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“Water-free” computer model for fluid bilayer membranes
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We use a simple and efficient computer model to investigate the physical properties of bilayer

membranes. The amphiphilic molecules are modeled as short rigid trimers with finite range pair

interactions between them. The pair potentials have been designed to mimic the hydrophobic
interactions, and to allow the simulation of the membranes without the embedding solvent as if the

membrane is in vacuum. We find that upon decreasing the area density of the molecules the
membrane undergoes a solid—fluid phase transition, where in the fluid phase the molecules can
diffuse within the membrane plane. The surface tension and the bending modulus of the fluid

membranes are extracted from the analysis of the spectrum of thermal undulations. At low area
densities we observe the formation of pores in the membrane through which molecules can diffuse
from one layer to the other. The appearance of the pores is explained using a simple model relating
it to the area dependence of the free energy2@3 American Institute of Physics.

[DOI: 10.1063/1.1578612

I. INTRODUCTION describing the shape and phase diagrams of bilayer
membranes®!

When amphiphilic molecules such as lipids are brought  Phenomenological models describe the mesoscopic
into contact with water they tend to arrange so as to shielghhysical behavior of interfaces and membranes, but do not
their “oily” hydrocarbon tail from the agueous environment allow one to approach these systems on the molecular level.
while exposing their hydrophilic head to the water. One ofMany theories have been developed in an attempt to under-
the simplest structures formed in this way is of a bilayerstand how the mesoscopic behavior emerges from the micro-
membrane—a double sheet of surfactants separating twscopic entities and the interactions between them. These
aqueous phasésBilayer membranes are common in biologi- theories include lattice “Ising-like” model&molecular theo-
cal systemg. Living cells are separated from their extra- ries of the hydrocarbon chain packiffgtheories including
cellular surroundings by plasma membranes that control thehe effect of electrostatic interactiof$and density func-
transport of material into and out of the c&flMost biologi-  tional theories? The most microscopic detailed approach is
cal membranes are found in the fluid phase where the lipidemployed in some computer simulations where the am-
comprising the bilayer can diffuse freely in the membranephiphiles and water, and the interactions between them are
plane. Another characteristic feature of lipid bilayers is theirmodeled explicitly in full detait® Since these simulations
high flexibility which allows for large thermally excited require an enormously large computing time, they are re-
undulations>® The fluidity and low rigidity of membranes stricted to fairly small systems consisting of 50-200 am-
are important for many of their biological properties, such agphiphiles, and can be utilized to investigate phenomena oc-
their ability to change their shape easily and the possibilitycurring on short time scales of a few nanoseconds. In order
of proteins to insert themselves into the membrane. to study mesoscale phenomena it is therefore necessary to

The thickness of membranes is comparable to the size afispense with some of the microscopic details in the simula-
the constituting surfactant moleculésypically on the na- tions and use simplified model$A number of such simpli-
nometer scale while their lateral extension can greatly ex- fied computer models have been devised by several groups.
ceed their thickness and reach up to several micrometertn these models the structure of the surfactant molecules is
Consequently, coarse-grain phenomenological models, suckpresented in a “coarse-grained” manner where a number of
as Ginzburg—Landau free energy functiofi@isthe effective  atoms are grouped together into a single site. The first level
surface Hamiltoniai®®° have been used in order to study of coarse graining is obtained by replacing the water mol-
the physical properties of membranes, as well as of otheecules and the Cjgroups of the hydrocarbon chain by uni-
interfaces(like surfactants monolayer in microemulsions or fied atoms.’~*° This can reduce the number of atoms per
vapor—fluid interfaces In those theories the bilayer mem- lipids to about 50. Much more simplified models, in which
brane is treated as a smooth continuous surface, and its elde amphiphiles consists of only 5-10 atoms, were also
tic energy is related to the membrane area and the local cupresented’~??In these latter models the electrostatic poten-
vatures. These theories have been very successful figls are usually ignored and the potentials of the chemical

bonds are greatly simplified. At this level of simplification it
dAlso at: Department of Physics, Korea Advanced Institute of Science anf obviously impossible to addresg specific lipids S){stems,
ut rather the more general properties of self-assembling sys-
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The size of amphiphilic systems which can be simulated 1 2 3
using simplified models is constantly growing by virtue of
the availability of inexpensive and powerful commodity PC
hardware and due to the development of new simulation
techniques such as dissipative particle dynani@ED).%
Simulations of model systems consisting& 1000 lipids
have been recently reported in the literatt&> The major
restriction on the size of the systems in these simulation
stems from the large number of atoms included in the simu-
lation cell which is typically an order of magnitude larger
than the number of amphiphilic molecules. The low ratio o o
between the number of lipids and ttetal number of atoms
is due to two factors. The first one is the number of atomsIG. 1. A schematic picture of a lipid molecule in our model system—a

comprising each lipid molecule which, as discussed abovéigid linear trimer consisting of three atoms whose centers are separated a
’ distanceo apart. The atom labeled($olid circle represents the hydrophilic

C_an vary from E_’O 0 5 (E{epen(_jing on the level of simpljfica- head of the lipid, while the atoms labeled 2 andopen circles represent
tion employed in the simulations. The second factor is thene hydrophobic tail.

number of water molecules in the simulation cell. In bilayers
simulations the typical number ratio of water to lipid mol-
ecules is in the range from 10 to 30!'~2?A great fraction have fixed the temperature, the number of lipids, and the
of the computing time is, thus, “wasted” on the simulations projected area of the membrane. The projected area serves as
of the water even when the water molecules are representebe control parameter in our simulations, and we have inves-
by a single(unified atom. Only very few models have so far tigated the phase behavior of the membrane as a function of
been proposed in which the amphiphiles are simulated withit. We found that upon increasing the projected afiea.,
out the presence of water. The major difficulty in establishingreducing the area density of the lipjdhe membrane under-
such “water-free” models is the need to mimic the hydro- goes a solid—fluid phase transition. In the solid phase the
phobic effect that prevents the amphiphilic molecules fromlipids are not mobile and they pack in a hexagonal order. In
leaving the aggregate into the solvent. Droudfieal?® and  the fluid phase the lipids are free to diffuse in the membrane
Noguchi et al?” have usedad hoc multibody potentials to plane. We have measured the spectrum of thermal undula-
overcome this problem. With the aid of these nonphysications of the fluid membranes from which we have extracted
potentials they have managed to observe the formation dhe surface tension and the bending modulus that character-
fluid vesicles in their simulations. La Penm al?® have ize the elastic behavior of the membrane. At low area densi-
studied a water-free flat bilayer model with Lennard-Jonegies we found another transition from negative to positive
(LJ) potentials that depend on the relative orientation of thesurface tension, accompanied by the formation of pores in
lipids (and which are closely related to the Gay—Béfm-  the membranes. Such a behavior is indeed predicted by the-
tentials used in liquid crystals simulationsVith this model ~ oretical argument¥)~32
they have been able to simulate bilayer membranes in both The paper is organized as follows: In Sec. Il we present
the solid and the gel phases. Fluid membranes, howevepur computer model, and discuss the details of the simula-
were found unstable against lipids evaporation from thdions. In Sec. Ill we describe the physical properties of the
membrane plane. systems as obtained by the simulations. Section Il is divided
In this paper we present an exceptionally simple comdnto three sections dealing, respectively, with the phase dia-
puter model of &luid bilayer membrane. Our model has the gram of the system, its spectrum of thermal undulations and
following featuresia) It is a water-free model, i.e., we simu- €lastic properties, and the appearance of holes in membranes
late the membrane without the presence of water.The  with large projected area. We summarize and discuss the
“lipids” forming the membranes consist of only three atoms, results in Sec. IV.
one representing the hydrophilic headgroup and the other
two the hydrophobic tail. These three atoms are *glued” 10, ‘ez  OF THE MODEL AND THE SIMULATIONS
each other to form a rigid linear triméthe lipid), and have
no additional interactions between thefw) The different The lipids in our model system consist of three spherical
lipids interact through finite rangéruncated LJ interactions  atoms connected to form a linear trimer. The lipid molecules
between their three sites. The parameters of the LJ potentiatge rigid—they do not bend and the distarncbetween the
are fixed and daot depend neither on the relative orienta- center of the atoms iixed (see Fig. L We setoc=1 as our
tion of the lipids(as in Ref. 28, nor on their local density unit length scale throughout this paper. We shall label the
(i.e., there are no multibody interactions in our mod&he  three atoms forming each lipid as 1, 2, and 3. Atom 1 repre-
above-mentioned properties make our membrane modelents the hydrophilic head of the lipid, while atoms 2 and 3
computationally very efficientalbeit a less “flexible” one in  represent its hydrophobic tail. The different lipids interact
comparison to other simplified models with more interactionwith each other via spherically symmetric pair potentials be-
sites per amphiphie To investigate the statistical mechani- tween their constituting atoms. The pair potentigj(r) de-
cal properties of the membrane, we have performed a set gficts the interactions between atomand atomj of two
Monte Carlo(MC) simulations where for each MC run we different molecules separated a distancapart. The pair
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FIG. 2. The different pair potentiald;;(r) used in our modelU; (solid
line), U,, (dashed ling U35 (dotted—dashed lineU ;, (bold solid line, U5
(bold dashed ling andU ,5 (bold dotted—dashed lineThe distance is in
units of o (see definition in teyt while the potentialdJ;; are inkT units.
The parameters;; and ¢; [see Egs(1)—(5)] are as follows:oy;=1.10,
0,,5=1.05, o033=0, 01,=1.15%, o013=140, 0,3=0525, €14
=0.187KT, €= 1.7%KT, €35=1.87KT, €;,=1.137KT, €;5=200kT, and
€29=375KT.

potentialsU,, and U ;5 describe the interaction between hy-
drophobic and hydrophilic particles. They are given by the

purely repulsive LJ potential

012

12
U'i%(r)=4612(7)

and

Ulié(r):4€13

)

r

18
o 13)

The pair potentialdJ;, Uy, andU,; describe the interac-

Oded Farago

whereT is the temperature ankl the Boltzmann constant
used in the simulations are summarized in the caption on Fig.
2.

The pair potentials in our computer model have been
designed to allow, on the one hand, the diffusion of mol-
ecules in the plane of the membrane but to restrict, on the
other hand, their motion in the third direction. We have
tested various models before we arrived to the one that we
have used in the simulations. The original idea was to use
dimers with one hydrophilic and one hydrophobic patrticles,
and to describe the interactions between them by 6-12 LJ
potentials[Eq. (3)] and a 12-power repulsive potenti&g.

()], depending on whether the atoms are of the same or
different species. It turned out that the membranes depicted
by such a model were unstable against the extraction of mol-
ecules from the membrane plane. To increase the membrane
stability we added a third hydrophobic atom to the lipids.
The pair interactions between this atom and the other two
atoms are described by different forms of LJ potentials: For
the interaction with the hydrophilic atom labeled 1 we use
the more repulsive 18-power LJ potentidl;; [Eqg. (2)],
while for the interaction with the hydrophobic atom labeled 2
we use the 1-2 LJ potentiél,5 [Eq. (4)]. The former po-
tential establishes a strong repulsion between the hydropho-
bic and the hydrophilic parts of the lipids, thus reducing
significantly (eliminating on the time scale of the simula-
tions) the escape probability of molecul@sore on this point

in the next paragraphThe latter has a very shallow mini-
mum which allows a greater mobility of the lipids in the
membrane planéy making small the energy changes due to
a relative motion of the lipids with respect to each ojhéfe
have gone through a rather lengthy “trial and error” process
of fine tuning the parametexs;; and €;; which control the
range of pair repulsion and the depth of the attractive poten-

tions between two similar atoms, both either hydrophobic okja| wells. Their values have been set(® make favorable
hydrophilic. They are given by the attractive LJ potentials the alignment of molecules next to each other at a distance

U:_ij(r):“'fii[(%

"z

, )

slightly larger thanr, and(b) to make the attraction between
molecules sufficiently strong to support the stability of the
membrane, but not too strong to the extent that would en-

wherei=1, 2, 3. Finally, the interaction between the hydro- tirely prevent the diffusion of the lipids.

phobic particles 2 and 3 is also depicted by an attractive LJ

potential, but of the form

2
Uéé(r)=4623[(0—23) —(%’

r r

(4)

All pair potentials are truncated at the same cutoff
=2.50, and the discontinuity at. is avoided by adding

It is not an easy task to form a fluid bilayer sheet in a

model system that does not contain water. Membranes be-
come fluid at low area densities and high temperatures, and
under these conditions the lipids tend to escape quite easily
from the membrane plane. It is the water that confines the
lipids to the membrane. In the absence of water molecules
this role has to be played by the hydrophobic heads which

extra terms to the LJ potentials that ensure the vanishing ghust form some sort of geometric or dynamic constraint for
the potential, as well as of its first and second derivative, athe extraction of lipids. In our model we establish such a
r=r.. The final form of the pair potentials is thus given by constraint by making the excluded volume part of the pair
potentialsU;; nonadditive namely we make the size of a

LJ
Ui (r)=U(r)—USry) — Ui (r) (r—r) particlei “seen” by another particlé smaller than its size as
N . e LS ¢ seen by a particlg of a different species. We can define the
g distancea;; at which the pair potential between thel;
_} ﬁzUij (r) IRV 5 =kT as a measure for the range of hard core repulsion be-
2 oar? (r=ro)”. 5 tween the two particles andj. (It is unlikely to find a pair

r:rc

i andj separated by a smaller distanck.is customary to
The different pair potentials are depicted in Fig. 2. The val-regarda;; as the diameter of atoiinand, with this interpre-
ues of the parameters; (in units of o) ande;; (in KT units,  tation, to expect for the additivity of the hard core diameters,
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i.e., to havea;;j=(a; +a;;)/2 fori#j. In our model we do wavelength mode led to a similar estimate of fine units
not find this property(see Fig. 2. The pair potentials in our for the relaxation time. A more conservative estimate can be
system describe the effective interactions between the diffelebtained from measurements of the self-diffusion constant of
ent atoms and they include the effect of the water moleculethe lipids in the fluid phasésee, again, later in the tgxThe
which are not simulated explicitly. Therefore, there is no arelaxation time can be associated with the time it takes a
priori reason why the effective diameters associated with difmolecule to diffuse a distance equal to the pair potentials
ferent particles should be strictly additive. The increasedtutoff (2.5¢). The relaxation time obtained using this crite-
range of hard core repulsion between the hydrophilic atom tion was an order of magnitude larger-{0° MC time
and the hydrophobic atoms 2 and 3 is designed to compenits), still smaller than the equilibration time, and much
sate for the absence of water from the simulation cell. smaller than the total length of the simulations.

The simulations were performed with membranes con-
sisting of N= 1000 lipids(500 lipids in each laygmwith pe-
riodic boundary conditions in the membranegy() plane, and !ll. SIMULATION RESULTS
with no boundaries in the norma direction. Subsequent A phase diagram
MC configurations were generated by two types of move ) ) . )
attempts: translations of lipids and rotations around the mid '€ projected area of the membranes in the simulations
(second atom. The MC unit time is defined as the time fanges fromA,=L;=(26.875f to Ap:(3q-§25)2 with in-
(measured in number of MC configuratigris which, on the tervals of_ALplz 0.625. For all area densities we measured
average, we attempt to move and rotate each molecule onc@.e sglf-dﬁfusmn constant of the molecules relative to the
The acceptance probability of both types of moves was apdiffusion of the center of mass, defined by

proximately half. We performed a set of simulations of mem- r(t)2 1 N

branes with the same temperatdrand number of lipid$N, D= IimTE Iimmz [(Fi(t) = TFem(t))

and with varying projected areas. For each value of the pro- t—oe t—oe =1

jected area we studied eight different membranes starting at — (Fi(0)—Fe(0) 2, (6)

different initial configurations. The initial configurations

were created by randomly placing 500 lipids in two layerswherer;(t) denotes the position of thigh lipid (defined by
with a vertical (along the normak direction separations  the position of its mid atomat timet, while Fey(t) denotes
between the atoms labeled 3 in the two layers, and with althe position of the center of mass of lipitfswWe have also
the lipids oriented normal to the membrane plane. The initiameasured the self-diffusion coefficiem the membrane
configurations were then “thermalized” over a period of 5 plang defined by

X10° MC time units, followed by a longer period of 6 1 N
X 10 time units dur_ing which quantitigs of inter_est were DxiyE|im4_Nt2 {1 (t) = Xem(1)) = (%,(0) —Xem(0))1?
evaluated. The duration of the MC runs is substantially larger t—oo i=1
than the relaxation time which we estimated in various ways:

As a first approximation for the relaxation time we used the FLOD = Yem(®) = (%i(0) = yeu(0) 1%, @)
time it took the potential energy of the membrane to saturatevherex andy denote Cartesian coordinaté all the simu-
from its high initial value(resulting from overlap of particles lations the membranes lied in thg,{) plane, while fluctu-

in the random initial configuratiorio a final “typical” value.  ating in the normak direction] As the lipids can only dif-
This time was of the order of #0MC time units. An inde- fuse within the plane of the membrane, we found no
pendent estimate of the relaxation time was obtained from difference betwee® andD, .

study of the spectrum of thermal undulations of the mem- At low projected aredhigh area densitywe found the
branes(see more details, later in the tgxinspection of the membrane in a solid phase characterized by two feat(aes:
autocorrelation function of the amplitude of the longestThe diffusion constant of the lipids is vanishingly small.
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FIG. 4. The lipids mean square displacem&nt? (measured i units) as
a function of the timglmeasured in MC time unitsfor fluid membranes
with (from bottom to top A,=(28.125f, A,=(28.75f, A,=(29.375%,
andA,=(30.07.

FIG. 6. Equilibrium configuration of a fluid membrane wi4t1k1,=(30.0)2
having a pore on its upper right corner.

[The root mean square displacemeifr’? has barely
changed during the course of the simulations, and it has
never exceeded the typical distance between neighbor moApz(28.75)2 is depicted in Fig. &). Another characteristic
ecules (-o).] (b) The lipids arrange themselves in a hex- feature of the fluid membranes is the loss of in-plane hex-
agonal order in the membrane plane. A typical equilibriumagonal order, as demonstrated in Figb)5[compare with
configuration of a membrane wit.{’-ﬁp=(26.875)2 is shown  Fig. 3b)].
in Fig. 3(a). A top view of the plane of midlabeled 2 atoms The membranes with,= (30.0Y exhibited an interest-
of the membrane upper layer, revealing the hexagonal ordeng feature—they developed pores, as demonstrated in the
of the lipids, is shown in Fig. ®). The lattice imperfections configuration shown in Fig. 6. These pores tended to appear
observed at Fig. ®) should be mainly attributed to the in- irregularly in the membrane with a characteristic time scale
commensurability of the 500 sites hexagonal lattice with ther=2x 10° for the formation of a pore, and a typical pore
square simulation cell. lifetime of a few thousand time units. Another interesting
At larger values of the projected ar@Ap>(28.125)2] phenomenon which we observed for this valué\gfand did
we found the membranes in a fluid phase. The main featureot observe at lower projected areas was the occurrence of
that distinguishes fluid from solid membranes is the diffusion“flip—flops”"—the transition of lipids from one layer to the
of the lipids. In Fig. 4 we plot lipids mean square displace-other. In Fig. 7 we look at the same membrane depicted in
ment Ar’? [see definition in Eq(6)] as a function of the Fig. 6. In this figure, however, we plot only the 500 lipids
simulation timet for fluid membranes with different area that were located in the upper layer in the initial configura-
densities. The slope of the asymptotically linear curves igion. About 30 of them have managed to diffuse from the
four times larger than the self-diffusion const@nt One can  upper to the lower layer during the course of the simulations.
observe the growth ob with the increase of the projected A similar (although not necessarily identigalumber of lip-
area—a rather expected observation as the increase of ties have moved in the opposite directidgiransbilayer dif-
projected area means more room for the molecules to movéusion is an important process in real bilayer membrafies.
Atypical equilibrium configuration of a fluid membrane with To allow for uniform bilayer growth, some of the lipids must

(:”'"QUUU.‘J"U%%UQWQQQUO%Q‘#Q'U FIG. 5. (a) Equilibrium configuration
Yo% p,_,%%c of a fluid membrane with A,
& YU e @ =
%000 000 Y0P 0%0 ¢ @ 0 (28.75). Black and gray atomgof
890“’ S%U‘-‘ét) U%ﬁ“&t “U%‘f.a% diameter o) depict hydrophilic (la-
0’0o ogggg&w Coletonct® beled 2 and hydrophobid(labeled 2
op%%oou g_.‘_,_bob%‘_“ O:ju‘tpguo and 3 atoms, respectively(b) A top
g Uumpgzgfj&s 06 o e view of the plane of mid(labeled 2
,0-9‘-'“%& O _U(;})Qu "0 Yo ge @ atoms of the membrane upper layer.
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use of the local curvatures in favor of two othéwscal) in-
variants: the mean curvatuké=(c;+c,)/2, and the Gauss-
ian curvatureK=c;c,. If one only considers fluctuations
which do not change the topology of the membrane, then the
total energy associated with the last term in E8). is a

FIG. 7. Another view at the membrane depicted in Fig. 6. Here we showconstanﬁ We, thus, arrive to the following more simplified
only half of the lipids which were originally located on the upper leaflet of form of Eq. (8):

the bilayer.

H=fdA('y+2KH2). 9
be transfered from one leaflet to the other during the self- S
assembly process. When a flat bilayer is bent to form &  There are various ways to parametrize the surface. One
spherical vesicle, the area of the inner layer becomes smallgf ihem is the Monge representation, where the surface is
than the area of the outer layer, and it is the transition Ofrepresented by a height functioz=h(x,y), above a refer-
lipids from the former to the latter that balances their aregnce x—y plane. For a nearly flat surface, i.e., when the
densities. It has been suggested, based on experifients  gerivatives of the height function with respectt@ndy are

computer simulation that that the formation of pores and small—h,,h,<1, one obtains the following approximation
the flip—flop motion are closely interconnected. According tof,, Eq. (9);

these studies, the pores provide a transverse diffusion con-
duit for the lipids, through which their hydrophilic head-
groups cross the hydrophobic region of the membrane. Our
study supports the conjecture about the possible relation be- ) _ _
tween pores and flip—flops. In Sec. 111 C we discuss the ori/Note that unlike Eq(9), the integral in Eq(10) runs over the
gin of the formation of the pores. We show that it is associj-eference X,y) surface rather than over the actual surface of
ated with the change in the sign of the membrane surfac® membrane. .
tension—from a negative to a positive value. Once the sur- Equations(8)—(10) are expected to be valid only on
face tension attains a sufficiently large positive value, thdength scales larger than the thickness of the membrane. The
energy involved with the formation of the pores is compen-undulatory motion on smaller length scal@shich we did
sated by the reduction in elastic energy. not investigate in this studyis dominated by the so-called
While the formation of the pores allowed the diffusion of “Protrusion modes.”® In our simulations the profile of the
molecules between the two layers, we did not obsgiwe bilayers was defined by mapping the system with Iinea_r size
membranes withA,=(30.0f] that pores also lead to the (Of the projected argd. onto an 8<8 grid whose mesh size
extraction of molecules from the membrane. It is, however! =L/8 is indeed larger than the typical width of the mem-
possible that the disassociation of pore-forming membranelrane. The local helght_ of the bilayer was then defined as the
occurs on time scales larger than the duration of our simula@verage of the local heights of the two layers. The latter were
tion. Fast disintegration of the membrane was observed whefvaluated by the mean height of the lipigighose positions
the projected area was increasedAQZ(30‘625f’ which  were identified with the coordinates of their mid atgrbs-

was, therefore, the largest projected area set for the menf2nging to each layer, which were instantaneously located
branes in our study. inside the local grid cell. The discretized form of Hamil-

tonian (10) is

1 2 2 1 2K\ 2
Hzfdxd 5 V(NEHh5)+ 5 k(V2h)2). (10)

- . 1 1
B. Elasticity and thermal undulations H=aoz —'y(h)2(+ h§)+ = k(V2h)2), (11)

On length scales larger than the membrane thickness, the T 12 2
bilayer can be modeled as a smooth continuous sheet. TRghere the summation goes over the discrete grid coordinates,
thermal undulations of the bilayer can be studied with Hel-gnqa = |2 s the area of the grid cells. In Fourier coordinates
frich Hamiltoniar? relating the elastic energy to the shape of e define
the membrane,

e [ an
S

The integration in the above equation is carried over thé"
whole surface of the membrane. Three elastic moduli are | .

involved with the Helfrich Hamiltonian: the surface tension hd:[Z h(rye ', (13

v, the bending modulus, and the saddle-splay modulug . '

The quantities; andc, appearing in the above equation are where the two-dimensional wave vectd has &=64
the local principle curvatures of the surfateee a rigorous discrete values satisfying {q,,q,=27n/L, n=-—4,
definition in Ref. 37 which are surface invariants with re- —3,...,2,3. In Fourier space the different modes decouple,
spect to similarity transformationfranslations and rota-

tions), Wh_ile Co is the quntaneous curvatqre of the _surface. H= @Z [7|€I|2+K|ﬁ|4]|hq
For flat bilayerscy=0. It is customary to dispense with the 2 75

[ .
1 h(r)=— hge'd’ 12
v+ EK(C1+02—200)2+ KgC1Co|- (8) ) L%“ q€ (12)

d

2, (14)
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25 ciple, correct our values of by considering the reduction in
L the effectively measured bending modulus due to long-
wavelength thermal undulations. The correction term de-
20 . . .
_ pends logarithmically on the size of the systef:
° Ak 3kT (L 19
: — - = n - L
A 15 Kk 4wk \a (19
= 1ol wherea is some microscopic length. Settimg-1=L/8 (the
;’o mesh size in our simulatiojsand using the values of in
- T Egs. (17) and (18), we find that this correction amounts to
5+ about 1% of the value ok and, therefore, falls within the
L uncertainty in our estimates of the bending modulus.
0 = The fact that the surface tensionis negative has an
0 01 02 03 04 05 06 07 interesting implication: It means that the size of the mem-
2 11/67 brane cannot grow indefinitely, but an upper bound exists,
FIG. 8. The inverse of the spectral intensity for undulatory modes L.<27A /i (20)
1/ag(|hy) as a function of the square wave numb@for membranes with ¢ [y

A,=(28.75Yf (squaresandA,=(29.375Y (circles. . .
o= (28.75F (54 a 4 above which there are smajlmodes with|q|<q.=2/L,

that make the system unstaljieee Eq.(14)]. One can also
understand the origin of this instability in “real” space,
rather inq space: Whery<0 the elastic energy of the mem-
sity”), branedecreasesby_increasing its area, and it _is the bending
KT energy that stabilizes t_he system. Modes with _Iarger wave-
ag(|he|?) = ——=——. (15)  length(smaller|q]|) require smaller curvatures to increase the
d (v1d]*+ «[d[*) area of the membrane and, thus, cost less bending energy.

The instantaneous amplitudes of the differgnmodes ~Membranes with linear sizé>L. have long wavelength
were evaluated using EG13) once in every 100 MC time Modes that reduce the elastic area energy more than they
units, and were averaged over the course of the simulation§)crease the bending energy. For systems whose linear size is

To extract the values of and x we used the inverse form of Smaller than, but close td,; the amplitude of the sma
Eq. (15), modes become largsee Eq(15)], and the approximation in

1 (yld[2+ «[d]*) Eqs.(ll) gnd (14) is no Ionge_zr valid. It |s_ the_n necessary to
= , (16) include higher order terms in the Hamiltoni&iv), and to
kT consider their influence on the spectrum of thermal undula-
g 2> and a function ofcj|2. The results of tions and on the stability of the membrane.

the spectral analysis of the undulations for fluid membranes

with (Ap=28.75)2 (squaresandA,=(29.375F (circles are = pore formation

presented in Fig. 8. The error bars represent one standard

deviation in the estimates of the averages. The curves depict The projected areA at which the surface tension van-
the best fit of the numerical data to E3.6), obtained when ishes is called the saturatéSchuImam area’®* One can

and, by invoking the equipartition theorem, we find that the
mean square amplitude of the modggthe “spectral inten-

v and « take the following values: evaluate the saturated area of our model membranes using a
T linear approximation for the relation between the surface ten-
y=-14+0277, sion and the excess aréd,=A,—A,,*
= 1 SA
Kk =54=2KT, 17 =K, e 21
for A,=(28.75¥, and Ap

— 060 2k_T The coefficientk , appearing in the above equations is the
YRR area compressibility modulus of the membrane. Using the
=42+ 2kT (18  Vvalues ofy obtained from the simulations fa%,= (28. 75§

=826.6, andA,=(29. 375¥=862.9[Egs. (17) and(18)] in
for Ap=(29.375)2. We verified the validity of Eq(16) by Eqg. (21), we der|ve the following estimates:
attempting to fit our data to other polynomial functional KT
forms, including a constants and@® terms. The contribu- Ka=19.6+6.6— (22
tions of these terms to the fit were small, and did not result a 7
significant change in our estimates pfind «, based on Eq. and
(16). o

The above values of the bending modukigre some- Ap=890=17, @3
what larger than the values commonly reported in experifor K, andA Equation(23) suggests that our membrane
ments in phospholipidsc~10—2&T.%° We should, in prin-  with Ap=(30. 0)2 900 might be found above the saturated

Downloaded 02 Oct 2003 to 128.111.119.121. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 119, No. 1, 1 July 2003 “Water-free” computer model for fluid bilayer membranes 603

areaA, and, therefore, may have a positive surface tensionpolymer. The most striking feature predicted by this study
The attempt to verify this conjecture by analyzing the specWwas, however, the fact that pores can appear at zero, and
trum of the membranes, as done for the fluid membranegven at small negative surface tension.

with lower projected areas, is hampered by two technical ~The major drawback of the above model is the fact that
difficulties. The first one is related to the flip—flop motion of While it predicts the expansion of the pore without limit, the
lipids between the two leaflets. Theanshbilayer diffusion  first term in Eq.(24), assuming a linear relation between the
makes it computationally complicated to determine whichreduction in elastic energy and the area of the pore, applies to
lipids are related to which layer of the membrane and, theresmall pores only. An improved model can be obtained by
fore, it becomes difficult to calculate the profile of the layers.assuming other forms of the free energy dependence on the
The other difficulty results from the holes which are createdPore area. We first consider a zero temperature model where
in the membrane. These pores may have an area larger th#ie membrane does not fluctuate in the normal direction. The
ao, the area of the grid cells. In such a case we find an emptffee energy of the membrartehich at zero temperature co-
cell with no lipids inside, and the height of the membrane atncides with the potential energhas a minimum at the satu-
the corresponding grid point cannot be evalugtetess one rated area which we shall now denote A [compare this
interpolates this value using the height of the membrane atotation with the one used in E{R1)] to indicate that it is

the adjacent grid pointsWe have taken advantage of the determined by energy consideration. The subscpiphas

fact that the typical time for the appearance of the pores anldeen omitted since the projected area is also the total area of
for the flip—flop motion which accompanies their formation, the membrane in this case. CloseAb we can use the qua-

is larger than the relaxation time of the spectrum, and usedratic approximation to describe the dependence of the free
short MC runs(during which pores were not obseryeim energy densityf on the excess aresAE=A—AE

estimate the surface tension of the membrane. We found a £\ 2

positive surface tension with a magnitude of the ordetyof f= i_ EKE oA (25)
2 ik : RPNV '

~1kT/o“, which is roughly half an order of magnitude AE 2 AE

larger than the value anticipated by E@21)—(23). While

the spectral analysis supports our conjecture iatpositive ~ Where, as in the case of the saturated area, we use the super-
for Ap=(30.0)2, one should not attempt to use many inde-ScriptE in the no_tanon of the area compre55|b|IKy,E. If a _
pendent short runs to achieve a more accurate estimage of Pore of area,,is formed then the area of the membrane is

It is unclear how well equilibrated the membranes in theséeduced byA;.e and, consequently, the pore contribution to

short MC runs are. Moreover, it is incorrect to base such athe free energy density is given by
2

estimate on statistical averaging restricted to membranes 1 SAE—A 2 4 SAE
. . E pore E
without pores. The creation of the pores tends to reduce the  fpord A/Agord = EKA e |~ EKA —
surface tension since they make the effective area of the A A
membrane smaller. \/—
Membranes with a positive surface tension can reduce + 2ANT In ' (26)
their elastic energy by decreasing their area, and the forma- AE pore

tion of pores is obviously one of the mechanisms to achieve . ] ]
that. Other ways of reducing the membrane area which aréS in Eq. (24), we consider a circular_hole and, thus, its
not possible in our model is to decrease the projected area G€rimeter and area are related by y4wA. The equilib-
to increase the area density by adsorbing lipids from thdium size of the poreéj, is found by solving the equation
solvent. For the case of a pore formation, one has to considélf pore/ @Apore=0, and in addition by verifying ~that
the line tension energy price involved with the creation of thef pord A:Apord < fpord A,0)=0. While in Litster's model a
hole. The simplest theoretical model discussing pore formaMeémbrane with positive surface tension can be only meta-
tion was suggested by Litsté.In this zero-temperature stable_agamst_the formatlon_of a pore, the model presgnted
model, the contribution of a circular hole of radiBg to here yields a different scenario: Pores are thermodynamically
the free energy of a membrane with a positive surface tendnfavorable as long as the line tension satisfies
sion vy is given by 2 (SAF)32 .

A>N'=\o—————Kj. (27)

Fpore= — VWRgz)ore'l' A2 Rpores (24) 2fm A

At this value a first order first transition occurs, and a pore of
where\ is the line tension of the hole. According to this sizeA}, = 2/35AF is created. The pore grows gradually\as

model a pore with a radius larger than the critical value ofis decreased below this value. When-0, A%, — SAE, and
My is predicted to grow without bound. Such a thermody-the effective area of membrane attains the optif&ahul-
namically large circular hole can be created only if the criti-map value AE. As in Litster’s model, there exists a free

cal energy barriemr\?/y is accessible by thermal fluctua- energy barrier for the formation of the pore. At the transition
tions. At a finite temperature it is necessary to take into\ =)’) the height of the barrier is

account the entropy of the pores and the picture becomes N 413 SAEN 1131 E13

more complicated. Recent computer simulatfdgve dem- AF=NTHOAT) KA (28)
onstrated that the typical shape of thermally induced pores is A theory for the entropic contribution to the free energy
noncircular but rather of a self-avoiding ring or a branchedof the pore has been recently presented by Sens and $afran.
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According to this theory, hole formation is one of the mecha-in stretching experiment& ,=10? ergs/cm (Ref. 10 and,
nisms to “redeem” the degrees of freedom associated Witherefore. the entropic contribution 6, and A can be

the long wavelength modes in the fluctuation spectrunhegiected The effect of the thermal fluctuations can be felt
which are eliminated by the surface tension. To a first @Ponly in small membraneésuch as in this papgras K/? in-
proximation, the effect of this entropic surface tension can bge55eg by decreasing the projected area. Unfortunately, the
easily incorporateEd into Eqe25) and(26). Let us assume for - yempranes in our computer study 4oe smallto allow the
a moment tha,=0, and that the projected area of the yescription of this effect by Eq€29)—(31). The derivation
membraneA, is fixed. Because of the thermal fluctuations, o these equations is based on the assumption that the long
the total area of the membrane will be larger thgn As has  \yayelength behavior of the membrane is dominated by the
been explained in Ref. 44, there exists an optimal total aregrface tension. This requires the(ter/\/A—p)2< y—a crite-
at which the membrane is tensionless rion which is not satisfied in our case. The long wavelength
KT [A, fluctuations in our membranes are mainly controlled by the
1+gIn |_2) curvature elasticity.
) ) ) Is the appearance of pores in the simulations in accord
where « is the bending modulus, aridis some molecular it the model described by E(26)? In order to answer this
cutoff length. The superscripp denotes the fact that the question we need to evaluate the line tensioof the pore.
optimal area discussethere is entropic in nature, and doqshe line tension\ has the dimensions of energy per unit
not need to be equal t&" in Eq. (25). A membrane with |ength. Its magnitude can be estimated by noting that the
A+AS will experience a surface tension. The free energylipids on the rim of the pore have 1-2 less neighbors com-
associated with this entropic surface tension can be calcyared to the other lipids. Therefore, the energy cost associ-
lated analytically. Here, however, we shall use the quadratiated with each such lipid is of the order of the interaction

, (29

-
AS=A,

approximation indAS=A—AS, energy between two adjacent molecules which is roughly
F 1 SAS\ 2 kT. The length occupied by each lipid along the perimeter of
f= v EK’%(A_) , (300  the hole is of the order of, and son~kT/o. This value of
P P

\ should be smaller than the critical valdé given by Eq.
which is valid only close to the minimum of the free energy (27). Using the values oK, and A provided by Eqs(22)
atAS. The entropic area compressibility in EQ0) is given ~ and(23), we arrive at the estimate’ ~kT/o for the mem-

by** brane withA,=30°=900 (SA~10). This means that and
3277342 N\’ are of the same order of magnitude and, thus, may obey
K,§=W. (31  the criterion given by Eq(27) for the thermodynamic stabil-

ity of membranes with holes. The fact the pores in our simu-
Combining the energeti@5) and the entropi¢30) contribu-  lations appear for only short time intervals, before they close
tions to the free energy, we find another quadratic form forup, may indicate that is, in fact, slightly larger thain’, and
the total free energy of the membrane that the pores are only metastable. In addition to to the val-
E 1 SA\ 2 ues of A and A’, we also need to check the free energy
f(A)= A EKA( A—) , (320 barrier for the formation of the pores, as given by Ezf).
P P We findAF~KT, and so the opening of a pore can be nucle-
where the excess are#A=A—A is defined with respect to ated by thermal fluctuations.
the minimum at

KEAD-I- K,?ZS IV. SUMMARY AND DISCUSSION

A= A (33 We have introduced a new simple computer model for
~—pK,'§+ Ki bilayer membranes whose main feature is the fact that the
AE system is simulated in vacuum rather than in aqueous envi-
ronment. The elimination of the solvent from the simulations
greatly improves computational efficiency. Devising a
“water-free” model is a great challenge as the water mol-
ecules, via the electrostatic interactions between them and
the lipids, play a central role in the aggregation and the sta-
The optimal area and the area compressibility appearing ibilization of the membrane through the resulting hydropho-
the above two equation@nd which include both energetic bic effects. The self-assembly of the system has not been
and entropic contributionsshould replace their purely ener- investigated in this papefThe reader is referred to the simu-
getic counterparts in E@26) for the pore free energy density lations presented in Refs. 26 and 27 in which this issue has
and in Eqs(27) and(28) for the critical line tension and the been addressedWe did, however, demonstrated that bilay-
free energy barrier. For typical values of phospholipids: ers, once they are formed, can be stable without the sur-
=10kT~5x10 B ergs, and A,=(10um)?=10°cn?,  rounding solvent. One only needs to modify the interactions
we get upon substitution in Eq.(31), K,§~5 between the lipids, and use effective potentials that compen-
X 10~ ergs/cni. This value ofK is several orders of mag- sate for the absence of water by producing a barrier against
nitude smaller than the area compressibility typically foundthe disintegration of the membrane. In this model we have

and the effective area compressibility is equal to

A
Ka=KE—L2+KS3. (34)
AE
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