.RYP )
By

|

afpap afRafRYSRYo
z RRi AeB) | = Z Z mAaﬂA 1ZANS (15)
(apy \ R (aB) (v8)7(ap) R*PRY?

1
2 (ap) y*a.B

afpap
Js [RERE
(aB) \ RP

In the above expression we distinguish between the differertic properties of these systems must, therefore, be related to
sums: X5 denotes summation over all pairs such events.
(@B); 2(y5+(ap) denotes summation over the rest of the

pairs, (y5); while X, ., 5 denotes summation over the rest

of theatoms vy (distinct froma andg). D is the dimension-

ality of the system. The major advantage of the fluctuation method is the fact
Expressiong14) and(15) relate the stress and elastic con- that expressions like Eqél4) and (15) provide a direct way
stants of hard-spheres-and-tethers systémwhich the pair  for numerical computation of the stress and elastic constants.
potential is given by Eq€4) and(5)] to the thermal averages In order to test the accuracy and efficiency of the method, we
of geometrical quantities. We see that except for the kinetihiave implemented it to measure the elastic constants of hard
term, originating in the change of the volume of the systensphere(HS) systems(i.e., topologies for whichv*#=0 for
caused by the deformation, contributions to the stress are d@l the pairs(aeg)). HS systems have been the subject of an
to pairs of atoms touching each other or due to bonds that aftensive research for several decades f®wThey serve as
stretched to their maximal length. These are indeed th&e simplest model for real fluids, glasses, and colloids.
mechanisms through which tethered hard spheres exchandoreover, many perturbation theories use them as reference
momentum with each other. Alternatively, expressi¢hé) systems for more realistic models including attractive inter-
and(15) can be understood as follows: In hard-spheres-andactions. The phase diagram of HS's is well known. It is a
tethers systems entropy measures the extent of configurfinction of one parameter only—the volume fractipn,oc-
tional phase space. Changes in entr@mywhich the stress cupied by the spheres. FQr<psee,ing=0.495 the stable
and elastic constants correspdmage related to the exclusion phase is an isotropic fluid phase. At the freezing density an
and inclusion of configurations. When an unstrained configuentropically driven first-order phase transition occurs, and
ration is infinitesimally transformed to its deformed corre-over a remarkably large range of densities, 0495
spondent, it may become physically forbiddéor, con- <0.545, both fluid and solid phases coeXi8t. The solid
versely, physically forbidden configuration may becomephase is stable fop>pering=0.545, and can be further
allowed, only when there exist at least one pair of spheres ircompressed up to the close-packing dengigy 7/(3 J2)
contact or when one bond is in maximal stretching. The elas=0.74 into either the face-centered-cubftcc) or the

V. NUMERICAL EXAMPLES
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hexagonal-closed-packedhcp crystalline arrangements. ' ' eC,
The free energy differences between the two structures are 200 L aC,
extremely small. Recent numerical simulations indicated a aC,
preference for the fcc structufé0]. Due to the obvious re- vP

lation between the phase behavior and the elastic properties 159 HLI\I—\I\E\ ,

of thermodynamic systems, the elasticity of HS systems has “g
also been the subject of many studiesee, e.g., Refs. E
[11,12). Nevertheless, the accuracy of the values of the elas- & 100 | -

tic constants still leaves much to be desired. Therefore, al- a° w\i\
though the main purpose of this section is to demonstrate the
validity and applicability of the formalism, the numerical 50 ﬂ/L'ﬂZ'ITl\ ]
results have their own physical usefulness.

The appearance of Diraé functions in expression&l4) vy ¥ ¥ ¥y ¥ ¥ ¥
and (15) deserves a special consideration:(MC) simula-

tions the average of a certain quamgylfi) is estimated by

c()).00 0.05 0.10 0.15 0.20
£ /(a;-a)
(g)~ — % g(ﬁ ) FIG. 2. The pressur® and the three elastic constads;, C1,,
N =1 p/s andCy, for p/py=0.8, as a function o€, [see the definition in Eq.
(16)]. €, was normalized by,—a, wherea anda, are the sphere
diameters ap and pg, respectively. The curves are the weighted

whereR, is the value oR at thepth sampled configuration, least squares fits of the third order polynomialssjnto the data.

andN. is the total number of MC configurations used in the

simulation. Clearly, this sum do_e.s npt lead to _the correct  5.r simulations were performed on systems consisting of
mean when the averaged quantities inclutiunctions, as 33500 spheres with periodic boundary conditions. We did
we have in expressiorid4) and (15), because such quanti- o se conventional Metropolis single atom steps to gener-
ties vanish at almost every configurati@xcept for a group a6 the MC configurations, but rather collective steps of
of configurations whose measure vanishes—at which theifpains of atoms, as recently suggested by Jda@r We
values are not defined at gllThis is just a restatement of the define a MC time unit as the tim@neasured in number of
fact that in MC simulations we measure probabilities rathen,- configurations in which, on the average, we attempt to
than probability densities. A solution to this problem is t0 giart one “chain move” from every particle. The acceptance
measure the relevant quantities every time sphere’s Ssepargionability of these moves was approximately half. Our
tion is found in the small interval of distancassR<a+e€,  gimyations were extended ovexd(® MC time units. This
and to normalize them by the size of the “bing. If the  ime is substantially larger than the relaxation time which
probability density of pair contact is finite, this approxima- \y45 estimated from the autocorrelation function of the am-
tion would lead to an error.whlch is at most qf the order Ofplitude of the longest wavelength phonon in the system, and
the small parametes/a. Obviously, one would like to setthe \hich for all densitiegthat ranged from the melting density
size of € as small as possible, in order to minimize th|s(p/p020_736) up to almost the close packing density
correction. However, there is a limit to the extent to which (p/pe=0.99)] was found to be less than 3000 MC time
can be reduced, imposed b, the number of MC configu- nits. The relevant quantities were evaluated every three MC
rations. Ase becomes smaller, one needs more MC samyime units. The error estimates, which appear in graphs with
plings in order to count a sufficient number of events atihe results, represent one standard deviation in the estimates
which spheres are separated by a distance inside the bin igs the corresponding averages.

terval [a,a+€]. An elegant way which incorporates both  pye to the cubic symmetry of the fcc lattice, its stress
necessary features, namely, a smakize but also a large tensor is diagonal, ana, = oyy=0,,=—P, whereP is the
number of successful samplings, is to measure a set of ind@yternal pressure applied on the system. The high cubic sym-
pendent averages: Each member in this set is the averaggetry also implies that many of the elastic constants are
obtained when we count the contributions of the pairs whosgyentical. In fact, there are only three independent nonvan-
separations fall in one of the intervals ishing elastic constanfd.4], which in the Voigt notation are
defined by
AR, =[a+e,—€l2a+e,+€l2], n=12,..., (16
C11= Cr™ nyyy: Crr22
where e,=(n—1/2)e. After evaluating these averages

(which are statistically independent quantities since each one C12=Cyxyy=Cyy27~=Croxs= " >
is computed using different evehtsve obtain the correct
average by extrapolating them to the lingj{—0. In Fig. 2 C44= Cxyxy=Cyzy7=Coxzs= " -

we demonstrate this extrapolation procedure for MC mea-

surements of the pressure and elastic constants of a HS f@ur results for the pressurB, bulk modulus k=3(Cy;
crystal at a reduced densip/py=0.8. The curves are the +2C;,+P), and two elastic constants;, and C,, of HS
weighted(i.e., each point was weighted by a reciprocal to itsfcc solids are presented in Figs. 3—-6, respectivaylid
error baj least squares fits of the data to polynomials of thecircles. Note that since we compute all the non-vanishing
third order ine,. components of the tens@;, , we obtain three independent
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FIG. 5. The elastic constafit;, in units ofkT/a®, as a function
of the inverse reduced densityg/p. The circles mark numerical
results, while the solid line depicts E(L9) with A;=1.84.

FIG. 3. The pressur® in units of kT/a3, as a function of the
inverse reduced densitp,/p. The circles mark numerical results,
while the solid line depicts the free volume approximation for the

pressurdEq. (17)]. ) ] )
For the elastic constantS;, and C,,, it has been conjec-

tured in Ref[15] that close tg, their density dependencies

estimates for each of the above constants. For instadice, have also free volume functional forms:

=Cxx¥y’—“nyzz“—‘szxx, and therefore we use the estimate

C12= 5(Cyxyyt Cyyzzt Cruxy» Which has a smaller statistical A KT

error. The solid curves in Figs. 3—6 depict expressions, sug- C12=—1 i (19
gested by Stillinger and Salsbufd5], for the asymptotic (polp—1)% a3

behavior of these quantities, at the limit of the close packing

density,po. These authors have shown that the free volumend

approximation gives theorrect asymptotic results for the

pressure and bulk modulus: A, kT
Corm——5 . (20
(polp—1)* a
3V2 kT , ,
= 1% (17) but with constanté\; andA, which have not been accurately

po’p a determined. Our results confirm the validity of these
asymptotic expressions. Most of our data points fall on the

solid curves. This shows that the asymptotic expressions pro-

and vide rather good estimates of the stress and elastic constants,
even for densities which are close to the melting density. In
Cy+2C+P 32 KT Figs. 5 and 6, we used thg valuAs=1.84+0.14 andA,
K= 3 = 5 T3° (18) =5.86+=0.11 obtained by fitting the results for the four larg-
(po/p—1)" a est densities (f/py=0.99, 0.975, 0.95, and 0.90 expres-
sions(19) and (20).
100000 E : .
100000 | 5
10000 | E

—_ 10000 | E

(':ig —
|_ ©

=, 1000 | : g

> X 1000 | ]
¥
e

100
100
10 . :
0.01 0.10 1.00 10 . .
(p/P)-1 0.01 0.10 1.00

-1
FIG. 4. The bulk modulus in units ofkT/a3, as a function of (po/e)
the inverse reduced densityy/p. The circles mark numerical re- FIG. 6. The elastic constafi,, in units ofkT/a®, as a function
sults, while the solid line depicts the free volume approximation forof the inverse reduced densityg/p. The circles mark numerical
the bulk modulugEq. (18)]. results, while the solid line depicts EO0) with A,=5.86.
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20 . . VI. SUMMARY AND DISCUSSION

/ We extended the fluctuation formalism for calculations of
15 o the elastic constants, originally devised for conventional po-
—— Pressure / tentials, to apply to “hard” potentials. We found expressions
””” Bulk Modulus / relating the components of the tensor of elastic constants to
__ 10 | —— Shear Modulus ‘ 1 the (two-, three-, and four-poilprobability densities of con-
“® . tact between hard spheres and the probability densities of
> & stretching tether bonds, which are the mechanisms through
= which atoms exchange momentum with each other in such
systems. The formalism is not restricted to certain topolo-
gies, but is general to all “hard-spheres-and-tethers” sys-
tems. In this paper we applied it to HS systems both in fluid
and solid phases. Our results, which agree well with analyti-
cal predictions, demonstrate the efficiency and accuracy of
0.0 0.1 0.2 0.3 0.4 the method.

Implementing the method in numerical simulations is,
generally speaking, quite straightforward. The only non-

FIG. 7. The pressure and two elastic constants of a HS system ifivial point is the fact that the probability densities of sphere
the fluid phase as function of the volume fraction occupied by thecontacts(and bonds stretchingare evaluated from the prob-
spheresp. The shear modulus vanishes at the fluid phase. Curveabilities of finding the spheres “almost touching each other”
depicting the pressure and the bulk modulus were calculated using.e., finding their separatiolR in the interval[a,a+ €]).
the first seven terms of the virial expansitsee Ref[16]). The  Correctly setting the size of is a key feature for a success-
circles, triangles, and squares mark numerical results obtained fdy| computation. A considerable improvement in the accu-
densitiesp=0.1, 0.2, 0.3, and 0.4. racy of the results is obtained by computing several estimates

We also compared our results with existing numericalfor the probability densities, which are extrapolated to the

data published by Frenkel and Laddil]. They used the correct value. L
strain method techniquésee Sec.)land performed simula-  1he method presented in this work can be used to study
tions on smaller systems of 108 spheres. At the smaller derih® elastic properties of a wide range of model systems. In a
sities we found their results to be in a very good agreemerfiiture publication we will present the results of MC simula-
with ours. At a larger densityp( po=0.9), however, we ob- tions of topologically simple regular network47]. In the
served a considerable disagreement, where our results sedgither future, we plan to study more complicated, random,
to be more consistent with the asymptotic expressions ostructures.

Stillinger and Salsburg. This inconsistency with the results in

Ref.[11] is partially explained by finite size effects, but par- ACKNOWLEDGMENTS

tially it is also due to the difficulties in using the strain

method in systems at high pressure. In such systems, small We thank D. Frenkel for providing us with details of his
deformations invoke relatively large pressure changes angimulations of HS systems. This work was supported by the
therefore, in order to achieve a good estimate for the numerilsrael Science Foundation through Grant No. 177/99.

cal derivatives one must use extremely small strains and

measure the stress components with a very high accuracy. In APPENDIX: DETAILED DERIVATION

our high density fluctuation method simulations, we needed OF THE FORMALISM

to fine tune the small bin size parametsee earlier in this
section. Nevertheless, our results at these densifidsich
extend beyond the largest density in Réfl]) do not suffer The starting point of the derivation is the following ex-
from a significant increase of the relative errors, and shovpression for the stress tensor:

excellent agreement with the asymptotic expressions.

Finally, we present results obtained for HS fluid systems 1 JF
(Fig. 7). In the fluid phase the system is isotropic, and there- 7ii~ v i
fore characterized by the pressure and two elastic moduli HHm=0
[14]. The shear modulus vanishes, while the pressure and the kT 1 l f

1. Stress tensor

bulk modulus can be accurately calculated from the virial =— 5
expansion of the equation of stat&he curves appearing in
the figure were derived using the first seven terms of the

X exp( -

s - ¢'(R*F) RIPR{”
(apy KT ReA

expansior] 16].) We measured the elastic moduli at four dif-
ferent volume fractionp=0.1, 0.2, 0.3, and 0.4. The simu-

> ¢(R75)/kT>

(v9)

lations were performed on systems of 8000 spheres over a 23
total time of 1.3510° MC time units. The rest of the tech- +— exp( - ¢>(R75)/kT) , (A1)
nical details are identical to these applied in the solid phase J7ij (=0 D)

simulations(see text, earlier in this sectibnhe good agree-
ment of the numerical results with the analytical predictionwhich is easily derived from Egq$9) and(11). The first term
is, again, evident. in the square brackets on the right hand side of(Bd), the
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configurational term, is composed B{N—1)/2 terms, each  [uUnlike the functionp(R?*,R#), the functionp(R*,R¥) suf-
corresponding to one distinct pair. Each of these terms cafers a discontinuity aR*?=a and (if »**=1) R**=b, and

also be written as therefore the transition between the two sides of &%)

s should be made with some caution. The integral in @¢)
dlexp(— ¢(R)/kT)] [if T d and in the following expressions of this type should be un-
y#a,B

j AR dRP R

dReA Zc derstood as if the delta functions reproduce the finite values
p(a+) andp(b—). In practice, when we evaluate expres-
5 Ri"ﬂRj"ﬁ sion (A5) by a numerical computation, this mathematically
X exp(— 52 #(RY )/kT)“W, (A2)  delicate point becomes unimportdniWhen we sum all
(r0)7{eh) N(N—1)/2 terms corresponding to all pairs of atoms, we

where =5 . (.p represents the sum over all paifys), obtain

distinct from the paifaB). Note that the limit{ } ={0},
was already taken at this stage. o KT R{PRP g

If we now substitute an approximating potentig{r), in o =T > WA : (AB)
the Boltzmann factor, exp- ¢(R*)/kT), and take the (ef)
“athermal limit” (see definitions in the last paragraph of ) ) o
Sec. 1), we find the Boltzmann factor converging to a step  1he second term in E¢A1) is known as the kinetic term.
function, where the discontinuitfrom zero to unity occurs It appears even wheg=0, i.e., for an ideal gas, and it
atR*#=a and an opposite discontinuitfrom unity to zerg contributes the ternNkTg;; /V. _To obta_ln this contribution
occurs aR*A=b if the pair( ) is tethered. The derivative We start from Eq(12), from which we find that
of a step function is just the Dirad function. There-

fore, in the “athermal limit,” the function N ade(2[ n]+[1])}

) ) 7 [(N/2)=1]
d[exp(— ¢(R*¥)/KT)]/dR*, which appears in the integrand in am; 2 {det(2[»]+[1]);} I :
expressionA2), turns into (A7)

dexp(— ¢(R*#)/kT)] L [8(R*—a)— p*BS(R*F—b)] When the explicit expression for def(g]+[1]) is written

dR*A down and the derivative with respect tg; is taken, it is
trivial to see that
=A%, (A3)
where v*#=1 (v*#=0) for a tetherednontetherey pair. N =Ng;, (A8)
The remaining part of the integrand, 97ij {n=0
aBRap ; ; ; ;
[iJ’ M & exr{ S ¢(R75)/kT)HRI R which when substituted in E4A1) yields
Zcl) yrap (y8)F(ap) Re# -
of"*= —NKT3;; /V. (A9)
~ . . R¥RY
=p(R*RF)——— A4
P(R™RY) R*8 ' (A4) If we now combine Eqs(A6) and (A9), we obtain expres-

sion (14) for the stress tensor:
is a smooth function, including &*#=a or R**=b. Since
only the values of this function aR*’*=a and (if »*#

, . - R¥PRP
=1) R*f=p are relevant, the function might be replaced by o= afj"”f+ gh.met'c: — k_T > —1-Ak) + NG (-
any other function whose values at these points are the same. Vo (B Re#
For a<R*f<b, the values ofp(R% R?), coincide with the
values of the function 2. Tensor of elastic constants

L 1 For the tensor elastic constants, we have
P(R*,R?) = Z—exp(— $(R™)/kT)
C

c 9°F
R ijkI:—a g
xf I1 dRVexp( - > $(RYKT|, i O =0}
ik oFied KT[ 1 0%Zc 1\20Z¢ dZ¢
which is the probability density to find atom in R* and V| Zc anijany (Z_c) I Omalliy—ror
atom B in R?, since in that regiors(R*?)=0. We thus find (A10)

that, for “hard” potentials, expressioA2) becomes

RBRAB RBRB If we use Eq.(11), the first of the two terms on the right-
Ba ARBl 0 AafnRa B [ T Aap hand side of Eq(A10) splits into four termgwhich for the
dR*dR A*Pp(R% RF) AP ), _ whi
RA Re# sake of later reference throughout this derivation we denote
(A5) by T1.1, T1.2, T1.3, andT 4, respectively
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T 1 ZeXp( <Eﬁ> ¢<[R%5Rﬁﬁ<5mn+2nmn>]1’2)/kT)
- H dR?| J -

V Zc i Ik

| aexp(;> ¢([RﬁfRﬁ”<5mn+annn“’-')/kT) , aexp(;> SRR (Ot 27mn) IIKT
af3 apB
—+

I 7 In;j I

&2

2 SRR (Snt 2 7mn) IYAIKT (A11)

+— )
I7;j F777k| (aB) (=0

The most challenging term in expressi@hll) is, of course, the first ond;;.;. If we perform the two derivatives in this
term, it yields the following three termsvhich we denote by, 1.4, T;.4.5, andT,_; 3, respectively.

ReB
E ¢'(R*) aﬁRaﬁRaﬂRaﬂ
(B ( Raﬁ) T paBy3 Ri

N
Hldfv{—exp( 2 &( 75)/kT)
b2

——exp( 2 qS(RV’S)/kT)

ReB8
E¢( )

" Raﬂ
x| >, il )R“BRO‘BR PRF
(aB) R

(aB) (R*P)?

s 0 ¢< “B> QBRQ,}]

]

1 2
— _ )
kT) exp( <%> H(RY )/kT)

(A12)

[Note that in Eq(A12) the limit { »} ={0}, at whichJ=1, was already takgnFollowing the derivation of the configurational
stress tensdiEqg. (A5)], it can be easily shown that in the “athermal limit,” the teff_,_; becomes

R¥PRPRPR?
_ E i AB ). (A13)
(aB) ( Raﬁ) 3

A straightforward generalization of this derivation shows thatribadiagonalelements in ternT,_,_3, i.e., those terms for

which (ap) pairs are different in the last two sums, give
afRafRYdRYd
E MAHBAW ) (A14)
(ap) (yo)#(ap) R*PRY?

Note that the nondiagonal terms include both three-particle tefmg8) and{ay)] and four-particle term§{aB) and{ys)].
We were thus left with thd;_;_, term, and with thediagonal elements of thél';_; 3 term, which may be written in the
following combined form:

Let us now look at one of these expressions, corresponding to théqajr After performing the integrations over the rest
of the coordinates|R?| y# a, 8}, we are left with

R“BR“BRaﬁR“ﬁ
(R*P)2

N
I1 dﬁV[ exp( - ¢<RV5>/kT) > {(df’(R“’g)—d) (R$)2IKT)
y=1 (y6) (aB)

apnaBpaBpaB d? apB
f R dRFD(R", RB\R RRPR™ d exp(— ¢(R*P)/KT)] (AL5)
(R d(R7#)?

[P(R%,RP) is defined in Eq(A4)]. At this point we change the variables of integration frdiR® dR? to dR*A dR", where
R*#=R*— R, and then changdR*? to spherical coordinateR*?)° 1 dR*Ad)*#, whereQ*# is the solid angle aperture
aroundR*#, andD is the dimensionality of the system. We also note that the teRISR“R¢#R*)/(R*F)? in Eq. (A15)

can be written asl'—\"“ﬁ)zfI k,(Q“ﬁ) wherefj;, is a functlon of the solid angle alor{e‘nr instance, for a two-dimensional

system, fyy= oS €, fyyyy—sm Q,  fry fuan=T fyyx=COS QSN €, etc). Thus Eq.(A15) takes the form
d?[exp(— #(R*P)IKT)]

d(Raﬂ)Z

xyxy~ Lyxyx Doy ™

f dR® dQ“BdR“ﬁ|(R“B)DHB(FEQ,ﬁﬁ)fijkl(ﬂaﬁ)

When integration by parts is performed over the varid@®fté, this expression becomes
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J[(R*)PT1p(R*,RF)] dlexp(— ¢(R*)/KT)]
IR*P dR*8

=—f dR*dQF £y, (QP)dRP

. 9 RaB D+1R ﬁalﬁﬁ
= f dR* anﬁ fijk|(9aﬁ)dRaﬁ [( ) p( )] Aaﬁ. (A16)

IR
|

(Integration is taken from O t® and, therefore, the boundary JRPY ReB.RB

terms vanish. The second expression in EGAL16) is ob- T R

tained for the “athermal limit” using substitutiofA3). In IR R*PRY

order to bring this expression into a more useful form, we o . o .

perform the derivative in EA16): With this identity, we find in a straightforward manner that

I P(R*R*,0P)]

dL(R*#)°HIp(R R, Q)] =p(R* R, Q) X

IR4B R e

1 ﬁaﬁ.ﬁ)’ﬁ

— af\DH/ pa apf af [ 4 By _
(D+1)(R*#)Pp(R® R, (1) k7 (R s

+ ( Raﬁ)DJrla[B( ﬁa’ Raﬁ’Qaﬁ)]

(A17) In this expression the indices and 8 appear in an asym-
IR metrical way. If we interchange their roles, we obtain the
following symmetrical form:
After the first term on the right-hand side of EGAL7) is

substituted into Eq(A16), we may switch back to the origi- JP(R*,R* 0*F)] p(R*R* )
nal integration variablesiR* dR?, and, again, use substitu- IRP T —2kT
tion (A3). In fact, we obtain an expression which is identical
with expressionA13), except for a prefactorl{+1). Thus 2 REY Ra8.RYP
P . . . X ! -
their joint contribution is s ¢'(R) RBRYB
ROPRIPRIPR(P Reb. R
—(D+2 —L " A®F).  (A18 +¢'(R)————1.  (A20)
( )<HEB> < (RQIB):‘; ( ) Ra,BRay

We now need to substitute this last identity into the integrand
of Eqg. (A16), switch back to the original integration vari-
ables,dR*dR¥?, and use transformatiofA3), to finally ob-
tain that the contribution of the second term in E417) is

The task imposed by the second term in E/L7) is
slightly more complicated: we need to evaluate

I p(R*,RP)]/9R*E. We remind the reader tha(R*,R?) is
given by Eq.(A4). The dependence g on R*# in this

expression comes from the exponent B 1 RiaBRJq,eRgﬁRlaﬁAaﬁ
2 (ap) yiap (ReP)?
R”® A19 I B
(75#2@!?) #(R7) (A19) RaB. R*Y Re8. RYB ) } >
AYY+ APY .
ReBR®Y ReBRYB
appearing in Eq(A4). Instead of the set of variable§§27|y (A21)
=1,... N}, we may use the set ahdependentariables

{ﬁ“,ﬁy— §“=§7“|y:1, ... N,y# a}, to express the terms We still need to treat term$,.,, T,.5, and T4 in Eq.

in exponent(A19). Since we look for the derivative of (Al1l), and the second term in EGA10). TermT,., is iden-
P(R*,RP) with respect toR*? (the size of one of the vari- tical to the configurational stress term, except for the multi-
ables,R%?), we need to find which of the terms in expressionPlicative termaJ/dny which appears in the former. There-
(A19) actually depend on this variable. One can easily find®'€: USing resultA8), we find that the contribution of this
that the terms included in the sgp(Rf")|y=1,... N;y term Is

#a,B} are the relevant term&F” andR** are two of the NS (A22)
edges of a triangle whose vertices are the positions of atoms

a, B, andy. It is not difficult to show that if&the length of  gimilarly, the T, 5 term yields

R is slightly changed, while the length & is fixed, .

then the change in the length of the third edgé?, obeys NG o™ (A23)
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The second term in EGA10) is obviously equal to To this contribution we need to add terii#s14), (A18), and
(A21) to obtain the following final expression for the tensor
kT RiPR Aok of elastic constantél5):
ViGap \ R
+N§j; } 2NKT
ijki =~y %l Ik

REPRPP
x4 AP ) +NS . (A24)
(ap) \ R*P

Finally we need to differentiate expressiohi7) with respect
to »y, in order to calculate terr;_,, which is given by

kT RYPRWPRIPRP
+—{(D+2) 2 O Tk T yap
\ (aB)

(R*F)*

afpappaBnaB
KT 42 KT —% > 2 < RR RCR ;kz R pas
TN amgomal, —_v{N 3ij 01— 2N Jj; Sji }- (aB) y#a.p (R*F)
{m}={0}
(A25) R . R R
RaB.RaY RaB.RYA
We thus find that thgoint contribution of these four terms X\ Sapnay “Y+ WAM l>
Eqgs.[(A22)—(A25)] to the expression for the tensor of elastic RYR RYR
constants is
afpap aBpaf
2NKT KT ROPR + S <%Aaﬁ> D <Rk aRB' AaﬁH
—v Gty (aEm WA (@B \ R @B\ R
aBpap afpafpyipyd
% 2 Rk R| Aaﬁ . (A26) B z Ri RJ Rk R| AaBAy5 .
(aB) \ RP (aB) (v 7(ap) RPRY®
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