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Abstract

Living cells need to impose inner order, transport organelles from site to site inside the cell,

withstand external pressures and propagate themselves to different locations. All of these

mechanical needs are supplied by the cells cytoskeleton. One of the components of the

cytoskeleton is filamentous actin (F-actin). The two ends of F-actin are distinctly different,

making it a polar rod with a ”plus end” and a ”minus end”. Actin defines and preserves the

cells shape and allows for cell motion. Actin in the cell has many accessory proteins. One

of the more interesting ones is Myosin II, a molecular motor which can convert chemical

energy into mechanical work and progress along F-actin towards its plus end. These motors

can aggregate and move along more than one filament simultaneously, causing their relative

movement.

In-vitro experiments have shown that mixtures of F-actin and myosin II motors can

generate different patterns, including bundles, asters, and networks. The dynamics allowing

this organization are not yet fully understood. In this work, we present a coarse-grained

molecular model for systems consisting of myosin II motors and actin filaments. Within

this model, the filaments are represented as flexible rods while the motors are modeled as

”mechanical units” that can bind to, exert forces, and move along the filaments. Thus,

the approach balances the need for molecular details with computational simplicity in a

manner that allows for simulations which mimic in-vitro experiments. We use the model

to study, by means of molecular dynamics simulations, the self-organization behavior of

the system. Our simulations reveal a very rich phase behavior with several steady-states

(different types of bundles and asters both isolated and interconnected) and different global

layouts of filaments and motors determined by the length of the filaments and the number of

motors per filament, some of which have been observed experimentally. They also provide

a visualization of the dynamics leading to these structures and shed light on the role played

by the myosin II motors as active linkers which can bind to several filaments and (due to

their non-processive nature) switch between them.
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Chapter 1

Introduction

Living cells need to impose inner order, transport organelles from site to site, withstand

external pressures and propagate themselves to different locations. All of these mechanical

needs are supplied by the cells cytoskeleton [1]. The cytoskeleton has three main members:

microtubules (MT) built from tubulin, actin filaments (F-actin) built from globular actin

(G-actin) and intermediate filaments. Defining the mechanical function of each cytoskele-

ton component coarsely: MT’s enable intracellular transport, actin defines and preserves

the cells shape and allows for cell motion, and intermediate filaments provide mechanical

strength and resistance to shear stress [2]. The dynamic aspects of the cytoskeletons func-

tions are achieved by their ability to polymerize and depolymerize (treadmilling) and by

the action of molecular motors, which are specialized proteins that convert chemical energy

(e.g., ATP hydrolysis) into mechanical work. This energy is used to fuel the motion of

motors along the filaments, allowing intracellular transportation and cell motion.

MTs and actin filaments are polar; the two ends of each of their building blocks (tubulin

and G-actin) are distinctly different, and in the filament they are connected head to tail,

defining the directionality of the filament. The direction in which the motors propagate

along the filament varies from motor to motor. Myosin II motors, for example, “walk”

towards the so called plus-end of actin filaments, while myosin VI move in the opposite

direction towards the minus-end [3, 4]. Actin filaments serve as the building blocks for

larger structures in the cell. These large constructions include networks and bundles which

are formed when filaments are cross-linked to each other [5, 6, 7, 8]. The cross-linking

of actin filaments can be achieved by actin binding proteins, such as fascin (that binds

filaments in a parallel manner) and spectrin (that creates a web like structure), which are

static linkers. Motors can also serve as linkers [9], although not static but dynamic. Muscle
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cells, for example, consist of contractile bundles which are formed by the association of

actin filaments through both static linkers and myosin II motors.

Many experiments have been conducted on the cytoskeleton leading to a better under-

standing of the biological functions of the cytoskeleton, its mechanical properties, and its

biochemical regulation inside the cell [10, 11]. Another aspect which has also been exam-

ined in these experiments is the ability of the cytoskeleton to self-organize under the action

of the associated motors. Because of the complexity of the self-organization process and

due to the large number of cellular components which may be involved, these experiments

are done in-vitro where parts of the system can be isolated and the major participants can

be identified. Introducing only filaments, motors and ATP, different cytoskeleton patterns

have been experimentally observed over the past years[12, 13, 9, 14], including asters (star

like shapes with filaments plus ends bound by motors at the center of the ”star” and the fila-

ments radiate outwards), vortices, rings, networks and bundles. All these phenomena occur

in the presence of molecular motors and ATP. The motors produce the forces that change

the shape of the system. Self organization occurs only in the presence of multi-headed mo-

tor units (mini-filaments), in contrast to single motor proteins which can bind to only one

filament, and therefore cannot create relative motion. [15]. The minimal requirement for

relative movement is two independent units, each able to connect to a different filament

with at least one of them active (able to propagate along a filament). The contraction and

relaxation of the sarcomeres in muscle cells, for instance, is achieved by mini-filaments of

myosin II motors, each of which consists of about 300 myosin heads.

Actin filaments and MT’s form different meta-structures in the cell. Actin is known

to create bundles and gel-like networks which are mainly located beneath the cell cortex.

MTs usually remain as single long rods, most of which are nucleated in and grow out from

centrosomes to form aster-like structures [1]. Asters have also been observed in controlled

self organization experiments with both actin and MTs. However the formation of networks

has been reported only in experiments with actin, while spirals have been observed only

with MTs. The fact that these two systems exhibit some different structural patterns is not

surprising given the very different elastic properties of actin and MTs. MTs are stiff with

a persistence length 1 on the order of a mm while F-actin is much more flexible with a

persistence length of only a few µm [16, 17] Another possible reason for the differences

1Persistence length measures the distance along a filament after which the tangent vectors of two points
become uncorrelated[2]. This means a filament with a length much shorter than its persistence length will be
quite straight, while a filament longer than its persistence length will have more convoluted shapes.
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in the in vitro self-organization behavior of these systems is the difference in the motors

which drive the process. Kinesin and dynein, which connect to MTs, are processive motors.

This means that once a motor is connected to a MT, it progresses along it and only rarely

disconnects before reaching its destination. On the other hand myosin II, which binds to

F-actin, is a non-processive motor, that spends only a short time traveling on the filament

before disconnecting from it. This difference in processivity leads to systems with rather

different dynamics. Processive motors move smoothly along their filaments, while non-

processive motors progress in a stochastic, noisy, manner. The difference in processivity

also seems to be the reason why non-processive motors are usually found in aggregates of

many motors., while processive motors usually act individually or in small groups. In large

aggregates non-processive motors become effectively processive, because the probability

of having at least one motor head connected to the filament is high[18]. Differences in

processivity and aggregate size also give rise to a difference in the speed of progression.

Non-processive aggregates of motors move faster, as each motor head pushes the motor

forward and then disconnects allowing other motor heads to connect to the filament. In

contrast, processive motors stay connected to the filament, preventing the access of other

motors to the same site. In-vitro experiments show that kinesin proceeds at a speed of

about 0.8µms−1 whereas myosin II, with approximately 100 heads, proceeds at a speed of

8µms−1[18].

Self organization of motors-filaments systems has been studied using different theoret-

ical approaches. As these systems are structurally very complex, it is impossible to model

them in full atomistic detail. The existing models, therefore, are based on phenomenolog-

ical, coarse-grained, descriptions which address the problem on larger length- and time-

scales. In these coarse-grained (CG) models, the interactions between the motors and the

filaments are represented in a simplified manner which is based on microscopic consid-

erations and leads to the macroscopically observed active behavior. One of the first such

“mesoscopic” models was introduced by Nakazawa and Sekimoto who used continuum

mean field kinetic equations to describe the one-dimensional dynamics of filaments mov-

ing relatively to each other due to the presence of cross-linking two-headed myosin motors

[19, 20]. A closely-related approach was used by Kruse and Jülicher who found that the

interactions of parallel filaments can lead to instability and contraction of bundles [21, 22].

Liverpool and Marchetti [23, 24] have generalized this approach to higher dimensions and

studied the phase diagram of both homogeneous and inhomogeneous filament distributions,
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taking excluded volume effects into account. More recently, a new phenomenological ap-

proach was proposed, treating filaments-motors systems as a viscoelastic polar active gel

[25, 26]. In these generalized hydrodynamic theories, the dynamics is inferred from sym-

metry considerations [27, 28, 29, 30, 31] or by coarse-graining the mesoscopic kinetic equa-

tions [32, 33, 34]. Several inhomogeneous structures have been identified as steady-state

solutions of the macroscopic equations, including asters, vortices and spirals. The same

structures have also been predicted by Lee and Kardar [35], who used a somewhat differ-

ent approach to derive two coupled dynamical equations for the filaments orientation field

and the motors density. They also predicted the existence of arrested coarsening, a state in

which areas in the system contain actin filaments devoid of motors. The model was later

extended by Sankararaman et al. [36] to include populations of bound and free motors, as

well as an additional coupling of filament orientation to motor gradients.

Simple phenomenological descriptions usually suffer from severe limitations when ap-

plied to complex systems involving many interacting participants. Molecular Dynamics

(MD) molecular simulations can cope more effectively with the wealth of phenomena ex-

hibited by such systems. For most biological systems the major problem with molecular

simulations is related to the enormous computational cost required for a fully atomistic de-

scription of the system, which makes such simulations limited to very small length- and

time-scales. For large-scale simulations, the system must be coarse grained to allow the

emergence of results in a reasonable amount of time. Successful CG models use simpli-

fied representations of the participating molecules and the interactions between them, but

they retain the fundamental physics which is responsible for the observed phenomena. (The

process of designing such a model serves as an excellent “exercise” for identifying the ba-

sic physics of the system in question.) CG models have been applied to many biological

systems, including biological membranes, trans-membrane proteins, and other biological

complexes [37, 38, 39, 40, 41, 42]. They have been less frequently used for studies of self-

organization of cytoskeletal filaments by molecular models. Nedelec and co-workers used

this approach to investigate the dynamics in systems consisting of MTs and kinesin-like

motors. In those simulations the MTs were represented as inextensible elastic polar rods

and motors were modeled as small mechanical machines that walk over the MTs, bind them

to each other, and lead to their relative movement. Using this model they managed to repro-

duce asters and vortices [43], study aster formation dynamics [44] and examine the effects

of changing the probability of motor disconnection from the end of a filament [14]
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In this paper we present extensive MD CG simulations of systems consisting of actin

filaments and myosin II molecular motors. We study the self-organization behavior of the

system and explore its steady state morphologies, as well as the dynamical evolution that

leads to the formation of these structures. Generally speaking, the dynamics of the system is

rather noisy, which can be attributed to the non-processive nature of myosin II motors which

constantly bind to and unbind from actin filaments. Our simulations show how the motors

are involved in the association, binding, and relative sliding of filaments which may lead to

the formation of thick bundles. Another commonly observed steady state structure is asters,

which over the course of time may fuse with each other to form bigger asters. Many of these

asters tend to have four orthogonal arms (each of which may consist of many filaments) -

a feature also observed in several experimental studies. Asters of long actin filaments may

be connected to each other to form a mesh which eventually collapses. Our results, which

agree well with existing experimental data, illustrate the richness of the phase diagram of

myosin II-actin systems and reveal the role played by the multi-headed myosin II motors as

active linkers.

The thesis is organized as follows: In chapter II we present the methods used to build

the simulation emphasizing the biophysical model, computational design and the values

assigned to important parameters. Chapter III deals with our results, demonstrating different

types of bundles found, interesting aster features, and insights into the influence of the

motor-filament ratio on the resulting structures. The last chapter summarizes important

results, discusses some possible hypotheses and presents possible future work.
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Chapter 2

Materials and Methods

This chapter is organized as follows: first, the biophysical model of the actin-myosin sys-

tem is presented. It provides a layout of the physical equations that depict the essence of the

system while maintaining computational feasibility. The second section presents the imple-

mentation of this model, introducing the problems we had to deal with and their solutions in

our simulation. This section also introduces our graphical tool for displaying and analyzing

the data. Last is a section presenting the parameters, explaining the considerations behind

their assigned values.

2.1 The Biophysical Model

We aim at the simulation of a molecular system that includes water, actin filaments, ag-

gregates of myosin II motors, the static linker protein fascin, an excess of ATP, and ADP

[9, 5, 15]. The spatial and temporal scales of the phenomena that we simulate are on the

orders of micrometers and minutes, respectively. On the other hand these phenomena arise

from ATP hydrolysis, which take place on the nanometer and picosecond scales. Thus, the

system is far too large and complex to be studied at the full microscopic level. It needs to be

drastically simplified by hiding much of its complexity while still keeping its most essential

characteristics. In this section we provide a formal description of our model along with an

informal description of the decisions we made regarding the representation of the system.

The first major decision we made was to explicitly represent only two components of the

system, namely actin and myosin. The other components will be considered only implicitly

by their effect on the system’s behavior. The presence of solvent is implicated by allowing

non-bound myosin motors to diffuse and by over-damping force-driven movements. ATP

hydrolysis is represented by the ability of myosin motors to move along filaments which
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they are connected to. The presence of fascin is represented by rendering the actin filaments

as stiff as bundles of fascin linked filaments. Thus, the second major decision was to repre-

sent static, fascin linked, bundles of actin filaments as single units. Along this manuscript

we regard them as ”filaments” to avoid confusion with the dynamic, ATP-hydrolysis driven,

bundles whose formation is an emergent characteristic of our system. Single biological fila-

ment (which are the constituents of the “filaments”) will be referred to as F-actin. Similarly,

aggregates of myosin motors are represented as single motor units, with the number of mo-

tor heads and the total length of the motor aggregate defined by parameters. Finally, we have

decided to simulate the actin-myosin system as pseudo two dimensional, which implies that

our model does not include any excluded volume effect. This way, the common situation of

two filaments lying one on top of the other is represented by two crossing filaments that do

not interact.

Actin filaments are represented by linear chains of nodes. Each pair of neighboring

nodes represent a segment of the filament with predefined length l f ,0. Thus the length

of a filament is determined by its number of segments, with small variations due to the

forces exerted on it which slightly change the lengths of the segments. The filaments are

polar having plus and minus ends (see fig. 2.1(a)). The geometry and elastic properties

of the filaments are governed by two energy terms: The first applies a Hookean spring

[45] between each pair of neighboring nodes, keeping their mutual distance close to the

predefined rest distance.

E1 =
1
2

k f (xi+1− xi− l f ,0)
2 (2.1)

where k f is the filaments spring constant and xi is the coordinate of the ith node (the vector

notation is omitted for brevity). The second energy term, which represents the bending

rigidity of the filament, assign the following energy term with each node (except for the two

edges nodes) [2]

E2 =
1
2

A(2xi− xi+1− xi−1)
2, (2.2)

where A is related to the filament’s persistence length, ξ , by A = (ξ kBT )/[2(l f ,0)
3], where

T is the temperature and kB is Boltzmann’s constant. The total energy of the filament is the

sum of the above two terms for all the segments and nodes, and the associated force acting

on the ith node is calculated by fi =−∂E/∂xi.

In our model actin filaments do not interact directly. The only way a filament may

affect another one is through forces applied on them by motors that are bound to both
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(a) Levels of abstraction of a F-actin

(b) Motor illustration (c) Abstract representation of motors and fila-
ments

Figure 2.1: Elements of the simulation. Figure (a) illustrates the process of abstracting the repre-

sentation of a filament in our system. The first stage is a biological system, with G-actin bound to

each other to give F-actin, and fascin binding the F-actin into bundles. The second stage shows the

filaments represented by our simulation, which do not explicitly contain fascin, G-actin or F-actin.

The filament is represented by an array of nodes connected by springs. These filaments are polar,

having a plus end, marked by a plus sign, and a minus end, marked by a minus sign. The rest length

of each of the springs is l f ,0 where f stands for filament. Filaments with no bending moment applied

are straight. The third stage is that shown when visualizing the simulations results. It is a long rod,

with a minus (empty black circle) and a plus (full black circle) end.

Figure (b) shows our motors. Each motor is defined by two nodes connected by a spring. Motors

have many heads, with nodes having nh heads each, all able to connect to a filament and progress

along it.

In figure (c) we present a more abstract way of depicting motors and filaments. The motor is a short

red rod. The filament is a long black rod with two ends. We denote the plus end with a full black

circle, and the minus end with an empty black circle. This figure illustrates the proportions of a

motor and a filament, with filaments being substantially longer than motors. The blue arrow marks

the motors direction of progress, which is always towards the plus end. dc marks the maximum

distance from which a motor can connect to a filament with one of its heads. Note that the distance

dc isn’t in proportion to the rest of the figure.
8



of them either directly or indirectly. Further, due to their large size the filaments do not

diffuse significantly in the relevant time scales and, thus, the simulations do not include any

treatment of their diffusion.

Motors are meant to represent a biological motor aggregate which is a long rod with

an area at its middle with no heads, and with heads originating from all the rest of the

aggregate. Our simulated motors have two nodes from which motor heads originate and a

Hookean spring between them, with a length of lm,0, with no heads emanating from it, to

encompass these details. The energy of this spring is calculated in a manner similar to that

used when defining a segment of a filament.

E =
1
2

km(xi+1− xi− lm,0)
2 (2.3)

Where km is the motors spring constant. Every motor node has nh motor heads originating

from it (fig. 2.1(b)). Each of these heads is represented as a Gaussian spring (similar to a

Hookean spring but with no rest length) with a node at its end, which is able to connect to a

single actin filament. The energy of the motor heads spring is calculated in the same way as

the spring between the two motor nodes (see eq. (2.3)), only with a different spring constant

kh and with no rest length (simplifies motion calculations of motor nodes not connected to

filaments). As an aggregate is cylinder shaped, there are heads at 1800 to each other which

are therefore unable to connect to the same filament. We included this feature by specifying

a maximum number of heads with which a motor can connect to a filament, denoted as

maxh.

Once connected, a motor head starts advancing towards the filaments plus end. This

motion is the main dynamical feature in the system, moving filaments relative to each other.

A motor head has a characteristic speed v0, which is the speed at which a motor progresses

along a filament while no external forces are applied on it. The projection along the fila-

ments axis, faxis, of forces applied on a motor head, causes its velocity v to change as shown

in fig. 2.2 and defined in the following equation [46]

v =


2v0 faxis ≤− f0

v0 · (1− faxis
f0
) − f0 ≥ faxis ≤ f0

0 faxis ≥ f0

(2.4)

Note that due to the viscosity of the solvent, the forces do not cause the motors to accelerate.
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Compatibility with the simulated biological system dictates that velocity may not exceed

2V0 and cannot be negative, that is the motors may stall but they never move backwards

[46].

(a) Different scenarios lead-
ing to changes in the motor
heads speed

(b) Motor head speed vs force

Figure 2.2: Figures illustrating the effect of force on the motor heads speed, as defined in equation

(2.4). Figure (a) shows three different scenarios of a motor traveling along a filament. In these

diagrams the length of the arrow shows the speed at which the motor head is proceeding towards the

plus end (full black circle). In the uppermost schema the spring connecting the motor to the filament

feels no force and progresses at speed v0. The middle schema presents a case in which the spring is

pulling the motor head forward increasing its speed. A motor head being slowed down is shown in

the bottommost diagram.

The graph in figure (b) shows the speed of a motor head as a function of the force applied. The

function appears as equation (2.4). As can be seen there is a maximum speed of 2v0 if the force

pulling the motor head forward is equals to or greater than − f0. If the force opposes the progress of

the motor head, its speed declines until stalling when the force equals or exceeds f0.

Motors cause the motion of filaments by transferring the force Fmotor−head applied on

motor heads onto the two filament nodes on either side of the heads Fi (i = 1,2 denotes the

first or second filament node). The force felt by each filament node is proportional to its

distance li from the motor head as follows: Fi = Fmotor−head

∣∣∣ l f−li
l f

∣∣∣ where l f is the current

length of the segment between the two nodes. This equation implies that the node more

distant from the head will feel less force (see fig. 2.3).

Motors can be found in one of two states - connected to or disconnected from filaments.

If the distance between a motor and a filament is less than dc (see fig. 2.1(c)) it has pcon

probability of connecting in each simulation step. Once a motor has connected to a filament,

it has a probability of pdis to disconnect. The disconnecting probability, which depends on

10



Figure 2.3: A force applied on a filament by a motor head. The red line denotes the motor, and the

dashed orange line is the spring connecting the motor to the filament. The black rod is a segment

with a filament node on each side depicted as blue squares. The distance of the motor head from

each node is denoted li and the length of the segment between the two nodes is l f . The forces applied

are marked by arrows, with the forces size proportional to the arrows size. The closer the node to

the motor head, the larger the portion of the total force exerted on this node. The projection of

fmotor−head on the filaments axis faxis (which determines the motor’s velocity of propagation), is also

shown.

the force f exerted on the motor, is given by (see fig. 2.4)

pdis =


1 f >

√
f 2
dis−2khKBT ln(pmin−dis)

pmin−dis ·Exp
(

f 2− f 2
dis

2khKBT

)
fdis < f ≤

√
f 2
dis−2khKBT ln(pmin−dis)

pmin−dis f ≤ fdis

(2.5)

where pmin−dis is the minimum disconnection probability possible in our system. This

probability is applied when only a small force is felt by the motor head.

Our system is over damped [11], meaning there is no acceleration in the system. There-

fore the speed at which nodes move is proportional to the instantaneous force they feel:

vi =
Fi

γ
, (2.6)

where γ is the drag coefficient of the node (either filament or motor node). The drag coeffi-

cient is different for motor nodes and filament nodes (see table 2.2).

Finally, the size of the step taken by each node is determined by their velocity as follows:

∆xi = vi ·∆t (2.7)

Where ∆t is the size of the time step in our simulation. For motor heads a diffusion factor
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Figure 2.4: Graph showing the change in the log of disconnection probability vs the force applied

on the motor head. This is a graphical representation of equation (2.5), and it shows the growth in

pdis once the force exceeds fdis, until a force is reached fsat−prob at which the probability saturates.

has to be added which is determined by the following equation [11]:

∆x2
i =

2KBT ∆t
γm

· rand (2.8)

Where γm is the motor nodes drag coefficient and rand is a random number chosen from a

normal Gaussian distribution. The first part of the equation 2KBT ∆t
γm

is the standard deviation

from the average displacement (which is 0) of a diffusing particle after ∆t time. The random

Gaussian element means that the particles motion isn’t deterministic in nature, rather each

time step it will diffuse a random distance.

2.2 Simulation Implementation

We coded our simulation in Java, as this language allows for fast development and can be

debugged relatively easily. One of Java’s advantages is that it is an object oriented language,

making it possible to split the code into logical parts, i.e. motors and filaments. It also has

powerful editors, debugging tools and performance analysis tools.

The simulation is based on a molecular dynamics model, which splits the overall simu-

lated time into small time-steps ∆t. Each ∆t the forces felt by each motor and filament node

are calculated and then the particles are moved to new positions according to these forces.

Each iteration our system executes the following steps:

1. Check distances between filaments and motors to see if they can connect (whether

d < dc).
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2. Check if motors connects to filaments or disconnect from them.

3. Calculate forces between each two nodes connected by a spring.

4. Calculate speed of motor heads connected to filaments.

5. Calculate movement caused by diffusion.

6. Calculate new coordinates, based on previous calculations of forces, motor heads

speeds, and diffusion.

The boundaries of the simulation are periodic, meaning that filaments reaching the edges

of the simulated area, reappear on the other side. This choice of boundary conditions re-

duces finite size effects which are negligible in experimentally large systems. These bound-

aries can be described by using the following equation: nc← cc mod sd. sd is the size of

the simulation in one of the dimensions, cc is the calculated coordinate and nc is the new

coordinate. This equation promises that: nc < sd. We preferred a more computationally

efficient equation:: nc← cc− sd, which can be used if cc is never greater than 2 · sd. This

is true if we assume that the step size of nodes is much smaller than sd. Not only coordi-

nates need to be dealt with in a periodic system, but also lines connecting two coordinates

demand special treatment. One point worth noting is the calculation of distances between

two nodes. Let us assume a one dimensional periodic system in which one of the nodes has

a coordinate of sd− 1 and the second has a coordinate of 1 (sd >> 1). Without periodic

boundaries the distance is simply dist = (sd−1)−1 = sd−2. In a periodic environment,

this is not the case as the second node’s coordinate may also be seen as sd + 1, therefore

the distance between them can also be 2 as illustrated in figure 2.5. Our system solved this

problem by choosing the smaller of the two distances.

Our simulation is pseudo two-dimensional, meaning that although we use only two axes,

we didn’t implement excluded volume, allowing filaments and motors to overlap as if there

is a third axis. This was done as overlapping of filaments is part of the dynamics necessary

for self-organization. This has it drawbacks, as we can’t simulate motor traffic jams, which

may have interesting effects. A problem we encountered as we didn’t implement excluded

volume was large numbers of motors aggregating at the center of our asters (see Introduc-

tion), many more than physically possible, which meant there were great forces at the asters

center and that most of the simulation was devoid of motors. One work around we found

was to place an upper limit on the number of motor heads able to connect to a filaments plus

end, denoted as max f p. We limited only the number of motor heads connecting to a plus
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(a) Distance without periodic boundaries (b) Distance with periodic boudaries

Figure 2.5: Comparison of distance calculation with and without periodic boundaries, in a one

dimensional system. Figure (a) shows the distance between two points in a system without periodic

boundaries. Fig (b) shows the distance between the same two points in a periodic system. The

distance between the two points, can be measured with the blue circle shifted, as shown by the

dashed arrow, to a position much closer to the red circle, as like on the surface of a ball there are

two paths between two points. Therefore there is a shorter distance between them than in the system

depicted in fig. (a).

end as nearly all motors aggregate there. A motor head which connects to a filaments plus

end after the limit has been reached, is immediately disconnected, as are all other bound

motor heads originating from the same motor, and the motor as a whole is repositioned at a

new random coordinate. Merely disconnecting it without relocation doesn’t solve the prob-

lem, as asters centers are dense with filaments, meaning the motor will stay in its immediate

vicinity and will not manage to diffuse outwards.

Every iteration it is necessary to find the filaments close enough to each of the motors

for a connection to be established. The simplest solution is to calculate the distance between

every motor and filament to see if they are close enough. This process is time consuming,

especially as it is done every time-step. We therefore chose to solve the problem by imple-

menting a grid. A grid splits the simulated area into cells each of which registers all particles

in it. When a motor searches for neighboring filaments, it needs to check only those in its 9

neighboring cells. This solution works well if excluded volume is enforced, as the number

of particles in the cells is limited. As motors and filaments tend to accumulate and as our

system doesn’t implement excluded volume, the number of particles in some of the cells

grows as the simulation proceeds, causing a slow down. We found our system slowed down

by a factor of 2-3 as the simulations proceeded.

Regarding motors diffusion, we noticed that many motors diffuse locally in areas empty

of filaments, resulting in many staying unbound, and wasting dear computational time. This

may be a more exact biological description, but wastes a precious resource. We therefore

decided to change the rate of a motors diffusion as a function of its distance from the nearest
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filament. The greater the distance, the faster the diffusion. This causes all motors to be

drawn towards the filaments, bringing the number of ”idle” motors wasting our resources

to zero. As we have a grid, motors may not know the distance to the closest filament, if

there are no filaments in the 9 cells it searches in. This means there is a maximum radius

in which a motor searches, which we denoted as maxdist (see fig 2.8(b)). For motors with a

distance of at least maxdist from the nearest filament, we placed an upper limit on diffusion

speed, denoted as maxdi f f . Motors close enough to connect to a filament do not receive a

boost. The equation describing the accelerated diffusion is as follows:

∆xcm = maxdi f f × f (dist)× rand (2.9)

f (dist) =


1 dist > maxdist

dist−dc
maxdist−dc

dc < dist < maxdist

0 dist < dc

∆xcm is the motors center of mass, implying that each of the motors two nodes will move

this amount (∆xcm) because of accelerated diffusion. f (dist) is a function which receives

the distance of the motor from the closest bundle and returns a value between 0-1 depending

on how close the motor is to the bundle. The closer the motor to the bundle the smaller the

value of f (dist). rand is a Gaussian random generator. Equation (2.9) is illustrated in fig.

2.6.

Figure 2.6: Graph of boosted diffusion showing the size of the maximum diffusion step as a function

of the distance of the closest filament to a motor. The size of the actual step also depends on the

random number generator as shown in eq. (2.9).

Much data is created by our system, as each iteration the forces and coordinates of each
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node of a filament and motor are calculated as well as the position of the motor heads.

We chose to save the data in its raw form, i.e. we save the coordinates of all motor and

filament nodes. Not all of this data is saved, our simulation creates a file with the coordinates

of all motors and filaments only once every ∆ f rame iterations. This is done as saving

all information would demand much storage space, and in addition it is not necessary to

save all iterations to capture the dynamics. Moreover, it is sometimes easier to understand

the dynamics as a whole by omitting some of the fine details. We represent the data in a

graphical form as shown in fig. 2.7. Filaments are represented as long black rods and motors

as short red rods. The connection of motors to filaments isn’t shown as it is too short and

can’t be seen. Our graphical tool reads the all the files of a simulation sequentially, showing

a film of the simulations results.

(a) Example of full system (b) Only filaments being shown

(c) Only motors being shown

Figure 2.7: Example showing the graphical representation of our simulation. Fig. (a) shows all

the visualized features. The filaments are long black rods with their plus end marked by a full black

circle and their tail marked by an empty black circle. Motors are shown as red rods. The other

two figures illustrate some of the options available for easier analysis. Fig. (b) shows the option of

exhibiting only the filaments participating, while fig. (c) shows the same instance of the simulation

exactly, with only the motors visible.
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2.3 Parameters

The spring constant k between adjacent notes of the actin filaments is dictated by the fol-

lowing stability criterion relating k, to the drag coefficient γ and the simulations step time

∆t:
k
γ
×∆t < 1 (2.10)

If this criterion is disobeyed then the length of the actin segment grows without bound

(rather than being restricted to small variations around the rest length). If the spring constant

is large either the time-step needs to shrink, which causes an increase in execution time,

or the drag coefficient needs to grow, which isn’t a good solution either as it slows the

simulation down. This criterion holds for motors and filaments.

Regarding the spring constant of a filament segment k f , there was another important

factor deciding its value. Each filament segment represents 800nm of the total filament,

which is much longer than a single G-actin. Therefore there is variance in the distance

between the two ends of the segment as the G-actin it represents do not necessarily align

along a straight line due to thermal noise. This effect can be simulated by the springs

constant, defined as follows [11]:

〈R2〉= 2ξ
2
[

exp(−L
ξ
)−1+

L
ξ

]
(2.11)

This equation gives the average length R given L the max length, where ξ is the persistence

length. Using this equation an F-actin with a maximum length (L) of 810nm will have an

average length R of 800nm. In our system this can be modeled well by a spring with a rest

length of 800nm and a spring constant of 0.05 pN
nm . This allowed us to assign a segments drag

coefficient, γF−actin, a value of 9.6e−7 pN·sec
nm and the time step, ∆t a value of 10−7sec.

Simulated filaments containing more than one F-actin have different physical properties

determined by the number of F-actin in the filament. For example the drag coefficient γ f

grows as a function of the number of F-actin, n f , as follows: γ f = γF−actin× n1/2
f . The

reason for the power of 1/2, is that the surface area grows as a power of two of the radius of

a single F-actin, and the drag coefficient is a function of the radius as given by Stokes law

γ = 6πηr[11]. Another parameter which varies with the number of F-actin is the persistence

length ξ , which scales as r4 where r is the radius of the filament, therefore it scales as n2
f ,

as the cross section scales as
√
(r), leading to ξ = ξF−actin×n2

f . [47].

One of the decisions which needs to be made is the size of the grid cells. On the one
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(a) Bad choice of grid cell size (b) Correct size of grid cell size

Figure 2.8: Illustration of the lower bound of the cell size. In both figures the cell is depicted by a

blue grid. The cells the motor checks to see if there are any neighboring filaments are marked by grey

diagonal lines. Fig. (a) shows a case where a motor is close enough to a filament for a connection to

be made, but the filaments plus and minus ends are not in the cells neighboring the motor, therefore

the motor will not know of the filament and will not connect to it. Fig. (b) shows the solution to this

problem. The size of a cell needs to be close to half the length of l f ,0. This promises that even in the

worst case (depicted in the figures), the motor will always know of nearby filaments.

Fig. (b) also shows the meaning of maxdist , i.e. the maximum distance at which a motor checks

if there are any neighboring filaments. This distance is the diagonal crossing two cells (the orange

dashed line).
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hand the bigger the cell, the more particles there will be in each cell reducing its efficiency.

On the other hand, cells which are too small will waste a lot of computational memory for

maintaining all of the cells. Therefore, in most cases, the size is chosen so that most cells

will be populated by one or two particles. In our case there was another consideration which

had to be taken into account and that was the distance between two neighboring filament

nodes l f ,0. Let us suppose we choose a small cell size (see fig. 2.8(a)). It is possible the

filament is very close to a motor but the nodes defining this segment are not in any of the

cells surrounding the motor. Written in a mathematical form, the constraint is as derived

from Pythagoras’s’ theorem:
√

2 · cell size2 > l f ,0/2 (see fig. 2.8(b)). This leads to cell size

of 283nm. To promise that we had a whole number of cells and that we didn’t have too

many cells we chose the size of the cell to be 400nm.

We simulated systems under different concentrations of G-actin and myosin II. All sim-

ulations were initiated with filaments and motors randomly distributed in the system. We

executed each of the different experiments 5 times, each with a different random initial lay-

out of the filaments and motors. Our time step was ∆t = 10−7sec and we ran the simulation

for 16 seconds (unless explicitly mentioned otherwise all times are simulation time and not

real time). We studied the temporal evolution of the system, analyzing the dynamics of the

experiment as it progressed in time.

A technical problem we encountered was that our simulations take a long time to exe-

cute (a few months) and on this scale of time, computers tend to crash/shutdown etc. We

dealt with this, by implementing a backup system. Our simulation writes a backup file,

every ∆backup iterations. The number of iterations cannot be too small, for then the backup

system will take too much time. If we make it too big, we will loose much information on

a computer crash.

We simulate systems containing either a total number of 960 or 1920 actin segments.

The number of segments per filament and the number of motors vary where, in general, the

number of motors per filament will be smaller for shorter filaments and greater for longer

filaments. The data is summarized in Table 2.1.
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(a) Experiment 1, 960 segments in each experiment

number of segments per filament 4 8 12
5 motors per filament 240,1200 — —
∼10 motors per filament 240,2400 120,1000 80,800
∼20 motors per filament — 120,2000 80,1600

(b) Experiment 2, 1920 segments in each experiment

number of segments per filament 4 8 12
5 motors per filament 480,2400 — —
∼10 motors per filament 480,3600 240,2000 160,1600
∼20 motors per filament — 240,3000 160,2400

Table 2.1: Data for both sets of simulations. Columns show the number of segments per filament

(also implicating a different number of filaments in the system, as the total number of segments is

constant). Rows represent the number of motors per filament. The values in each box are the total

number of filaments in the system and the total number of motors in the system respectively.

Table 2.2 summarizes all parameters, there meaning, there values and an explanation or

citation as to why this is there value.
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Name Description Value Explanation
General Parameters
sdx Simulation dimensions, x axis 20000nm 1
sdy Simulation dimensions, y axis 20000nm 1
cell sizex Size of grid cell, x axis 400nm function of

l f ,0
cell sizey Size of grid cell, y axis 400nm function of

l f ,0
∆backup Number of iterations between two

backups
20000 2

∆ f rame The number of iterations between
two frames saved

200000 3

∆t The time difference between two it-
erations.

1E−7sec stability

Filament Parameters
k f Filament spring constant 0.05 pN

nm stability
γF−actin F-actin drag coefficient 6E−9 pN·sec

nm stability
l f ,0 Rest length of spring between two

filament nodes
800nm stability

n f The number of F-actin per simu-
lated filament

3 4

ξF−actin F-actin persistence length 15000nm see [11]
dia f F-actin diameter 19nm2 see [11]
diag G-actin diameter 5nm see [11]
max f p Max number of motor heads which

can connect to a filament plus end
40 5

Motor Parameters
km Motor spring constant 5 pN

nm 6
kh Motor Head spring constant 0.25 pN

nm 7
γm Drag coefficient of motor node 5.5E−7 pN·sec

nm 8
lm,0 Rest length of spring between two

motor nodes
200nm 9

lh,0 Rest length of spring between mo-
tor node and motor head

0 10

nh Number of motor heads on each
node

10 11

maxh Maximum number of heads with
which a motor can connect to a fila-
ment

4 11

dc Maximum distance at which a mo-
tor head can connect to a filament

8nm 7

v0 Motor head speed on filament, with
no external forces applied

6000 nm
sec see [11]

f0 Force at which Motor head stalls 2pN see [11]
pmin−dis Minimum probability of motor

head to disconnect from filament
0.5 after 5nm 12

fdis Force at which probability to dis-
connect is pmin−dis

10pN 13

pcon Probability of motor head to con-
nect

0.0017 14

maxdi f f Max distance a motor can diffuse if
it is distant from all filaments

100nm 15

maxdist Max distance a motor can measure
to a filament

1131nm function of
cell size

Table 2.2: Summary of Parameters. All parameters in our simulation are mentioned, with a short

description, their values and a reference as to why we chose this value. The reference may be

a citation, a reason we elaborated on previously in the text or a number referring to a paragraph

following this table.
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1. The size of the simulation should be chosen so that on the one hand a filaments plus

end will not meet its minus end, because the simulation box is too small and because

of periodic boundaries. On the other hand, it shouldn’t be too large, as this requires

many motors and filaments to achieve a high concentration, which demands much

computational time.

2. The number of iterations between backups shouldn’t be to scarce as this misses the

point of backups, while backups done too frequently cause the simulation to slow

down.

3. The number of iterations between two frames saved should not be too small as it will

slow the execution of the simulation. It can’t be too big as much of the dynamics will

be lost.

4. Choosing the number of F-actin per filament to be 3, means that short filaments are

quite stiff, while long ones are quite flexible, allowing us to understand the dynamics

of different stiffnesses without changing the thickness of the filament.

5. The maximum number of motor heads which can connect to a filament plus end was

chosen to accommodate two factors. The first was to allow as many motors as pos-

sible to leave the filaments plus end emulating some form of excluded volume. The

second was to maintain the structures already formed and prevent them from being

pulled apart by other motors, by leaving enough motors connected at the filaments

plus ends to oppose these destructive forces.

6. Our Motor spring constant was chosen to be greater than the spring constant between

two filament nodes as it is shorter and as myosin II aggregates are thicker and stiffer

than F-actin. Another consideration was the stretch caused by motor heads. The value

chosen for the motors spring constant promises that the spring will not usually stretch

more than 10% of its length (meaning a stretch of 20nm), even if all motor heads are

bound and applying force on the node.

7. We chose the motor head spring constant such that if it connected from the maximum

possible distance the force it felt wouldn’t be greater than f0 (the stall force). The fact

that the spring constant is relatively weak (considering the spring is rather short) also

means that the motor head can proceed without constantly stalling. The maximum

distance at which a motor head can connect is 8nm, approximating the biological
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value [18].

8. Motor nodes drag coefficient was assigned a value larger than that of filament nodes as

motor nodes are physically larger. Another consideration was that the motors spring

is stiffer, therefore a stable system demands either making ∆t smaller or increasing

the value of the drag coefficient.

9. We simulate 20 single myosins in each motor aggregate, which leads to the assign-

ment of 10 motor heads per node. As the length of a single myosin II motor is 150nm

[1], and taking into account the bald area of the aggregate, the length of each motor

aggregate should be approximately 200nm.

10. The rest length of the spring between a motor node and a motor head was chosen

to be 0. This means that when unbound the motor head has no effect on the motors

movement which simplifies the simulation.

11. The number of heads on each node emulates a medium sized aggregate. Limiting the

number of motor heads which can connect to a single bundle has physical justifica-

tion as mentioned above. It also allows a motor to interact with more surrounding

filaments, giving rise to richer dynamics.

12. Myosin II moves forward with steps approximately 5nm in size [18]. To promise a

fair chance the motor will manage to complete a step, we defined a probability of 0.5

that the motor stay connected for every 5nm it proceeds.

13. We chose the maximum force at which the probability to disconnect is 0.5 to be 10pN,

to ensure that if stronger forces were generated the motor would immediately discon-

nect, so as not to cause large distortions of the spring. We didn’t chose a smaller force,

to enable motors to proceed without disconnecting immediately. Another reason is

that during complex dynamic changes, quite large forces are generated, which would

cause all motors to disconnect if the force was to low, leading to a loss of dynamic

features in our system.

14. We would like to have a probability of 95% that a disconnected motor will be able to

diffuse to a distance from which it cannot reconnect to a filament (8nm). The number

of iterations it takes to diffuse 8nm can be found from the diffusion equation < x2 >=

kT∗2∗∆t
γm

therefore ∆t ≈ 30. This leads to the probability equation (1− p)30 = 0.95.

The result is p=0.0017, which means that the probability to connect each iteration is
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very small. This is related to non-processivity of the motors, as it means that single

motors will not manage to proceed large distances along a filament, for once it has

disconnected it will not usually be able to reconnect.

15. The maximum distance a motor can diffuse when distant from all filaments, is not too

big, so as not to move motors out of their local area, while still big enough to allow

them to bind to bundles out of their current reach.
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Chapter 3

Results and Discussion

The analysis of a complex system can be done at different scales. In our system, at the

smallest scale one can watch single motors and filaments. At a larger scale, it is possible to

observe the interactions of a number of filaments and motors. At the largest scale, whole

system dynamics and steady states can be studied. In this chapter we will examine the dif-

ferent features, from the bottom up. The smallest scale features are the stochastic behavior

of our simulations and the relative motion of two filaments. Next we will discuss the cre-

ation of bundles and their different steady-states. After that, aster formation and stability

will be considered, Finally we will show the influence of motor concentrations and filament

lengths and concentrations on the dynamics and steady-states observed.

Figure 3.1: A graph following the movement of a single filament plus end, for the length of a

simulation. The axes are x,y coordinates of the plus end. The line connecting the points shows the

order of occurrence, with two points connected occurring sequentially. As can be seen the motion of

a filament plus end is quite noisy, with changes in direction occurring continuously. Of course the

motion is not entirely stochastic as motors move in a well defined direction.

The smallest scale feature of our dynamics is its noisy nature as shown in fig 3.1. This
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: These figures show some of the stochastic dynamics of our simulation. The blue circle

in (a)-(c) focuses on an area with three plus ends (full black circles) exhibiting the noisy nature of

motors (short red rods) caused by their non-processivity. This area shows motors acting as linkers

intermittently. At first (fig. (a)) only one motor connects the filaments in the area marked by the blue

circle. In fig. (b) 2 motors are acting as linkers between filaments and in fig. (c) all motors have

disconnected due to their non-processivity.

Figures (d)-(f) illustrate the noisy nature of the filaments movement, This movement is marked by

a green arrow. The two filaments start off with their minus ends (black empty circles) overlapping

(fig. (d)). Next the minus ends are separated (fig. (e)) and finally they overlap again (fig. (f)). If

movement was continuous and smooth, the distance between the filaments minus ends should have

increased or decreased continuously. This motion cannot be explained by diffusion as filaments do

not diffuse in our model.
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(a) (b)

(c)

(d) (e)

(f) (g)

Figure 3.3: Relative motion of anti parallel filaments. Figs.(a)-(c) are a schema of anti parallel

motion. In fig (a) two filaments (long black rods) are initially aligned minus end to minus end

(empty black circles), with a motor between them (red rod) progressing towards both filaments plus

ends (shown by blue arrows). This motion creates a force, shown by brown arrows in fig. (b), whose

projection along the filaments axis (shown by dashed brown arrows), moves them until they finally

reach a state in which the motors cannot proceed (fig. (c)).

The snapshots show the sliding caused by motors moving along two filaments simultaneously. The

green and purple arrows points at the two filaments. As can be seen ,in figure (d), they are aligned in

an anti-parallel fashion. Figures (e)-(f) show the direction of motion of both filaments with dashed

arrows. Figure (g) shows a final steady state, in which the motors are connected to the plus ends of

both filaments, and can progress no more.
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(a) (b) (c) (d) (e)

Figure 3.4: Relative motion of parallel filaments, with plus ends in the same direction. The blue

circle marks a motor (short red rod) advancing towards the plus end (green and purple full circles) of

two filaments. In figure (a) the motor can be seen, with a dashed red arrow pointing in its direction

of progress. Figures (b)-(c) display the motor advancing without causing any relative movement

between the filaments it is connected to (the distance between the two colored heads doesn’t get

any samller), as it is doesn’t stretch, therefore applying no force on these filaments. Figures (d)-(e)

show relative motion caused when the motor reaches the plus end (green full circle) of one of the

filaments, ceases to move along it while continuing to progress along the second filament (purple

full circle), stretching and creating a force which causes relative motion. The direction of motion of

each of the colored heads is marked with a dashed arrow of matching color.
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(a) X configuration (b) T configuration (c) V configuration

(d) X configuration (e) X configuration

(f) T configuration (g) T configuration

(h) V configuration

Figure 3.5: Relative motion of intersecting filaments. Figures (a)-(c) are a schema of the three

configurations of overlapping filaments. Fig. (a) shows a X configuration with blue arrows showing

the direction in which the motor progresses, pushing the filaments back until a T configuration is

reached (fig. (b). At this point the motor progresses only along one of the filaments as shown by the

blue arrow, until the motor reaches the plus end of both filaments which then resemble a V shape.

At this stage the motor can proceed no longer and a steady-state has been reached.

Figures (d)-(h) show an example of these dynamics as seen in our simulations. The plus end of the

filaments of interest are marked as purple and green full circles. The initial configuration of the two

filaments is a X. In figures (d)-(f) the two filaments slide along each other. Each of the filaments is

moving towards the other filaments plus end, with directions of movement marked by dashed arrows,

each with its color matching a filament. In (f) the purple filament has reached the green filaments

plus end and ceases progressing along it, transforming the X into a T shape. Afterwards the green

filament continues along the purple filament until it in turn reaches the purple filaments plus end in

figure (h) and now a V shape can be seen. At this point neither filament can progress.
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feature is caused by many factors. The first reason is the influence of thermal agitation

on motors. Another, is the non-processivity of our motors, which connect and disconnect

stochastically. This means that filaments don’t slide smoothly along each other, rather a

motor bound to two filaments will cause a short burst of relative movement, after which

it will disconnect, causing the filaments to disconnect (if it is the only motor connecting

them) or the speed of movement to change (if other motors also connect these two fila-

ments). Figures 3.2(a)-3.2(c) show the non-processivity of motors which connect and dis-

connect stochastically. The noisy influence of myosin II motors has already been studied

in-vitro[48, 45], establishing them as a major source of random noise. This can be seen in

figures 3.2(d)-3.2(f) which exhibit the noisy nature of the filaments movement, caused by

motors. This stochastic behavior hasn’t been mentioned in previous CG-MD simulations of

the cytoskeleton, which is not surprising as most such simulations include kinesin motors

which are highly processive.

Apart from creating a stochastic environment, our motors also reorganize the filaments

layout by moving them relative to each other. The smallest scale of reorganization is be-

tween two filaments which can be aligned in three possible ways, each leading to different

dynamics. The first is if the two filaments are anti-parallel, meaning that the plus ends of

both filaments are pointing in opposite directions. In this case the motor moving along the

filaments towards their plus ends, is moving in two opposite directions, it therefore stretches

and creates a force pulling on both filaments. Figure 3.3 illustrates this feature, with figs.

3.3(a)-3.3(c) showing a schema of a motor and its effect on anti-parallel filaments, and figs.

3.3(d)-3.3(g) showing this feature as observed in our simulations. A second possible align-

ment is two filaments parallel to each other. A motor traveling along them will not usually

cause the filaments to move as the motor does not stretch while progressing along them

(fig. 3.4(a)-3.4(c)). This is the case as long as the motor hasn’t reached the end of one

of the filaments, while still progressing along the second one. In this scenario the motor

ceases moving along the first filament while still progressing along the second one causing

the motor to stretch and apply force on the filaments, giving rise to their reorganization (fig.

3.4(d)-3.4(e)) [19, 49, 50].

A third possibility is that the two filaments are not aligned along a common axis. A

possible state is of the two filaments overlapping, creating a structure resembling an X. If

the two intersecting filaments are connected by motors at only one point, the filaments will

move towards each others plus end, as can be seen in figure 3.5. At first the configuration
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will transform from an X to a T shape, when the motor reaches the plus end of one of the

filaments. The final shape will be a V, after the motor reaches the plus end of the second

filament. This form of self-organization seems to be the method leading to asters and has

been mentioned previously by Nedelec[44]. If the filaments are connected at more than

one point (for example on both sides of the X intersection point), rotational motion may be

observed, resulting in the collapse of the X configuration into a one-dimensional structure

as discussed later on in this chapter.

3.1 Bundles

Over longer periods of time our system is reorganized into several different patterns, the

most basic and simplest of which being bundles. Bundling starts when neighboring fila-

ments are connected by myosin motors which cause them to align parallel to each other and

unite (see figure 3.6 for a possible scenario). Although the linkers in our system are always

myosin motors which are not static, after reaching the plus ends of the filaments, the bundle

created will stay stable, as the motors have reached a point from which they cannot advance.

Figure 3.6: A schema of a thick bundle. The filaments are aligned side by side with the motors

(short red rod) concentrated at their plus ends (full black circle).

Bundles linked by myosin can be found in three different forms in our system. The first

type is thick bundles. These bundles aren’t longer than a filament, but they are much thicker.

The filaments are arranged alongside each other, with all filaments having the same polarity

as can be seen in figure 3.7(d). The simplest dynamics leading to thick bundles is shown

in figures 3.4(d)-3.4(e), where two parallelly aligned filaments are organized into a thick

bundle. If the two filaments are in a V configuration, rotational motion is needed to create

a thick bundle. Rotational motion demands at least two points at which motors link the two

filaments as one of the points needs to serve as a rotation axis see 3.7(c). Filaments inherent

stiffness is also important for rotation to occur. Without this stiffness, a force applied on

the filament would only cause a local distortion, leaving the rest of the filament unaffected.

This rotational motion doesn’t seem to be caused by motors pulling the filaments togehter

at just one point, rather there seems to be a steady flow of motors each connecting the two

filaments at an additional point in a manner resembling the closing of a zipper.
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(a) (b) (c) (d)

Figure 3.7: An illustration of rotational movement leading to the creation of a thick bundle. Figure

(a) shows the initial state in which two filaments are connected at one end but are not alongside each

other. Figures (b)-(c) show the process of the two separate filaments uniting into one thick bundle

which can be seen in fig. (d). Figure (c) is of special interest as it illustrates the dynamics leading

to rotational motion. This figure depicts two filaments connected by motors at two points; the first

is at the filaments plus ends which serves as an axis of rotation. The second is approximately a third

of the way along the filaments and is marked by a blue arrow. The deviation of the upper filament

from a straight line can also be seen, which also leads to the unison of the two filaments. These

figures also seem to suggest that the closing of the filaments isn’t attained by only two points of

connection, rather there are many points of connection, caused by a continous flow of motors, each

connecting the two filaments at an additional point, resembling the closing of a zipper. This steady

flow of motors can be seen in figures (b)-(c) and can also be deduced from the growth of the number

of motors at the filaments plus ends (marked as full black circles). Together these connections and

the fact the filaments are stiff, meaning that a local distortion has a global effect, can cause rotational

movement, aligning the two filaments relative to each other.

(a) (b)

Figure 3.8: The two schemas compare the ability of a motorhead to create rotational force, which

will cause the two filaments to collapse into a thick bundle. Figure (a) shows two filaments with

900 between them. The motor (short red rod) is connected to both filaments, with the motorhead

connected to the more distant one shown by an orange dashed line. Motor heads are modeled as

a node connected to the bulk of the motor by a spring with a rest length (l0 = 0). As the springs

current length l is greater than l0, this motor head applies a force which is presented by the blue

arrow. In this figure the force applied will not create rotational motion as it is parallel to the filament

it is acting on. In figure (b) the two filaments have a smaller angle between them allowing the motor

to apply a force, unifying the two filaments. In general, for filaments with an angles of 900 between

them, the motors need to be at an angle close to 450 to both filaments for the force applied to be of

any significance.
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(a) (b) (c)

(d)

Figure 3.9: Stability of a 900 angle. The right angle in fig. (a) is marked by a blue circle. In (b)

the angle between the filaments decreases (marked by two dashed arrows), due to attracting forces

applied by a large number of motors. In fig. (c) the direction of motion changes abruptly, as the

filaments cease to contract and are pushed apart by motorheads applying repulsing forces. These

surprising dynamics demand a new explanation in order to comprehend them. Fig. (d) may give

a possible explanation. In this shcema two filaments are connected by a motor, with one of the

motorheads shown by an orange dashed line. The motor isn’t placed between the two filaments

rather one of its ends is above the filament, allowing its heads to apply a force expanding the angle

between the filaments. Looking carefully at fig. (b), motors of this type (with one end not placed

between the two filaments) can be seen, giving credence to this explanation.
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The mechanism leading to rotational motion requires certain conditions in order to suc-

ceed. First the motor must be able to apply an attracting force on both filaments. Second

it needs to apply the force for a substantial amount of time, otherwise it will only cause a

minor fluctuation, having no far reaching effects. Filaments with an angle of 900 do not

seem to fulfill the first requirement, since the force applied by motors creates translational

motion (sliding of the two filaments) instead of rotational motion (see fig. 3.8). Another

aspect hindering the collapse of 900 configurations is the large radial distance between the

two filaments. As the motors are non-processive, their ability to apply long term forces is

small, meaning that a single motor will usually not manage to move filaments large dis-

tances. This is especially true for rotational movement, where motors non-processivity is

coupled with the filaments innate stiffness. as a filament on which a motor applied a mo-

mentary force, will try to restore its previous state. As 900 is a long radial distance and as

not all motors can apply substantial attractive forces, 900 configurations are quite stable.

We noticed yet another factor stabilizing large angles, while analyzing our results. It seems

that at times an angle that has started to close can suddenly re-open (see fig. 3.9(a)-3.9(c).

This surprising feature seems to be caused by motors with heads outside the area enclosed

between the filaments, which pull the filaments outwards (fig. 3.9(d)). To summarize this

point, the large radial distance, the motor non-processivity and the restoring forces applied

(by the filaments and by the motors) lead to the special stability of 900 structures.

The second form of bundles seen are long bundles. These are bundles of anti-parallel

filaments, joined at their plus ends with their minus ends pointing out in opposite directions

(see figure 3.3(g)). The third and probably most interesting form of bundling is of a type

we named deadlock bundles. In this type of bundle, filaments are anti-parallel but do not

undergo polarity sorting, i.e. the motors do not pull the plus ends together while pushing

the minus ends out to create a long bundles (see fig. 3.10(a)-3.10(b)). This phenomena

seems to stem from a force equilibrium prevailing between the motors leading to a net force

of 0 being applied on the filaments (see fig. 3.10(c)). A similar effect has been mentioned

by Mogilner et al[51], although the case they described included filaments all parallel to

each other and motors able to progress along only one of the filaments they were connected

to. F. Nédélec has also mentioned a stable anti-parallel overlap [46], but with motors of

heterogeneous directionality, i.e some of the motor heads in a motor can move towards the

plus end while others can move towards the minus end.

Apart from their difference in appearance and in the dynamics leading to their forma-
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(a) (b) (c)

Figure 3.10: Overlapping anti-parallel filaments connected by motors remaining static despite the

many motors connected applying forces on them. Figure (a) shows two bundles connected to each

other. When looking at each of these bundles without the motors (b), a fascinating situation is

revealed. The lower of the two, has anti-parallel filaments overlapping but their is no pulling of the

plus ends towards each other, as usually observed, i.e. in the dynamics leading to long bundles. The

same is true for the upper bundle; filaments of opposite polarity are interacting without any observed

sorting of polarity. Moreover, the two deadlocked bundles create a super deadlocked bundle, as

these two smaller bundles are deadlocked themselves. The schema shown in figure (c) explains this

feature. We would like to focus on the forces applied on the middle filament. The upper filament is

parallel to the middle one and the motor connecting them is pulling the middle filament left, towards

the upper filaments plus end. The lower filament is anti-parallel to the middle filament and the motor

connecting them is trying to pull the middle filament right, towards the lower filaments plus end.

The sum of forces applied on the middle filament is therefore 0, meaning it will remain static even

though forces are being applied on it.
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tion, it seems they also vary in their ability to withstand external forces, applied by motors

not taking part in the stabilization of the bundle. The least stable type of bundle seems to

long bundles, as they are stabilized at one point only, the plus ends of the filaments. Thick

bundles seem to be more stable, even though they are also connected at only one point, as

a potentially destabilizing motor connecting to the bundle, will probably connect to both

filaments, and therefore will not pull the filaments apart. Deadlocked bundles also seem to

be the most stable, as they are connected by motors at many points (see 3.10(a)), resulting

in a stable bundle, which doesn’t disintegrate easily. These deadlocked bundles seem to re-

main stable even in cases similar to that shown in figure 3.10(b), in which the small bundles

making the bigger deadlock bundle are separated allowing a motor to connect to one of the

smaller bundles without connecting to the other one.

3.2 Asters

Asters are a ”star like” formation, made of filaments with their plus ends all pointing towards

the center of the star. In our simulations we found asters to be a common self-organization

feature of actin filaments and myosin motors. It seems asters are formed from a V config-

uration or a long bundle, with many motors at its center. Filaments in the vicinity of this

small aggregate, are pulled towards its center and are added to the structure. The additional

filament can either unite with one of the filaments in the aggregate, thickening one of the

”rays” of the aster, or create a new ray protruding from the aster. Figure 3.11 shows an

example of an aster formed by our simulation. An interesting feature to note, is that each

neighboring pair of the aster arms has an equal angle between them. This probably occurs

because each arm feels an equal force on each side, leading to an equilibrium of forces.

Figure 3.11: An aster with six arms projecting out of its center. Most of the motors are accumulated

at the asters center, the location of all of the filaments plus ends. The angle between each pair of

arms is similar, probably because the forces applied from each side are comparable, leading to a

force equilibrium.
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Asters are a stable feature of our system as the motors joining the filaments are at the

filaments plus ends, acting in practice as some form of static linkers, since they cannot move

from their position at the center of the aster.

The number of arms per aster varies from three to seven arms per aster The most dom-

inant type of aster was a four armed aster, with 900 between each neighboring pair of fila-

ments. Moreover, asters with a greater number of arms tended, over time, to collapse into

a four armed aster. This feature is illustrated in fig. 3.12, which exhibits a 6 armed aster

collapsing into a four armed one. As mentioned in section 3.1, right angles are especially

stable due to the large radial distance between the two filaments and due to the decrease in

rotational force applied by motors. In addition in an aster there is another cause of stability

which is the force equilibrium attained by the equal force felt by each arm from motors on

either side. The last condition on its own, isn’t enough to promise stability, as asters with

more than 4 arms which are equally spaced, may still collapse into a four armed aster. the

first two conditions are therefore essential in order to explain the stability of right angled

asters. In-vitro experiments done by Nedelec [44] and Takiguchi [13] also show that asters

arms are not dispersed evenly radiating out in all directions, rather they tend to accumulate,

creating thick arms with wide angles between them.

(a) (b) (c)

Figure 3.12: Creation of a four armed right angled aster from an aster with 6 arms. The first pair

of arms to collapse is marked by two purple dashed arrows. The second pair of arms to collapse is

pointed at by green dashed arrows, leading to the formation of a 4 armed 900 aster.

We noticed a special type of aster, one we named deadlocked aster. In this kind of

aster not all plus ends are concentrated at the asters center, as some of the filaments are

deadlocked, preventing polarity sorting from occurring as can be seen in fig. 3.13. This

figure also highlights another interesting feature, of filament plus ends which are connected

by motors but don’t quite meet. We think this is caused by motors positioned between the

two filaments, acting as a physical barrier, preventing the two plus ends from meeting.
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(a) (b)

(c)

Figure 3.13: Aster of four arms in which not all of the filaments have their plus ends at the center

of the aster. Figure (a) shows the filaments without the motors, while (b) shows the same instance of

the simulation, this time with the motors (short red rods) visible. The blue arrow in fig. (a) points to

a deadlocked bundle participating in the aster. The filament marked by the green arrow has its plus

end positioned at the asters center. A close look shows that even this filament doesn’t quite reach

the center of the aster and this is explained by fig. (c). In this schema two motors are connecting the

two bundles; one is colored orange and the other red. The orange motor is applying a force pulling

the plus ends of the two filaments together, while the red motor is positioned between the two plus

ends, preventing their movement towards each other. Indeed, the distance between the plus end of

the filaments (marked by the green arrow in fig. (a)) and the deadlocked bundle (marked by the blue

arrow), is approximately the length of a motor (200nm).
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3.3 Large Scale Organization

The former sections described small scale features, focusing on the self-organization pro-

cess of a small group of bundles and motors. These characteristics are barely influenced by

changes in the lengths of filaments or by different concentrations of motors and filaments.

In contrast large scales features show a great variance depending on lengths and concentra-

tions. Figure 3.14 shows the results of our system after 16 seconds (simulation time), with

different concentrations of motors and filaments (fig. 3.14(a)-3.14(c)) and different lengths

of filaments (fig. 3.14(d)). These results show that for filaments of the same length (fig.

3.14(a)-3.14(c)) the most important factor is the ratio of motors per filament and not solely

the concentration of motors or filaments. Although in all the figures, the number of meta-

structures (bundles and asters) stay approximately constant, the number of asters changes,

as do the number of free filaments (filaments not part of any meta-structure). For a low ratio

of motors per filament (figs. 3.14(a),3.14(c)) the number of asters and free filaments is quite

high, while for a high ration of motors per filaments (fig. 3.14(b)) the number of asters and

free filaments decreases. Elongating the filaments seems to have a drastic influence on the

outcome (fig. 3.14(d)), with the number of meta-structures dropping to one. Another major

change is the arrangement of the free filaments. Previously free filaments are seen mingled

among the meta structures, while here there are areas with many free filaments containing

very few motors. We nicknamed this feature the balding effect and it has been previously

mentioned [35] as arrested coarsening.

To summarize the results: an increase in the number of motors leads to a decrease in

the number of asters and free filaments, while leaving the total number of meta-structures

constant. An increase in the length of the filaments leads to less meta-structures, and to a

balding effect. A summary of the number of asters in each type of simulation can be found

in table 3.1.

We would like to propose an explanation for these phenomena. Concerning the effect

of motors per filament ratio, an increase in this ratio, means that a larger force is applied, on

average, on each filament. Therefore some 900 structures may collapse (see fig. 3.15), even

though this angle is quite stable. The ratio of motors per filament also affects the number

of free filaments in the system, as there are more motors to pull filaments together and

incorporate them in bundles or asters. Regarding the influence of filaments length on the

outcome, a possible reason may be its effect on the connectivity of the system. When saying

a system is connected we imply that a route exists along filaments connected by motors
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(a) (b)

(c) (d)

Figure 3.14: Comparison of large scale outcomes as a factor of changes in filament length and

concentration and motor concentration. All figures show the results after 16 seconds. Fig. (a) shows

the outcome of a simulation with filaments of length 3.2µm, the number of filaments is 240, the

number of motors is 1200. This figure shows a large number of asters (8) with varying numbers

of arms. Apart from the asters, there are free filaments not bound to any other filament. Fig. (b)

presents the result of a simulation in which the concentration of motors was increased. In this

simulation there are 2400 motors, changing the ratio of motors per filament from 5 per filament to

10 motors per filament. Here the total number of meta-structures is the same as in fig. (a) but there

are nearly no free filaments. Fig. (c) contains 480 filaments each 3.2µm long with 2400 motors,

which is a ratio of 5 motors per filament. In this figure the number of meta-structures is still high (9)

and like fig. (a) ,which has the same ratio of motors per filament, there are free filaments. Figure (d)

has 160 filaments which are 9.6µm long, and 2400 motors. This figure shows only 1 large structure,

which encompasses much of the simulated area.

These four figures enable a better understanding of the effect of each of these parameters. Figures

(a) and (b) illustrate the influence of motor concentration on the results. High concentrations lead

to less free filaments, and cause more collapses of 900 asters into bundles. Figures (b), (c) compare

different concentrations of filaments. More filaments leads to less collapsing of asters and to more

free filaments. Comparing fig. (c) with fig (a) shows similar results even though both the number

of filaments and the number of motors are different. The similarity probably stems from the equal

ratio of motors per filament in both figures. This points to an interesting observation; the number of

filaments or motors does not determine the outcome, rather the ratio of motors per filament. Figures

(c), (d) compare different lengths of filaments, showing that longer filaments tend to create less

asters, and to leave whole areas of free filaments as opposed to the other figures with free filaments,

in which the free filaments were mingled among the meta-structures.
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(a) Experiment 1, low concentrations of actin segments

number of segments per filament 4, 240 8, 120 12, 80
5 motors per filament 7.0 — —
∼10 motors per filament 3.0 2.8 1.2
∼20 motors per filament — 1.2 0.8

(b) Experiment 2, high concentrations of actin segments

number of segments per filament 4, 480 8, 240 12, 160
5 motors per filament 5.0 — —
∼10 motors per filament No data yet 2.0 1.2
∼20 motors per filament — 1.8 1

Table 3.1: Average number of asters in simulations. Each table deals with different concentrations

of filaments. Table (a) shows numbers for low concentrations of filaments. Table (b) shows the

average number of asters per simulation for high concentrations of filaments. In both tables, each

column header shows the number of segments per filament and the total number of filaments in the

system. Each row header shows the number of motors per filament. The value in each box is the

average number of asters.

(a) (b) (c)

Figure 3.15: Collapse of right angled aster into a deadlocked bundle. These figures are taken from

a simulation containing 240 filaments each 3.2µm long and 2400 motors. Fig. (a) shows an aster

with arms at approximately right angles to each other, collapsing (fig. (b)) into a deadlocked bundle

(fig. (c)). This figure illustrates that with enough motors, even filaments at right angles may collapse

into a bundle.
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from any filament to any other filament. If there are no routes along filaments connected

by motors (overlapping filaments with no motors connecting them are not counted), the

system is not connected. Long filaments, promise a substantial amount of time, in which

the system is connected, leaving more time for motors to pull filaments or asters together,

leading to a smaller number of independent structures. This explanation is supported by

our observations showing that simulations of short filaments become disconnected after 4

seconds, while the connectivity of simulations of long filaments ceases after 12 seconds as

can be seen in fig 3.16. It seems that the balding effect which is prominent in systems with

long filaments, can also be explained by the difference in connectivity. In inter-connected

systems, motors can travel from all parts of the system, to one or two focal points at which

all motors concentrate, leaving all other parts devoid of motors. If on the other hand there is

no connectivity, the motors are unable to travel outside their local environment, leaving them

distributed throughout the system, with no bald areas. Motors cannot usually leave a focal

point they have reached as the probability of the motor disconnecting from all filaments it is

connected to simultaneously and then diffusing away from the filaments without any of its

heads reconnecting is very low, especially as focal points tend to concentrate large numbers

of filaments.

Long lasting connectivity also leads to interesting transient states, during the self orga-

nization of the filaments. First a mesh is commonly encountered, see 3.16(b). Over time

filaments and motors gather, and centers consolidate as shown in fig 3.16(c). These centers

also start aggregating (fig. 3.16(d)), resulting in a big aster containing many filaments (fig.

3.16(e)).
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(a)

(b) (c)

(d) (e)

Figure 3.16: Inter-connectivity of filaments. Figure (a) is the configuration after 4 seconds of short

filaments 3.2µm long, with a high concentration of actin (480 filaments) and 2400 motors. Figure

(b) shows the outcome after the same period of time of a simulation similar in actin concentration

and number of motors, but which differs in filament length, with each filament 9.6µm long. These

two figures shows great differences in their results, with fig. (a) showing a disconnected system,

while fig. (b) exhibits one still highly connected.

Figures (b)-(e) show the major phases in the collapse of a mesh into an aster. Fig. (b) shows the

mesh after 4 seconds. Fig. (c) shows the same mesh 2 seconds later, with focal points, marked by

blue arrows, starting to emerge. These focal points attract motors and filaments, and can also attract

each other as seen in fig. (d), which shows the system after another 2 seconds. In the end, the system

converges into an aster, 1.5 seconds later, with a large bald area.
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Chapter 4

Summary

The cytoskeleton is a complex system able to self-organize, which includes many members,

making it difficult to model. We chose to simulate a simpler system with only filaments and

myosin II motors represented explicitly. Our simulation is coarse grained and progresses in

time using molecular dynamics. The model used to describe the filaments is a set of nodes

connected by springs. Motors are also defined in this way with two central nodes connected

by a spring with motor heads radiating from these nodes. These motor heads are the source

of most of the dynamics, as they are able to progress along filaments they are bound to. As

motor heads originating from the same motor can advance along different filaments, they

can cause the filaments to move relative to each other, which gives rise to self-organization.

Our main goals were to study the steady-states formed by our model and acquire a

deeper understanding of the dynamics leading to these structures. To this end we executed

many simulations in which we chose to keep most properties constant while altering the

length of the filaments and the concentration of filaments and motors. The analysis of our

results, was done at several different levels. The first stage was analyzing the motion of a

single filament, which seems to move in a rather stochastic manner. Second was the self

organization of a number of filaments leading to bundles, of three different types: thick

bundles, long bundles and deadlocked bundles. The next level was that of asters, where

we observed the tendency of arms to collapse leading to 900 asters. The widest outlook

was at the layout as a whole, where we discovered a correlation between the length of

filaments and the number of asters and the appearance of bald areas. We also observed a

correlation between the number of motors per filaments and the number of free filaments

and the number of asters.

We found deadlocked bundles to be of special interest,first as this form of deadlock

44



hasn’t been previously noted and second as this type of dynamics may provide an expla-

nation for the networks sighted by Backouche et-al in [9]. In there work they observed

triangular networks which fixated, even though the there were myosin motors in the solute.

This is surprising, as the expected dynamics are that the motors should slide the filaments

across each other until asters, thick bundles or long bundles are created. We would like

to propose that deadlocks occurring inside the network lead to its fixation. An example of

a structure incorporating deadlocked bundles can be seen in figure 3.13, where an aster is

composed of a deadlocked bundle and a long bundle. It seems the reason we didn’t observe

this outcome in our system, is that deadlocks demand large amounts of filaments and motors

and at the moment we don’t have the ability to run such large simulations as the execution

time would be on the order of a few years.

Our research is far from finished with many more features to add, and much more anal-

ysis of existing data to be done. Regarding filament length, at the moment they are all of

an equal length and without the ability to grow and shrink dynamically. A better simulation

would probably allow a more varied system with filaments of different length. Moreover

the simulation should allow treadmilling, the growth of the filament at its plus end and its

shrinking at its minus end. Another parameter which should probably be more variant is

the number of motor heads per motor node. Yet another feature, we believe exists and in-

fluences the outcome is motor ”traffic jams”, of many motors moving towards the plus end

of a filament, and jamming behind each other. This may have much effect on the outcome,

but can’t occur in our model, as it doesn’t incorporate excluded volume.

Regarding analysis of our results, for the mean time it is mostly qualitative, based

mainly on visual analysis of a graphical representation of the output. Some quantitative

analysis is necessary, regarding the stochastic nature of our system, the connectivity of our

system, and the factors leading to the stability of 900 structures.

Other experiments to be carried out regard the effect of motor processivity and filaments

stiffness on the outcome, which will allow a better understanding of the differences between

the MT-kinesin and actin-myosin systems.
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